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Abstract—At the heart of quantum chemistry and
materials science lies the critical task of estimat-
ing ground-state properties. We present a quantum
algorithm for this task by quantizing the density-
functional theory (DFT). A key aspect of imple-
menting DFT faithfully is the requirement for self-
consistent calculations, which involve repeated di-
agonalizations of the Hamiltonian. This procedure,
however, creates a significant bottleneck, as a clas-
sical algorithm generally demands a computational
complexity that grows cubically with the number
of electrons, restricting the scalability of DFT for
tackling large-scale problems that involve complex
chemical environments and microstructures. This ar-
ticle presents the first quantum algorithm that has
provided substantial speedup for the ground state
computation, by improving the complexity to one
with a linear scaling with the number of atoms.
The algorithm leverages the exponential speedup
by the quantum singular value transformation to
generate a quantum circuit to encode the density-
matrix, followed by an efficient estimation method
for the output electron density, which constitutes a
simple hybrid approach for achieving self-consistency.
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Moreover, the algorithm produces the ground state
Hamiltonian, from which the ground state energy
and band structures can be efficiently computed. The
proposed framework is accompanied by a rigorous
error analysis that establishes the convergence and
quantifies various sources of error and the overall
computational complexity. The combination of effi-
ciency and precision opens new avenues for exploring
large-scale physical systems.

Index Terms—quantum algorithm, quantum chem-
istry, density functional theory, quantum simulation

I. INTRODUCTION

Estimating ground-state energy and related prop-

erties of a quantum system are of ultimate interest

in quantum chemistry and quantum computation.

Classically, one of the breakthroughs in computa-

tional chemistry and material science is the devel-

opment of the density-functional theory (DFT) [22].

The theory is founded on the observation that the

electronic structures are fully determined by the un-

derlying electron density n(r); r ∈ R
3 → [0,+∞)

which, thanks to the ground-breaking work of Kohn

and Sham [26], can be represented through an

auxiliary system of non-interacting electrons with

an effective Kohn-Sham Hamiltonian H. Conse-

quently, the task of simulating a problem in R
3N

is reduced to one in R
3, thus drastically reducing
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the problem size. Meanwhile, the electron-electron

interactions are captured by an exchange-correlation

energy functional of n(r), which is part of the

Hamiltonian operator. The electron density must

be computed self-consistently to meet the self-

consistent field (SCF) requirement [37]. However,

direct SCF computation amounts to calculating

many eigenvalues of a large-dimensional matrix,

for which the computational cost typically scales

cubically with the dimension [54]. Such scaling has

been the major limiting factor for large-scale DFT

calculations e.g., perovskite materials [20], high-

entropy alloys [8], two-dimensional materials with

a twist angle [53], and biomaterials [12].

This paper aims to demonstrate a quantum ad-

vantage by proposing quantum algorithms for es-

timating ground-state energy based on DFT. In-

stead of explicitly computing the eigenvalues and

eigenvectors, we apply the quantum eigenvalue

transformation and construct a quantum circuit to

generate the density-matrix in DFT, which exhibits

an exponential speedup in terms of the number of

electrons. The electron density is then extracted

from the diagonals of the density-matrix. What

makes the algorithm appealing is that the overall

gate and query complexity only scales linearly

with the dimension of the problem, which we will

compress down to be proportional to the number

of atoms. To enable further speedup, we devise

an efficient SCF iteration algorithm, where only

some components of the electron density need to

be updated at each step, thereby significantly reduc-

ing the measurement cost. Our theoretical analysis

shows the convergence of the iteration methods, and

our numerical results indicate that the new SCF

algorithm is much more efficient than the classical

approach.

II. PROBLEM STATEMENTS AND SUMMARY OF

RESULTS

DFT finds the ground state property by solving

the following auxiliary eigenvalue problem [26],

H[n] |ψj〉 = Ej |ψj〉 ,H[n] := −∇2

2
+ V [n](r),

V [n](r) := VH [n](r) + Vxc[n](r) + Vext,∫
ψi(r)

∗ψj(r) dr = δij ,

(1)

where Ej’s are the Kohn-Sham eigenvalues and

ψj’s are the associated wavefunctions. The notation

[·] indicates a dependence on the function n(r).
In (1), the first term in the Hamiltonian H is the

one-electron kinetic energy. VH [n](r) is the Hartree

potential, which is a functional of n. More precisely,

this potential can be obtained by solving the Poisson

equation.

