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Abstract: Mining spatiotemporal mobility patterns is crucial for optimizing urban planning, enhanc-
ing transportation systems, and improving public safety by providing useful insights into human
movement and behavior over space and time. As an unsupervised learning technique, time series
clustering has gained considerable attention due to its efficiency. However, the existing literature has
often overlooked the inherent characteristics of mobility data, including high-dimensionality, noise,
outliers, and time distortions. This oversight can lead to potentially large computational costs and
inaccurate patterns. To address these challenges, this paper proposes a novel neural network-based
method integrating temporal autoencoder and dynamic time warping-based K-means clustering
algorithm to mutually promote each other for mining spatiotemporal mobility patterns. Comparative
results showed that our proposed method outperformed several time series clustering techniques
in accurately identifying mobility patterns on both synthetic and real-world data, which provides
a reliable foundation for data-driven decision-making. Furthermore, we applied the method to
monthly county-level mobility data during the COVID-19 pandemic in the U.S., revealing signifi-
cant differences in mobility changes between rural and urban areas, as well as the impact of public
response and health considerations on mobility patterns.

Keywords: spatiotemporal data mining; mobility patterns; time series clustering; deep learning

1. Introduction

Spatiotemporal mobility pattern mining is a crucial area of data mining that focuses
specifically on identifying and analyzing movement patterns within mobility data as they
shift over time and across different locations. These patterns have provided useful insights
in a wide range of applications, such as urban planing [1–5], traffic management [6–8], and
disaster reduction [9–12]. With advancements in data storage and processing capabilities,
real-world applications now have the capacity to store and retain data over extended
periods [13]. Consequently, mobility data across various domains are increasingly being
preserved in the form of time series data, facilitating more comprehensive analysis and
long-term insights.

Researchers have developed various methods leveraging time series data to perform
related analysis such as classification [14,15], clustering [10,16–19], forecasting [20–24],
and causal inference [25–27]. Among these tasks, time series clustering is particularly
challenging but important. Time series clustering has gained significant attention for
its effectiveness across diverse fields, including climate [28–30], energy [31,32], and the
environment [33,34]. Despite the advances in time series clustering, several challenges
persist, including high dimensionality, noise, outliers, and time distortions. These issues
often lead to increased computational costs and reduced accuracy in clustering outcomes.

An appropriate representation can help mitigate high dimensionality, noise, and
outliers, and reduce computational costs, leading to more efficient and accurate time
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series clustering. Many studies have been carried out with a focus on dimensionality
reduction (DR) techniques. For example, principal component analysis (PCA)-based K-
means algorithm [16,35,36] has been proposed to achieve faster and more accurate time
series clustering. This method constructs common projection axes as the prototype for each
cluster, enabling more efficient clustering by reducing dimensionality while preserving
essential data characteristics. Non-negative matrix factorization (NMF) is also employed as
a DR technique prior to applying the K-Means clustering algorithm [37,38].

With the advancement of neural networks (NNs), deep representation learning [39]
has focused on constructing meaningful and compact data representations. This approach
aims to capture essential features from raw data, enabling more efficient processing and
improving the performance of downstream tasks such as classification, clustering, and
forecasting. Deep time series clustering [40] exemplifies how deep representation learning
can be used to analyze time series data. In this approach, temporal representations are
first learned through advanced deep representation learning techniques, and then clus-
tering algorithms are applied to temporal representations to extract meaningful clusters.
Researchers have devoted considerable effort to improving deep time series clustering.
For example, the authors in [40–45] employed the convolutional autoencoder (CAE) for
extracting representations and K-means as the clustering algorithm. To better capture tem-
poral information, some studies developed a temporal autoencoder (TAE) by integrating
a recurrent neural network (RNN) into the convolutional autoencoder, which resulted in
improved performance [46–49].

However, we found that existing methods often overlook several critical characteristics
of mobility datasets, making it challenging to apply these methods directly to mobility
data. These challenges include determining whether the extracted temporal representations
are suitable for downstream clustering algorithms, as well as addressing issues related to
high dimensionality, noise, outliers, and time distortions in their methods. In an effort to
overcome these obstacles within a comprehensive framework, we introduce a novel method
that combines a neural network-based temporal autoencoder with a dynamic time warping-
based K-means clustering algorithm. Additionally, we propose an optimization strategy to
improve the quality of generated temporal representations, making them more suitable
for the downstream K-means clustering algorithm. This approach not only mitigates
the impact of high dimensionality, noise, outliers, and time distortions but also ensures
that the features extracted are well-suited for specific applications. The efficiency of our
proposed algorithm is demonstrated through extensive experiments on synthetic and real-
world spatiotemporal mobility data, proving its exceptional ability to precisely identify
spatiotemporal mobility patterns. The significant contributions of this work are outlined
as follows:

• We formalize the task of mining spatiotemporal mobility patterns using a deep time
series clustering approach and introduce a comprehensive framework that integrates
a neural network-based temporal autoencoder with a dynamic time warping-based
K-means clustering algorithm.

