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Abstract—At the heart of quantum chemistry and
materials science lies the critical task of estimat-
ing ground-state properties. We present a quantum
algorithm for this task by quantizing the density-
functional theory (DFT). A key aspect of imple-
menting DFT faithfully is the requirement for self-
consistent calculations, which involve repeated di-
agonalizations of the Hamiltonian. This procedure,
however, creates a significant bottleneck, as a clas-
sical algorithm generally demands a computational
complexity that grows cubically with the number
of electrons, restricting the scalability of DFT for
tackling large-scale problems that involve complex
chemical environments and microstructures. This ar-
ticle presents the first quantum algorithm that has
provided substantial speedup for the ground state
computation, by improving the complexity to one
with a linear scaling with the number of atoms.
The algorithm leverages the exponential speedup
by the quantum singular value transformation to
generate a quantum circuit to encode the density-
matrix, followed by an efficient estimation method
for the output electron density, which constitutes a
simple hybrid approach for achieving self-consistency.
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Moreover, the algorithm produces the ground state
Hamiltonian, from which the ground state energy
and band structures can be efficiently computed. The
proposed framework is accompanied by a rigorous
error analysis that establishes the convergence and
quantifies various sources of error and the overall
computational complexity. The combination of effi-
ciency and precision opens new avenues for exploring
large-scale physical systems.

Index Terms—quantum algorithm, quantum chem-
istry, density functional theory, quantum simulation

I. INTRODUCTION

Estimating ground-state energy and related prop-
erties of a quantum system are of ultimate interest
in quantum chemistry and quantum computation.
Classically, one of the breakthroughs in computa-
tional chemistry and material science is the devel-
opment of the density-functional theory (DFT) [22].
The theory is founded on the observation that the
electronic structures are fully determined by the un-
derlying electron density n(r);r € R® — [0, +00)
which, thanks to the ground-breaking work of Kohn
and Sham [26], can be represented through an
auxiliary system of non-interacting electrons with
an effective Kohn-Sham Hamiltonian H. Conse-
quently, the task of simulating a problem in R3V
is reduced to one in R3, thus drastically reducing
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the problem size. Meanwhile, the electron-electron
interactions are captured by an exchange-correlation
energy functional of n(r), which is part of the
Hamiltonian operator. The electron density must
be computed self-consistently to meet the self-
consistent field (SCF) requirement [37]. However,
direct SCF computation amounts to calculating
many eigenvalues of a large-dimensional matrix,
for which the computational cost typically scales
cubically with the dimension [54]. Such scaling has
been the major limiting factor for large-scale DFT
calculations e.g., perovskite materials [20], high-
entropy alloys [8], two-dimensional materials with
a twist angle [53], and biomaterials [12].

This paper aims to demonstrate a quantum ad-
vantage by proposing quantum algorithms for es-
timating ground-state energy based on DFT. In-
stead of explicitly computing the eigenvalues and
eigenvectors, we apply the quantum eigenvalue
transformation and construct a quantum circuit to
generate the density-matrix in DFT, which exhibits
an exponential speedup in terms of the number of
electrons. The electron density is then extracted
from the diagonals of the density-matrix. What
makes the algorithm appealing is that the overall
gate and query complexity only scales linearly
with the dimension of the problem, which we will
compress down to be proportional to the number
of atoms. To enable further speedup, we devise
an efficient SCF iteration algorithm, where only
some components of the electron density need to
be updated at each step, thereby significantly reduc-
ing the measurement cost. Our theoretical analysis
shows the convergence of the iteration methods, and
our numerical results indicate that the new SCF
algorithm is much more efficient than the classical
approach.

II. PROBLEM STATEMENTS AND SUMMARY OF
RESULTS

DFT finds the ground state property by solving
the following auxiliary eigenvalue problem [26],

V2
Hlnl ;) = Ejlvj), Hn] == == + V[n|(r),

Vin|(r) := Vi[n](r) + Vie[n](7) + Vet

/ Gi(F) () dr = b5,
(1)

where E;’s are the Kohn-Sham eigenvalues and
1);’s are the associated wavefunctions. The notation
[[] indicates a dependence on the function n(r).
In (1), the first term in the Hamiltonian H is the
one-electron kinetic energy. Vi [n](r) is the Hartree
potential, which is a functional of n. More precisely,
this potential can be obtained by solving the Poisson
equation.