The self-consistent field (SCF) in DFT asserts

that the electron density n(r) that enters the Hamil-

tonian H has to be the same as the electron density

determined from the eigenvalues and eigenvectors

of H. The output density is denoted by F (n), i.e.,

F [n(r)] =
∑

j f(Ej)|ψj(r)|2, e.g., Fermi-Dirac

distribution f(E) = 1/(1 + eβ(E−µ)). Directly

running a fixed-point iteration to update n with F [n]
often fails to convergence, a computational diffi-

culty that later motivated many mixing schemes [5],

[21], [47], [31]. Nevertheless, the most important

issue is that the cost of computing F [n] is often

dominated by the computation of the eigenvalue

problem in Eq. (1). To formulate a concrete prob-

lem, we consider a spatial discretization of Eq. (1)

at some grid points, where the input and output

density are denoted by n and F (n), respectively,

with dimension equal to the number of grid points.

Problem 1 (Estimating F (n)). Assume that the

Hamiltonian H in Eq. (1) is approximated by an s-
sparse Hermitian matrix H on a set of grid points.

Suppose we are given the sparse-access oracle for

H as in Eqs. (4) and (5). Given any ǫ > 0, the goal

is to obtain an unbiased estimate for the updated

electron density F̃ (n) ∈ R
NI at NI grid points,

such that ‖E[F̃ (n)]− F (n)‖ < ǫ.
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Due to the inherent nature of quantum compu-

tation, the estimated electron density F̃ is subject

to random measurement outcomes. The expectation

here E[·] denotes the corresponding average.

Theorem 1 (Informal version of Theorem 3). There

is a quantum algorithm that solves Problem 1 by

outputing a nearly unbiased approximate electron

density F̃ (n) such that ‖F̃ (n)− F (n)‖ < ǫ with

probability at least 1−δ and ‖E[F̃ (n)]− F (n)‖ <
ζǫ+δ with some adjustable parameter ζ. Under the

assumptions above, the algorithm involves a query

complexity Õ
(
NI

ζǫ

)
.1

This quantum algorithm produces the density

F̃ (n) whose expectation is close to the true one

F (n), which is then incorporated into the SCF

iteration. We say that the algorithm converges, if

the electron density converges to some n∗ (thus

n∗ = F (n∗)), which leads to our second problem,

Problem 2 (Determining the ground state electron

density ). Given an input electron density n0(r),
such that ‖n∗(r)− n0(r)‖ < γ, with sufficiently

small γ. Determine an estimate n̂(r) such that

‖n∗(r)− n̂(r)‖ < ǫ.

The main contribution of this work is summa-

rized as follows,

• We formulate the DFT-based computation as

an approximation of a matrix function – the

density-matrix to leverage the quantum singu-

lar value transformations to efficiently prepare

the density-matrix Γ = f(H) on the circuit.

• We ensure the self-consistency by constructing

a hybrid algorithm, where the quantum algo-

rithm produces the density-matrix Γ = f(H),
while the classical algorithm employs an SCF

iteration to provide updated values for the

electron density to reprogram the quantum

algorithm by updating H at the next step.

• We prove the theoretical convergence for the

hybrid algorithm, and our analysis takes into

account the function approximation error, mea-

surement error, and iteration error.

1We use Õ to neglect poly-logarithmic factors.

• We propose a flexible implementation of the

hybrid algorithm, where only some compo-

nents of the electron density are updated to

reduce the sampling complexity. Motivated by

the stochastic algorithms in machine learning,

we incorporate the unbiased amplitude ampli-

fication [41] to mitigate algorithmic bias. This

idea of improving hybrid quantum/classical

algorithms can be of independent interest.

We first state the theoretical result regarding the

convergence of the hybrid algorithm

Theorem 2 (Informal version of Theorem 5).

