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Abstract—Causal effect estimation on a graph of connected
units is often complicated by entangled treatments, where the
treatment assignment is not independent for each individual.
This presents multiple challenges: accurately modeling treatment
assignment mechanisms, adjusting for both observed and unob-
served confounders to mitigate confounding bias, and construct-
ing instrumental variables to adjust unobserved confounders
within a graph structure. Prior research on estimating the causal
effects of entangled treatments either assumed no unobserved
confounders or relied on the manual selection of IVs, leading
to gaps in the methodology. To bridge these gaps and build
upon previous work, we introduce the Graph-Disentanglement
Instrumental Variable (GDIV) model, a novel approach em-
ploying both Graph Neural Networks (GNNs) and Adversarial
Networks to assess the causal effects on nodes in a graph,
considering observed/unobserved confounders and the intrica-
cies of treatment entanglement. Our GDIV estimator is vali-
dated through extensive experiments across synthetic and semi-
synthetic datasets, demonstrating its better performance over
state-of-the-art methods. The ablation studies and robustness
experiments verify the benefits of leveraging adversarial networks
to generate IVs that satisfy the required assumptions.

I. INTRODUCTION

Causal effect estimation helps us understand how treatments
impact outcomes, which is essential across many fields. Unlike
randomized controlled trials, where subjects are independent,
observational studies are more complex. This makes it harder
to reliably infer causal effects since assumptions used in
randomized settings may not hold. For example, the strong
ignorability assumption, crucial for adjusting for confounders
influencing both treatment and outcome, is difficult to ensure
when unobserved factors may be present. Additionally, obser-
vational studies typically provide only the observed (factual)
outcomes, leaving the counterfactual outcomes—central to
causal inference—unavailable. This challenge intensifies in
cases where treatments depend on connections between units,
as seen in graph-structured data.

Consider a social network of students connected by friend-
ships. We want to determine how participating in a new
educational program (the treatment) affects a student’s aca-
demic performance, measured by grades (the outcome). A
student’s decision to join the program often depends on
whether their friends also enroll, creating treatment inter-
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dependencies across the network. However, the Stable Unit
Treatment Value Assumption (SUTVA) can still hold here if
we assume each student’s academic outcome depends only on
their own enrollment and the characteristics of their friends,
not on whether those friends are also enrolled. This setup,
where treatments are interconnected yet outcomes depend
solely on individual treatments and neighboring covariates,
introduces unique challenges for estimating causal effects in
graph-based settings.

Our research addresses causal effect estimation in net-
worked environments with entangled treatments, as discussed
by Toulis et al. [1], [2] and Ma et al. [3]. Prior studies show
that ignoring unit interconnectedness can lead to inaccuracies
by attributing treatment effects to individual characteristics
instead of network context. Toulis et al. [1], [2] used network
features, such as node degrees, for modeling treatment assign-
ments but relied on the unconfoundedness assumption, which
may overlook certain biases. Building on this, Ma et al. [3]
introduced an instrumental variable (IV) approach tailored for
networks to account for unobserved confounders, addressing
gaps in Toulis’s method.

While addressing a similar setting [3], our study diverges
by focusing on constructing an IV model directly from the
graph structure. We aim to estimate causal effects on graphs
by not only addressing biases from unobserved confounders
but also explicitly modeling the complex dynamics of entan-
gled treatments. Two key challenges arise: i) Adjusting for
Unobserved Confounders: Approaches typically use either
proxy variables to approximate hidden confounders [4]-[6]
or construct Instrumental Variables (IVs) [7]-[12]. IVs allow
causal estimation by being associated with the treatment but
not directly with the outcome or confounders, mimicking
random treatment assignment. We adopt the IV approach.
ii) Modeling Treatment Assignment under Entanglement:
Prior work [1], [2] applies specific functions over the graph
to model this mechanism, though these functions are typically
unknown in practice.

To address these issues and complement existing IV meth-
ods [3], we propose the data-driven Graph-Disentanglement
Instrumental Variable (GDIV) model. GDIV addresses both
challenges: i) Unobserved Confounders: Unlike manual IV
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Fig. 1.  Causal DAG: dashed circles represent unobserved factors
(Zrv,Zc,Zgr,U) and solid circles for available variables (G, X, T,Y")

selection, which requires domain knowledge, our data-driven
approach, inspired by [9], [11], [13], [14], disentangles graph
information into three components—IV (affecting treatment
only), latent confounder (affecting both treatment and out-
come), and risk factor (affecting outcome only), as shown
in Fig. 1. This disentangled IV corrects biases from hidden
confounders in causal estimation. To ensure IV validity, we
incorporate a dual adversarial framework that enforces IV
assumptions. ii) Unknown Treatment Assignment Mecha-
nism: Rather than assuming a functional form, we leverage the
graph structure and introduce a learnable graph neural network
model to capture dependencies in treatment assignments.