• We propose an optimization strategy to enhance the generated temporal representa-
tions, making them more suitable for the downstream K-means clustering algorithm.

• Extensive experiments on both synthetic and real-world mobility datasets demonstrate
that our proposed approach outperforms existing time series clustering techniques,
especially when dealing with data characterized by high dimensionality, noise, outliers,
and time distortions.

• We reveal significant differences in mobility changes between rural and urban areas,
as well as the influence of public response and health considerations on mobility in
the U.S. by applying our method to mobility data during the COVID-19 pandemic.

We have organized our paper as follows: Section 2 presents the data used in this
study and our proposed methodology; Section 3 presents the comparative performance
evaluation, module contribution analysis, and a case study on mining spatiotemporal
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mobility patterns during the COVID-19 pandemic in the U.S.; Section 4 discusses the
limitations and provides directions for future research, while Section 5 concludes the study.

2. Materials and Methods
2.1. Data

We used three distinct real-world time series datasets to thoroughly evaluate the effec-
tiveness of our method in identifying and analyzing spatiotemporal mobility patterns. The
first, Melbourne Pedestrian Time Series Data, consists of detailed hourly pedestrian counts
collected from 10 distinct locations across Melbourne, Australia, throughout the entirety
of 2017. These data originate from an automated system (Figure 1) designed to monitor
pedestrian activity in the city, with the goal of providing valuable insights into pedestrian
movement patterns. By analyzing these data, urban planners can better understand the
flow of people through different parts of the city, enabling more informed decisions about
urban infrastructure and planning. The placement of sensors in various locations allows for
the analysis of spatial variations in pedestrian traffic, while the continuous data collection
across a full year enables a comprehensive temporal analysis, taking into account seasonal
changes, holidays, and other factors that influence pedestrian behavior.

Similarly, the second, Chinatown Pedestrian Time Series Data, offers monthly pedes-
trian counts for Chinatown-Swanston Street (North) in Melbourne, Australia, also for the
year 2017. This dataset is categorized based on whether the counts were collected on
regular weekdays or weekends, providing a granular view of temporal variations in pedes-
trian activity. By examining these data, we were able to evaluate our method’s capability
to recognize not only spatial patterns but also temporal variations, such as differences
in pedestrian traffic between weekdays and weekends. This level of detail is crucial for
understanding how different times of the week influence foot traffic in specific areas, which
is valuable for businesses, city planners, and local authorities.

Figure 1. The pedestrian counting system in the city of Melbourne is a network of sensors, represented
in various colors, located throughout key areas of the city to count pedestrian movements in real time.
This system helps monitor foot traffic trends, providing valuable insights into urban mobility, crowd
behavior, and the impact of major events such as festivals and public holidays, as well as changes in
mobility patterns.

The third, COVID-19 Mobility Time Series Data, is derived from the Trips by Distance
datasets published by the Bureau of Transportation Statistics in the United States. This
dataset provides county-level mobility information for the COVID-19 pandemic, tracking
the average distance people traveled from their homes across 3142 counties between March
2020 and May 2020. This period is particularly significant as it coincides with the early
stages of the pandemic when policies such as lockdowns, social distancing measures, and
travel restrictions were being rapidly implemented and modified across the country. The
dataset offers a unique opportunity to examine how these dynamic policies influenced
human mobility patterns on a large scale. By using these data as a case study, we aimed to
identify spatiotemporal mobility patterns under rapidly changing conditions, providing



ISPRS Int. J. Geo-Inf. 2024, 13, 374 4 of 18

insights into how public health interventions and shifting regulations impacted movement
across different regions. This analysis helps to illustrate the broader applicability of our
method to real-world phenomena influenced by both spatial and temporal factors.

In addition to real-world data, we used a synthetic dataset to evaluate the performance
of our proposed method in handling noise, outliers, and time distortions, as visualized in
Figure 2. We followed the model presented by [50] and then generated these time series
with different trends as follows:

f1(t) = (5 + α) · g[a,b](t) + ϵ,

f2(t) = (5 + α) · g[a,b](t) ·
t− a
b− a

+ ϵ,

f3(t) = (5 + α) · g[a,b](t) ·
b− t
b− a

+ ϵ.