Under the same Assumption, there is a hybrid

quantum-classical algorithm that solves Problem 2

by outputing an approximate ground state electron

density n̂(r) such that ‖n∗(r)− n̂(r)‖ < ǫ. with

probability at least 1 − pf for any given pf ∈
(‖n0−n∗‖

2

γ2 , 1). Neglecting logarithmic factors, and

under the assumptions above, the algorithm in-

volves Õ
(
NI

ζǫ

)
queries to the Hamiltonian H .

Comparison to classical algorithms for DFT-

based computation In classical computing, the

most expensive part of typical DFT implementa-

tions to compute the electron density is the step

of solving the Kohn-Sham equations, which is

equivalent to finding eigenpairs corresponding to

the Hamiltonian matrix. Many efficient techniques

have been proposed over the last two decades,

such as polynomial filtering methods [3], [54], [32],

direct energy minimization [49], [51] and spectrum

slicing type methods [43], [27]. For numerical im-

plementations of DFT, the readers are referred to

[33], [28], [29], and a large collection of software

packages [19], [52], [32], [44], [13], [45], [34].

The complexity of these algorithms typically scales

cubically with the number of electrons: O(N3
e ). On

the other hand, there are many classical algorithms

for electron structure calculations that exhibit linear

with respect to the number of atoms [46], [9], [18],

[14], [15]. Such scaling is obtained with locality

assumptions, also known as the “nearsightedness”,

which is not assumed in this paper. Furthermore, it

is difficult to quantify the error from linear-scaling

algorithms. Finally, self-consistency is usually en-

forced in terms of charges, rather than the values of

�✚✣
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the electron density in the original DFT formalism.

Notations. We use bold fonts for vectors, e.g., r,

and the entries will be labeled in parenthesis, e.g.,

r(j) being the jth entry of r. D ⊂ R
3 will be

used to denote the physical domain. n(r) : D →
[0,+∞) is a function representing the electron

density. As a summary of the notations, Ne and

Na are respectively the number of electrons and the

number of atoms. In the numerical discretization,

Dδ is a set of grid points in D, with NI being the

number of grid points, which is often comparable to

Na. We choose NI = M = 2m to map functions

defined at the grid points to quantum states in a

m-qubit system. H ∈ R
NI×NI is the Hamiltonian

represented at the grid points.

III. REAL-SPACE DISCRETIZATION

To solve Eq. (1), we assume that the Hamil-

tonian operator is properly discretized in a three-

dimensional domain D by a finite-difference

method [2] with grid size δ. Note that such a dis-

cretization generates an error typically of order δ2p

with a finite-difference stencil of width p. Thus one

can choose δ = ǫ1/2p to control the discretization

error to within ǫ.
Within the discretization, the electron density at

the grid points is expressed as a vector n. Following

the Hamiltonian operator in Eq. (1), we can express

the matrix H as follows,

H(n) = −1

2
∇2

δ + Vδ(n), (2)

where ∇2
δ approximates the kinetic energy operator

[2]. Vδ , which enters the Hamiltonian through the

diagonals, is the potential evaluated at the grid

points and it collects all the potential terms in the

Hamiltonian operator. In terms of the matrix H
from the finite-difference approximation, we can

define the density-matrix Γ ∈ C
2m×2m : Γ =

f(H). Thus, we generalize the continuous fixed-

point problem to a discrete one,

n = f (H(n)) , n ∈ R
NI . (3)

Let NI = 2m be the number of grid points.

Denote by D∆, the set of the grid points. Fig. 1

illustrates the ground-state electron density from a

DFT calculation, satisfying (3).

Fig. 1: A quick illustration of the electron density

of Silicon Nitride on its planar subsystem. The data

is obtained by DFT calculations using an example

from [23].

The matrix H from the spatial discretization is

usually sparse. In quantum computing, the sparsity

implies that the matrix is efficiently row/column

computable. To access H , we assume we have

access to a procedure OS that can perform the

following mapping:

OS : |i〉 |k〉 7→ |i〉 |rik〉 , (4)

where rik is the k-th nonzero entry of the i-th row of

H . In addition, OH can also perform the following

mapping:

OH : |i〉 |j〉 |0〉 7→ |i〉 |j〉 |H(i, j)〉 . (5)

One key ingredient of our quantum algorithm

is block encoding. If a (m + a)-qubit unitary UA

satisfies ‖A− α( 〈0⊗a| ⊗ I)UA( |0⊗a〉 ⊗ I)‖2 ≤ ǫ,
then it is called an (α, a, ǫ)-block-encoding of A.

