
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XXX, NO. XXX, XXX 2024 1

Likelihood-Free Hypothesis Testing
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Abstract—Consider the problem of binary hypothesis
testing. Given Z coming from either P⊗m or Q⊗m, to
decide between the two with small probability of error
it is sufficient, and in many cases necessary, to have
m ≍ 1/ε2, where ε measures the separation between
P and Q in total variation (TV). Achieving this, however,
requires complete knowledge of the distributions and can
be done, for example, using the Neyman-Pearson test. In
this paper we consider a variation of the problem which
we call likelihood-free hypothesis testing, where access to P
and Q is given through n i.i.d. observations from each.
In the case when P and Q are assumed to belong to
a non-parametric family, we demonstrate the existence
of a fundamental trade-off between n and m given by
nm ≍ n2

GoF(ε), where nGoF(ε) is the minimax sample
complexity of testing between the hypotheses H0 : P = Q
vs H1 : TV(P,Q) ≥ ε. We show this for three families
of distributions, in addition to the family of all discrete
distributions for which we obtain a more complicated
trade-off exhibiting an additional phase-transition. Our
results demonstrate the possibility of testing without fully
estimating P and Q, provided m ≫ 1/ε2.

Index Terms—Hypothesis testing, likelihood-free infer-
ence, minimax sample complexity, nonparametric statistics,
goodness-of-fit testing, density estimation, total variation

I. INTRODUCTION

THE setting called likelihood-free inference (LFI),
also known as simulation based inference (SBI),

has independently emerged in many areas of science
over the past decades. Given an expensive to collect
“experimental” dataset and the ability to simulate from a
high fidelity, often mechanistic, stochastic model, whose
output distribution and likelihood is intractable and in-
approximable, how does one perform model selection,
parameter estimation or construct confidence sets? The
list of disciplines where such highly complex black-
box simulators are used is long, and include parti-
cle physics, astrophysics, climate science, epidemiology,
neuroscience and ecology to just name a few. For some of
the above fields, such as climate modeling, the bottleneck
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resource is in fact the simulated data as opposed to
the experimental data. In either case, understanding the
trade-off between the number of simulations and exper-
iments necessary to do valid inference is crucial. Our
aim in this paper is to introduce a theoretical framework
under which LFI can be studied using the tools of non-
parametric statistics and information theory.

To illustrate we draw an example from high energy
physics, where LFI methods are used and developed
extensively. The discovery of the Higgs boson in 2012
[1], [2] is regarded as the crowning achievement of
the Large Hadron collider (LHC) - the most expensive
instrument ever built. Using a composition of complex
simulators [3]–[7] modeling the standard model and the
detection process, physicists are able to simulate the re-
sults of LHC experiments. Given actual data Z1, . . . , Zm
from the collider, to verify existence of the Higgs boson
one tests whether the null hypothesis (physics without
the Higgs boson, or Zi

iid∼ P0) or the alternative hy-
pothesis (physics with the Higgs boson, or Zi

iid∼ P1)
describes the experimental data more accurately. The
standard Neyman-Pearson likelihood ratio test is not
implementable since P0 and P1 are only available via
simulators. How was this statistical test actually per-
formed? First, a probabilistic classifier C was trained
on simulated data to distinguish the two hypotheses
(a boosted decision tree to be more specific). Then,
the proportion of real data points falling in the set
S = {x ∈ Rd : C(x) ≤ t} was computed, where
t is chosen to maximize an asymptotic approximation
of the power. Finally, p-values are reported based on
the asymptotic distribution under a Poisson sampling
model [8], [9]. Summarizing, the “Higgs boson” test was
performing the simple comparison

1

m

m∑
i=1

1{Zi ∈ S} ≶ γ, (1)

where Z1, . . . , Zm are the real data and γ is some
threshold. Such count-based tests, named after Scheffé
in folklore [10, Section 6], are quite intuitive.
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Notice that Scheffé’s test converts each observation
Zi into a binary 0/1 value. This extreme quantization
certainly helps robustness, but should raise the suspicion
of potential loss of power. Indeed, when the distributions
under both hypotheses are completely known, the optimal
Neyman-Pearson test thresholds the sum of real-valued
logarithms of the likelihood-ratio. Thus, it is natural
to expect that a good test should aggregate non-binary
values. This is what motivated this work originally,
although follow-up work [11] has shown that Scheffé’s
test with a properly trained classifier can also be optimal.

Let us describe the test that we study for most of this
paper. Given estimates p̂0, p̂1 of the density of the null
and alternative distributions based on simulated samples,
our test proceeds via the comparison

2

m

m∑
i=1

(p̂0(Zi)− p̂1(Zi)) ≶ γ (2)

where Z1, . . . , Zm are the real data. Tests of this kind
originate from the famous goodness-of-fit work of Ing-
ster [12], which corresponds to taking p̂0 = p0, as the
null-density is known exactly.1 The surprising observa-
tion of Ingster was that such a test is able to reject the null
hypothesis that Zi

iid∼ p0 even when the true distribution
of Z is much closer to p0 than described by the optimal
density-estimation rate; in other words goodness-of-fit
testing is significantly easier than estimation. In fact we
will use γ = ∥p̂0∥22−∥p̂1∥22 in which case (2) boils down
to the comparison of two squared L2-distances.

Our overall goal is to understand the trade-off between
the number n of simulated observations and the size
of the actual data set m. The characterization of this
tradeoff is reminiscent of the rate-regions in multi-user
information theory, but there is an important difference
that we wanted to emphasize for the reader. In informa-
tion theory, the problem is most often stated in the form
“given a distribution PX,Y,Z , or a channel PY,Z|X , find
the rate region”, with the distribution being completely
specified ahead of time. In minimax statistics, however,
distributions are a priori only known to belong to a
certain class. In estimation problems the fundamental
limits are thus defined by minimizing the estimation error
over this class, and the theoretical goal is to characterize
the worst-case rate at which this error converges to zero
as the sample size grows to infinity. The definition of the

1In the case of discrete distributions on a finite (but large) alphabet,
the idea was rediscovered by the computer science community startin
with [13]. Moreover, the difference of L2-norms statistic was first
studied in [14]. See Section I-B for more on the latter.

fundamental limit in testing problems, however, is more
subtle. If the total variation separation ε between the null
and alternative distribution is fixed, and the number of
samples is taken to infinity, then the rate of convergence
trivializes and becomes exponentially decreasing in n. By
now a standard definition of fundamental limit, as sug-
gested by Ingster following ideas of Pittman efficiency, is
to vary ε with n and to find the fastest possible decrease
of ε so as to still have an acceptable probability of error.
This is the approach taken in the literature on goodness-
of-fit and two-sample testing, and also the one we adopt
here. This perspective is also widely used in TCS where
the optimal value of n, as a function of ε, is referred to
as the “sample complexity” of the problem.

Specifically, we assume that it is known a priori that
the two distributions P0,P1 belong to a known class P
and are ε-separated under total variation. Given a large
number n of samples simulated from P0 and P1 and m
samples Z1, . . . , Zm from the experiment, our goal is to
test which of the Pi generated the data. If n is sufficiently
large to estimate Pi in total variation to precision ε/10,
then one can perform the hypothesis test with m ≍ 1/ε2

experimental samples, which is information-theoretically
optimal even under oracle knowledge of Pi’s. However,
looking at the test (1) one may wonder if the full
estimation of the distributions Pi is needed, or whether
perhaps a suitable decision boundary could be found with
a lot fewer simulated samples n. Unfortunately, our first
main result disproves this intuition: any test using the
minimal m ≍ 1/ε2 dataset size will require n so large
as to be enough to estimate the distributions of P0 and P1

to within accuracy ≍ ε, which is the distance separating
the two hypotheses. In particular, any method minimizing
m performs no different in the worst case, than pairing
off-the-shelf density estimators p̂0, p̂1 and applying (1)
with S = {p̂1 ≥ p̂0}.

This result appears rather pessimistic and seems to
invalidate the whole attraction of LFI, which after all
hopes to circumvent the exorbitant number of simulation
samples required for fully learning high-dimensional dis-
tributions. Fortunately, our second result offers a resolu-
tion: if more data samples m≫ 1/ε2 are collected, then
testing is possible with n much smaller than required
for density estimation. More precisely, when neither p0
nor p1 are known except through n i.i.d. samples from
each, the test (2) is able to detect which of the two
distributions generated the Z-sample, even when the
number of samples n is insufficient for any estimate p̂i
to be within a distance ≍ ε = TV(p0, p1) from the
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true values. In other words, the test is able to reliably
detect the true hypotheses even though the estimates p̂i
themselves have accuracy that is orders of magnitude
larger than the separation ε between the hypotheses.

In summary, this paper shows that likelihood-free
hypothesis testing (LFHT) is possible without learning
the densities when m≫ 1/ε2, but not otherwise. It turns
out that (appropriate analogues of) the simple test (2)
has minimax optimal sample complexity up to constants
in both n and m in all “regular” settings, see also the
discussion at the end of Section II-B.

A. Informal Statement of the Main Result

Let us formulate the problem using the notation used
throughout the rest of the paper. Suppose that we observe
true data Z ∼ P⊗m

Z and that we have two candidate
parameter settings for our simulator, from which we
generate two artificial datasets X ∼ P⊗n

X and Y ∼ P⊗n
Y .

If we are convinced that one of the settings accurately
reflects reality, we are faced with the problem of testing
the hypothesis

H0 : PX = PZ versus H1 : PY = PZ. (3)

Remark 1. We emphasize that PX and PY are known
only through the n simulated samples. Thus, (3) can
be interpreted as binary hypothesis testing with approx-
imately specified hypotheses. Alternatively, using the
language of machine learning, we may think of this
problem as having n labeled samples from both classes,
and m unlabeled samples. The twist is that the unlabeled
samples are guaranteed to have the same common label,
that is, they all come from a single class. One can think
of many examples of this setting occurring in genetic,
medical and other studies.

To put (3) in a minimax framework, suppose that
PX,PY ∈ P for a known class P , and that TV(PX,PY) ≥
ε. Clearly (3) becomes “easier” if we have a lot of data
(large sample sizes n and m) or if the hypotheses are
well-separated (large ε). We are interested in character-
izing the pairs of values (n,m) as functions of ε and
P , for which the hypothesis test (3) can be performed
with constant type-I and type-II error. Letting nGoF(ε,P)
denote the minimax sample complexity of goodness-of-
fit testing (Definition 2), we show for several different
classes of P , that (3) is possible with total error, say,
5% if and only if

m ≳ 1/ε2 and n ≳ nGoF and mn ≳ n2GoF. (4)

We also make the observation that n2GoF ε
2 ≍ nEst for

these classes, where nEst(ε,P) denotes the minimax
complexity of density estimation to ε-accuracy (Defi-
nition 4) with respect to total variation. This provides
additional meaning to the mysterious formula of Ingster
[12] for the sample complexity of goodness-of-fit testing
over the class of β-smooth densities over [0, 1]d, see
Table I.2 More importantly, it allows us to interpret
(3) as an “interpolation” between different fundamental
statistical procedures, namely
A ↔ Binary hypothesis testing (BHT),
B ↔ Estimation followed by robust BHT,
C ↔ Two-sample testing,
D ↔ Goodness-of-fit testing,
corresponding to the extreme points A,B,C,D on Fig. 1.

B. Related Work

LHFT as defined in (3) initially appeared in Gutman’s
paper [15], building on Ziv’s work [16], where the prob-
lem is studied for distributions on a fixed, finite alphabet.
Ziv called the problem classification with empirically
observed statistics, to emphasize the fact that hypotheses
are specified only in terms of samples and the underlying
true distributions are unknown. In [17] it is shown that
the error exponent of Gutman’s test is second order
optimal. Recent work [18]–[21] extends this problem to
distributed and sequential testing. However, the setting
of these papers is fundamentally different from ours, a
point which we expand on below.

Given two arbitrary, unknown PX,PY over a finite
alphabet of fixed size, Gutman’s test (see [17, Equation
(4)]) rejects the null hypothesis H0 : PZ = PX in
favor of the alternative H1 : PZ = PY if the statistic
GJS(P̂X, P̂Z, α) is large, where P̂ denotes empirical
measures, GJS denotes the generalized Jensen-Shannon
divergence defined in [17, Equation (3)] and α = n/m.
In other words, it simply performs a two-sample test
using the samples from PX and PZ of size n and m
respectively, and completely discards the sample from
PY. In light of our sample complexity results this is
strictly sub-optimal due to minimax lower bounds on
two-sample testing, see the difference of light gray and
striped regions in Fig. 1.

2A possible reason for this observation having been missed pre-
viously is that fundamental limits in statistics are usually pre-
sented in the form of rates of loss decrease with n, for example
rEst(n) ≜ n−1

Est (n) = 1/nβ/(2β+d) and rGoF(n) ≜ n−1
GoF(n) =

1/nβ/(2β+d/2) for β-smooth densities. Unlike nEst ≍ n2
GoFε

2 there
seems to be no simple relation between rEst and rGoF.