(1)

In this context, t ranges from 1 to 128, and a is defined as an integer-valued uniform random
variable within the range from 16 to 32. The difference b− a follows an integer-valued
uniform distribution with bounds from 32 to 96. Both α and ϵ are variables drawn from a
standard normal distribution N (0, 1). Additionally, g[a,b] represents the indicator function
defined over the interval [a, b], which can be expressed as follows:

g[a,b](t) =

{
1 a ≤ t ≤ b

0 otherwise
(2)

where f1(t), f2(t), and f3(t) represent the generation functions for the time series with
different trends.

Figure 2. This synthetic time series data includes noise, outliers, and time distortions. We assume the
presence of three distinct spatial clusters. Locations within the same spatial cluster, represented by
different colors, typically exhibit similar patterns or trends in time series data.
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2.2. Methods

This section details our two-stage, improved deep time series clustering (I-DTSC)
method for uncovering spatiotemporal mobility patterns. The first stage is a neural network-
based temporal autoencoder for learning the temporal representations. The second stage
is to utilize a dynamic time warping-based K-means clustering algorithm on learned
temporal representations to generate k spatial clusters. After generating k spatial clusters,
we visualize them on a map and explore the spatiotemporal patterns. The framework is
illustrated in Figure 3, and we discuss our proposed method in the following parts.

Figure 3. The workflow of our proposed method. X represents the input time series data with
location coordinates, E denotes the encoding process, and H is the latent space where temporal
representations are learned. D is the decoding process, which maps the temporal representations
to Y. After generating the temporal representations in H, apply the dynamic time warping-based
K-means (DTW K-means) clustering algorithm to produce spatiotemporal patterns and visualize
them on the map using location coordinates. Exploring dynamic spatiotemporal mobility patterns,
represented by squares in different colors, enables better decision-making.

Given a collection of time series data from n locations, denoted by X = (x1, x2, ..., xn),
where each time series xi ∈ RT . We introduce a non-linear mapping function E(·) : xi → hi
for encoding, and another non-linear mapping function D(·) : hi → yi for decoding.
Specifically, we design the non-linear mapping E(·) by employing the initial two layers
as a one-dimensional convolutional neural network (1D-CNN) layer followed by a max-
pooling layer, aimed at capturing short-term patterns within the data. A 1D-CNN is a
specialized type of neural network designed for processing sequential data. Unlike their 2D
counterparts, which are well-suited for image data, 1D-CNNs are ideal for analyzing time
series data, audio signals, and any form of data that unfold over time or space. A latent
representation of the n-th feature map of the existing layer is given by the following form:

hn
i = σ(xi ×Wn + bn), (3)

where W represents the filters, b is the corresponding bias for the n-th feature map, and σ
denotes the activation function (e.g., sigmoid, ReLU), and × indicates the 1D convolution
operation. The next two layers are Bi-directional Long Short-Term Memory (Bi-LSTM)
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layers, which are for learning temporal changes in two directions of time. A Bi-LSTM
network is a special type of recurrent neural network that learns from sequences of data,
like sentences or time series. Unlike a regular recurrent neural network that only looks
at data from the beginning to the end, Bi-directional LSTMs extend the standard LSTM
models by utilizing two LSTMs applied to the input data. In the first pass, an LSTM
processes the input sequence in its original order (i.e., the forward layer). In the second
pass, the input sequence is reversed and fed into another LSTM (i.e., the backward layer).
This bi-directional approach enhances the model’s ability to learn long-term dependencies,
thereby improving its overall accuracy. For each element in the input sequence, each layer
of standard LSTMs performs the following computations:

it = σ(Wiixt + bii + Whiht−1 + bii),

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f ),

gt = tanh(Wigxt + big + Whght−1 + bhg),

ot = σ(Wioxt + bio + Whoht−1 + bho),

ct = ft ⊙ ct−1 + it ⊙ gt,

ht = ot ⊙ tanh(ct).

(4)

Here, ht represents the hidden state at time t, ct is the cell state at time t, and xt denotes
the input at time t. The term ht−1 refers to the hidden state from the previous time step
or the initial hidden state at t = 0. The variables it, ft, gt, and ot correspond to the input,
forget, cell, and output gates, respectively. σ is the sigmoid function, tanh is the hyperbolic
tangent function, and ⊙ denotes the Hadamard (element-wise) product.