With the oracles OS and OH , the block encoding

can be constructed as a unitary with the upper-left

block being proportional to H, [17, Lemma 27]

UH =

(
H ·

· ·

)
. (6)

The implementation of OS and OH depends on the

number of distinct values of non-zero entries of H
in (3). For this, we need to store O(NI) parameters

in quantum random-access memory (QRAM) in

�✚✧
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order to update the diagonals of H input oracle. The

gate complexity for implementing the addressing

scheme of such QRAM is O(NI). But the circuit

depth is O(logNI) [36]. The input oracles OS and

OH for H can be implemented as a procedure that

reads data in the QRAM. Another alternative is to

construct such oracles without QRAM, but rely on

circuit architectures for structured matrices [6].

IV. PREPARING THE DENSITY-MATRIX

Since H is Hermitian, one can use the spectral

map and approximate the density-matrix Γ by poly-

nomial approximations of the Fermi-Dirac function.

To apply this technique to the density-matrix Γ, we

rescale the Hamiltonian matrix

f(H) =

(
1 + e

β
(

λ++λ
−

2
−µ

)

eβ̂H̃
)−1

, (7)

where

β̂ =
λ+ − λ−

2
β, H̃ =

2

λ+ − λ−

[
H − λ+ + λ−

2
I

]
.

(8)

Here λ− and λ+ are some lower and upper bounds

of the eigenvalues of H . The scaling is simply to

map the eigenvalues of H to the interval [−1, 1].
Noticing that σ(H̃) ⊂ [−1, 1], we apply the Cheby-

shev approximation of the density matrix. The fol-

lowing lemma, as in [24, Remark 4.8], quantifies

the quality of the approximation

Lemma 1. For a given inverse temperature β, the

degree of the Chebyshev expansion to approximate

f(H), up to a precision ǫ, is at least,

ℓ = Θ

(
logr

1

ǫ

)
. (9)

Here r ∈ (1,
c(β)+

√
c(β)2+4

2 ) with c(β) =
4π

λ+−λ−

1
β .

Polynomial approximations of the density-matrix

Γ are not new. In fact, it has been used in [10] for

DFT. But in this classical algorithm, the matrix mul-

tiplications will introduce significant computational

overhead. In contrast, the quantum singular value

transformation (QSVT) [17] can efficiently prepare

the density-matrix with a complexity that does not

depend on the matrix dimension explicitly.

According to the property of matrix norms, the

condition that |Hi,j | ≤ 1 for i, j ∈ [m] is automat-

ically satisfied due to the scaling in Eq. (8). Under

this condition, QSVT builds a block-encoding of

the following matrix function for x ∈ [−1, 1],

Upℓ(H) =

(
pℓ(H) ·

· ·

)
, pℓ(x) ≈

1

2(1 + exp
(
β̂x
)
)
,

(10)

where β̂ is defined in Eq. (8). This is summarized

as follows,

Lemma 2 ([17, Theorem 31]). Let UH be a block

encoding of H and pℓ(x) ∈ R[x] be a polynomial

of degree ℓ such that supx∈[−1,1] |pℓ(x)| ≤ 1
2 . Then

there is a quantum circuit that implements a block

encoding of pℓ(H), Upℓ(H), with ℓ application of

UH and U†
H , one application of controlled-UH gate,

and O(ℓ) other one- and two-qubit gates.

V. ESTIMATING THE ELECTRON DENSITY

Recall that the electron density at different loca-

tions corresponds to the diagonals of f(H):

F (n)(j) = tr
(
ρjf(H)

)
, ρj := |rj〉〈rj | , (11)

where j ∈ [NI ], with rj being a grid point in D∆.