More generally, the method of types, which is a crucial
tool for the works cited above, cannot be used to derive
our results, because in the regime where the alphabet size
k scales with the sample size n, the usual

(
n
k

)
= eo(n)

approximation no longer holds, i.e. these factors affect
estimation rates and do not lead to tight minimax results.
As a consequence, one cannot deduce results about the
minimax sample complexity of LFHT from works on the
classical regime because the latter do not quantify the
speed of convergence of the error terms as a function
of the alphabet size. Specifically, let us examine [17,
Theorem 1], which is a strengthening of the results of
[15]. Paraphrasing, it states that for any fixed ratio α =
n/m and pair of distributions (PX,PY), Gutman’s test
has type-II error bounded by 1/3 when given samples
from PX and PY as input, and type-I error bounded by
exp(−λn) given arbitrary input, where

λ =GJS(PX,PY, α)

+

√
V (PX,PY, α)

n
Φ−1(1/3) +O

(
log(n)

n

) (5)

as n → ∞. Here V denotes the dispersion function
defined in [17, Equation (9)] and Φ is the standard normal
cdf. The crucial point we make here is that in (5) the
dependence of the O(log(n)/n) term on PX,PY, and in
particular their support size k and the ratio α = n/m
is unspecified. Because of this, (5) and similar results
cannot be used to derive minimax sample complexities
as min{n,m, k} → ∞ jointly at possibly different rates.

This distinction between the fixed alphabet size setting
studied in [15]–[17] and similar works, and our large
alphabet setting was recognized by [14], [22]–[24] whose
results are much closer to those of this paper. In [23]
Huang and Meyn introduce the concept of “generalized
error exponent” to deal with support sizes that grow
superlinearly with sample size (referred to as the “sparse
sample regime” by them) in the setting of uniformity
testing.3 In [22] they extend this idea to LFHT and say,
quote,

“In the classification problem, the clas-
sical error exponent analysis has been
applied to the case of fixed alphabet in
[16] and [15].... However, in the sparse
sample problem, the classical error expo-
nent concept is again not applicable, and
thus a different scaling is needed.”

3Uniformity testing is the problem of goodness-of-fit testing where
the null is given by a uniform distribution.

Moving on to [14], [24], their authors study (3)
with n = m over the class of discrete distributions p
with mini pi ≍ maxi pi ≍ 1/nα, which they call α-
large sources. Disregarding the dependence on the TV-
separation ε, effectively setting ε to a constant, they find
that achieving non-trivial minimax error is possible if
and only if α ≤ 2, using in fact the same difference of
squared L2-distances test (2) that we study in this paper.
Follow-up work [22] extends to the case m ̸= n and the
class of distributions on alphabet [k] with maxi pi ≲ 1/k,
we also cover this class under the name PDb. In the
regime of constant separation ε = Θ(1) and n,m → ∞
they show that LFHT with vanishing error is possible if
and only if k = o(min(n2,mn)), thus discovering for the
first time the trade-off between m and n.4 Contrasting
with our work, we are the first to characterize the full
m,n, ε trade-off in the regime of constant probability
of error, and we also consider three other classes of
distributions, in addition to PDb.

Another related problem is that of two-sample testing
with unequal sample sizes, studied in [25], [26] for the
class of discrete distributions PD. In Section III-A we
present reductions that show that our problem’s sample
complexity equals, up to constant factors, to that of two-
sample testing in the case m ≥ n. We emphasize that the
distinction between m ≥ n and m ≤ n is necessary for
this equivalence: in the latter case the sample complex-
ities of the two problems are not the same. Moreover,
our reduction doesn’t help us solve classes other than
PD, as two-sample testing with unequal sample size
exhibits a trade-off between n and m only in classes
for which nTS ̸= nGoF, see also the discussion at the end
of Section II-B.

The test (1) has been considered previously [27]–[33]
and is also known as a “classification accuracy” test
(CAT). Follow-up work [11] to the present paper shows
that CATs are able to attain a (near-)minimax optimality
in all settings studied here, and also achieve optimal
dependence on the probability of error (in this paper we
only consider a fixed error probability).

4The paper [22] contains implicitly other interesting results. For
example, it appears that the constructive (upper bound) part of their
proof if done carefully can also handle the case of variable ε → 0 in
the regime m,n ≲ k. Specifically, we believe they also show that for
the minimax error δ ∈ (0, 1) LFHT is possible if k log(1/δ)/ε4 ≲
min(n2, nm). The lower bound appears to show LFHT is possible
only if k log(1/δ) ≲ min(n2, nm). In addition they also apply the
flattening technique, later re-discovered in [25].
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C. Contributions

Though the likelihood-free hypothesis testing prob-
lem (3) has previously appeared under various disguises
and was studied in different regimes for the class of
bounded discrete distributions, it omitted the key ques-
tion of understanding the dependence of the sample com-
plexity on the separation ε. Our work fully characterizes
the dependence on the separation ε (Theorems 1 and 2).
We discover the existence of a rather non-trivial trade-
off between the m and n showing that in the likelihood-
free setting statistical performance (m) can be traded for
computational resources (n). Our results are shown for
not just one but multiple distribution classes. In addition,
we also demonstrate that LFHT naturally interpolates
between its special cases corresponding to goodness-of-
fit testing, two-sample testing and density-estimation. As
a by-product we observe the relation n2GoF ε

2 ≍ nEst that
holds over several classes of distributions and measures
of separation, hinting at some universality property. On
the technical side we provide a unified upper bound
analysis for all regular classes we consider, and prove
matching lower bounds using techniques of Tsybakov,
Ingster and Valiant. Our upper bound analysis is inspired
by Ingster [12], [34] whose L2-distance testing approach,
originally designed for goodness-of-fit in smooth-density
classes, has been rediscovered in the discrete-alphabet
world [13], [14], [24]. Compared to Ingster’s work, the
new ingredient needed in the discrete case is a “flatten-
ing” reduction [22], [25], [35], which we also utilize.
Several minor extensions are also shown along the way,
namely, robustness with respect to L2-misspecification
(Theorem 3) and characterization of nGoF for the class
of β-smooth densities with β ≤ 1 under Hellinger
separation (Theorem 4).

D. Structure

Section II defines the statistical problems and the
classes of distributions that are studied throughout the
paper, and discusses multiple tests for likelihood-free
hypothesis testing. Section III contains our main results
and the discussion linking to goodness-of-fit and two-
sample testing, estimation and robustness. In Section IV
we provide sketch proofs for our results. Finally, in Sec-
tion V we discuss possible future directions of research.
The detailed proofs of Theorems 1 to 4 and all auxiliary
results are included in the Appendix.

E. Notation

For k ∈ N we write [k] ≜ {1, 2, . . . , k}. For x, y ∈ R
we write x ∧ y ≜ min{x, y}, x ∨ y ≜ max{x, y}.
We use the Bachmann–Landau notation Ω,Θ,O, o as
usual and write f ≲ g for f = O(g) and f ≍ g
for f = Θ(g). For c ∈ R and A ⊆ R2 we write
cA ≜ {(ca1, ca2) ∈ R2 : (a1, a2) ∈ A}. For two
sets A,B ⊆ R2 we write A ≍ B if there exists
c ∈ [1,∞) with 1

cA ⊆ B ⊆ cA. For two probability
measures µ, ν dominated by η with densities p, q we
define the following divergences: TV(µ, ν) ≜ 1

2

∫
|p −

q|dη, H(µ, ν) ≜ (
∫
(
√
p − √

q)2dη)1/2, KL(µ∥ν) ≜∫
p log(p/q)dη, χ2(µ∥ν) ≜

∫
((p − q)2/q)dη. Abusing

notation, we sometimes write (p, q) as arguments instead
of (µ, ν). We write ∥·∥p for the Lp and ℓp norms, where
the base measure shall be clear from the context.

II. SAMPLE COMPLEXITY, NON-PARAMETRIC
CLASSES, AND TESTS

In the first two parts of this section we go over the
technical background and definitions that are required to
understand the rest of the paper, after which we give
an exposition of multiple alternative approaches for our
problem in Section II-C.

A. Five Fundamental Problems in Statistics

Formally, we define a hypothesis as a set of probability
measures. Given two hypotheses H0 and H1 on some
space X , we say that a function ψ : X → {0, 1}
successfully tests the two hypotheses against each other
if

max
i=0,1

sup
P∈Hi

PS∼P (ψ(S) ̸= i) ≤ 1/3. (6)

Remark 2. For our purposes, the constant 1/3 above
is unimportant and could be replaced by any number
less than 1/2. Throughout the paper we are interested
in the asymptotic order of the sample complexity, and
Ω(log(1/δ))-way sample splitting followed by a majority
vote decreases the overall error probability to O(δ) of
any successful tester, at the cost of inflating the sample
complexity by a multiplicative O(log(1/δ)) factor. Un-
fortunately, the resulting dependence on δ is sub-optimal
except for binary hypothesis testing, see for example
[36, Theorem 4.7]. Recent results for uniformity [37]
and two-sample testing [38], and our follow-up work
on LFHT [11] resolves the optimal dependence to be√
log(1/δ) or even 3

√
log(1/δ) in some regimes.



Throughout this section let P be a class of probability
distributions on X . Suppose we observe independent
samples X ∼ P⊗n

X , Y ∼ P⊗n
Y and Z ∼ P⊗m

Z whose
distributions PX,PY,PZ ∈ P are unknown to us. Finally,
P0,P1 ∈ P refer to distributions that are known to us.
We now define five fundamental problems in statistics
that we refer to throughout this paper.

Definition 1. Binary hypothesis testing is the problem
of testing

H0 : PX = P0 against H1 : PX = P1 (7)

based on the sample X . We use nHT(ε,P) to denote
the minimax sample complexity of binary hypothesis
testing, which is the smallest number such that for all
n ≥ nHT(ε,P) and all P0,P1 ∈ P with TV(P0,P1) ≥ ε
there exists a function ψ : Xn → {0, 1}, which given X
as input successfully tests H0 against H1 in the sense of
(6).

It is well known that the complexity of binary hypoth-
esis testing is controlled by the Hellinger divergence.

Lemma 1. For all ε and P with |P| ≥ 2, the relation

nHT(ε,P) = Θ
(

sup
Pi∈P:TV(P0,P1)≥ε

H−2(P0,P1)
)

(8)

holds, where the implied constant is universal.

Proof: We include the proof in Section D-A for
completeness.

For all P considered in this paper nHT = Θ(1/ε2)
holds. Therefore, going forward we usually refrain from
the general notation nHT and simply write 1/ε2.

Definition 2. Goodness-of-fit testing is the problem of
testing

H0 :PX = P0

against H1 :TV(PX,P0) ≥ ε and PX ∈ P
(9)

based on the sample X . We write nGoF(ε,P) for the min-
imax sample complexity of goodness-of-fit testing, which
is the smallest value such that for all n ≥ nGoF(ε,P)
and P0 ∈ P there exists a function ψ : Xn → {0, 1},
which given X as input successfully tests H0 against H1

in the sense of (6).

Definition 3. Two-sample testing is the problem of
testing

H0 :PX = PZ and PX ∈ P
against H1 :TV(PX,PZ) ≥ ε and PX,PZ ∈ P

(10)

based on the samples X and Z. We write RTS(ε,P) for
the maximal subset of R2 such that for any (n,m) ∈ N2

for which there exists (x, y) ∈ RTS(ε,P) with (n,m) ≥
(x, y) coordinate-wise, there also exists a function ψ :
Xn × Xm → {0, 1}, which given X and Z as input
successfully tests between H0 and H1 in the sense of
(6). We will use the abbreviation nTS(ε,P) = min{ℓ ∈
N : (ℓ, ℓ) ∈ RTS(ε,P)} and refer to it as the minimax
sample complexity of two-sample testing.

Definition 4. The minimax sample complexity of esti-
mation is the smallest value nEst(ε,P) such that for all
n ≥ nEst(ε,P) there exists an estimator P̂X, which given
X as input satisfies

ETV(P̂X,PX) ≤ ε. (11)

In order to simplify the presentation of our final
definition, let us temporarily write Pε = {(Q0,Q1) ∈
P2 : TV(Q0,Q1) ≥ ε}. That is, Pε is the set of pairs
of distributions in the class P which are ε separated in
total variation.

Definition 5. Likelihood-free hypothesis testing is the
problem of testing

H0 :PZ = PX and (PX,PY) ∈ Pε
against H1 :PZ = PY and (PX,PY) ∈ Pε

(12)

based on the samples X,Y and Z. Write RLF(ε,P) for
the maximal subset of R2 such that for any (n,m) ∈ N2

for which there exists (x, y) ∈ RLF(ε,P) with (n,m) ≥
(x, y) coordinate-wise, there also exists a function ψ :
Xn × Xn × Xm → {0, 1}, which given X,Y and Z as
input successfully tests H0 against H1 in the sense of
(6).

Requiring RTS(ε,P) to be maximal is well defined,
because for any (n0,m0) ∈ RTS(ε,P) and (n,m) ∈ N2

with (n0,m0) ≤ (n,m) coordinate-wise, it must also
hold that (n,m) ∈ RLF, since ψ can simply disregard
the extra samples. Clearly the same applies also to
RLF(ε,P).

Remark 3. All five definitions above can be modified to
measure separation with respect to an arbitrary function
d instead of TV. We will write nGoF(ε, d,P) et cetera
for the corresponding values.