Our model differs from existing causal estimation methods
on graphs in several ways: i) We do not use the graph as a
proxy for hidden confounders. ii) We assume no interference
between units (i.e., each unit’s outcome is unaffected by other
units’ treatments). iii) While traditional causal assumptions
such as positivity and SUTVA hold in our work, strong ig-
norability does not. Our main contributions are:

e We propose a novel data-driven IV model to adjust
unobserved confounders with entangled treatment on
graphs. This method constructs IVs automatically from
graph information, which avoids manual IV selection that
requires domain knowledge and external resources.

o We design a dual adversarial learning framework to guar-
antee the correctness of the disentangled IV concerning
the three assumptions required for IV models.

o Extensive experimental results on synthetic and semi-
synthetic datasets demonstrate that our model outper-
forms state-of-the-art baselines. We show that our model
consistently outperforms the baselines under various lev-
els of treatment entanglement and unobserved confound-
ing, signifying the robustness of the proposed model. We
also run ablation studies to verify the benefits of leverag-
ing adversarial networks to satisfy the IV assumptions.

II. RELATED WORK

Our work lies in the intersection of the IV model, causal
estimation on graphs, and entangled treatment. We describe
how our work relates to these three topics, respectively.

o IV Modeling: Instrumental Variable (IV) models [12],

[15] address unobserved confounders, with two-stage
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least squares (2SLS) [16] being a common linear method.
For greater flexibility, newer models use neural net-
works, such as DeeplV [10] for non-linear estimation,
and DeepGMM [8], [17] leveraging moment conditions
for causal effects. With the development of Variational
Autoencoders (VAE) [18], VAE-based models emerged:
TEDVAE [11], [19] disentangles covariates into IV, con-
founding, and risk factors, and DVAE.CIV [9] introduces
conditional IVs for causal estimation. IV generation
methods [20]-[25] learn IVs from features or group IVs
for various treatment settings, though some may struggle
without specified valid IVs or in graph contexts. Unlike
these approaches, our method leverages the graph struc-
ture to learn disentangled IVs automatically, reducing bias
and using adversarial networks to satisfy IV assumptions.

o Causal Estimation on Graphs: Numerous methods for
causal estimation on graphs exist [3]-[5], [7], [26]-[37].
Ma et al. [4] and Guo et al. [5] use graphs to adjust
for unobserved confounders, while Veitch et al. [35]
employ network embeddings with observed proxies. Shi
et al. [38] leverage propensity scores in Dragonnet, and
Ma et al. [7] propose HyperSci for high-order interference
in networks. These approaches inform our method. In
addition to causal effect estimation, prior research has
addressed spatial confounders and spillover effects [6],
[30], [36], [39]—-[41]. Cristali et al. [6] formalize methods
to address homophily and apply embeddings for peer
effect estimation. Fatemi et al. [30] and Cai et al. [36]
use independent sets to disentangle peer effects, with
Cai et al. guaranteeing estimator performance under their
design. For network confounding, [41] formalizes non-
local confounding (NLC) within the potential outcomes
framework, distinguishing it from causal interference.
Papadogeorgou et al. [40] propose spatial causal graphs
to address both interference and bias from unmeasured
spatial confounding. In our work, we address NLC by
designing an IV model for bias mitigation.

+ Entangled Treatment: Prior work [1], [2] models treat-
ment entanglement as predefined functions on the graph,
adapting traditional propensity scores to incorporate
graph structure but constrained by the unconfoundedness
assumption. Ma et al. [3] address unobserved confounders
by using node structures as instrumental variables, en-
hancing causal effect estimation. However, their approach
requires manual IV selection, relying on domain knowl-
edge and limiting practicality. Our work shares this prob-
lem setting but advances IV methodology by providing
an automated alternative to their IV approach.