The self-consistent field (SCF) in DFT asserts
that the electron density n(r) that enters the Hamil-
tonian H has to be the same as the electron density
determined from the eigenvalues and eigenvectors
of H. The output density is denoted by F(n), i.e.,
Fln(r)] = >, f(Ej)|vi(r)|?, e.g., Fermi-Dirac
distribution f(E) = 1/(1 + ¢ F=1), Directly
running a fixed-point iteration to update n with F[n]
often fails to convergence, a computational diffi-
culty that later motivated many mixing schemes [5],
[21], [47], [31]. Nevertheless, the most important
issue is that the cost of computing F[n] is often
dominated by the computation of the eigenvalue
problem in Eq. (1). To formulate a concrete prob-
lem, we consider a spatial discretization of Eq. (1)
at some grid points, where the input and output
density are denoted by m and F(n), respectively,
with dimension equal to the number of grid points.

Problem 1 (Estimating F'(n)). Assume that the
Hamiltonian H in Eq. (1) is approximated by an s-
sparse Hermitian matrix H on a set of grid points.
Suppose we are given the sparse-access oracle for
H as in Egs. (4) and (5). Given any € > 0, the goal
is to obtain an unbiased estimate for the updated
electron density F(n) € RN' ar Ny grid points,
such that |E[F(n)] — F(n)|| < e
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Due to the inherent nature of quantum compu-
tation, the estimated electron density F' is subject
to random measurement outcomes. The expectation
here E[-] denotes the corresponding average.

Theorem 1 (Informal version of Theorem 3). There
is a quantum algorithm that solves Problem I by
outputing a nearly unbiased approximate electron
density F(n) such that ||F(n) — F(n)| < e with
probability at least 1 —§ and ||E[F(n)] — F(n)| <
Ce+6 with some adjustable parameter (. Under the
assumptions_above, the algorithm involves a query
complexity (’)(%).1

_This quantum algorithm produces the density
F(n) whose expectation is close to the true one
F(n), which is then incorporated into the SCF
iteration. We say that the algorithm converges, if
the electron density converges to some 7, (thus
n. = F(n,)), which leads to our second problem,

Problem 2 (Determining the ground state electron
density ). Given an input electron density no(r),
such that ||n.(r) —no(r)|| < v, with sufficiently
small ~. Determine an estimate 7(r) such that
() = a(r)]| <e.

The main contribution of this work is summa-
rized as follows,

« We formulate the DFT-based computation as
an approximation of a matrix function — the
density-matrix to leverage the quantum singu-
lar value transformations to efficiently prepare
the density-matrix I' = f(H) on the circuit.

« We ensure the self-consistency by constructing
a hybrid algorithm, where the quantum algo-
rithm produces the density-matrix I' = f(H),
while the classical algorithm employs an SCF
iteration to provide updated values for the
electron density to reprogram the quantum
algorithm by updating H at the next step.

« We prove the theoretical convergence for the
hybrid algorithm, and our analysis takes into
account the function approximation error, mea-
surement error, and iteration error.

I'We use O to neglect poly-logarithmic factors.
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o We propose a flexible implementation of the
hybrid algorithm, where only some compo-
nents of the electron density are updated to
reduce the sampling complexity. Motivated by
the stochastic algorithms in machine learning,
we incorporate the unbiased amplitude ampli-
fication [41] to mitigate algorithmic bias. This
idea of improving hybrid quantum/classical
algorithms can be of independent interest.

We first state the theoretical result regarding the
convergence of the hybrid algorithm

Theorem 2 (Informal version of Theorem 5).
Under the same Assumption, there is a hybrid
quantum-classical algorithm that solves Problem 2
by outputing an approximate ground state electron
density n(r) such that ||n.(r) —n(r)| < €. with
probability at least 1 — py for any given py €
(W%Ha 1). Neglecting logarithmic factors, and
under the assumptions above, the algorithm in-
volves (’)(%) queries to the Hamiltonian H.