B. Four Classes of Distributions

All of our definitions in the previous section assumed
that we have some class of distributions P at hand. Below
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we introduce the classes that we study throughout the rest
of the paper.

(i) Smooth density. Let C(β, d, C) denote the set of
functions f : [0, 1]d → R that are β ≜ ⌈β − 1⌉-
times differentiable and satisfy

∥f∥Cβ
≜max

{
max

0≤|α|≤β
∥f (α)∥∞,

sup
x ̸=y∈[0,1]d,|α|=β

|f (α)(x)− f (α)(y)|
∥x− y∥β−β2

}
≤ C,

(13)
where we write |α| =

∑d
i=1 αi for the multiindex

α ∈ Nd as usual. We further define PH(β, d, C) to
be the class of distributions with Lebesgue-densities
in C(β, d, C).

(ii) Gaussian sequence model on the Sobolev ellipsoid.
Given C > 0 and a smoothness parameter s > 0,
we define the Sobolev ellipsoid

E(s, C) ≜
{
θ ∈ RN :

∞∑
j=1

j2sθ2j ≤ C
}
. (14)

Our second distribution class is given by

PG(s, C) ≜ {µθ : θ ∈ E(s, C)} , (15)

where µθ = ⊗∞
i=1N (θi, 1). It is well known that

this class models an s-smooth signal under Gaussian
white noise, see for example [39, Section 1.7.1] for
an exposition of this connection.

(iii) Distributions on a finite alphabet. For k ≥ 2, let

PD(k) ≜ {all distributions on {1, 2, . . . , k}} (16)

denote the class of all discrete distributions.
(iv) Bounded distributions on a finite alphabet. Our final

class is defined as

PDb(k, C) ≜ {p ∈ PD(k) : ∥p∥∞ ≤ C/k} (17)

for C > 1. In other words, PDb are those distribu-
tions with support in {1, 2, . . . , k} that are bounded
by a constant multiple of the uniform distribution.

Note that depending on the choice of C some of the
above distribution classes may be empty. To avoid such
issues, throughout the rest of paper we implicitly operate
under the following assumption.

Assumption 1. We always assume that C > 1 when
referring to PH(β, d, C) and PDb(k,C).

As we shall see in Section III-B when discussing our
results, the behaviour of PD is qualitatively different

from the other three classes introduced above. Conse-
quently, we will sometimes refer to PDb as the “regular
discrete” class, and we will see that its minimax sample
complexities are similar to PH and PG but different from
PD. More generally we will call the classes PH,PG,PDb

“regular”, characterized by the fact that nGoF ≍ nTS,
or equivalently, by the fact that RTS ≍ {(n,m) :
min{n,m} ≥ nTS}.

C. Tests for LFHT

We start this section by reintroducing the difference of
L2-distances statistic that our results are based on, and
which we’ve already seen in (2). Then, in Section II-C2
we mention some natural alternative approaches to the
problem, which we however do not study further. There-
fore, the reader that wishes to proceed to our results
without delay may safely skip over Section II-C2.

1) Ingster’s L2-Distance Test: For simplicity we fo-
cus on the case of discrete distributions. This case is
more general than may first appear: for example in the
case of smooth densities on [0, 1]d one can simply take
a regular grid (whose resolution is determined by the
smoothness of the densities) and count the number of
datapoints falling in each cell. Let p̂X, p̂Y, p̂Z denote
the empirical probability mass functions of the finitely
supported distributions P̂X, P̂Y, P̂Z. The test proceeds via
the comparison

∥p̂X − p̂Z∥2 ≶ ∥p̂Y − p̂Z∥2. (18)

Squaring both sides and rearranging, we arrive at the
form

1

m

m∑
i=1

(p̂Y(Zi)− p̂X(Zi)) ≶ γ, (19)

where γ = (∥p̂Y∥2 − ∥p̂X∥2)/2. As mentioned in
the introduction, variants of this L2-distance based test
have been invented and re-invented multiple times for
goodness-of-fit [12], [13] and two-sample testing [40],
[41]. The exact statistic (18) with application to PDb

has appeared in [14], [24], and Huang and Meyn
[22] proposed an ingenious improvement restricting at-
tention exclusively to bins whose counts are one of
(2, 0), (1, 1), (0, 2) for the samples (X,Z) or (Y,Z). We
attribute (18) to Ingster because his work on goodness-
of-fit testing for smooth densities is the first occurence of
the idea of comparing empirical L2 norms, but we note
that [14] and [13] arrive at this influential idea apparently
independently.



We emphasize the following subtlety. Let us
rewrite (18) as

∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22 ≶ 0 . (20)

As we shall see from our proofs, this difference results
in an optimal test for the full range of possible values
of n and m for PDb. However, this does not mean
that each term by itself is a meaningful estimate of the
corresponding distance: rejecting the null by thresholding
just ∥p̂X− p̂Z∥22 would not work. Indeed, the variance of
∥pX− p̂Z∥22 is so large that one needs m ≳ nGoF ≫ 1/ε2

observations to obtain a reliable estimate of ∥pX − pZ∥22.
The “magic” of the L2-difference test is that the two
terms in (20) separately have high variance, and thus are
not good estimators of their means, but their difference
cancels the high-variance terms.

Remark 4. While testing (12), practitioners are usually
interested in obtaining a p-value, rather than purely a
decision whether to reject the null hypothesis. For this we
propose the following scheme. Let σ1, . . . , σP be i.i.d.
uniformly random permutations on n+m elements. Let
T̂ = ∥p̂X− p̂Z∥22−∥p̂Y − p̂Z∥22 be our statistic, and write
T̂i for the statistic T̂ evaluated on the permuted dataset
where {X1, . . . , Xn, Z1, . . . , Zm} are shuffled according
to σi. Under the null the random variables T̂ , T̂1, . . . , T̂P
are exchangeable, thus reporting the empirical upper
quantile of T̂ in this sample yields an estimate of the
p-value. Studying the variance of this estimate or the
power of the test that rejects when the estimated p-value
is less than some threshold, is beyond the scope of this
work.

2) Alternative Tests for LFHT: In this section we
discuss a variety of alternative tests that may be con-
sidered for (12) instead of (20). These are included only
to provide additional context for our problem, and the
reader may safely skip it and proceed to our results in
Section III. The approaches we consider are

(i) Scheffé’s test,
(ii) Likelihood-free Neyman-Pearson test and

(iii) Huber’s and Birgé’s robust tests.
The tests (i-ii) are based on the idea of using the

simulated samples to learn a set or a function that
separates PX from PY. The test (iii) and (20) use the
simulated samples to obtain density estimates of PX,PY

directly. All of them, however, are of the form
m∑
i=1

s(Zi) ≶ 0 (21)

with only the function s varying.
Variants of Scheffé’s test using machine-learning en-

abled classifiers are the subject of current research in
two-sample testing [29]–[33] and are used in practice
for LFI specifically in high energy physics, see also our
discussion of the Higgs boson discovery in Section I.
Thus, understanding the performance of Scheffé’s test
in the context of (12) is of great practical importance.
Suppose that using the simulated samples we train a
probabilistic classifier C : X → [0, 1] on the labeled data
∪ni=1{(Xi, 0), (Yi, 1)}. The specific form of the classifier
here is arbitrary and can be anything from logistic
regression to a deep neural network. Given thresholds
t, γ ∈ [0, 1] chosen to satisfy our risk appetite for
type-I vs type-II errors, Scheffé’s test proceeds via the
comparison

1

m

m∑
i=1

1{C(Zi) ≥ t} ≶ γ. (22)

We see that (22) is of the form (21) with s(z) =
(1{C(z) ≥ t}− γ)/m. The follow-up work [11] studies
the performance of Scheffé’s test in great detail, finding
that it is (near-)minimax optimal in all cases considered
in this paper. It is found that the optimal classifier C
must be trained not purely to minimize misclassification
error, but rather must also keep the variance of its output
small.

If the distributions PX,PY are fully known, then the
likelihood-ratio test corresponds to
m∑
i=1

sNP(Zi) ≶ γ with sNP(z) = log

(
dPX

dPY
(z)

)
, (23)

where γ is again chosen to satisfy our type-I vs type-
II error trade-off preferences. It is well known that the
above procedure is optimal due to the Neyman-Pearson
lemma. Recall that in our setting PX,PY are known only
up to i.i.d. samples, and therefore it seems natural to try
to estimate sNP from samples. It is not hard to see that
sNP minimizes the population cross-entropy/logistic loss,
that is

sNP = argmin
s

E[ℓ(s(X), 1)] + E[ℓ(s(Y ), 0)], (24)

where ℓ(s, y) = log(1 + es)− ys and X,Y are random
draws from PX and PY respectively. In practice, the
majority of today’s classifiers are obtained by running
some form of gradient descent on the problem

ŝ = argmin
s∈G

1

n

n∑
i=1

(
ℓ(s(Xi), 1) + ℓ(s(Yi), 0)

)
, (25)
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where G is, say, a parametric class of neural networks.
Given such an estimate ŝ, we can replace the unknown
sNP in (23) by ŝ to obtain the likelihood-free Neyman-
Pearson test. For recent work on this approach in LFI
see for example [42]. Studying properties of this test is
outside the scope of this paper.

The final approach is based on the idea of robust
testing, first proposed by Huber [43], [44]. Huber’s
seminal result implies that if one has approximately
correct distributions P̂X, P̂Y satisfying

max
{
TV(P̂X,PX),TV(P̂Y,PY)

}
≤ ε/3

and TV(PX,PY) ≥ ε,
(26)

then for some c1 < c2 the test
∑m
i=1 sH(Zi) ≶ 0 where

sH(z) = min

{
max

{
c1, log

(
dP̂X

dP̂Y

(z)

)}
, c2

}
(27)

has type-I and type-II error bounded by exp(−Ω(mε2)),
and is in fact minimax optimal for all sample sizes
analogously to the likelihood-ratio test in the case of
binary hypothesis testing. From the above formula we
can see that Scheffé’s test can be interpreted as an
approximation of the maximally robust Huber’s test. Let
L̂(z) = (dP̂Y/dP̂X)(z) denote the likelihood-ratio of the
estimates. The values of c1, c2 are given as the solution
to

ε/3 = Ez∼P̂X

[
1

{
L̂(z) ≤ c1

} c1 − L̂(z)
1 + c1

]
(28)

= Ez∼P̂Y

[
1

{
L̂(z) ≥ c2

} L̂(z)− c2
1 + c2

]
, (29)

which can be easily approximated to high accuracy given
samples from P̂X, P̂Y. This suggests both a theoretical
construction, since P̂X, P̂Y can be obtained with high
probability from simulation samples via the general
estimator of Yatracos [45], and a practical rule: instead of
the possibly brittle likelihood-free Neyman-Pearson test
(ii), one should try clamping the estimated log-likelihood
ratio from above and below.

Similar results hold due to Birgé [46], [47] in the case
when distance is measured by Hellinger divergence:

max
{
H(P̂X,PX),H(P̂Y,PY)

}
≤ ε/3

andH(PX,PY) ≥ ε.
(30)

For ease of notation, let p̂X, p̂Y denote the densities of
P̂X, P̂Y with respect to some base measure µ. Regarding

√
p̂X and

√
p̂Y as unit vectors of the Hilbert space L2(µ),

let γ : [0, 1] → L2(µ) be the constant speed geodesic on
the unit sphere of L2(µ) with γ(0) =

√
p̂X and γ(1) =√

p̂Y. It is easily checked that each γt is positive, and
Birgé showed that the test

m∑
i=1

log

(
γ21/3

γ22/3
(Zi)

)
≶ 0 (31)

has both type-I and type-II errors bounded by
exp(−Ω(mε2)). For an exposition of this result see also
[48, Theorem 7.1.2]

III. RESULTS

In this section we describe our results on the sample
complexity of likelihood-free hypothesis testing.

A. General Reductions

First, we give reductions that hold in great generality
and show the relationship of our problem with other
classical testing and estimation problems that were in-
troduced in Section II-A. The result below holds for a
generic class P of distributions and a generic measure
of separation d, see also Remark 3.

Proposition 1. Let P be a generic family of distributions
and d : P2 → R be any function used to measure
separation. There exists a universal constant c > 0 such
that for n,m ∈ N the following implications hold.

(n,m) ∈ RLF =⇒ m ≥ nHT, (32)
(n,m) ∈ RTS =⇒ n ∧m ≥ nGoF (33)
(n,m) ∈ RLF =⇒ cn ≥ nGoF, (34)
(n,m) ∈ RTS =⇒ (n,m) ∈ RLF, (35)

m ≥ n and (n,m) ∈ RLF =⇒ (cn, cm) ∈ RTS, (36)

where we omit the argument (ε, d,P) throughout for
simplicity. In particular,

N2
n≤m ∩RLF ≍ N2

n≤m ∩RTS, (37)

where N2
n≤m = {(n,m) ∈ N2 : n ≤ m}.

Proof: In what follows, let ΨLF,ΨTS be minimax
optimal tests for (12) and (10) respectively. Throughout
the proof we omit the arguments (ε, d,P) for notational
simplicty.