In summary, existing models face challenges in estimating
causal effects on graphs due to entangled treatments and
unobserved confounders, often lacking valid IVs or support for
graph structures. Our model addresses this by automatically
constructing and validating IVs using the graph structure,
reducing bias and eliminating manual IV selection.
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III. PROBLEM FORMULATION

Let G = (V, ) be an undirected graph with N = [V| units
and a set of edges £. Let A € {0,1}V*V be the adjacency
matrix of G. Each unit ¢ € [N] is associated with three
variables {X;, T}, Y;}, where X; € R% is d,-dimensional pre-
treatment covariates; 7;, a categorical variable, is the treatment
of i; and Y; € R is the outcome of 7. We describe the causal
DAG of our work in Fig. 1. We denote U as an unobserved
confounder that impacts both treatment 7' and outcome Y.
We adopt the potential outcome framework [42], and denote
the potential outcome Y'(t) = {Y;(f)}ie[n) under treatment
T = t. If we consider T' = ty as the baseline treatment, we
define the Average Treatment Effect (ATE) over N nodes on
G as T:

T =E[Yi(t) — Yi(to)| X, G] (1

To account for the entangled treatments on the graph, similar
to previous work [3], we attribute the entangled treatments to
the interaction between nodes, thus we define treatment to be
a function ® of G, U, and X as:

2

Then, we formally define the problem we study in this work:
Given the observational data {X,G,T,Y}, we aim to esti-
mate the treatment effect T; for different units with entangled
treatments in the graph in the presence of U.

Similar to [10], we assume the outcome Y is structurally
determined by treatment 7T, features X, graph G, and unob-
served confounder U as:

T =G, X,U)

Y =f(GX,T,0) 3)

We assume f is some unknown and potentially non-linear
function, and U cannot be directly observed. To mitigate the
bias brought by U, we need to identify the source of variation
in the treatment that is not confounded by U, which motivates
an IV model on the graph. As noted, we do not require the
strong ignorability assumption, but we do assume consistency
and SUTVA, and consider U independent of X and G. Given
these assumptions, our goal is to answer: How can we build an
IV model based on (G, X,Y) to adjust for U and accurately
estimate causal effects? Does the constructed 1V satisfy 1V
assumptions? To address this, we integrate GraphITE [43], an
encoder-decoder framework, into a dual adversarial learning
framework for IV construction.

IV. MODEL FRAMEWORK

In this section, we describe our IV model, which follows a
two-stage least squares (2SLS) approach: we estimate treat-
ment T in the first stage, then use T to predict potential
outcomes in the second stage.

Our model adjusts for unobserved confounders by automat-
ically constructing a valid IV, avoiding manual selection and
domain knowledge required in prior work [3]. Inspired by [9],
[11], we use a data-driven disentanglement module to build
an IV that meets the necessary assumptions.
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In the first stage, we extend the GraphITE framework [43]
to disentangle (X,G) into the IV component Zy, latent
confounder Z¢, and risk factor Zp, obtaining estimated treat-
ments 7' for all nodes. The adversarial strategy ensures the
three IV assumptions are met. In the second stage, an MLP
predicts potential outcomes based on (Zrv, Z¢, Zg) and T.
The workflow is shown in Fig. 2.

A. First Stage: 1V Assumptions

To address confounding by U, we construct an IV to
reduce bias and improve causal effect estimation. In 2SLS
methods, the first stage estimates T as the projection of T'
onto the IV, effectively modeling entangled treatments. We use
GraphITE [43] to disentangle and construct {Zv, Z¢, ZRr}.
To ensure Zjy is a valid IV, the following assumptions must
be satisfied:

o Assumption 1: Relevance: Given X; of a random unit 1
and G, the treatment T; is relevant to Z; v, Z; rv WL

o Assumption 2: Exclusion: Shown in Fig. 1, the impact
of Zry on'Y is fully mediated by T'. Furthermore, the
disentanglement process is built upon the latent represen-
tation of every single node, which is an individual-level
operation, thus there does not exist another path from
Ziy toY.

o Assumption 3: Instrumental Unconfoundedness: Shown
in Fig. 1, there does not exist a unblocked backdoor path
between Zpy and Y.

To satisfy three assumptions, we build a dual adversarial
learning framework.