After the non-linear mapping E(·), the original temporal sequence xi ∈ RT is encoded
into a considerably reduced representation hi ∈ Rd, where d represents the dimensionality
of the temporal representation. The selection of d may vary, being either larger or smaller
than T. In our experiments, we opt for d < T, aiming to preserve the most significant
information in a lower-dimensional space, while enhancing computational efficiency when
processing high-dimensional datasets. The decoding process D(·) is facilitated by a fully-
connected neural network, which reconstructs the temporal representations back into a new
time series yi ∈ RT . In the optimization process, the mean square error (MSE) is employed
as the metric to quantify reconstruction loss, as demonstrated by the subsequent formula:

LMSE =
1
n

√
n

∑
i=1
||yi − xi||2. (5)

Beyond merely preserving the most informative representation through the reconstruction
loss expressed in Equation (5), we incorporate an additional K-means oriented loss. This
facilitates the formation of cluster structures within the learned temporal representations,
yielding representations that are particularly amenable to the K-means clustering algo-
rithm. Specifically, by considering a static matrix H ∈ Rn×d, the challenge of finding the
optimal solution in K-means clustering is reinterpreted as a problem of maximizing the
trace in the context of the Gram matrix. By employing spectral relaxation, the K-means
objective is transformed into a formulation that sidesteps local minima, thereby promising
optimal solutions:

LK−means = Tr(HT H)− Tr(FT HT HF), (6)

where Tr denotes the matrix trace. The close-form solution for F is derived by assembling
the first k singular vectors of H, following the principles outlined in the Ky Fan theo-
rem [17]. Unlike static matrices, in our approach, the latent temporal representation H is
dynamically learned within the network. This dynamic learning process effectively serves
as a regularization term for H; the overall objective is to minimize the below equation:

min
H
LMSE + λLK−means, (7)
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where λ is a balancing factor that regulates the trade-off between the mean squared error
and the K-means oriented loss.

After generating temporal representations, we apply a dynamic time warping-based
K-means clustering algorithm to these representations. Dynamic time warping can be
seen as an extension of Euclidean distance, which offers local (non-linear) alignment. The
calculating procedure of dynamic time warping can be illustrated as follows: given two
temporal sequences P ∈ Rn and Q ∈ Rn, formulate an n × n matrix, with the element
at intersection i, j quantifying the Euclidean between pi and qj; the goal of dynamic time
warping distance is to identify the path of minimum cumulative distance across this matrix.
Define this path by M = {m1, m2, ..., mk}, where the dynamic time warping distance is
determined as the smallest sum of Euclidean distance along the path M:

M∗ = arg min
M

(

√√√√ k

∑
i=1

mi). (8)

This whole process can be summarized in Algorithm 1.

Algorithm 1 Dynamic Time Warping

1: procedure INPUT(P, Q) ▷ Time Series P with length n; Time Series Q with length n.
2: for i = 1 to n do
3: for j = 1 to n do

4: Matrix(i, j)←
√
(pi − qj)2

5: Define a path through the matrix:M = m1, m2, ..., mk, k ≥ n

6: DTW ← argminM(
√

∑K
m=1 mk)

7: return DTW

The detailed procedure of applying a dynamic time warping-based K-means clustering
algorithm to these representations is outlined in Algorithm 2, which operates on temporal
representations H ∈ Rn×d, where n is the number of locations and d is the dimension
of temporal latent representations. The algorithm starts by selecting k central temporal
representations from H at random to serve as initial centroids. Subsequently, each temporal
representation is assigned to the nearest centroid, determined by the smallest dynamic
time warping distance. The next step involves updating the centroids by recalculating the
mean position of the temporal representations assigned to each centroid, followed by a
re-evaluation of the dynamic time warping distances between each temporal representation
and the new centroids. This iterative process continues until the assignments of temporal
representation to centroids stabilize and no further reassignments occur.

Algorithm 2 Dynamic Time Warping-based K-means on Temporal Representations

1: procedure INPUT(H, k) ▷ n-size temporal representations: H ∈ Rn×d; number of
clusters: k < n.

2: Randomly initialize k centroids (c1, c2, ..., ck) ∈ H.
3: Calculate dynamic time warping distance between each temporal representation in

H = (h1, h2, ..., hn) and each centroid in (c1, c2, ..., ck) ∈ H.
4: Assign the temporal representation in H to the centroid ci by selecting the one with

the smallest dynamic time warping distance from it among all k centroids, and finally
form k spatial clusters: C = (c1, c2, ..., ck).

5: Recalculate the new k central temporal representations in C = (c1, c2, ..., ck).
6: Stop until C will not change; otherwise, repeat from Step 3.
7: return C



ISPRS Int. J. Geo-Inf. 2024, 13, 374 8 of 18

The final step involves visualizing and interpreting the spatial clusters. The generated
k spatial clusters are represented as C = (c1, c2, ..., ck), where each ci consists of a set of geo-
graphic locations that exhibit similar trends or patterns. These locations are then projected
onto a map using their coordinates, allowing us to explore spatiotemporal patterns. To
quantify the spatial clusters, we introduce a metric called the average travel distance of a
cluster, defined as follows:

Average Travel Distance (ATD) =
1
N

N

∑
n=1

T

∑
t=1

distn,t, (9)

where N represents the number of locations within a cluster, T denotes the number of time
steps, and distn,t is the travel distance in the n-th location at time step t.