Comparison to classical algorithms for DFT-
based computation In classical computing, the
most expensive part of typical DFT implementa-
tions to compute the electron density is the step
of solving the Kohn-Sham equations, which is
equivalent to finding eigenpairs corresponding to
the Hamiltonian matrix. Many efficient techniques
have been proposed over the last two decades,
such as polynomial filtering methods [3], [54], [32],
direct energy minimization [49], [51] and spectrum
slicing type methods [43], [27]. For numerical im-
plementations of DFT, the readers are referred to
[33], [28], [29], and a large collection of software
packages [19], [52], [32], [44], [13], [45], [34].
The complexity of these algorithms typically scales
cubically with the number of electrons: O(N2). On
the other hand, there are many classical algorithms
for electron structure calculations that exhibit linear
with respect to the number of atoms [46], [9], [18],
[14], [15]. Such scaling is obtained with locality
assumptions, also known as the “nearsightedness”,
which is not assumed in this paper. Furthermore, it
is difficult to quantify the error from linear-scaling
algorithms. Finally, self-consistency is usually en-
forced in terms of charges, rather than the values of
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the electron density in the original DFT formalism.
Notations. We use bold fonts for vectors, e.g., r,
and the entries will be labeled in parenthesis, e.g.,
7(j) being the jth entry of ». D C R?® will be
used to denote the physical domain. n(r) : D —
[0,4+00) is a function representing the electron
density. As a summary of the notations, N. and
N, are respectively the number of electrons and the
number of atoms. In the numerical discretization,
Ds is a set of grid points in D, with N; being the
number of grid points, which is often comparable to
N,. We choose Ny = M = 2™ to map functions
defined at the grid points to quantum states in a
m-qubit system. H € RN *N1 ig the Hamiltonian
represented at the grid points.

III. REAL-SPACE DISCRETIZATION

To solve Eq. (1), we assume that the Hamil-
tonian operator is properly discretized in a three-
dimensional domain D by a finite-difference
method [2] with grid size §. Note that such a dis-
cretization generates an error typically of order 627
with a finite-difference stencil of width p. Thus one
can choose § = €!/2P to control the discretization
error to within e.

Within the discretization, the electron density at
the grid points is expressed as a vector n. Following
the Hamiltonian operator in Eq. (1), we can express
the matrix H as follows,

H(n) = V3 + Vy(n), @

where V% approximates the kinetic energy operator
[2]. Vs, which enters the Hamiltonian through the
diagonals, is the potential evaluated at the grid
points and it collects all the potential terms in the
Hamiltonian operator. In terms of the matrix H
from the finite-difference approximation, we can
define the density-matrix I' € C2"*2": ' =
f(H). Thus, we generalize the continuous fixed-
point problem to a discrete one,

n=f(H(n)), neRN. 3)

Let Ny = 2™ be the number of grid points.
Denote by Da, the set of the grid points. Fig. |
illustrates the ground-state electron density from a
DFT calculation, satisfying (3).

0.572

Electron Density

-0.015

Fig. 1: A quick illustration of the electron density
of Silicon Nitride on its planar subsystem. The data
is obtained by DFT calculations using an example
from [23].

The matrix H from the spatial discretization is
usually sparse. In quantum computing, the sparsity
implies that the matrix is efficiently row/column
computable. To access H, we assume we have
access to a procedure Og that can perform the
following mapping:

where r;, is the k-th nonzero entry of the i-th row of
H. In addition, Op can also perform the following

mapping:
Om : [i)3)10) = |5} [5) |[H (i, 5)) - (5)

One key ingredient of our quantum algorithm
is block encoding. If a (m + a)-qubit unitary Uy
satisfies |4 — a( (09| @ IUA([0®*) @ I)|, <,
then it is called an (a, a, €)-block-encoding of A.
With the oracles Og and Op, the block encoding
can be constructed as a unitary with the upper-left
block being proportional to H, [17, Lemma 27]

U = <H :) : (6)

The implementation of Og and O depends on the
number of distinct values of non-zero entries of H
in (3). For this, we need to store O(Ny) parameters
in quantum random-access memory (QRAM) in
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order to update the diagonals of H input oracle. The
gate complexity for implementing the addressing
scheme of such QRAM is O(Ny). But the circuit
depth is O(log Ny) [36]. The input oracles Og and
Op for H can be implemented as a procedure that
reads data in the QRAM. Another alternative is to
construct such oracles without QRAM, but rely on
circuit architectures for structured matrices [6].