B. First Stage: Graph Disentanglement

As shown in Fig. 2, we first disentangle (G,X) into
{Z1v,Zc,Zr} and validate IV assumptions using adversarial
learning. Specifically, we use GraphITE [43] as an encoder-
decoder VAE framework for embedding generation. Following
GraphlITE, our model’s encoder applies forward message pass-
ing, using a mean-field approximation to define the variational:

i=1

“4)

Where Z; is the embedding for node ¢, ¢ is the variational
parameter, and ¢(-) is the distribution. We assume each
variational marginal gy,(Z;|A, X)) is re-parameterizable and
easy to sample, ensuring low-variance gradients for ¢; [44].
We further assume isotropic Gaussian marginals with diago-
nal covariance, implying uncorrelated latent dimensions with
equal variance in all directions, and use a GNN to specify the
parameters of gg4,(Z;|A, X).

p,0=GNNy(A, X) (5)

Where ;1 and o denote the vector of means and standard
deviations for the variational marginals. Using the reparam-
eterization technique, we obtain (Zrv, Z¢, Zg) and apply an
adversarial learning strategy to validate assumptions.
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Fig. 2. In the first stage, we disentangle (G, X) into three sets of node embeddings (Zjv, Zc,Zgr) and use a dual adve{sarial network to ensure IV
assumptions are met. In the second stage (not shown in the figure), an MLP estimates potential outcomes based on Zry, Zr,T,U.

C. Adversarial Learning for Assumptions Validation

To ensure the constructed IV satisfies the three assump-
tions, we design a dual adversarial learning module to reflect
exclusion and unconfoundedness assumptions, and a treat-
ment prediction module for the relevance assumption. The
assumption validation workflow is illustrated in Fig. 2, where
the three yellow boxes represent the modules. Specifically,
the exclusion adversarial network includes a generator and
discriminator, while the unconfoundedness adversarial network
uses GraphlTE as the generator, differing from the exclusion
module. We describe each module in detail below.

1) Unconfoundedness Adversarial: To satisfy this
assumption, we enforce mutual independence among
(ZIV7 ZC; ZR; U),

9(Zrv,Zc,Zr,U) = q(Z1v)q(Zc)e(Zr)q(U)  (6)

Where we model the joint distribution ¢(Z;v, Z¢, Zg,U) as:
CI(ZIV7 ZC? ZR? U) = q(ZIVv ZC; ZR|G7 X)CI(U|T7 Y) (7)

The aim of Eq. 6 is to promote independence that the
marginal distribution should be the same as the joint dis-
tribution. Mathematically, we formulate to minimize the To-
tal Correlation (TC), which is the KL divergence between
a(Zrv,Zc,Zg,U) and q(Z1v)q(Zc)q(Zr)q(U), and we de-
note them as ;g and @Q;,q for simplicity. To calculate the
KL divergence between them, inspired by [45], we adopt
the permutation trick to approximate this KL divergence.
Specifically, through Eq. 7, we get the real samples as the
view of @Q);,4, then we randomly permute across batches for
each latent factor to obtain the permuted samples, which could
approximate Q;,q if the batch size is sufficiently large.
Concretely, we train a discriminator D;yq ., to output the
probability of the sample coming from Qing instead of Q;na.
In the max-stage, we train D;,q ., to be discriminative, while
in the min-stage, we fix the parameters of D, and train g
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to generate latent factors with the distributions close to Q;yq.

Formally, the min-max learning objective O;,4 is defined as:

rrqlianax E .20, 20,0)~0ina [log(Dina,w(Z1v,Zc, Zr,U))]
® ind,

TE(z1v 20.28.0)~Qinall = 109(Dina.y(Z1v, Zc, Zr, U)()%)
From Eq. 8, g4 (GraphITE in Fig. 2) serves as the generator
to obtain latent embeddings from the marginal distribution.
Overall, this unconfoundedness adversarial network guarantees
we have low TC so that (Z;y,Zc,Zgr,U) are mutually
independent, and such mutual independence would also help
validate the exclusion assumption in another parallel adversar-
ial learning framework.