The ATD reflects the average distance traveled within a cluster over a specified number
of time steps. It quantifies how much movement occurs, on average, within the geographic
locations of a cluster over time. This can provide insights into the mobility patterns
of the regions in the cluster, indicating whether certain areas have high or low travel
activity. By comparing ATD across clusters, we can assess the relative mobility within
different geographic areas, potentially linking these patterns to underlying socioeconomic
or environmental factors.

3. Results
3.1. Comparative Performance Evaluation

To evaluate the effectiveness of our proposed method in identifying mobility patterns,
we first formulate the problem as follows: consider a set of n geographic locations, each
represented by a time series X = {x1, x2, ..., xn}, where each time series xi ∈ RT , where xt

i
denotes the observation at time t for location i, and T is the total number of time steps. The
goal is to group these time series into k spatial clusters, denoted by {c1, c2, . . . , ck}, such
that locations within the same cluster exhibit similar temporal patterns. The objective can
be formulated as finding a partition {c1, c2, . . . , ck} of the set of time series {x1, x2, ..., xn}
that minimizes within-cluster variance while maximizing between-cluster variance. This
can be expressed as follows:

min
{c1,c2,...,ck}

k

∑
j=1

∑
xj∈cj

dist(xj, zj), (10)

where zj is the centroid of cluster cj, and dist(xj, zj) is a distance measure between the time
series xj and the cluster centroid zj.

To verify the clustering, time series classification can be applied to the clusters. Given
a set of labels {l1, l2, . . . , lk} corresponding to known categories, the classification task
assigns each time series xi to one of the labels based on its cluster assignment. The accuracy
of this classification provides a measure of how well the clustering captures meaningful,
discriminative patterns in the data. We have access to ground truth information, allowing
us to evaluate the cluster results against these ground truth locations. Therefore, we choose
to employ the Rand Index, which can be expressed as follows:

Rand Index =
2 · (TP + TN)

n(n− 1)
. (11)

In this context, true positives (TP) represent the count of time series pairs accurately
grouped within the same spatial cluster. Conversely, true negatives (TN) refer to the count
of time series pairs accurately assigned to distinct spatial clusters, while n denotes the size
of the spatiotemporal dataset.

We compared our proposed method with some widely used methods and present the
results in Table 1. Our proposed method demonstrates superior performance by achieving
the highest average rand index. The synthetic dataset, characterized by noise, outliers, and
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time distortions, presents significant challenges for traditional K-means clustering methods.
These traditional methods fail primarily due to their reliance on Euclidean distance, which
lacks robustness to time distortions.

Although our proposed temporal autoencoder and dynamic time warping-based
K-means clustering algorithm without K-means oriented loss (I-DTSC w/o KL) shows
improvement over most clustering algorithms, its performance is close to that of the DTW-
based K-means (DTW K-Means) approach. We acknowledge that the efficient computation
is due to the advantage brought by the dimensionality reduction of the temporal autoen-
coder, but the potential of the temporal autoencoder has not been fully realized, leading to
the neglect of some important information in the original time series.

The complete framework of I-DTSC exhibited exceptional robustness to noise, outliers,
and time distortions. This approach guides the generation of more reliable and informative
representations, thereby facilitating superior performance. In the case of the Melbourne
dataset, our analysis indicates an absence of time distortions in this dataset, allowing tradi-
tional K-means to perform adequately; thus, the advantages of DTW K-means clustering
algorithms are less pronounced in this context. Despite this, our proposed method outper-
forms other time series clustering techniques in identifying spatial clusters from time series
collected in different locations. For the Chinatown dataset, which aims to differentiate
between weekday and weekend time series collected at the same location, most methods
fail to discern this distinction. This failure is often due to the subtlety of the differences;
for instance, weekend mobility may still exceed typical levels during the evening and
overnight periods. Conversely, our proposed method effectively identifies these critical
differences, distinguishing between weekday and weekend patterns. Consequently, our
method exhibits the highest performance in this context.

Table 1. Comparative results on synthetic and real-world mobility data. (Metric: Rand Index).