The QSVT uses the polynomial approximation

f(H) ≈ pℓ(H), and it provides an approximate

block encoding of pℓ(H). Thus, we use the fol-

lowing estimator for F (n),

F̂ (n)(j) = 2 tr
(
ρjpℓ(H)

)
. (12)

We have treated pℓ(H) as observables. To measure

them, one may consider the amplitude amplification

(AA) method [40], especially because we have

prepared the density matrix as a block encoding.

However, this approach can create a bias that com-

plicates the hybrid algorithm. To circumvent this

issue, we use the more recent algorithm [41]

that is equipped with a controllably small bias. To

apply the unbias amplitude estimation [41], we let

Uρ be Xj where Xj is the Pauli X gate acting

on the j-th qubit in the first register. In light of

Lemma 1 together with [41, Theorems 6 and 23],

we immediately have,

�✚✢
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This means that near the fixed point n∗, the variance

of noise involved in the density estimation is uni-

formly bounded, which is reasonable as long as the

overall quantum noise is controlled. In the context

of classical stochastic SCF calculations, a similar

assumption is used [24].

Next, we establish a stochastic stability property

to quantify the effect of measurement noise and

analyze the convergence of hybrid SCF methods.

More importantly, the stability analysis allows us

to quantify the overall query complexity. Recall

that we denote by F̃ (n) the vector in R
NI , whose

components are defined in Theorem 3.

We first consider the SCF iteration with simple

mixing nk+1 = (1 − a)nk + aF̃ (nk) with F̃ (nk)
estimated using QSVT and AA. Due to the fact that

all components of the density are updated at each

iteration, this method will be referred to as the full-

coordinate fixed-point (FCFP) algorithm.

Theorem 4. For any precision ǫ > 0, a given

initial guess n1 ∈ Bγ(n∗) and any failure prob-

ability pf ∈
(

‖n1−n∗‖
2
w

γ2 , 1
)

, the hybrid algorithm

using all coordinates of the electron density can

achieve an iterate nt for some t ∈ [T ] such that

‖nt − n∗‖w < ǫ with probability at least 1 − pf
with the learning rate

a < min{a0,
2r0

σ2

ǫ2 + r20
,
2

r0
} (18)

and the number of iterations at least

T = O
(

1

(1− cǫ,a) pf
log

(
‖n1 − n∗‖2w

ǫ

))
,

(19)

where cǫ,a := c2 + a2σ2

ǫ2 . Overall, it involves

O
(

NI

ǫ log 1
ǫ

(
log 1

δ + 1
ζ

))
queries to OH .

The proof is provided in the full version [25].

Next, we introduce an alternative to the FCFP

method: Rather than updating all components of

F (n), we only update the components selectively.

The key idea is similar to the randomized coordi-

nate iterative algorithms [35], [48], [38]. The new

method will be referred to as the randomized block

coordinate fixed-point method (RBCFP). Specifi-

cally, given a fixed-point mapping F̃ (n), RBCFP

is defined as

F̃R,m(n) =
∑

k∈{kRj
}m
j=1

(uk, F̃ (n))uk

+
∑

k 6∈{kRj
}m
j=1

(uk,n)uk

(20)

where {kRj
}mj=1 is the set of m indices randomly

sampled from the index set [NI ], uniformly without

replacement, and the parenthesis ( , ) refers to the

standard inner product between vectors. We remark

that when m = NI , the method becomes the full

coordinate approach. The following theorem shows

that despite the partial update of the density, the

method still has linear convergence. As proved in

the full version [25].

Theorem 5. For any precision ǫ > 0, a given initial

guess n1 ∈ Bγ(n∗), a given m ∈ [NI ] and any

failure probability pf ∈
(

‖n1−n∗‖
2
w

γ2 , 1
)

, RBCFP

achieves an iterate nt for some t ∈ [T ] such that

‖nt − n∗‖w < ǫ with probability at least 1 − pf
with the learning rate

a < min{a0,
2r0

NIσ2
∞

mǫ2 + r20
,
2

r0
} (21)

and the number of iterations is at most

T = O
(

1
m
NI

(1− cNI ,ǫ,a) pf
log

(
‖n1 − n∗‖2w

ǫ

))
,

(22)

where cNI ,ǫ,a := c2 +
NIa

2σ2
∞

ǫ2 . Overall, the algo-

rithm involves O
(

NI

ǫ log 1
ǫ

(
log 1

δ + 1
ζ

))
queries

to OH .