2) Exclusion Adversarial: In addition to the unconfound-
edness module, we build an exclusion adversarial network
to support the assumption that the effect of Ziv on Y is
fully mediated by T, meaning Z;y should have no direct
effect on Y. Thus, we design the generator and discriminator
accordingly: The generator aims to produce data Y that the
discriminator cannot distinguish from real data. It is penalized
if the discriminator detects a direct influence of Z;y on Y.
The generator loss is given by:

Leen = —E(1,26,0,23)~P,Y' ~Gen(T, 20U, Zg)

9
[lOgDeml(ZIV7T7 ZC7U7ZR7Y/)] ( )

Where Gen denotes the generator of this adversarial learning,
D.,; denotes the discriminator of the exclusion adversarial
module, and P denotes the true distribution. This loss en-
courages the generator to produce outcomes Y’ that follow
the exclusion assumption, indicating Zry only influences Y’
through T. We formulate the loss for D.,; as:

Lp = Lfake + Lrecal (10)

exl
Liake = —E(z,v.7,20,U,23)~PY ' ~Gen(T,Zc,U, Zr)
[log(l - Dea:l<ZIV; Y/7 T7 ZC7 U7 ZR))]

Lrcat = =Bz, v,1,2¢,0,20)~Pl09Deat (Z1v, Y, T, Zc, U, ZR))
(12)

Y
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For real data in Eq. 12, the discriminator should output a high
probability for Y conditioned on (T, Z¢, Zg,U) with no di-
rect influence from Zjy, supporting the exclusion assumption.
For generated data Y’ in Eq. 11, Y’ may violate this as-
sumption, and the discriminator penalizes the generator if Zjy
directly affects Y. Overall, the exclusion adversarial learning
enforces the exclusion assumption by penalizing the generator
whenever the discriminator detects Zy’s direct influence on
Y’. Meanwhile, the unconfoundedness adversarial learning
promotes the independence among (Z;v, Zr, Zc,U), which
explicitly suggests that there does not exist another causal path
from Zry to Y, further strengthen the exclusion assumption.

D. First Stage: Entangled Treatment Prediction

We satisfy the relevance assumption using a treatment pre-
diction module, reflecting the causal relationship Z;y — T,
Zo — T,and U — T. We frame a GNN model F7 to account
for such causal relationships. Mathematically, given obtained
Zrv, Zc, and G, we use a one-layer GCN to be Frp:

T =n(A(Zv & Zc)Wr & UW,,) (13)

Here, n is the sigmoid/softmax function, A is the normalized
adjacency matrix of GG, & denotes concatenation, and W and
Wy are learnable parameters.

1) Loss Objective in First Stage: Generally, the objective
of the first stage of the IV model is to model the causal
effect of IV on treatment. To validate the constructed IV, we
design a dual adversarial learning framework to satisfy the IV
assumptions. The overall loss for the first stage consists of
different types of losses. Specifically, we construct it as:

EFirst :£T+£ewl+£ind+a||®||2 (14)

Where L7 = NLL(T,T), and NLL denotes the negative
log-likelihood loss, and the last term is the L2 regularization
loss, o is the hyperparameters for regularization, and ©
denotes all the parameters involved in the first stage. L4
corresponds to Eq. 8, and

Lozl = rcr}in max LgenLp (15)

en

exl
exl

Where Lgen, and Lp__, correspond to Eq. 9 and Eq. 10.

exl
E. Second Stage: Potential Outcome Prediction

With predicted T from the first stage, we design an outcome
prediction module H ()A in the second stage. Specifically, for
each node, we predict Y; based on (Z; g, Zi.c,T;,U;):

Yi = H(Zir, Zi.c, Ti, Ui) (16)

1) Loss Objective in Second Stage: We denote the loss
function of the second stage as:
N

Lsecond = Yy, MSE(Y;,Y;) (17)

Where M SFE denotes the Mean Squared Error (MSE), and we
naturally formulate the individual treatment effect of node ::

# = Y;(t) — Yi(to) (18)
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V. EXPERIMENT

In this section, we experimentally validate our model by
addressing the following research questions (RQs): RQ1: How
does our model compare with state-of-the-art methods? RQ2:
How does our model perform with varying levels of treatment
entanglement? RQ3: How does our model perform with dif-
ferent levels of unobserved confounding? RQ4: What are the
contributions of the exclusion and independence adversarial
modules to model performance?

A. Evaluation Metrics

We adopt two well-received metrics for causal effect estima-
tion, Precision in Estimation of Heterogeneous Effect (eprpr g,

VEPEHE = \/ﬁ > ien (i — 7i)?) [46], and Mean Absolute
Error of ATE (earp, €ate = || % Yoien Ti — % Yoien 7il)-
We run each experiment 10 times and report the corresponding
average value and standard deviation.