We start by reducing hypothesis testing to (12). Sup-
pose (n,m) ∈ RLF. Let P0,P1 ∈ P be given with
d(P0,P1) ≥ ε and suppose Z is an i.i.d. sample with m
observations. We wish to test the hypothesis H0 : Zi ∼



P0 against H1 : Zi ∼ P1. To this end generate n i.i.d.
observations X,Y from P0,P1 respectively, and simply
output ΨLF(X,Y, Z). This shows that if (n,m) ∈ RLF

then m ≥ nHT and concludes the proof of (32).
Next, we reduce goodness-of-fit testing to two-sample

testing. Suppose (n,m) ∈ RTS. Then obviously (n ∧
m,∞) ∈ RTS. However, two-sample testing with sample
sizes n ∧ m,∞ is equivalent to goodness-of-fit testing
with a sample size of n ∧m. Therefore, n ∧m ≥ nGoF
must hold, concluding the proof of (33).

Next we reduce goodness-of-fit testing to (12). Sup-
pose (n,m) ∈ RLF with m ≤ n. Let a distribution
P0 ∈ P be given as well as an i.i.d. sample X of
size cn with unknown distribution PX, where c ∈ N
is a large integer. We want to test H0 : PX = P0

against H1 : PX ∈ P, d(PX,P0) ≥ ε. Generate c × 2
i.i.d. samples Y (i), Z(i) for i = 1, . . . , c of size n,m
respectively, all from P0. Split the sample X into c
batches X(i), i = 1, . . . , c of size n each and form the
variables

Ai = ΨLF(X
(i), Y (i), Z(i))

−ΨLF(X
(i), Y (i), X

(i+1)
1:m )

(38)

for i = 1, 3, . . . , 2⌊c/2⌋ − 1, where X
(i)
1:m denotes the

first m observations in the batch X(i). Note that the Ai
are i.i.d. and bounded random variables. Under the null
hypothesis we have EAi = 0, while under the alternative
they have mean EAi ≥ 1/3 (since ΨLF is a successful
tester in the sense of (6)). Therefore, a constant number
c/2 observations suffice to decide whether PX = P0 or
not. In particular, cn ≥ nGoF which concludes the proof
of (34) for the case m ≤ n. The case n ≤ m follows
from (36) and (33).

Next we reduce (12) to two-sample testing. Suppose
(n,m) ∈ RTS. Let three samples X,Y, Z be given, of
sizes a, a, b from the unknown distributions PX,PY,PZ

respectively, where {a, b} = {n,m}. We want to test the
hypothesis H0 : PX = PZ against H1 : PY = PZ, where
d(PX,PY) ≥ ε under both. Then, the test

Ψ̃LF(X,Y, Z) ≜ ΨTS(X,Z) (39)

shows that (n,m), (m,n) ∈ RLF and concludes the proof
of (35).

Next we reduce two-sample testing to (12). Suppose
(n,m) ∈ RLF where m ≥ n. Let two samples X,Y be
given, from the unknown distributions PX,PY ∈ P and
of sample size cn, cm respectively, where c ∈ N is a large
integer. We wish to test the hypothesis H0 : PX = PY

against H1 : d(PX,PY) ≥ ε. Split the samples X,Y

into 2× c batches X(i), Y (i), i = 1, . . . , c of sizes n,m
respectively, and form the variables

Ai = ΨLF(X
(i), Y

(i)
1:n, Y

(i+1))

−ΨLF(Y
(i)
1:n, X

(i), Y (i+1))
(40)

for i = 1, 3, . . . , 2⌊c/2⌋−1, where Y (i)
1:n denotes the first

n observations in the batch Y (i). The variables Ai are
i.i.d. and bounded. Under the null hypothesis we have
EAi = 0 while under the alternative EAi ≥ 1/3 holds.
Therefore a constant number c/2 observations suffice to
decide whether PX = PY or not. In particular, (cn, cm) ∈
RTS which concludes the proof of (36).

Finally, we show the equivalence between two-sample
testing and (12). Equation (37) follows immediately from
(36) and (35).

Equation (37) tells us that the problems of likelihood-
free hypothesis testing and two-sample testing are equiv-
alent, but only for m ≥ n, that is, when we have more
real data than simulated data. We will see in the next
section, and on Fig. 1 visually, that this distinction is
necessary.

B. Sample Complexity of Likelihood-Free Hypothesis
Testing

In this section we present our results on the sample
complexity of (12) for the specific classes P that were
introduced in Section II-A, with separation measured by
TV. In all results below the parameters β, s, d, C are
regarded as constants, we only care about the dependence
on the separation ε and the alphabet size k (in the case of
PD,PDb). Where convenient we omit the arguments of
nGoF, nTS,RTS, nEst,RLF to ease notation, whose value
should be clear from the context.

Theorem 1. Under TV-separation, for each choice P ∈
{PH,PG,PDb}, we have

RLF ≍

(n,m) :
m ≥ 1/ε2

& n ≥ nGoF
& mn ≥ n2GoF

 , (41)

where the implied constants do not depend on k (in the
case of PDb) or ε.

For each class P in Theorem 1, the entire region RLF

(within universal constant) is attained by a suitable mod-
ification of Ingster’s L2-distance test from Section II-C1.
The region RLF is visualized on Fig. 1 on a log-log
scale, with each corner point {A,B,C,D} having a
special interpretation, as per the reductions presented
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Fig. 1. Light and dark gray show RLF and its complement resp. on log scale; the striped region depicts RTS ⊊ RLF. Left plot is valid for
P ∈ {PH,PG,PDb} for all settings of ε, k. For PD the left plot applies when k ≲ ε−4 and the right plot otherwise.

in Proposition 1. The point A corresponds to binary
hypothesis testing and D can be reduced to goodness-
of-fit testing. Similarly, B and C can be reduced to the
well-known problems of estimation followed by robust
hypothesis testing and two-sample testing respectively.
In other words, (12) allows us to naturally interpolate
between multiple statistical problems. Finally, we make
an interesting observation: since the product of n and m
remains constant on the line segment [B,C] on the left
plot of Fig. 1, it follows that

nEst(ε,P) ≍ n2GoF(ε,P) ε2 (42)

for each class P treated in Theorem 1. This rela-
tion between the sample complexity of estimation and
goodness-of-fit testing has not been observed before to
our knowledge, and understanding the scope of validity
of this relationship is an exciting future direction.5

Turning to our results on PD the picture is less straight-
forward. As first identified in [50] and fully resolved
in [51], the sample complexity of two-sample testing
undergoes a phase transition when k ≳ 1/ε4. This phase

5Added in print: for example in [49] it is demonstrated that for the
Gaussian sequence model (see definition (ii) in Section II-B) with the
Sobolev ellipsoid replaced by the set Θ = {θ ∈ ℓ2 :

∑∞
i=1 i|θi| ≤ 1},

it holds that nEst ≪ n2
GoF/ε

2.

transition appears also in likelihood-free hypothesis test-
ing.

Theorem 2. Let α = max
{
1,min

{
k
n ,

k
m

}}
. Then R−

LF(ϵ,PD(k)) is proportional, up to a logarithmic factor
in the alphabet size k, to the set(n,m) :

m ≥ 1/ε2

& n ≥ nGoF(ε,PD(k)) ·
√
α

& mn ≥ nGoF(ε,PD(k))
2 · α

 . (43)

The log k factor in our analysis originates from a
union bound, and it is possible that it may be removed.
It follows from follow up work [11] and past results
on two-sample testing [38] that the log(k) factor can
be removed in all regimes, thus fully characterizing the
sample complexity of (12), but using a different test from
ours.

Table I summarizes previously known tight results for
the values of nGoF, nTS,RTS and nEst. The fact that
nHT = Θ(1/ε2) for reasonable classes is classical, see
Lemma 1. The study of goodness-of-fit testing within a
minimax framework was pioneered by Ingster [12], [34]
for PH,PG, and independently studied by the computer
science community [13], [52] for PD,PDb under the
name identity testing. Two-sample testing (a.k.a. close-
ness testing) was solved in [51] for PD (with the optimal
result for PDb implicit) and [12], [41], [53] consider PH.



TABLE I
PRIOR RESULTS ON TESTING AND ESTIMATION

nHT nGoF RTS nEst

PG 1/ε2 1/ε(2s+1/2)/s n ∧m ≥ nGoF ε2 n2
GoF

PH 1/ε2 1/ε(2β+d/2)/β n ∧m ≥ nGoF ε2 n2
GoF

PDb 1/ε2
√
k/ε2 n ∧m ≥ nGoF ε2 n2

GoF

PD 1/ε2
√
k/ε2 n ∨m ≥

√
k

ε2
∨ k2/3

ε4/3
≍ nTS, n ∧m ≥ nGoF

√
α ε2 n2

GoF

The study of the rate of estimation nEst is older, see [39],
[48], [54], [55] and references for PH,PG and [56] for
PD,PDb.

C. L2-Robust Likelihood-Free Hypothesis Testing

Even before seeing Theorems 1 and 2 one might guess
that estimation in TV followed by a robust hypothesis
test should work whenever m ≳ 1/ε2 and n ≥ nEst(cε)
for a small enough constant c. This strategy does indeed
work, which can be deduced from the work of Huber
and Birgé [43], [47] for total variation and Hellinger
separation respectively, see also Section II-C for a brief
discussion of these robust tests. In other words, we have
the informal theorem that if separation is measured by
TV or H, then

{n ≥ nEst and m ≥ nHT} =⇒ (cn, cm) ∈ RLF. (44)

In the case of total variation separation, in fact an even
simpler approach succeeds: if p̂X and p̂Y are minimax
optimal density estimators with respect to TV, then
Scheffé’s test using the classifier C(x) = 1{p̂Y(x) ≥
p̂X(x)} can be shown to achieve the optimal sample
complexity by Chebyshev’s inequality.

The upshot of these observations is that they provide a
solution to (12) that is robust to model misspecification,
specifically at the corner point B on Fig. 1. This natu-
rally leads us to the question of robust likelihood-free
hypothesis testing: can we construct robust tests for the
full m vs n trade-off?

As before, suppose we observe samples X,Y, Z of
size n, n,m from distributions belonging to the class P
with densities f, g, h with respect to some base measure
µ. Given any u ∈ P , let Bu(ε,P) ⊆ P denote a region
around u against which we wish to be robust. Recall the
notation Pε = {(Q0,Q1) ∈ P2 : TV(Q0,Q1) ≥ ε} from
Definition 5. We compare the hypotheses

H0 :h ∈ Bf (ε,P), (f, g) ∈ Pε
versus H1 :h ∈ Bg(ε,P), (f, g) ∈ Pε,

(45)

and write RrLF(ε,P,B·) for the region of (n,m)-values
for which (45) can be performed successfully, defined
analogously to RLF(ε,P). Note that RrLF ⊆ RLF pro-
vided u ∈ Bu for all u ∈ P , that is, the range of sample
sizes n,m for which robustly testing (12) is possible
ought to be a subset of RLF.

Theorem 3. Theorems 1 and 2 remain true if we replace
RLF(ε,P) by RrLF(ε,P,B·) for the following choices:

(i) for PH(β, d, C) and Bu = {v ∈ PH(β, d, C) : ∥u−
v∥2 ≤ cε} for a constant c > 0 independent of ε,

(ii) for PG(s, C) and Bµθ
= {µθ′ : θ′ ∈ E(s, C), ∥θ −

θ′∥2 ≤ ε/4},
(iii) for PDb(k,C) and Bu = {v : ∥u−v∥2 ≤ ε/(2

√
k)},

(iv) for PD(k) and Bu = {v : ∥u − v∥2 ≤
cε/

√
k, ∥v/u∥∞ ≤ c} for a constant c > 0 inde-

pendent of k and ε.

D. Beyond Total Variation

Recall from Remark 3 the notation nGoF(ε, d,P) etc.
that is applicable when separation is measured with
respect to a general measure of discrepancy d instead
of TV. In recent work [57, Theorem 1] and [58, Lemma
3.6] it is shown that any test that first quantizes the data
by a map Φ : X → {1, 2, . . . ,M} for some M ≥ 2
must decrease the Hellinger distance between the two
hypotheses by a log factor in the worst case. This implies
that for every class P rich enough to contain such worst
case examples, a quantizing test, such as Scheffé’s, can
hope to achieve m ≍ log(1/ε)/ε2 at best, as opposed to
the optimal m ≍ 1/ε2. Thus, if separation is assumed
with respect to Hellinger distance, Scheffé’s test should
be avoided. This example shows that the choice of d can
have surprising effects on the performance of specific
tests that would be optimal under other circumstances.
Understanding the sample complexity of (12) for d other
than TV might lead to new algorithms and insights.

This motivates us to pose the question: does a trade-
off analogous to that identified in Theorem 1 hold for
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TABLE II
PRIOR RESULTS ON TESTING AND ESTIMATION FOR d = H.

nHT nGoF nTS nEst

PD 1/ε2
√
k/ε2 k2/3/ε8/3 ∧ k3/4/ε2 n2

Gof ε
2

PH 1/ε2 ? ? 1/ε2(β+d)/β

other choices of d, and H in particular? In the case of
PG we obtain a simple, almost vacuous answer. From
Lemma 2 it follows immediately that the results of
Table I and Theorem 1 continue to hold for PG for any
of d ∈ {H,

√
KL,

√
χ2}, to name a few.