Category Methods Synthetic Mobility
Data

Melbourne Mobility
Data

Chinatown Mobility
Data

Variants of K-means K-means 0.6824 ± 0.0094 0.8767 ± 0.0064 0.5414 ± 0.0008
DTW K-means 0.8836 ± 0.0124 0.8584 ± 0.0054 0.5714 ± 0.0094

DR-based K-means NMF + K-means 0.5898 ± 0.0068 0.8514 ± 0.0075 0.5036 ± 0.0008
PCA + K-means 0.7259 ± 0.0003 0.8699 ± 0.0046 0.5376 ± 0.0047

NN-based K-means CAE + K-means 0.6575 ± 0.0012 0.8612 ± 0.0049 0.6712 ± 0.0075
TAE + K-means 0.6891 ± 0.0021 0.8718 ± 0.0163 0.7088 ± 0.0035

Ours I-DTSC w/o KL 0.8804 ± 0.0071 0.8601 ± 0.0049 0.6932 ± 0.0154
I-DTSC 0.9117 ± 0.0036 0.8834 ± 0.0013 0.9055 ± 0.0099

3.2. Module Contribution Analysis

To better understand our proposed method, we first examined the role of the temporal
autoencoder, as depicted in Figure 4. By employing our designed architecture and focusing
on minimizing the mean square error between the original and reconstructed time series,
we ensured that the temporal representations preserved essential characteristics, such
as trends, while simultaneously reducing data dimensionality and mitigating noise and
outliers. However, we found that only using the temporal autoencdoer does not address
time distortions. This observation is also supported by performance comparisons, demon-
strating that traditional K-means clustering methods struggle with datasets characterized
by significant time distortions.
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Figure 4. The temporal representations (right; red), with a reduced dimensionality of 64 compared
to the original input time series dimension of 128 (left; blue), successfully preserved essential
characteristics, such as trends. This reduction in dimensionality not only retained critical information
but also helped mitigate noise and outliers.

Time distortions are a prevalent issue, particularly in real-world time series datasets.
The traditional K-means clustering algorithm, which employs Euclidean distance as the
similarity metric, is efficient and requires low computational resources, with a complexity
of O(n). However, this method often fails when confronted with time distortions, as the
utilization of Euclidean distance cannot adequately align time points affected by distortions.
A more suitable solution is to employ a DTW K-means clustering algorithm, which can
yield more accurate results. Nonetheless, this strategy significantly increases computational
demands, with a time complexity of O(n2). In our proposed method, we aim to achieve
accurate results while also reducing time complexity. By compressing the original time
series of length n to temporal representation with a shorter length m, where m < n, we
apply the DTW K-means clustering algorithm not on the original series but on the temporal
representations. This adjustment lowers the time complexity to O(m2). Our experimental
findings suggest that the temporal autoencoder and DTW K-means clustering algorithm
can mutually enhance each other’s performance, achieving a balance between accuracy
and computational efficiency.

In our experiments, we also analyzed the role of K-means oriented loss illustrated
in Equation (6) for optimization. We conducted experiments on the Chinatown time se-
ries dataset to compare learning temporal representations with and without the K-means
oriented loss. Figure 5 illustrates the results: without the K-means oriented loss, the repre-
sentations appear scattered and chaotic; however, integrating the K-means oriented loss
guides the process of learning temporal representations, resulting in structured tempo-
ral representations.
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Figure 5. The visualization using t-SNE on the Chinatown time series dataset compares temporal
representations without K-means oriented loss (left) and temporal representations with K-means
oriented loss (right).

3.3. Case Study: Mining Spatiotemporal Mobility Patterns During COVID-19 Pandemic

The COVID-19 pandemic has caused a substantial negative impact on public health,
infected more than 704 million people, and caused 7.01 million deaths worldwide as of
September 2024. The United States government had issued social distancing measures to
restrict gatherings, domestic and international travel, and business activities to reduce the
COVID-19 cases and mortality rate. In response to the crisis, researchers developed various
spatial models to analyze the distributions of the disease patterns and their dependency
on factors such as mobility [11,51–53], social [54,55], economic [56,57], and demographic
factors [31,58]. Furthermore, some existing methods were focused on spatiotemporal data
modeling in COVID-19-related research to improve decision-making [59–64].

As detailed in this section, we applied our proposed method to uncover spatiotemporal
patterns hidden in the COVID-19 mobility data. We adopted the elbow method to identify
the optimal cluster number. Specifically, the elbow method is a widely used heuristic in
mathematical optimization, which involves selecting a point-referred to as the “Elbow” or
“Knee of the curve” beyond which the benefits of further improvements do not justify the
additional cost [65]. In clustering, this approach suggests choosing a number of clusters
such that adding more clusters does not significantly enhance the model’s accuracy. We
conducted several experiments with different values of k across three months. Based on the
results, we selected k = 4 as the optimal number of clusters. In other words, we categorized
the 3142 counties into 4 groups, indicating that counties within the same group exhibit
similar mobility patterns.