IV. PREPARING THE DENSITY-MATRIX

Since H is Hermitian, one can use the spectral
map and approximate the density-matrix I" by poly-
nomial approximations of the Fermi-Dirac function.
To apply this technique to the density-matrix I', we
rescale the Hamiltonian matrix

ApFAs

f(H)Z(l—i-eB( “)eBH)_l, ™

where

AL — A~
b= B H =

2
Ay —

A+ A
2

A {H_
(®)

Here A_ and X\, are some lower and upper bounds
of the eigenvalues of H. The scaling is simply to
map the eigenvalues of H to the interval [—1,1].
Noticing that o(H) C [—1, 1], we apply the Cheby-
shev approximation of the density matrix. The fol-
lowing lemma, as in [24, Remark 4.8], quantifies

the quality of the approximation

Lemma 1. For a given inverse temperature (3, the
degree of the Chebyshev expansion to approximate
f(H), up to a precision ¢, is at least,

1
(=0 (logr ) . )
€
Here r € (1, W) with c(B) =
4 1
A B

Polynomial approximations of the density-matrix
I" are not new. In fact, it has been used in [10] for
DFT. But in this classical algorithm, the matrix mul-
tiplications will introduce significant computational
overhead. In contrast, the quantum singular value
transformation (QSVT) [17] can efficiently prepare
the density-matrix with a complexity that does not
depend on the matrix dimension explicitly.

1.
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According to the property of matrix norms, the
condition that |H; ;| < 1 for ¢,j € [m] is automat-
ically satisfied due to the scaling in Eq. (8). Under
this condition, QSVT builds a block-encoding of
the following matrix function for € [—1, 1],

Upe() = <p£(.H) > , pelx) & S
2(1 +exp (61'))
(10)
where B is defined in Eq. (8). This is summarized
as follows,

Lemma 2 ([17, Theorem 31]). Let Uy be a block
encoding of H and py(x) € R[z] be a polynomial
of degree { such that sup,¢(_q 1) [pe(x)] < 1. Then
there is a quantum circuit that implements a block
encoding of pe(H), Uy, (), with £ application of
Uy and U}L{, one application of controlled-Uyy gate,
and O({) other one- and two-qubit gates.

V. ESTIMATING THE ELECTRON DENSITY

Recall that the electron density at different loca-
tions corresponds to the diagonals of f(H):

F(n)(j) =tr (p; f(H)), pj:=|rj)rs, (A1)

where j € [IN;], with r; being a grid point in Da.

The QSVT uses the polynomial approximation
f(H) =~ pe(H), and it provides an approximate
block encoding of py(H). Thus, we use the fol-
lowing estimator for F'(n),

F(n)(j) = 2tr (p;pe(H)).

We have treated py(H) as observables. To measure
them, one may consider the amplitude amplification
(AA) method [40], especially because we have
prepared the density matrix as a block encoding.
However, this approach can create a bias that com-
plicates the hybrid algorithm. To circumvent this
issue, we use the more recent algorithm [41]
that is equipped with a controllably small bias. To
apply the unbias amplitude estimation [41], we let
U, be X; where X; is the Pauli X gate acting
on the j-th qubit in the first register. In light of
Lemma 1 together with [41, Theorems 6 and 23],
we immediately have,

12)
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Fig. 2: An illustration of the hybrid algorithm: the blue box highlights the operations involved in the
quantum algorithm, while the gray box shows the update formulas for the electron density and chemical

potential on classical computers.

Theorem 3. For each j € [Ny] and any €,{,d > 0,
there is a quantum algorithm that outputs F'(n)(j)
as an approximate unbiased estimate of F(n)(j)
satisfying that

P|[Fe

\Em ()] = Fn)(j)| < ¢e+o.

ﬁ(n)(j) e [0,1], (13)
me‘<4>1—&a@

15)

It uses O ( (log( ) + %)) queries to Uy, i1y and
U;e(H)’ and X; gate.

Notice that the parameter ¢ controls the unbiased-
ness of the estimator, which is determined by the
degree of polynomial sampling within the unbiased
AA in [41]. The proof is provided in Appendix X.