Lemma 2. Let C > 0 be a constant. For any θ ∈ ℓ2

with ∥θ∥2 ≤ C

TV(µθ, µ0) ≍ H(µθ, µ0) ≍
√
KL(µθ∥µ0)

≍
√
χ2(µθ∥µ0) ≍ ∥θ∥2,

(46)

where µθ ≜ ⊗∞
i=1N (θi, 1) and the implied constant

depends on C.

The case of PD is more intricate. Substantial re-
cent progress [25], [56], [59], [60] has been made,
where among others, the complexities nGoF, nTS, nEst for
Hellinger separation are identified, see Table II.

Since our algorithm for (12) is ∥ · ∥2-based, we
could immediately derive achievability bounds for
RLF(ε,H,PD) via the inequality ∥ · ∥2 ≥ H2/

√
k, how-

ever such a naive technique yields suboptimal results, and
thus we omit it. Studying (12) under Hellinger separation
for PD and PDb is beyond the scope of this work.

Finally, we turn to PH. Due to the nature of our proofs,
the results of Theorem 1 easily generalize to d = ∥ · ∥p
for any p ∈ [1, 2]. The simple reason for this is that
(i) our algorithm is ∥ · ∥2-based and ∥ · ∥2 ≥ ∥ · ∥p by
Jensen’s inequality and (ii) the lower bound construction
involves perturbations near 1, where all said norms are
equivalent. In the important case d = H the estimation
rate nEst(ε,H,PH) ≍ 1/ε2(β+d)/β was obtained by Birgé
[61], our contribution here is the study of nGoF.

Theorem 4. For any β > 0, C > 1 and d ≥ 1 there
exists a constant c > 0 such that

nGoF(ε,H,P(β, d, C)) ≥ c/ε2(β+d/2)/β . (47)

If in addition we assume that β ∈ (0, 1], c can be chosen
such that

cnGoF(ε,H,P) ≤ 1/ε2(β+d/2)/β . (48)

In particular, nEst ≍ n2GoF ε
2.

IV. SKETCH PROOF OF MAIN RESULTS

In this section we briefly sketch the proofs of the main
results of the paper.

A. Upper Bounds for Theorems 1 to 4

1) Bounded Discrete Distributions: Consider first the
case when PX and PY belong to the class PDb, that
is, they are supported on the discrete set {1, 2, . . . , k}
and bounded by the uniform distribution. Let p̂X, p̂Y, p̂Z
denote empirical probability mass functions based on
the samples X,Y, Z of size n, n,m from PX,PY,PZ

respectively. Define the test statistic

TLF = ∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22 (49)

and the corresponding test ψ(X,Y, Z) = 1{TLF ≥ 0}.
The proof of Theorems 1 and 2 hinge on the precise
calculation of the mean and variance of TLF. Due to
symmetry it is enough to compute these under the null.
The proof of the upper bound is then completed via
Chebyshev’s inequality: if n,m are such that (ETLF)2 ≳
var(TLF) for large enough implied constant on the right
then ψ tests (12) successfully in the sense of (6).

Proposition 2 (informal). Suppose ∥pX + pY + pZ∥∞ ≤
C∞/k. Then ψ successfully tests (12) if

ε4

k2

(ETLF)2

≳
C∞ε

2

k2

(
1

n
+

1

m

)
+
C∞

k

(
1

n2
+

1

nm

)
var(TLF)

.

(50)

From (50) one can immediately see where each con-
straint in the region RLF(ε,PDb(k, C)) in Theorem 1
emerges. The first two terms in the variance require that
both m and n be larger than Ω(1/ε2). The 1/n2 term
in the variance requires that n be at least Ω(

√
k/ε2) ≍

nGoF, and the 1/(nm) term requires that the product nm
be at least Ω(n2GoF).

2) Smooth Densities: Next we describe how Proposi-
tion 2 can be applied to the class PH of smooth densities.
Divide [0, 1]d into into κd regular grid cells for some
κ ∈ N. Discretize the three samples X,Y, Z over this
grid and simply apply the optimal test for PDb, observing
the crucial fact that this discretization belongs to PDb.
The following lemma, originally due to Ingster [12]
controls the approximation error of the discretization.

Lemma 3 ([41, Lemma 7.2]). Let Pκ denote the L2

projection onto the space of functions constant on each



grid cell. For any β > 0, C > 1 and d ≥ 1 there exist
constants c, c′ > 0 such that for any f, g ∈ PH(β, d, C)
the following holds:

∥f − g∥2 ≥ ∥Pκ(f − g)∥2 ≥ c∥f − g∥2 − c′κ−β . (51)

Based on Lemma 3 we set κ ≍ ε−1/β . This resolution
is chosen to ensure that the discrete approximation to any
β-smooth density is sufficiently accurate, that is, approxi-
mate ε-separation is maintained even after discretization.
We see now that our problem is reduced entirely to
testing over PDb, so we may apply Proposition 2 with
k = κd ≍ ε−d/β , which yields the minimax optimal rates
from Theorems 1 and 3.

Our proof of the achieavability direction in Theorem 4
follows similarly by reduction to goodness-of-fit testing
for discrete distributions [60] under Hellinger separation,
where it is known that nGoF(ε,H,PD) ≍

√
k/ε2. The key

step is to prove a result similar to Lemma 3 but for H
instead of ∥ · ∥2.

Proposition 3. For any β ∈ (0, 1], C > 1 and d ≥ 1
there exists a constant c > 0 such that

cH(f, g) ≤ H(Pκf, Pκg) ≤ H(f, g) (52)

holds for any f, g ∈ PH(β, d, C), provided we set κ =
(cε)−2/β .

3) Gaussian Sequence Model: Let us briefly discuss
the Gaussian sequence class PG(s, C). Here our ap-
proach is not to discretize the distributions, but con-
ceptually the test is very similar to the cases we’ve
already covered. Let us write PX = µθX and define θY, θZ
analogously. For a given cutoff r, we simply reject the
null if

TLF,G ≜
r∑
i=1

{(
θ̂X,i− θ̂Z,i

)2−(θ̂Y,i− θ̂Z,i)2} ≥ 0, (53)

where θ̂X,i = 1
n

∑n
j=1Xji and θ̂Y, θ̂Z are defined anal-

ogously. Once again, a precise calculation of the mean
and the variance of the sum above, yields the following
result.

Proposition 4 (informal). Set r ≍ ε−1/s. The test (53)
succeeds if

ε4

(ETLF,G)2

≳ ε2
(
1

n
+

1

m

)
+ ε−1/s

(
1

n2
+

1

nm

)
var(TLF,G)

. (54)

Similarly to (50), we can again read of the constraints
that define the region RLF(ε,PG(s, C)) from (54). The

first and second terms in the variance ensure that n,m =
Ω(1/ε2) and n2,mn = Ω(n2GoF) = Ω(ε−(4s+1)/s)
respectively.

4) General Discrete Distributions: Finally, we com-
ment on PD. Here we can no longer assume that C∞ =
O(1) in Proposition 2, in fact C∞ = Ω(k) is possible.
We get around this by utilizing the reduction based
approach of [25], [35]. We take the first half of the data
and compute

Bi = 1 +#

{
j ≤ min{k, n}

2
: Xj = i

}
+#

{
j ≤ min{k, n}

2
: Yj = i

}
+#

{
j ≤ min{k,m}

2
: Zj = i

} (55)

for each i ∈ [k]. Then, we divide the i’th support element
into Bi bins, uniformly. This transformation preserves
pairwise total variation, but reduces the ℓ∞-norms of
pX, pY, pZ with high probability, to order 1/(k∧(n∨m)),
after an additional step that we omit here. We can
then perform the usual test with these new “flattened”
distributions, using the untouched half of the data.

It is insightful to interpret the “flattening” proce-
dure followed by L2-distance comparison as a one-step
procedure that simply compares a different divergence
of the empirical measures. Intuitively, in contrast to
the regular classes, one needs to mitigate the effect of
potentially massive differences in the empirical counts
on bins i ∈ [k] where both pX(i) and pY(i) are large but
their difference |pX(i)− pY(i)| is moderate. Let LCλ be
the “weighted Le-Cam divergence” which we define as
LCλ(p∥q) =

∑
i(pi−qi)2/(pi+λqi) for two probability

mass functions p, q. One may interpret the two step
procedure (flattening followed by comparing L2 dis-
tances) as approximately comparing empirical weighted
Le-Cam divergences. Performing the test in two steps
is a proof device, and we expect the test that directly
compares, say, the Le-Cam divergence of the empirical
probability mass functions to have the same minimax
optimal sample complexity. Such a one-shot approach
is used for example in the paper [51] for two-sample
testing. While Ingster [12] only considers goodness-of-
fit testing to the uniform distribution, his notation also
suggests the idea of normalizing by the bin mass under
the null.
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B. Lower Bounds for Theorems 1 to 4

The reductions given in Proposition 1 immediately
yields a number of tight lower bounds on n and m.
Namely, (32) gives m ≳ 1/ε2 and (34) gives n ≳ nGoF.
Obtaining the lower bound on the product term mn
proves more challenging. First we introduce the well
known information theoretic tools we use to prove our
minimax lower bounds.

Suppose that we have two (potentially composite)
hypotheses H0, H1 that we test against each other. Our
strategy relies on the method of two fuzzy hypotheses
[39], which is a generalization of Le-Cam’s two point
method. Write M(X ) for the set of probability measures
on the set X .

Lemma 4. Take two hypotheses Hi ⊆ M(X ) and
random Pi ∈ M(X ). Then

2 inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i)

≥ 1− TV(EP0,EP1)−
∑
i

P(Pi /∈ Hi),
(56)

where the infimum is over all tests ψ : X → {0, 1}.

Proof: We may assume without loss of generality
that P(Pi ∈ Hi) > 0 for both i = 0 and i = 1, as
otherwise the claim is vacuous. Let P̃i be distributed as
Pi|{Pi ∈ Hi}. Then for any set A ⊂ X we have∣∣∣EP̃i(A)− EPi(A)

∣∣∣ = P(Pi /∈ Hi)

×
∣∣∣E[Pi(A)|Pi ∈ Hi]− E[Pi(A)|Pi /∈ Hi]

∣∣∣ (57)

≤ P(Pi /∈ Hi). (58)

In particular, TV(EP̃0,EP̃1) ≤ TV(EP0,EP1) +∑
i P(Pi /∈ Hi). Therefore, for any ψ

max
i=0,1

sup
Pi∈Hi

Pi(ψ ̸= i) ≥ 1

2
(1− TV(EP̃0,EP̃1)) (59)

≥ 1

2

(
1− TV(EP0,EP1)−

∑
i

P(Pi /∈ Hi)

)
. (60)

For clarity, we formally state (12) as testing between
the null hypothesis{

P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
X :

PX,PY ∈ P
& TV(PX,PY) ≥ ε

}
(61)

versus the alternative hypothesis{
P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
Y :

PX,PY ∈ P
& TV(PX,PY) ≥ ε

}
(62)

The lower bounds of Theorem 3 follow from those for
Theorems 1 and 2 so we may focus on the latter.

1) Smooth Densities: For concreteness let us focus on
the case of P = PH. We take P0 to be uniform on [0, 1]d

and Pη to have density

pη = 1 +
∑
j∈[κ]d

ηjhj (63)

with respect to P0. Here κ ∈ N, each η ∈ {±1}κd

is
uniform and hj is a bump function supported on the
j’th cell of the regular grid of size κd on [0, 1]d. The
parameters κ, hj of the construction are set in a way to
ensure Pη ∈ PH and TV(P0,Pη) ≥ ε with probability 1
over η. We have

1 + χ2(EηP
⊗m
η ∥P⊗m

0 )

=

∫
[0,1]dm

(
Eη

n∏
i=1

pη(xi)

)2

dx (64)

= Eηη′⟨pη, pη′⟩mL2 (65)

= E(1 + ∥h1∥22⟨η, η′⟩)m (66)

≤ exp(m2∥h1∥42κd), (67)

where η, η′ are i.i.d. uniform and we assume ∥h1∥2 =
∥hj∥2 for all j ∈ [κ]d. The above approach is what
Ingster used in his seminal paper [12] on goodness-of-
fit testing, which we adapt to likelihood-free hypothesis
testing (61), (62). Take P0 = P⊗n

η ⊗ P⊗n
0 ⊗ P⊗m

η and
P1 = P⊗n

η ⊗ P⊗n
0 ⊗ P⊗m

0 in Lemma 4. Bounding
TV(EP0,EP1) proceeds in multiple steps: first, we drop
the Y -sample using the data-processing inequality. Then,
we use Pinsker’s inequality and the chain rule to bound
TV by the KL divergence of Z conditioned on X . We
bound KL by χ2, arriving at the same equation (66).
However, the mixing parameters η, η′ are no longer
independent, instead, given X they’re independent from
the posterior. In the remaining steps we use the fact that
the posterior factorizes over the bins and the calculation
is reduced to just a single bin where it can be done
explicitly.