Figure 6 presents the spatiotemporal mobility patterns derived from our proposed
method using four distinct colors to represent varying levels of mobility, where lighter
shades indicate higher mobility. The results offer granular insights into mobility patterns
during the three key phases of the COVID-19 pandemic: before the implementation of
stay-at-home orders, during the stay-at-home period, and throughout the reopening phase.
In the following sections, we delve into detailed observations of spatiotemporal mobility
patterns, along with potential factors that contribute to these patterns.

Before the national pandemic response fully ramped up, the Midwest and Southern
regions of the U.S. exhibited relatively high mobility levels, as indicated by the green and
yellow shades across counties in states like Iowa, Kansas, Missouri, and Texas. These
areas, being more rural in nature, likely saw higher movement due to daily activities such
as agricultural work and commuting over larger distances. Additionally, many of these
regions did not implement early restrictions, contributing to sustained levels of mobility
during the initial phase of the pandemic. In contrast, coastal and urban areas, such as those
on the East Coast (New York, New Jersey, Massachusetts) and the West Coast (California,
Washington), displayed more moderate mobility levels. While formal restrictions had yet to
be implemented in these areas, voluntary reductions in movement may have already begun
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as media coverage of the pandemic intensified. Urban centers, which typically rely more on
public transportation and have higher population densities, experienced a shift in mobility
patterns as non-essential travel was curtailed earlier compared to more rural areas.

During the stay-at-home period, the map reveals a significant nationwide reduction
in mobility, with most counties shaded in deep purple, indicating low movement across
both urban and rural areas. These widespread declines reflect the effectiveness of stay-
at-home orders, which kept the majority of the population indoors except for essential
activities like grocery shopping and medical appointments. However, there were notable
exceptions in states such as Wyoming, Nebraska, and parts of Texas, where mobility
remained relatively higher, as indicated by green and yellow shades. This can be attributed
to essential industries, particularly in rural and agricultural regions, that required continued
operation, looser restrictions in states with lower population densities, and localized
outbreak responses where fewer COVID-19 cases were reported, resulting in less urgency
to limit movement [66].

Figure 6. Spatiotemporal mobility patterns during the COVID-19 pandemic in three phases: before
stay-at-home, during stay-at-home, and reopening (top to bottom). Mobility is categorized into
four levels: high, above average, below average, and low, reflecting different movement trends
across regions.
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The bottom map reflects the reopening period when states began to relax restrictions
and reopen their economies, leading to a partial recovery in mobility. In regions like
the Midwest (Nebraska, Iowa, Kansas) and the South (Texas, Florida, Georgia), mobility
levels noticeably increased, as indicated by the green and yellow shades. These states
were among the first to prioritize economic recovery, allowing residents to return to work,
shopping, and other activities, even amid rising COVID-19 cases. In contrast, coastal and
urban areas, particularly on the East Coast (New York, New Jersey, Massachusetts) and
the West Coast (California, Oregon, Washington), experienced slower mobility recovery,
as shown by the persistent purple areas [52]. This slower rebound can be attributed to
several factors, including ongoing caution and phased reopening strategies, especially in
regions hit hardest early in the pandemic, where sectors operated under strict guidelines to
avoid a second wave. Additionally, many large companies in cities like New York and San
Francisco continued to enforce work-from-home policies, reducing the need for commuting
and contributing to lower mobility. In states like Florida and Texas, the increased mobility
may also reflect the reopening of tourist destinations and leisure activities, alongside higher
traffic to commercial centers as restrictions on dining, retail, and entertainment venues
were eased.

Across all three maps, clear differences emerge between rural and urban regions in
terms of mobility patterns. Rural areas consistently show higher mobility both before and
during the pandemic, likely due to the essential nature of agricultural and logistical work,
which required continued movement. In contrast, urban areas experienced more significant
reductions in mobility during the stay-at-home orders, likely due to stricter enforcement
and the widespread ability to transition to remote work [67]. Mobility trends also closely
align with state and local policy decisions regarding stay-at-home orders and reopening
strategies. States in the Midwest and South, which reopened earlier, saw a quicker return
to higher mobility, while states that adopted more cautious approaches experienced more
gradual increases. Additionally, public response and health considerations influenced
mobility. In areas with higher COVID-19 case rates or where perceived risk was greater,
residents may have voluntarily reduced movement even during the reopening phase, as
seen in lower mobility levels in states like New York and California.