VI. HYBRID ALGORITHMS AND THE OVERALL
COMPLEXITY

To perform SCF iterations, we use the estimate
of the electron density to interface with fixed-
point iterations on a classical computer. Overall,
this constitutes a hybrid algorithm for implement-
ing DFT: One iteration on a classical computer
produces a new electron density at the grid points
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in Da, followed by the simple mixing scheme, as
illustrated in Fig. 2. We establish theoretical results
with the following assumptions,
Assumptions. Given the electron density at Ny grid
points, the potential V' in the Hamiltonian matrix
(esp. Vi) can be evaluated with precision e with
cost O(Ny), excluding logarithmic factors (i.e. an
efficient evaluation of potential via a local formula-
tion of the electrostatics in [16]). In addition, we
make the standard assumption that the mapping
F(n) is locally-contractive in that there exist some
weighted vector norm ||-||,, and some w-dependent
€ (0,1) such that
= F(n)|w < c[n = n'[|w,

[ F(n) (16)
for all n,n’ € B,(n.) which denotes the ball
centered at the fixed point n, with radius ~. This
condition can be obtained from mixing schemes
[31], [24], [7]. Finally, for the estimator F'(n)(j)
defined in (3), we assume that there exist ¢ > 0
and o0, > 0 such that, for any n € B,(n,) and
each j € [Ny, the following bounds hold,

}

F(n)

var[ } < o2, var {F(n)(y) <o?. (17)



This means that near the fixed point n., the variance
of noise involved in the density estimation is uni-
formly bounded, which is reasonable as long as the
overall quantum noise is controlled. In the context
of classical stochastic SCF calculations, a similar
assumption is used [24].

Next, we establish a stochastic stability property
to quantify the effect of measurement noise and
analyze the convergence of hybrid SCF methods.
More importantly, the stability analysis allows us
to quantify the overall query complexity. Recall
that we denote by F(n) the vector in RV, whose
components are defined in Theorem 3.

We first consider the SCF iteration with simple
mixing ngr1 = (1 — a)ng + aF(ny) with F(ny)
estimated using QSVT and AA. Due to the fact that
all components of the density are updated at each
iteration, this method will be referred to as the full-
coordinate fixed-point (FCFP) algorithm.

Theorem 4. For any precision ¢ > 0, a given
initial guess n1 € By(n.) and any failure prob-
ability py € (% 12 the hybrid algorithm
using all coordinates of the electron density can
achieve an iterate ny for some t € [T] such that
Ine — nyllw < € with probability at least 1 — py
with the learning rate

27"0 2

a < min{ag, 5=, — (18)
tao 2 + 13 To}

and the number of iterations at least

T=0 71 log 7””'1 — n*Hi
(1 - ce,a)pf € ’

(19)
it involves

where cc, 2+ 4 gQ. Overall,
@ (% log% (log 5
The proof is provided in the full version [25].
Next, we introduce an alternative to the FCFP
method: Rather than updating all components of
F(n), we only update the components selectively.
The key idea is similar to the randomized coordi-
nate iterative algorithms [35], [48], [38]. The new

method will be referred to as the randomized block
coordinate fixed-point method (RBCFP). Specifi-

) queries to Op.

cally, given a fixed-point mapping F (n), RBCFP
is defined as

Famn)= Y (ux, F(n))u

ke{kRv m

P

kg{kR] }],1

(20)
uk7

where {kg,}L, is the set of m indices randomly
sampled from the index set [IV7], uniformly without
replacement, and the parenthesis ( , ) refers to the
standard inner product between vectors. We remark
that when m = Ny, the method becomes the full
coordinate approach. The following theorem shows
that despite the partial update of the density, the
method still has linear convergence. As proved in
the full version [25].

Theorem 5. For any precision € > 0, a given initial
guess ny € By(n,), a given m € [N;| and any
, RBCFP

Ina—nally 4
achieves an iterate ny for some t € [T| such that
lny — nyllw < € with probability at least 1 — py
with the learning rate

failure probability py € (

. 2’1"0 2
a< mln{ao,m7—} 21
mes T 716 To

and the number of iterations is at most

1 Iy — s
T=0(- log | A —"lw ) )
Nil(lchI,e,a)pf €

(22)
where cn; e.q = . Overall, the algo-

N]G. o'

2+ —a e
rithm involves (9( =t log% log %—I— %)) queries
to Og.