Let us now turn to the lower bound in Theorem 4.
The difference in the rate is a consequence of the fact
that H and TV behave differently for densities near zero.
Inspired by this, we slightly modify the construction (63)
by putting the perturbations at density level ε2 as opposed
to 1. Bounding TV then proceeds analogously to the
steps outlined above.



2) Bounded Discrete Distributions: The construction
is entirely analogous to the case of PH and we refer to the
appendix for details. In the computer science community
the construction of pη is attributed to Paninski [62].

3) Gaussian Sequence Model: The null distribution
P0 is the no signal case ⊗∞

i=1N (0, 1) while the alterna-
tive is Pθ = ⊗∞

i=1N (θi, 1) where θ has prior distribution
⊗∞
i=1N (0, γi) for an appropriate sequence γ ∈ RN. We

refer to the appendix for more details.
4) General Discrete Distributions: Once again, the

irregular case PD requires special consideration. Clearly
the lower bound for PDb carries over. However, in the
regime k ≳ 1/ε4 said lower bound becomes suboptimal,
and we need a new construction, for which we utilize
the moment-matching based approach of Valiant [63] as a
black-box. The construction is derived from that used for
two-sample testing by Valiant, namely the pair (PX,PY)
is chosen uniformly at random from {(p◦π, q◦π)}π∈Sk

.
Here we write Sk for the symmetric group on [k] and

p(i) =


1−ε
n for i ∈ [n]

4ε
k for i ∈ [k2 ,

3k
4 ]

0 otherwise,
(68)

where we assume that m ≤ n ≤ k/2 and define q(i) =
p(i) for i ∈ [k/2 − 1] and q(i) = p(3k/2 − i) for i ∈
[k/2, k]. This construction gives a lower bound matching
our upper bound in the regime m ≲ n ≲ k. The final
piece of the puzzle follows by the reduction from two-
sample testing with unequal sample size (37), as this
shows that likelihood-free hypothesis testing is at least
as hard as two-sample testing in the n ≤ m regime, and
known lower bounds on the sample complexity of two-
sample testing [26] (see also Table I) let us conclude.

V. OPEN PROBLEMS

A natural follow-up direction to the present paper
would be to study multiple hypothesis testing where PX

and PY are replaced by PX1 , . . . ,PXM
with correspond-

ing hypotheses H1, . . . ,HM . The geometry of the family
{PXj

}j∈[M ] might have interesting effects on the sample
complexities.

Open problem 1. Study the dependence on M > 2 of
likelihood-free testing with M hypotheses.

Another possible avenue of research is the study of
local minimax/instance optimal rates, which is the focus
of recent work [52], [64]–[67] in the case of goodness-
of-fit and two-sample testing.

Open problem 2. Define and study the local minimax
rates of likelihood-free hypothesis testing.

Our discussion of the Hellinger case in Section III-D
is quite limited, natural open problems in this direction
include the following.

Open problem 3. Let P be one of PH(β, d, C),
PDb(k,CDb) or PD(k)}.

(i) Study nGoF and nTS under Hellinger separation.
(ii) Study RLF under Hellinger separation.

More ambitiously, one might ask for a characterization
of ‘regular‘ models (P, d) for which goodness-of-fit
testing and two-sample testing are equally hard and the
region RLF is given by the trade-off in Theorem 1.

Open problem 4. Find a general family of “regular”
models (P, d) for which

nGoF(ε, d,P) ≍ nTS(ε, d,P) (69)

and

RLF(ε, d,P) ≍

(m,n) :
m ≥ 1/ε2

& n ≥ nGoF
& mn ≥ n2GoF

 . (70)

Recent follow-up work [11] showed that Scheffé’s test
is also minimax optimal and achieves the entire trade-off
in Fig. 1. It appears that the optimality of Scheffé’s test is
a consequence of the minimax point of view. Basically,
in the worst-case the log-likelihood ratio between the
hypotheses is close to being binary, hence quantizing
it to {0, 1} does not lose optimality. Consequently, an
important future direction is to better understand the
competitive properties of various tests and studying some
notion of regret, see [68] for prior related work.

Open problem 5. Study the competitive optimality
of likelihood-free hypothesis testing algorithms, and
Scheffé’s test in particular.

APPENDIX A
PROOF OF ACHIEVABILITY IN THEOREM 1 AND 2

Let µ be a measure on the measurable space (X ,F).
Let {ϕi}i∈[r] be a sequence of orthonormal functions in
L2(µ), where we use the notation [r] ≜ {1, 2, . . . , r}.
For f ∈ L2(µ), define its projection onto the span of
{ϕ1, . . . , ϕr} as

Pr(f) ≜
∑
i∈[r]

⟨fϕi⟩ϕi, (71)
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where we write ⟨·⟩ for integration with respect to µ
and ∥ · ∥p for ∥ · ∥Lp(µ). Given an i.i.d. sample X =
(X1, . . . , Xn) from some density f , define its empirical
projection as

P̂r[X] ≜
∑
i∈[r]

 1

n

n∑
j=1

ϕi(Xj)

ϕi. (72)

We define the difference in L2-distances statistics to be

TLF = ∥P̂r[X]− P̂r[Z]∥22 − ∥P̂r[Y ]− P̂r[Z]∥22, (73)

for an appropriate choice of µ and {ϕj}j≥1 depending
on the class P . Before calculating the mean and vari-
ance, we separate out the diagonal terms in TLF thereby
decomposing the statistic into two terms:

TLF ≜ T−d
LF +

1

n2

∑
i∈[r]

∑
j∈[n]

(
ϕ2i (Xj)− ϕ2i (Yj)

)
︸ ︷︷ ︸

≜D

, (74)

which will simplify our proofs somewhat.
To ease notation in the results below, we define the

quantities
Afgh = ⟨f

[
Pr(g − h)

]2⟩
Bfg =

r∑
i=1

⟨fϕiPr(gϕi)⟩
(75)

for f, g, h ∈ L2(µ), assuming the quantities involved are
well-defined. We are ready to state our meta-result from
which we derive all our likelihood-free hypothesis testing
upper bounds.

Proposition 5. Let f, g, h denote probability densities on
X with respect to µ, and suppose we observe independent
samples X,Y, Z of size n, n,m from f, g, h respectively.
Then

ET−d
LF = ∥Pr(f − h)∥22 − ∥Pr(g − h)∥22

+
1

n
(∥Pr(g)∥22 − ∥Pr(f)∥22) (76)

var(T−d
LF ) ≲

Affh +Aggh
n

+
Ahfg
m

+
∥f + g + h∥42 + |Bfh|+ |Bgh|

nm

+
|Bff |+ |Bgg|+ ∥f + g + h∥42

n2

+

√
Aff0Affh +Agg0Aggh

n2

+
|Bff |+ |Bgg|+ ∥f + g + h∥42

n3

+
Aff0 +Agg0

n3
, (77)

where the implied constant is universal.

Proposition 5 is used to test (12) by rejecting the
null whenever T−d

LF ≥ 0. To prove that this procedure
performs well we show that T−d

LF concentrates around
its mean by Chebyshev’s inequality. For this we find
sufficient conditions on the sample sizes n,m so that
(ET−d

LF )2 ≳ var(T−d
LF ) for a small enough implied con-

stant on the left.
While Proposition 5 is enough to conclude the proof

of our main theorems, notice that it uses the statistic T−d
LF

which has the diagonal terms removed. For completeness
we show that rejecting when TLF ≥ 0 is also minimax
optimal, that is, the diagonal term D in (74) can be
included without degrading performance.

A. The Class PDb

Proposition 6. For any C > 1 there exists a constant
c > 0 such that

RrLF(ε,PDb(k,C),B·)

⊃ c

(m,n) :

m ≥ 1/ε2

& n ≥
√
k/ε2

& mn ≥ k/ε4

 , (78)

where Bu = {u ∈ PDb(k, C) : ∥u− v∥2 ≤ ε/(2
√
k)}.

Proof: Choice of µ and ϕ. Take X = [k] and let µ =∑k
i=1 δi be the counting measure. Let ϕi(j) = 1{i=j}

and choose r = k so that Pr = Pk is the identity. By
the Cauchy-Schwarz inequality ∥u∥1 ≤

√
k∥u∥2 for all

u ∈ Rk.
Applying Proposition 5. Recall the notation of Propo-

sition 5, so that f, g, h are the pmfs of PX,PY,PZ

respectively. We analyse the performance of the test
1{T−d

LF ≥ 0} under the null hypothesis, the proof under
the alternative is analogous. The inequality

∥f − h∥2 ≤ ε

2
√
k
≤ ∥f − g∥1

4
√
k

≤ ∥f − g∥2
4

(79)

along with the reverse triangle inequality yields

∥g − h∥22 − ∥f − h∥22
≥ (∥f − g∥2 − ∥f − h∥2)2 − ∥f − h∥22 (80)

= ∥f − g∥22 − 2∥f − g∥2∥f − h∥2 (81)

≥ ∥f − g∥22/2. (82)



Combining the above inequality with Proposition 5, we
get that −ET−d

LF ≥ ∥f − g∥22/2 + R, where the residual
term R can be bounded as

|R| =
∣∣∣∣∥f∥22 − ∥g∥22

n

∣∣∣∣ (83)

≤ 2C
∥f − g∥2
n
√
k

. (84)

Therefore, −ET−d
LF ≥ ∥f−g∥2

2

4 holds provided 2C∥f −
g∥2/(n

√
k) ≤ ∥f − g∥22/4, which in turn is implied by

n ≳ 1/ε and is thus always satisfied.
Turning towards the variance, we apply Proposition 5

to see that

var(T−d
LF )

n+m
≲

∥f − g∥22
knm

+
1

kn2m
, (85)

where we use the trivial bounds

∥f + g + h∥2 ≲

√
C

k
≲

√
1

k
(86)

|Bff |+ |Bgg|+ |Bfh|+ |Bgh| ≲
C

k
≲

1

k
(87)

Affh+Aggh+Ahfg ≲
C

k
∥f − g∥22 ≲

1

k
∥f − g∥22 (88)

Aff0 +Agg0 ≲

(
C

k

)2

≲
1

k2
. (89)

Applying Chebyshev’s inequality and looking at each
term separately in (85) and using that ∥f − g∥2 ≥
ε/(2

√
k) yields the desired bounds on n,m.

The diagonal. While the above test using T−d
LF already

achieves the minimax optimal sample complexity, here
we show for completeness that the diagonal D, defined
in (74), can be included without degrading the test’s
performance. Indeed, we always have

D =
1

n2

∑
i∈[r]

∑
j∈[n]

(
1{Xj = i}2 − 1{Yj = i}2

)
(90)

= 0. (91)

Therefore, trivially, the test 1{TLF ≥ 0} has the same
performance as the one analyzed above.

B. The Class PH

Proposition 7. For every C > 1, β > 0 and d ≥ 1 there
exist two constants c, cr > 0 such that

RrLF(ε,PH(β, d, C),B·)

⊃ c

(m,n) :

m ≥ 1/ε2

& n ≥ 1/ε(2β+d/2)/β

& mn ≥ 1/ε2(2β+d/2)/β

 , (92)

where Bu = {v ∈ PH(β, d, C) : ∥v − u∥2 ≤ crε}.

Proof: Choice of µ and ϕ. Take X = [0, 1]d, let
µ the Lebesgue measure on X . Let {ϕi}1≤i≤κd be the
indicators of the cells of the regular grid with κd bins,
normalized to have L2(µ)-norm equal to 1, that is, the
indicator is multiplied by κd, which is one over the
volume of one grid cell. By [41, Lemma 7.2] for any
resolution r = κd and u ∈ C(β, d, 2C) we have

∥Pr(u)∥2 ≥ c1∥u∥2 − c2κ
−β (93)

for constants c1, c2 > 0 that don’t depend on r. In
particular, the inequalities

∥Pr(u)∥2 ≥ c1
2
∥u∥2 (94)

holds for any ∥u∥2 ≥ ε provided we choose κ =(
2c2
c1ε

)1/β
.

Applying Proposition 5. Recall the notation of Propo-
sition 5 so that f, g, h are the µ-densities of PX,PY,PZ.
We analyse the performance of the test 1{T−d

LF ≥ 0}
under the null hypothesis, the proof under the alternative
is analogous. Let the radius of robustness be cr = c1/4,

and set κ =
(

2c2
c1ε

)1/β
. Then we have

∥Pr(f − h)∥2 ≤ crε (95)

=
cr
2
∥f − g∥2 (96)

≤ cr
c1

∥Pr(f − g)∥2 (97)

by taking u = f − g in (94). Using the reverse triangle
inequality we obtain

∥Pr(g − h)∥22 − ∥Pr(f − h)∥22
≥ (∥Pr(f − g)∥2 − ∥Pr(f − h)∥2)2

− ∥Pr(f − h)∥22 (98)

= ∥Pr(f − g)∥22
− 2∥Pr(f − g)∥2∥Pr(f − h)∥2 (99)

≥ ∥Pr(f − g)∥22(1− 2
cr
c1

) (100)

= ∥Pr(f − g)∥22/2 (101)

Combining the above inequality with Proposition 5, we
see that −ET−d

LF ≥ ∥Pr(f − g)∥22/2 + R where the
residual term R can be bounded as

|R| =
∣∣∣∣∥f∥22 − ∥g∥22

n

∣∣∣∣ (102)
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≤ 2C
∥f − g∥2

n
. (103)

Therefore, the inequality −ET−d
LF ≥ ∥Pr(f − g)∥22/4

holds provided 2C∥f−g∥2/n ≤ ∥Pr(f−g)∥22/4, which
in turn is implied by n ≳ 1/ε and is thus always satisfied.