Figure 7 presents the ATD across the stages: before the stay-at-home policies, during
the stay-at-home orders, and during the reopening phase, categorized by high, above
average, below average, and low mobility levels. The analysis reveals a significant reduction
in mobility patterns immediately following the implementation of social distancing policies
in March, with a gradual increase observed in May as reopening orders were enacted. This
trend underscores the direct relationship between mobility shifts and the stringency of
social distancing measures enforced by states. The results also highlight that some states
were slower to curtail mobility in response to the pandemic, likely due to a combination
of less severe outbreaks, more lenient local regulations, or lower levels of public concern
and awareness. Overall, the result demonstrates that mobility across most states declined
sharply in response to the onset of COVID-19 and the corresponding implementation of
public health guidelines [68].

Figure 7. Average travel distance (ATD) across different stages from March to May 2020 (in meters).



ISPRS Int. J. Geo-Inf. 2024, 13, 374 14 of 18

4. Discussion
4.1. Limitations

It is important to point out some limitations of our work. First, although we used
data from several locations, including Melbourne, Australia, and the United States, they
are not enough to represent global mobility patterns, as our analysis might have miss
important variations, particularly in underrepresented regions like developing countries.
A wider geographical area needs to be considered to better understand a broader range of
spatiotemporal patterns.

Second, through extensive experiments, we found that the choice of method should be
tailored to the specific dataset. For datasets with minimal noise, outliers, or time distortions,
or where these factors do not significantly impact the results, applying K-means with
Euclidean distance directly can be both efficient and effective. However, in our study,
we operated under the assumption of uncertain data quality and consider the worst-case
scenario, where high-dimensionality, noise, outliers, and time distortions are present. Under
these conditions, we developed a method that balances both accuracy and efficiency to
handle these challenges effectively. Additionally, we used the elbow method to determine
the optimal number of spatial clusters. However, in practical situations, where ground truth
about spatial clusters is unavailable, the number of clusters may need to be adjusted based
on specific applications, with the primary goal being to support better decision-making.

Third, we acknowledge that mobility is influenced by various factors, and under-
standing how mobility patterns evolve on their own may not be sufficient for informed
decision-making. Thus, a deeper exploration into how specific socioeconomic conditions,
such as economic status and population density, affect mobility patterns would enhance
the analysis. Additionally, this study primarily focused on short-term mobility changes
using only three months of mobility data from the COVID-19 pandemic in the U.S. Long-
term analysis is necessary to gain a more comprehensive understanding of spatiotemporal
mobility patterns.

4.2. Future Work

Here, we propose two future directions that should be explored. First, using more
advanced neural network architectures, such as hybrid models combining convolutional,
recurrent, or attention-based networks, along with improved optimization strategies, could
better capture the relationships between multiple inputs and support long-term analysis.
These enhanced architectures would provide a deeper understanding of the intricate dy-
namics within mobility data. Additionally, employing more suitable clustering algorithms,
such as density-based or hierarchical methods, could enhance both the efficiency and
accuracy of clustering the generated representations, leading to more nuanced insights into
mobility patterns.

Second, we need to address more challenging situations, such as handling time series
data with missing values, irregular sampling, and incomplete location information. In
many real-world mobility datasets, data collection may be incomplete due to sensor failures,
communication errors, or irregular intervals in reporting. Developing robust methods to
impute missing values or work effectively with irregular time intervals is essential. Tech-
niques such as interpolation, time series imputation models, and incorporating probabilistic
methods could help mitigate the effects of missing data. Additionally, extending the models
to handle irregularly spaced data points could improve their applicability and reliability in
real-world scenarios, ensuring more accurate analysis and pattern detection.

5. Conclusions

This study proposes an improved deep time series clustering method for effectively
mining spatiotemporal mobility patterns. By integrating a neural network-based temporal
autoencoder with a dynamic time warping-based K-means clustering algorithm, we success-
fully address challenges such as high dimensionality, noise, outliers, and time distortions
in mobility data, resulting in a more robust clustering approach. Extensive experiments
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on both synthetic and real-world datasets demonstrated the effectiveness of our method.
Applying our approach to mobility data of the COVID-19 pandemic in the U.S. revealed
significant differences in mobility patterns between rural and urban areas. Rural areas
consistently exhibited higher mobility, both before and during the pandemic, likely due to
the essential nature of agricultural and logistical work that required continued movement.
In contrast, urban areas experienced more substantial reductions in mobility during stay-at-
home orders, likely due to stricter enforcement and the widespread adoption of remote
work. Additionally, public response and health considerations influenced mobility patterns.
In regions with higher COVID-19 case rates or greater perceived risk, residents voluntarily
reduced movement, even during reopening phases, as observed in lower mobility levels in
states like New York and California. This application highlights the broader implications of
our proposed method in potential fields such as public health, epidemiology, transportation
analysis, urban planning, smart cities, and environmental monitoring.
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