B. Simulation

In this section, we create synthetic datasets by simulating
all variables and semi-synthetic datasets using real covariates
and graphs (e.g., BlogCatalog and Flickr [5]). For the semi-
synthetic datasets, treatments and outcomes are simulated.
Table 1 shows dataset characteristics, with the simulation
following the causal DAG in Fig. 1.

TABLE I
STATISTICS OF DATASETS
Datasets # nodes # edges # features
Synthetic 1000 99629 100
BlogCatalog 5196 171743 8189
Flickr 7575 239738 12047

We formulate the detailed simulation strategy as follows:
o Hidden Confounders: we simulate Uj;:

U; NN(O,’yI)

Where I denotes the identity matrix with size d,,, the
dimension of hidden confounders, and v is the scaling
factor, which is set to 20 per [3].

o Features: To align causal DAG in Fig. 1, and also to make
features comprehensive, we simulate both continuous and
categorical features as:

19)

Xicont ~ N(0,74I) , X, cate ~ Categorical(peat) (20)

We assign a uniform probability distribution to simu-
lated categorical features with four categories, p.q: =
{0.25,0.25,0.25,0.25}. The dataset includes 80 continu-
ous features and 20 categorical features. For BlogCatalog
and Flickr, we use the available covariates.

e Graph: Graph is a random graph generated using the
Erdos-Rényi model [47]. We use NetworkX [48] to gener-
ate graphs for synthetic datasets, and the generated graph
is employed for simulations of the treatment variable.

o Treatment: To account for the non-local confounding
scenarios that 7; is causally influenced by X;, U; and
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X, where j is the neighbors of node i, we simulate the
treatment as:

T = BI(1 = V0L X+ A5 37 (01.%,) + 01,0 + )
L IEN;
21

Here, 0; , and 0 ,, are parameters with sizes d, and d,,
sampled from a Gaussian distribution A(0,0.5%). N; is
the set of immediate neighbors of node <. The parameter
A € [0,1] controls the level of treatment entanglement:
A = 0 means 7; depends only on X;, while A = 1 means
T; depends entirely on the characteristics of A;. BI()
is the sigmoid function, converting input to a probability
and sampling output via the Bernoulli distribution. €, €
N(0,0.01%) represents random Gaussian noise.

o Potential Outcome: After we simulate the treatment, we
formulate outcome Y; as:

1
Yi(t) = Tq;-GyTXiJrW > (05 X;)+ BUOL +ey (22)
ZJGAQ
Where 0, and ¢y are parameters of size d,, and 0, is
of size d,,, and 8 > 0 controls the level of unobserved
confounding, and ¢, represents random Gaussian noise.

C. Baselines

We categorize baselines into five types for comparison:

o Independent Units: Assuming unit independence. We use
Causal Forest (CF), Counterfactual Regression (CFR),
and Logistic Regression (LR).

o Distribution Modeling: Uses distribution modeling ap-
proaches. CEVAE, TEDVAE, and GANITE employ vari-
ational autoencoders or adversarial training to model joint
outcomes or generate counterfactuals.

o IV Generation: Data-driven IV generation methods in-
cluding VIV [22], AutolV [20], and GIV [21], which use
adversarial or VAE-based approaches to create valid or
group IV candidates.

o Deep Learning-Based: Includes TarNet, for balanced
representation learning, and DeeplV, an instrumental
variable-based approach. For each node ¢ in DeeplV, we
use the i-th row of Zjy from our method.

o Network-Based: Graph-structure-based methods DNDC
and Netdeconf, which use network connections as proxies
for hidden confounders.

D. Experimental Setting

We use one-hot encoding for categorical features dur-
ing preprocessing and split the data into 60% training,
20% validation, and 20% testing sets. Each experiment
runs for 10 iterations. Learning rates are searched in
{107°,1074,1073, 1072}, with L2 regularization applied us-
ing a weight decay of 10~°. The hidden dimension is set to
32, while d,, and d, are set to 100 in simulations; A and [
are set to 0.5. During dual adversarial training, we alternate
updates between the discriminators and the generator. First,
the exclusion discriminator learns to detect if Zjy directly
influences Y, while the independence discriminator ensures
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(Zrv,Zc,Zgr,U) are independent. Then, the generator is
updated to fool both discriminators, and this cycle repeats
until convergence. For baseline implementations, we followed
their default configurations. For CF and DeeplV methods, we
used built-in methods from EconML. Specifically, for DeeplV,
treatment and outcome models were created using two dense
layers from Keras, with 10 components in the mixture density
network. For CF, we set the number of trees to 100, keeping
other parameters at default values. Note that training dual
adversarial networks requires careful tuning for stable results.
To make this process smoother, we pre-train the networks
on smaller data subsets, providing a stable starting point and
reducing the need for intensive tuning, and the learning rates
of 1le=* for the max stage and le~2 for the min stage work
best for our adversarial setup through tuning.