Turning to the variance, using Proposition 5 we obtain

var(T−d
LF )

n+m
≲

∥Pr(f − g)∥22
nm

+
ε−d/β

n2m
, (104)

where we apply the trivial inequalities

∥f + g + h∥2 ≲
√
C ≲ 1 (105)

|Bff |+ |Bgg|+ |Bfh|+ |Bgh| ≲ Cr (106)

= Cκd ≍ ε−d/β (107)

Affh +Aggh +Ahfg ≲ C∥Pr(f − g)∥22 (108)

≲ ∥Pr(f − g)∥22 (109)

Aff0 +Agg0 ≲ C2 ≲ 1. (110)

Applying Chebyshev’s inequality and looking at each
term separately in (104) and using that ∥Pr(f − g)∥2 ≳
∥f − g∥2 ≥ ∥f − g∥1 ≥ 2ε yields the desired bounds on
n,m.

The diagonal. While the above test using T−d
LF already

achieves the minimax optimal sample complexity, for
completeness we also note that including the diagonal
terms D defined in (74) doesn’t degrade performance.
This follows from the simple fact that D = 0, which is
true for reasons analogous to the case of PDb that we
already covered.

C. The Class PG

Proposition 8. For all s, C > 0 there exists a constant
c > 0 such that

RrLF(ε,PG(s, C),B·)

⊃ c

(m,n) :

m ≥ 1/ε2

& n ≥ 1/ε(2s+1/2)/s

& mn ≥ 1/ε2(2s+1/2)/s

 , (111)

where Bµθ
= {µθ′ : θ′ ∈ E(s, C), ∥θ − θ′∥2 ≤ ε/4}.

Proof: Choosing µ and ϕ. Let X = RN be the
set of infinite sequences and take as the base measure
µ = ⊗∞

d=1N (0, 1), the infinite dimensional standard
Gaussian. For θ ∈ ℓ2 write µθ = ⊗∞

d=1N (θi, 1) so that

µ0 = µ. Take the orthonormal functions ϕi(x) = xi in
L2(µ) for i ≥ 1, so that

Pr

(
dµθ
dµ

)
=

r∑
i=1

xiθi. (112)

Let θ, θ′ ∈ E(s, C) with TV(µθ, µθ′) ≥ ε. By direct
computation we obtain∥∥∥∥Pr (dµθ

dµ
− dµθ′

dµ

)∥∥∥∥2
2

=
r∑
i=1

(θi − θ′i)
2 (113)

≥ ∥θ − θ′∥22 − r−2s
∑
i>r

(θi − θ′i)
2i2s (114)

≥ ∥θ − θ′∥22 − 4C2r−2s. (115)

In particular, the inequality∥∥∥∥Pr (dµθ
dµ

− dµθ′

dµ

)
∥22 ≥ 1

2
∥θ − θ′

∥∥∥∥2
2

(116)

holds for all θ, θ′ ∈ E(s, C) with ∥θ−θ′∥2 ≥ ε, provided
we take r = (4C/ε)1/s.

Applying Proposition 5. Recall the notation of Propo-
sition 5, and let f, g, h be the µ-densities of PX =
µθX ,PY = µθY ,PZ = µθZ respectively. We analyse the
test 1{T−d

LF ≥ 0} only under the null hypothesis, as the
analysis under the alternative is analogous. Note also that
by Lemma 5 the inequality

TV(µθ, µθ′) ≤ H(µθ, µθ′) (117)

=
√

2(1− exp(−∥θ − θ′∥22/8)) (118)

≤ ∥θ − θ′∥2
2

(119)

holds for any θ, θ′ ∈ ℓ2. Therefore, we have

∥Pr(f − h)∥2 ≤ ε

4
≤ TV(µθ, µθ′)

4
(120)

≤ ∥θ − θ′∥2
8

≤ ∥Pr(f − g)∥2
4

(121)

by (116).
By the reverse triangle inequality we have

∥Pr(g − h)∥22 − ∥Pr(f − h)∥22 (122)

≥ (∥Pr(f − g)∥2 − ∥Pr(f − h)∥2)2

− ∥Pr(f − h)∥22 (123)

= ∥Pr(f − g)∥22
− 2∥Pr(f − g)∥2∥Pr(f − h)∥2 (124)



≥ ∥Pr(f − g)∥22/2 (125)

Combining the inequality above with Proposition 5, we
see that −ET−d

LF ≥ ∥Pr(f − g)∥22/2 + R, where the
residual term R can be bounded as

|R| =
∣∣∣∣∥Pr(f)∥22 − ∥Pr(g)∥22

n

∣∣∣∣ (126)

≤ 2C
∥Pr(f − g)∥2

n
. (127)

Therefore, −ET−d
LF ≥ ∥Pr(f − g)∥22/4 provided

2C∥Pr(f − g)∥2/n ≤ ∥Pr(f − g)∥22/4, which in turn
is implied by n ≳ 1/ε and is therefore always satisfied.

Let us turn to the variance of the statistic. Let u, v, t
be the µ-densities of the distributions µθ, µθ′ , µθ′′ for
some vectors θ, θ′, θ′′ ∈ E(s, C) in the Sobolev ellipsoid.
Straightforward calculations involving Gaussian random
variables produce

Auvt =
r∑
ij

(1(i = j) + θiθj)(θ
′
i − θ′′i )(θ

′
j − θ′′j ) (128)

≤ (1 + C2)∥Pr(v − t)∥22 (129)

≲ ∥Pr(v − t)∥22 ≲ C2 ≲ 1 (130)

∥u∥2 = exp

(
1

2
∥θ∥22

)
≤ exp(C2/2) ≲ 1 (131)

Buv =
r∑
i=1

(
1 + θ2i + θ′

2
i + θiθ

′
i

r∑
j=1

θjθ
′
j

)
(132)

≤ r + 2C2 + C4 ≲ r. (133)

Applying Proposition 5 tells us that

var(T−d
LF )

n+m
≲

∥Pr(f − g)∥22
nm

+
ε−1/s

n2m
(134)

Applying Chebyshev’s inequality and looking at each
term separately in (134) and using that TV(µθ, µθ′) ≲
∥Pr(f − g)∥ yields the desired bounds on n,m.

The diagonal. While the above test using T−d
LF already

achieves the minimax optimal sample complexity, for
completeness we show that including the diagonal terms
D defined in (74) doesn’t degrade performance. To this
end we compute

ED = E
1

n2

∑
i∈[r]

∑
j∈[n]

(
ϕ2i (Xj)− ϕ2i (Yj)

)
(135)

=
1

n

∑
i∈[r]

(θ2X,i − θ2Y,i) (136)

≤ 1

n
∥θX + θY∥2

√∑
i∈[r]

(θX,i − θY,i
2) (137)

≤ 2C
∥Pr(f − g)∥2

n
. (138)

We see that |ET−d
LF | ≳ |ED| as soon as n ≳ 1/ε. Turning

to the variance, we have

var(D) =
1

n3

∑
i∈[r]

(
var(ϕ2i (X1)) + var(ϕ2i (Y1))

)
(139)

≲
rC2

n3
, (140)

and so the diagonal terms do not inflate the variance
by more than a constant factor. Therefore, the sample
complexity of the test is unchanged.

D. The Class PD

Proposition 9. Let α = 1 ∨
(
k
n ∧ k

m

)
. There exist

constants c, c′, cr > 0 such that

RrLF(ε,PD(k),B·)

⊃ c

log(k)

(m,n) :

m ≥ 1/ε2

& n ≥
√
kα/ε2

& mn ≥ kα/ε4

 , (141)

where Bu = {v : ∥u− v∥2 ≤ crε/
√
k, ∥v/u∥∞ ≤ c′}.

Proof: Choosing µ and ϕ. As for PDb, we take X =
[k], µ =

∑k
i=1 δi, ϕi(j) = 1{i=j} and r = k. By the

Cauchy-Schwarz inequality ∥h∥1 ≤
√
k∥h∥2 for all h ∈

Rk.
Reducing to the small-norm case. Before applying

Proposition 5 we need to ‘pre-process‘ our distributions.
For an in-depth explanation of this technique see [25],
[35]. Recall that we write f, g, h for the probability
mass functions of PX,PY,PZ respectively, from which
we observe the samples X,Y, Z of size n, n,m re-
spectively. Recall also that the null hypothesis is that
∥f − h∥2 ≤ crε/

√
k while the alternative says that

∥g−h∥2 ≤ crε/
√
k, with ∥f−g∥2 ≥ 2ε/

√
k guaranteed

under both. In the following section we use the standard
inequality P(λ−x ≥ Poi(λ)) ≤ exp(− x2

2(λ+x) ) valid for
all x ≥ 0 repeatedly. We also utilize the identity

E

[
1

Poi(λ) + 1

]
=

{
1 if λ = 0
1−e−λ

λ if λ > 0,
(142)

which is easily verified by direct calculation. Finally, the
following Lemma will come handy.

Proposition 10. [35, Corollary 11.6] Given t samples
from an unknown discrete distribution p, there exists
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an algorithm that produces an estimate ∥̂p∥22 with the
property

P

(
∥̂p∥22 /∈

(
1

2
∥p∥22,

3

2
∥p∥22

))
≲

1

∥p∥2t
, (143)

where the implied constant is universal.

First we describe a random “filter” F : PD(k) →
PD(K) that maps distributions on [k] to distributions on
the inflated alphabet [K]. Let (nX, nY, nZ) =

1
2 (n∧k, n∧

k,m ∧ k) and let NX ∼ Poi(nX/2) independently of all
other randomness, and define NY, NZ similarly. We take
the first NX, NY, NZ samples from the data sets X,Y, Z
respectively. In the event NX ∨ NY > n or NZ > m
let our output to the likelihood-free hypothesis test be
arbitrary, this happens with exponentially small probabil-
ity. Let NX

i be the number of the samples X1, . . . , XNX

falling in bin i, so that NX
i ∼ Poi(nXfi/2) independently

for each i ∈ [k], and define NY
i , N

Z
i analogously. The

filter F is defined as follows: divide each support element
i ∈ {1, 2, . . . , k} uniformly into 1+NX

i +N
Y
i +N

Z
i bins.

The filter has the following properties trivially:
1) The construction succeeds with probability ≥ 1 −

3 exp(−n ∧ m ∧ k/16), focus on this event from
here on.

2) The construction uses at most nX, nY, nZ samples
from X,Y, Z respectively and satisfies K ≤ 5k/2.

3) For any u, v ∈ PD(k) we have TV(F (u), F (v)) =
TV(u, v) and ∥F (u)− F (v)∥2 ≤ ∥u− v∥2.

4) Given a sample from an unknown u ∈ PD(k) we
can generate a sample from F (u) and vice-versa.

Let f̃ ≜ F (f) be the probability mass function after
processing and define g̃, h̃ analogously. By properties 1−
2 of the filter, we may assume with probability 99% that
the new alphabet’s size is at most 5k/2 and that we used
at most half of our samples X,Y, Z. We immediately
get 2ε ≤ ∥f − g∥1 = ∥f̃ − g̃∥1 ≤

√
5k/2∥f̃ − g̃∥2 and

∥f̃ − h̃∥2 ≤ ∥f − h∥2, ∥g̃− h̃∥2 ≤ ∥g− h∥2. Notice that∑
i∈[K]

f̃ig̃i =
∑
i∈[k]

figi
1 +NX

i +NY
i +NZ

i

(144)

holds, and similar statements can be derived for the inner
product between f̃ , h̃ etc. Recall that we set

α = max

{
1,min

{
k

n
,
k

m

}}
. (145)

Adopting the convention 0/0 = 1 and using (142) we
can bound inner products between the mass functions as

E
[
Bf̃ h̃ +Bg̃h̃

]
= E

[
⟨f̃ h̃⟩+ ⟨g̃h̃⟩

]
(146)

≤ 4
∑
i∈[k]

fihi + gihi
(n ∧ k)(fi + gi) + (m ∧ k)hi

(147)

≤ 8

(n ∨m) ∧ k
=

8α

k
(148)

E
[
Bf̃ f̃ +Bg̃g̃

]
= E

[
∥f̃∥22 + ∥g̃∥22

]
(149)

≤ 4
∑
i∈[k]

f2i + g2i
(n ∧ k)(fi + gi) + (m ∧ k)hi

(150)

≤ 8

n ∧ k
(151)

E∥h̃∥22 ≤ 4
∑
i∈[k]

h2i
(n ∧ k)(fi + gi) + (m ∧ k)hi

(152)

≤ 4

m ∧ k
. (153)

By Markov’s inequality we may assume that the inequal-
ities in the preceding display hold not only in expectation
but with 99% probability overall with universal constants.
Notice that under the null hypothesis ∥f̃−h̃∥2 ≤ crε/