VII. APPLICATIONS

To mimic our hybrid algorithm on a classical

computer, we conducted numerical tests for the

approximation of the density-matrix in Eq. (12)

within the MATLAB platform M-SPARC, a real-

space DFT code [16]. We chose Barium titanate

(BaTiO3) and an H2O sheet as our test models from

the set of examples in M-SPARC 1. In the models,

1https://github.com/SPARC-X/M-SPARC/tree/master/tests

�✚✤
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Fig. 3: Examining the convergence of the hybrid al-

gorithms using the system H2O-sheet. The density-

matrix is approximated by a Chebyshev polynomial

with degree ℓ = 500. The x-axis labels the number

of coordinate evaluations. Left: the y-axis is the

error of the electron density. Right: the values of

the chemical potential µ during the iterations. The

FCFP method runs with damping parameter a =
0.4; the RBCFP method is run with a = 0.99 and

block sizes m = 4, 12, 72. The damping parameter

for updating the chemical potential is η = 0.1.

temperatures are set to T = 300K, and we set up

the computation for BaTiO3 in a cubic supercell and

for H2O in the x−y plane with Dirichlet boundary

condition imposed in the z direction.

Within these numerical studies, we compared

the performance of FCFP and RBCFP in terms of

the number of updated coordinates of the electron

density or coordinate evaluations, which in a hy-

brid algorithm, will be directly proportional to the

number of quantum measurements. Fig. 3 shows the

convergence of the electron density n and chemical

potential µ, where Chebyshev approximation of the

density-matrix is employed to take into account

the QSVT implementation. From the left panel

of Fig. 3, we observe that RBCFP exhibits rapid

convergence despite the error due to the polynomial

approximation. Meanwhile, our hybrid algorithm

also updates the chemical potential at each SCF

step using the stochastic algorithm [42] (see the the

full version [25]). The convergence of the chemical

potential is shown in the right panel of Fig. 3.

To focus on testing the convergence rate, we

generate the density-matrix exactly (no polynomial

approximation error). Fig. 4 shows linear conver-

gence of both methods. Similar to the results in

Fig. 3, we observe that RBCFP can tolerate a larger

learning rate: FCFP becomes unstable when a >
0.4, but RBCFP remains stable. The convergence

rate of RBCFP is consistently better than that of

FCFP, suggesting that its actual performance can be

much better than the theoretical bounds: it requires

fewer coordinate evaluations than the FCFP method,

showing both robustness and efficiency as a hybrid

quantum-classical algorithm.

VIII. DISCUSSIONS

We demonstrate the quantum advantage in im-

plementing the density-functional theory. The com-

plexity of our quantum algorithm scales linearly

with the dimension of the density update F (n),
which typically scales as Ne, the number of elec-

trons. Therefore, this can be considered as lin-

ear/sublinear scaling, which compared to the cubic

scaling in classical algorithms, is a significant re-

duction.

The advantages of the algorithm presented in this

paper are not limited to the mean-field model of

DFT: It can be applied to other mean-field quan-

tum descriptions where self-consistency is central.

Another common practice in DFT calculations is to

exclude core electrons and incorporate their effects

using pseudopotentials [33]. While it is not clear

whether this is needed in a quantum algorithm, it

is still of theoretical interest to explore how such

�✚�
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Fig. 4: Performance comparison of the FCFP and

RBCFP methods. In both panels, the x-axis labels

the number of coordinate evaluations. The y-axis

labels the error of the electron density on a loga-

rithmic scale. Left: BaTiO3 system with Ne = 40

electrons fixed; Right H2O with Ne = 8 electrons

fixed. In the left panel, the FCFP method runs with

damping parameter a = 0.3, but the RBCFP method

with a = 0.95. In the right panel, the FCFP runs

with a = 0.4 which is close to the edge of stability,

and the RBCFP with a = 0.99.

potentials can be block encoded into UH . These

issues will be explored in separate works.