E. Performance Comparison

We present the performance of all methods in Table II and
observe that our proposed method consistently outperforms
baselines on both synthetic and semi-synthetic datasets. This
advantage is due to several factors: i). Data-driven IV methods
(GIV, VIV, AutolV) are the most competitive, but AutolV
struggles without a valid IV, and GIV is limited by its focus on
group IVs. VIV achieves close performance to ours by using
an adversarial network for the unconfoundedness assumption,
though its lack of an exclusion mechanism impacts results
slightly. ii). Methods assuming no unobserved confounders
(CF, LR, CFR, TarNet) perform less effectively due to the
confounding present in our setting. While TEDVAE (which
inspired our work) disentangles covariates to allow IV cre-
ation, it lacks consideration of node connections, a limitation
also present in CEVAE and GANITE. iii). DeepIV, which uses
Z v from our model, performs competitively but is limited by
its lack of support for graph data.

F. Robustness of GDIV

We address RQ2 and RQ3 using Table III. We choose
baselines from the data-driven IV generation category in
Table IT and vary A and f3 to test our model’s robustness against
different levels of treatment entanglement and unobserved

confounding.
1) Varied Levels of Unobserved Confounding: To as-
sess robustness to confounding, we set A = 0.5 to fix

treatment entanglement and vary [ as {0,0.5, 1}, generating
synthetic datasets with varying confounding levels. Results
in the upper part of Table III show that although error
metrics (\/€ppHE,€ark) increase with higher confounding,
our model consistently outperforms baselines.

2) Varied Levels of Treatment Entanglement: Similarly,
we fix § = 0.5 and vary A as [0,0.5,1] to test robustness to
treatment entanglement. Results in the lower part of Table III
indicate that GDIV outperforms the baselines across all levels
of treatment entanglement.

G. Ablation Study

To address RQ4, we perform ablation studies to evaluate
the effectiveness of each module. We created two model vari-
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TABLE I