VIL

To mimic our hybrid algorithm on a classical
computer, we conducted numerical tests for the
approximation of the density-matrix in Eq. (12)
within the MATLAB platform M-SPARC, a real-
space DFT code [16]. We chose Barium titanate
(BaTiO3) and an H20O sheet as our test models from
the set of examples in M-SPARC '. In the models,

APPLICATIONS

Uhttps://github.com/SPARC-X/M-SPARC/tree/master/tests
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a = 0.4 (full), a=0.99 (random), n =0.1

4
—e—full
—f—m =72
m=12
3 ——m=4 |

5 10 15 20
unit = 5616 coordinate evaluations
a = 0.4 (full), a=0.99 (random), n = 0.1

chemical potential

-1.2

5 10 15 20

unit = 5616 coordinate evaluations

Fig. 3: Examining the convergence of the hybrid al-
gorithms using the system H,O-sheet. The density-
matrix is approximated by a Chebyshev polynomial
with degree ¢ = 500. The z-axis labels the number
of coordinate evaluations. Left: the y-axis is the
error of the electron density. Right: the values of
the chemical potential ;o during the iterations. The
FCFP method runs with damping parameter a =
0.4; the RBCFP method is run with a = 0.99 and
block sizes m = 4,12,72. The damping parameter
for updating the chemical potential is n = 0.1.

temperatures are set to 7' = 300K, and we set up
the computation for BaTiO3 in a cubic supercell and
for HyO in the  — y plane with Dirichlet boundary
condition imposed in the z direction.

Within these numerical studies, we compared
the performance of FCFP and RBCFP in terms of
the number of updated coordinates of the electron
density or coordinate evaluations, which in a hy-

brid algorithm, will be directly proportional to the
number of quantum measurements. Fig. 3 shows the
convergence of the electron density n and chemical
potential p, where Chebyshev approximation of the
density-matrix is employed to take into account
the QSVT implementation. From the left panel
of Fig. 3, we observe that RBCFP exhibits rapid
convergence despite the error due to the polynomial
approximation. Meanwhile, our hybrid algorithm
also updates the chemical potential at each SCF
step using the stochastic algorithm [42] (see the the
full version [25]). The convergence of the chemical
potential is shown in the right panel of Fig. 3.

To focus on testing the convergence rate, we
generate the density-matrix exactly (no polynomial
approximation error). Fig. 4 shows linear conver-
gence of both methods. Similar to the results in
Fig. 3, we observe that RBCFP can tolerate a larger
learning rate: FCFP becomes unstable when a >
0.4, but RBCFP remains stable. The convergence
rate of RBCFP is consistently better than that of
FCFP, suggesting that its actual performance can be
much better than the theoretical bounds: it requires
fewer coordinate evaluations than the FCFP method,
showing both robustness and efficiency as a hybrid
quantum-classical algorithm.

VIII. DISCUSSIONS

We demonstrate the quantum advantage in im-
plementing the density-functional theory. The com-
plexity of our quantum algorithm scales linearly
with the dimension of the density update F'(n),
which typically scales as N., the number of elec-
trons. Therefore, this can be considered as lin-
ear/sublinear scaling, which compared to the cubic
scaling in classical algorithms, is a significant re-
duction.

The advantages of the algorithm presented in this
paper are not limited to the mean-field model of
DFT: It can be applied to other mean-field quan-
tum descriptions where self-consistency is central.
Another common practice in DFT calculations is to
exclude core electrons and incorporate their effects
using pseudopotentials [33]. While it is not clear
whether this is needed in a quantum algorithm, it
is still of theoretical interest to explore how such
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a=0.3(full), a=0.95 (random)

—e—full
—s—m=75

m=25
—e—m=5

0 10 20 30 40
unit = 3375 coordinate evaluations
a=0.4(full), a=0.99 (random)

0 5 10 15 20 25 30
unit = 5616 coordinate evaluations

Fig. 4: Performance comparison of the FCFP and
RBCFP methods. In both panels, the x-axis labels
the number of coordinate evaluations. The y-axis
labels the error of the electron density on a loga-
rithmic scale. Left: BaTiO3 system with N, = 40
electrons fixed; Right H20 with N, = 8 electrons
fixed. In the left panel, the FCFP method runs with
damping parameter a = 0.3, but the RBCFP method
with ¢ = 0.95. In the right panel, the FCFP runs
with a = 0.4 which is close to the edge of stability,
and the RBCFP with a = 0.99.