Quantum algorithms [1], [30] have been designed

to compute the ground state energy based on the

many-body descriptions, e.g., the second quanti-

zation form. In general, those algorithms work

with a Hamiltonian that consists of O(N4
e ) terms,

thereby requiring a O(N4
e ) query complexity. In

contrast, our algorithm is based on DFT, which is

a mean-field model, and it only involves a O(Ne)
complexity, due to the dimension of a Hamiltonian.

Once the ground state density is obtained from

our algorithm, we can compute relevant properties

by combining it with other quantum algorithms:

[11] for the computations of ground-state (GS)

energy and energy bands and [40] for the density

of states. Table I summarizes these approaches. One

assumption in the use of the method [11] is non-

zero overlaps with the KS eigenstates in the com-

QOI total run time

This work + [11]
GS energy

energy bands
Õ

(
Ne
ǫ

)

This work + [40] Density of States Õ

(
Ne+d

2

ǫ

)

Method in [30] GS energy Õ

(
N

4
e
ǫ

)

TABLE I: Comparison of properties that can be

computed and the total run time needed to reach

precision ǫ. d denotes the maximal degree of the

kernel polynomial method [50]. Ne denotes the

number of electrons.

putation of energy bands, otherwise, the problem

would be QMA-hard. Meanwhile, the variational

quantum eigensolver (VQE) [39] is another hybrid

algorithm that is designed for ground-state calcula-

tions, perhaps having a comparable complexity to

our hybrid approach. However, unlike DFT, VQE’s

ability to universally represent a ground state for

a wide variety of physical systems has not been

established [4].
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X. APPENDICES

A. Algorithm

The following pseudo-code illustrates the hybrid

algorithm for the self-consistent field (SCF) calcu-

lations in density functional theory (DFT),

Notice that the full coordinate fixed-point itera-

tion (FCFP) is obtained by setting m = NI . Again,

the second step requires quantum computations to

estimate m components of the electron density.

Once it is done, we update the electron density and

the chemical potential on a classical computer.

B. Estimating the Chemical potential

The hybrid algorithm 1 has the flexibility to

incorporate an additional step to determine chemical

potential µ. This step may be neglected in the case

of the grand canonical ensemble, where µ is given.

On the other hand, when the number of electrons Ne

is fixed (e.g. NVT ensemble), the chemical potential

µ is determined on the ground that Ne is preserved

�✚✚
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Algorithm 1: Randomized block coordinate

fixed-point iteration

Input: initial guess n0, damping parameters

a, η ∈ (0, 1), index parameter m ∈ [NI ]
Output: converged density and chemical

potential (n∗,µ∗)
for k = 0 : T

1) Sample m different indices

{kR,j}mj=1 ⊂ [NI ] uniformly

2) Estimate F̃R,m(nk) using the QSVT and the

unbiased Amplitude Amplification.

3) nk+1 = (1− a)nk + aF̃R,m(nk)
(*) µk+1 = µk − η(G(nk+1)−Ne) if the

chemical potential µ needs to be adjusted

4) Update the Hamiltonian

end

during the SCF iteration. At the continuous level,

the constraint is formulated as
∫
n(r) dr = Ne, n(r) = 〈r|f(H − µI)|r〉.

(23)

Here the first equation can be cast into a nonlinear

equation,

G(n, µ) = 0, G(n, µ) :=

∫
n(r) dr−Ne. (24)

Notice that given n(r), G is a monotone function

of µ.
To incorporate the constraint in 23 into our hybrid

algorithm, we should consider a discretized version

of the nonlinear function G. Then, we update the

chemical potential on classical computers as we do

the electron density, (see the algorithm 1). These

considerations are summarized as follows

nk+1 = (1− a)nk + aF̃R,m(nk),

µk+1 = µk − η(G(nk+1)−Ne),
(25)

where

G(n) :=
∑

j

|n(j)|δ3,

is a discretization of the function in 24. Here δ3 is

the infinitesimal volume from the finite-difference

approach with grid size δ; η ∈ (0, 1) is the damping

parameter for updating µ. This solver for µ is

motivated by the stochastic approximation method

by Robbins and Monro [42] for solving nonlinear

equations.
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