PERFORMANCE TABLE FOR DIFFERENT FAMILY OF BASELINES

Synthetic BlogCatalog Flickr
Metric VE€PEHE €EATE VE€PEHE EATE VEPEHE €EATE
LR 69.84 4+ 9.84 11.08 £7.25 14.33 £4.80 7.47 £ 2.65 4.38 +£2.72 1.74 £ 1.59
CF 35.46 4+ 8.81 7.11 +5.92 18.16 £4.65 6.61 +2.18 4.11 +£1.19 2.44 4+ 1.98
CFR 48.45 + 7.22 9.28 + 3.15 72.2 4+ 2.58 3.45 +2.91 48.81 + 2.56 2.824+1.91
DeeplV 29.16 £ 5.31 1.92 £0.90 12.19 +£9.18 0.94 +0.49 5.10 & 1.06 0.49 + 0.40
TarNet 48.20 + 8.49 10.90 £8.77 72.18 +3.51 5.06 & 2.56 48.79 + 2.07 1.70 £ 1.57
GANITE 29.73 £ 2.59 2.68 £1.18 10.62 £7.34 0.48 £0.35 6.44 + 1.22 0.40 +0.24
CEVAE 30.20 £+ 3.43 3.95 £+ 2.01 16.15 £8.15 1.95+0.97 7.15 +1.09 0.97+0.74
TEDVAE 28.19 £ 3.11 2.34+£1.91 10.55 +3.54  0.49 £ 0.29 7.65 +1.25 0.56 = 0.41
Net-Deconf 35.18 = 3.35 2.67 +2.41 11.47+3.52 1.524+1.28 5.56 +1.43 0.86 + 0.36
DNDC 60.68 + 4.80 8.49 + 7.66 71.46 £7.25 9.76 £2.58 49.79 +£10.45 3.02 4+ 1.22
VIV 24.11 +£2.19 1.66 £+ 0.82 7.98 + 2.33 0.31 +0.09 2.68 +1.10 0.33 +0.12
AutolV 31.22 + 3.26 1.97 £ 0.87 11.22 £3.18 0.41£0.15 3.92 + 1.48 0.41 +£0.17
GIV 27.87 £ 2.87 1.99 £0.94 9.18 + 2.81 0.48 £0.16 3.59 +1.39 0.39 £0.17
GDIV~(Ours) 2147 +£1.13 1.32 + 0.85 8.04 + 2.12 0.28 £ 0.16 2.32 £0.79 0.18 £ 0.10
TABLE III
ROBUSTNESS UNDER VARYING LEVELS OF UNOBSERVED CONFOUNDING AND TREATMENT ENTANGLEMENT
A=0.5 =0 B8 =0.5 B =1.0
Metric VEPEHE €EATE VEPEHE €ATE VEPEHE €EATE
DeeplV 31.044+3.99 | 2.16 £1.79 | 29.16 £5.31 1.92+0.90 | 35.16 £4.11 4.19 + 2.80
VIV 2268 +1.98 | 1.374+0.89 | 24.11+£2.19 | 1.66 +£0.82 | 28.124+3.35 | 2.65 £ 1.77
AutolV 25.19 £ 2.11 1.40 £1.01 | 31.22+3.26 | 1.97+0.87 | 31.77+£3.69 | 3.01 £1.91
GIV 24.33+1.63 | 1.394+0.98 | 27.87+£2.87 | 1.99+0.94 | 27.88+3.19 | 2.64 £ 1.69
GDIV~(Ours) 20.65 +1.03 1.23 +0.71 2147 +1.13 1.32 + 0.85 2322 +1.44 191 +1.23
B8 =0.5 A=0 A=0.5 A=1
Metric VEPEHE €EATE VEPEHE €ATE VEPEHE EATE
DeeplV 25.18 +£3.97 | 2.09+1.01 29.16 +5.31 1.9240.90 | 33.91£4.70 | 2.13+1.19
VIV 21.13+1.16 1.33 +£0.41 24.11 +2.19 1.66 £0.82 | 27.17 £ 3.11 2.01+1.13
AutolV 26.29 + 3.91 1.894+0.92 | 31.22+3.26 | 1.97+0.87 | 33.49+3.98 | 2.33£1.48
GIV 24.55 + 3.31 1.814+1.13 | 27.87+£2.87 | 1.99+0.94 | 30.15+2.88 | 2.21 £1.39
GDIV~(Ours) | 20.51 4 0.98 1.13 £ 0.51 2147 £1.13 1.32 £ 0.85 23.86 + 1.93 1.75 £ 1.07
TABLE IV
PERFORMANCE UNDER ABLATION VARIANTS
Datasets Synthetic BlogCatalog Flickr
Variants VE€PEHE €EATE VE€PEHE €ATE VE€PEHE €EATE
GDIV 2147 £1.13 1.32 £ 0.85 8.04 + 2.12 0.28 + 0.16 2.32 +0.79 0.18 &+ 0.10
GDIV-wo-ex] 29.16 23.89 2.00£1.13 11.65+2.88 0.46+0.33 4.124+1.17 0.31+0.11
GDIV-wo-ind  33.51 +£4.67 2.344+1.46 12.41+£3.01 0.59+0.29 3.984+1.02 0.4040.20

ants: GDIV-wo-exl, which removes the exclusion adversarial
network (allowing potential violation of the exclusion assump-
tion), and GDIV-wo-ind, which removes the independence
adversarial network (potentially violating the instrumental un-
confoundedness assumption). Their performances, summarized
in Table IV, were tested under the same settings as Table II.
Results show that removing either adversarial module leads to
significant drops in both metrics compared to the full model,
confirming that violations of IV assumptions reduce causal
effect accuracy. This analysis highlights the dual adversarial
learning module’s role in upholding IV assumptions and shows
the model’s practical, data-driven robustness.

VI. CONCLUSION

We address the problem of causal effect estimation on
graph-structured data, focusing on the challenges of intercon-
nected treatments and unobserved confounders. Our approach
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introduces a method for creating disentangled instrumental
variables (IVs) from graph structures, supported by a dual
adversarial network to reinforce IV model assumptions. Exper-
iments on synthetic and semi-synthetic datasets show that our
model consistently outperforms existing benchmarks across
various levels of treatment entanglement and confounding,
highlighting its robustness. Ablation studies confirm the ad-
vantage of using adversarial networks to meet IV assumptions.
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