potentials can be block encoded into Up. These
issues will be explored in separate works.
Quantum algorithms [1], [30] have been designed
to compute the ground state energy based on the
many-body descriptions, e.g., the second quanti-
zation form. In general, those algorithms work
with a Hamiltonian that consists of O(N?) terms,
thereby requiring a O(N2) query complexity. In
contrast, our algorithm is based on DFT, which is
a mean-field model, and it only involves a O(N,)
complexity, due to the dimension of a Hamiltonian.
Once the ground state density is obtained from
our algorithm, we can compute relevant properties
by combining it with other quantum algorithms:
[11] for the computations of ground-state (GS)
energy and energy bands and [40] for the density
of states. Table I summarizes these approaches. One
assumption in the use of the method [ 1] is non-
zero overlaps with the KS eigenstates in the com-

QOI total run time
GS energy

~ (.
energy bands 0 (T)
This work + [40]  Density of States 16} (M)

o]

TABLE I: Comparison of properties that can be
computed and the total run time needed to reach
precision €. d denotes the maximal degree of the
kernel polynomial method [50]. N, denotes the
number of electrons.

This work + [11]

Method in [30] GS energy

putation of energy bands, otherwise, the problem
would be QMA-hard. Meanwhile, the variational
quantum eigensolver (VQE) [39] is another hybrid
algorithm that is designed for ground-state calcula-
tions, perhaps having a comparable complexity to
our hybrid approach. However, unlike DFT, VQE’s
ability to universally represent a ground state for
a wide variety of physical systems has not been
established [4].
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X. APPENDICES
A. Algorithm

The following pseudo-code illustrates the hybrid
algorithm for the self-consistent field (SCF) calcu-
lations in density functional theory (DFT),

Notice that the full coordinate fixed-point itera-
tion (FCFP) is obtained by setting m = N;. Again,
the second step requires quantum computations to
estimate m components of the electron density.
Once it is done, we update the electron density and
the chemical potential on a classical computer.

B. Estimating the Chemical potential

The hybrid algorithm 1 has the flexibility to
incorporate an additional step to determine chemical
potential . This step may be neglected in the case
of the grand canonical ensemble, where i is given.
On the other hand, when the number of electrons IV,
is fixed (e.g. NVT ensemble), the chemical potential
1 is determined on the ground that N, is preserved
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Algorithm 1: Randomized block coordinate
fixed-point iteration

Input: initial guess 1y, damping parameters
a,n € (0,1), index parameter m € [Ny]
Output: converged density and chemical
potential (70, )
for k=0:T
1) Sample m different indices
{kr.;}72; C [N1] uniformly
2) F
unbiased Amplitude Amplification.
NE1 = (1 — a)nk + aFRm(nk)
e+t = pe — 1(G(niy1) — Ne) if the
chemical potential i needs to be adjusted
Update the Hamiltonian

3)
)

4)
end

during the SCF iteration. At the continuous level,
the constraint is formulated as

/n('r) dr = N., n(r)=(r|f(H—pl)|r).
(23)
Here the first equation can be cast into a nonlinear
equation,

G(n,u) =0, G(n,p):= /n(r) dr — N.. (24)

Notice that given n(r), G is a monotone function
of p.

To incorporate the constraint in 23 into our hybrid
algorithm, we should consider a discretized version
of the nonlinear function G. Then, we update the
chemical potential on classical computers as we do
the electron density, (see the algorithm 1). These
considerations are summarized as follows

N1 = (1 — a)nk —+ af‘R,m(nk),
pre+1 =t — (G (ng11) — Ne),

where

(25)

G(n) = _n(j)lo’,

is a discretization of the function in 24. Here §° is
the infinitesimal volume from the finite-difference
approach with grid size §; n € (0,1) is the damping

Estimate Fr ,,(ny) using the QSVT and the
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parameter for updating p. This solver for p is
motivated by the stochastic approximation method
by Robbins and Monro [42] for solving nonlinear
equations.
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