√
k

and thus ∥f̃∥2 ≤ ∥h̃∥2 + crε/
√
k ≤ ∥f̃∥2 + 2crε/

√
k,

and similarly with f̃ replaced by g̃ under the alternative.
We restrict our attention to cr ∈ (0, 1) so that cr is
treated as a constant where appropriate. Notice that
ε/
√
k ≲ 1/

√
(n ∨m) ∧ k holds trivially. Thus, we

obtain ∥f̃∥2 ∨ ∥h̃∥2 ≤ c/
√
(m ∨ n) ∧ k under the null

and ∥g̃∥2∨∥h̃∥2 ≤ c/
√
(n ∨m) ∧ k under the alternative

for a universal constant c. We would like to ensure that

∥f̃∥2 ∨ ∥g̃∥2 ∨ ∥h̃∥2 ≲
1√

(m ∨ n) ∧ k
=

√
α

k
. (154)

To this end we apply Proposition 10 using (n/4, n/4)
of the remaining, transformed but otherwise untouched

X,Y samples. Let ∥̂f̃∥22, ∥̂g̃∥22 denote the estimates,
which lie in ( 12∥f̃∥

2
2,

3
2∥f̃∥

2
2) and ( 12∥g̃∥

2
2,

3
2∥g̃∥

2
2) re-

spectively, with probability at least 1 − O((|f̃∥−1
2 +

∥g̃∥−1
2 )/n) ≥ 1 − O(

√
k/n), since ∥f̃∥2 ∧ ∥g̃∥2 ≥√

2/(5k) by the Cauchy-Schwarz inequality. Assuming
that n ≳

√
k this probability can be taken to be

arbitrarily high, say 99%. Now we perform the following

procedure: if ∥̂f̃∥22 > 3
2c

2/((n ∨m) ∧ k) reject the null
hypothesis, otherwise if ∥̂g̃∥22 > 3

2c
2/((n ∨ m) ∧ k)

accept the null hypothesis, otherwise proceed with the
assumption that (154) holds. By design this process,
on our 97% ≤ probability event of interest, correctly
identifies the hypothesis or correctly concludes that (154)
holds. The last step of the reduction is ensuring that the



quantities Af̃ f̃ h̃, Ag̃g̃h̃, Ah̃f̃ g̃, Af̃ f̃0, Ag̃g̃0 are small. The
first two and last two may be bounded easily as

Af̃ f̃ h̃ +Ag̃g̃h̃ = ⟨f̃(f̃ − h̃)2⟩+ ⟨g̃(g̃ − h̃)2⟩ (155)

≤ ∥f̃∥2∥f̃ − h̃∥24 + ∥g̃∥2∥g̃ − h̃∥24 (156)

≲
∥f̃ − h̃∥22 + ∥g̃ − h̃∥22√

(n ∨m) ∧ k
(157)

≲
∥f̃ − g̃∥22 + c2r ε

2/k√
(n ∨m) ∧ k

(158)

≲
∥f̃ − g̃∥22√
(n ∨m) ∧ k

(159)

=

√
α

k
∥f̃ − g̃∥22 (160)

Af̃ f̃0 +Ag̃g̃0 = ∥f̃∥33 + ∥g̃∥33 ≤ ∥f̃∥32 + ∥g̃∥32 (161)

≲
1

((n ∨m) ∧ k)3/2
=
(α
k

)3/2
. (162)

To bound Ah̃f̃ g̃ we need a more sophisticated method.
Recall that by definition

Ah̃f̃ g̃ =
∑
i∈[k]

hi(fi − gi)
2

(1 +NX
i +NY

i +NZ
i )

2
. (163)

Fix an i ∈ [k] and let P ≜ NX
i +NY

i +NZ
i ∼ Poi((n ∧

k)(fi + gi)/4 + (m ∧ k)hi/4) and take a constant c >
0 to be specified. Assuming that i is such that EP ≥
c log(k) and taking k large enough so that c log(k) ≥ 2,
we clearly have

P

(
1

1 + P
>
c log(k)

EP

)
(164)

≤ exp

(
−1

2

(EP (1− 1
c log(k) ) + 1)2

EP (2− 1
c log(k) ) + 1

)
(165)

≤ exp

(
− 1

16
EP

)
(166)

≤ 1

kc/16
. (167)

Choosing c = 32 and taking a union bound, the inequal-
ity

Ah̃f̃ g̃ ≲
log(k)

m ∧ k
∑
i∈[k]

(fi − gi)
2

1 +NX
i +NY

i +NZ
i

(168)

≍ log(k)

m ∧ k
∥f̃ − g̃∥22 (169)

holds with probability at least 1 − 1/k. Using that
∥h/f∥∞ ∧ ∥h/g∥∞ ≲ 1 by assumption, we obtain

Ah̃f̃ g̃ ≲ log(k)
n∧k ∥f̃ − g̃∥22 similarly. Combining the two

bounds yields

Ah̃f̃ g̃ ≲
log(k)

(m ∨ n) ∧ k
∥f̃ − g̃∥22 (170)

=
log(k)α

k
∥f̃ − g̃∥22. (171)

To summarize, under the assumptions that n ≳
√
k, and

at the cost of inflating the alphabet size to at most 5
2k and

a probability of error at most 3% + 1
k , we may assume

that the inequalities (154), (160), (162) and (170) hold
with universal constants.

Applying Proposition 5. We only analyse the type-
I error, as the type-II error follows analogously. As
explained earlier, we apply the test 1{T−d

LF ≥ 0} to
the transformed samples with probability mass functions
f̃ , g̃, h̃. Note that taking cr small eonugh shows that

∥g̃ − h̃∥22 − ∥f̃ − h̃∥22 ≳ ∥f̃ − g̃∥22 (172)

for a universal implied constant. Therefore, by Proposi-
tion 5 we see that −ET−d

LF ≥ c∥f̃ − g̃∥22 + R for some
universal constant c > 0, where the residual term R can
be bounded as

|R| =

∣∣∣∣∣∥f̃∥22 − ∥g̃∥22
n

∣∣∣∣∣ (173)

≲
∥f̃ − g̃∥2

n
√
k ∧ (m ∨ n)

, (174)

where we used (154). We have −ET−d
LF ≳ ∥f̃ − g̃∥22

provided n ≳ 1/(∥f̃ − g̃∥2
√
k ∧ (m ∨ n)) ≍

√
α/ε,

which we assume from here on. Plugging in the bounds
derived above, the test 1{TLF ≥ 0} on the transformed
observations has type-I probability of error bounded by
1/3 provided∥∥∥f̃ − g̃

∥∥∥4
2
≳

1

n

√
α

k
∥f̃ − g̃∥22

+
1

m

log(k)α

k
∥f̃ − g̃∥22

+
α

k

(
1

nm
+

1

n2

)
(175)

for a small enough implied constant on the left. Looking
at each term separately yields the sufficient conditions

m ≳
log(k)α

ε2︸ ︷︷ ︸
(I)

& n ≳

√
kα

ε2
& mn ≳

kα

ε4
. (176)
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The final step is to check that the sufficient conditions
in (176) are implied by what is indicated in the statement
of Theorem 2. Recall from the statement of the Theorem,
that it states that

m ≳
log(k)

ε2
& n ≳

√
kα

ε2
& mn ≳

k log(k)α

ε4
(177)

is sufficient to successfully perform the test, where we
have replaced the generic ≳log(k) notation with the pre-
cise dependence on log(k) that we require. Note that the
only difference between (176) and (177) is the condition
on m, that is, the first term in the equations (176) and
(177). Suppose now that (177) holds, and let us split this
discussion into cases.

1) Suppose max{m,n} ≥ k. In this case α = 1, and
(I) is implied by m ≳ log(k)/ε2. For this the first
condition of (177) is clearly sufficient.

2) Suppose n ≤ m ≤ k. In this case α = k/m, and
(I) is implied by m ≳

√
k log(k)/ε. By the third

condition of (177) we know that m2n ≳ k2/ε4.
Using that n ≤ m, this implies that m ≳ k2/3/ε4/3,
which is clearly sufficient.

3) Suppose m ≤ n ≤ k. In this case α = k/n, and (I)
is implied by mn ≳ k log(k)/ε2. By the third con-
dition of (177) we know that mn2 ≳ k2 log(k)/ε4.
After noting that n ≤ k we get mn ≳ k log(k)/ε4,
which is sufficient.

The diagonal. See the discussion at the end of the
proof for PDb.

APPENDIX B
LOWER BOUNDS OF THEOREM 1 AND 2

Let M(X ) be the set of all probability measures on
some space X , and P ⊆ M(X ) be some family of
distributions. In this section we prove lower bounds for
likelihood-free hypothesis testing problems. For clarity,
let us formally state the problem as testing between the
null hypothesis{

P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
X :

PX,PY ∈ P
& TV(PX,PY) ≥ ε

}
(178)

versus the alternative hypothesis{
P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
Y :

PX,PY ∈ P
& TV(PX,PY) ≥ ε

}
(179)

Our strategy for proving lower bounds relies on the
following well known result that

inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i)

≥ 1

2
(1− TV(EP0,EP1))−

∑
i

P(Pi /∈ Hi),
(180)

which we recorded in Lemma 4. The following will also
be used multiple times throughout:

Lemma 5 ([39, Lemmas 2.3 and 2.4]). For any proba-
bility measures P0,P1,

1

4
H4(P0,P1) ≤ TV2(P0,P1) ≤ H2(P0,P1)

≤ KL(P0∥P1) ≤ χ2(P0∥P1).
(181)

Note that some of the inequalities in Lemma 5 can be
improved, but since such improvements have no effect on
our results, we present their simplest available version.
The inequalities between TV and H are attributed to Le
Cam, while the bound TV ≤

√
KL/2 is due to Pinsker.

The use of the χ2-divergence for bounding the total
variation distance between mixtures of products was
pioneered by Ingster [69], and is sometimes referred to
as the Ingster-trick.

In our bounds we will also rely on the following simple
technical result.

Lemma 6. Suppose that a, b, c > 0 and N =
(N1, . . . , Nk) ∼ Multinomial(n, ( 1k , . . . ,

1
k )). Then

EN
∏
j∈[k]

(a+ b(1 + c)Nj ) ≤ (a+ becn/k)k. (182)

Recall that the necessity of m ≳ nHT(ε,P) and n ≳
nGoF(ε,P) were shown in Proposition 1. Thus, most of
our work lies in obtaining the lower bound on the product
mn.

A. The Class PH

Proposition 11. For any β > 0, C > 1 and d ≥ 1 there
exists a finite c independent of ε such that

c

(m,n) :

m ≥ 1/ε2

& n ≥ ε−(2β+d/2)/β

& mn ≥ ε−2(2β+d/2)/β


⊇ RLF(ε,PH(β, d, C))

(183)

for all ε ∈ (0, 1).

Proof: Adversarial construction. Take a smooth
function h : Rd → R supported on of [0, 1]d with∫
[0,1]d

h(x)dx = 0 and
∫
[0,1]d

h(x)2dx = 1. Let κ ≥ 1

be an integer, and for j ∈ [κ]d define the scaled and
translated functions hj as

hj(x) = κd/2h(κx− j + 1). (184)



Then hj is supported on the cube [(j − 1)/κ, j/κ]
and

∫
[0,1]d

hj(x)
2dx = 1, where we write j/κ =

(j1/κ, . . . , jd/κ). Let ρ > 0 be small and for each
η ∈ {−1, 0, 1}κd

define the function

fη(x) = 1 + ρ
∑
j∈[κ]d

ηjhj(x). (185)

In particular, f0 = 1 is the uniform density. Clearly∫
[0,1]d

fη(x)dx = 1, and to make it positive we choose
ρ, κ such that ρκd/2∥h∥∞ ≤ 1/2. By [41], choosing

ρκd/2+β ≤ C/(4∥h∥C⌊β⌋ ∨ 2∥h∥C⌊β⌋+1) (186)

ensures that fη ∈ P(β, d, C). Note also that ∥fη−1∥1 =
ρκd/2. For ε ∈ (0, 1) we set κ ≍ ε−1/β and ρ ≍
ε(2β+d)/(2β). These ensure that (186) and TV(fη, f0) ≳
ε hold, where as usual the constants may depend on
(β, d, C). Noting that ∥

√
fη − 1∥2 ≍ ∥fη − 1∥1 ≳ ε,

we immediately obtain that m ≳ 1/ε2 is necessary for
testing, by reduction from binary hypothesis testing (32).
Observe also that for any η, η′,∫

[0,1]d
fη(x)fη′(x)dx = 1 + ρ2⟨η, η′⟩ (187)

which will be used later.
Goodness-of-fit testing. Let η be drawn uniformly at

random. We show that TV(f⊗n0 ,Ef⊗nη ) can be made ar-
bitrarily small provided n ≲ ε−(2β+d/2)/β , which yields
a lower bound on n via reduction from goodness-of-fit
testing (34). By Lemma 5 we can focus on bounding the
χ2 divergence. Via Ingster’s trick we have

χ2(Eη[f
⊗n
η ], f⊗n0 ) + 1

=

∫
[0,1]d×···×[0,1]d

(
Eη

n∏
i=1

fη(xi)

)2

dx (188)

= Eηη′
n∏
i=1

(∫
[0,1]d

fη(x)fη′(x)dx

)
, (189)

where η, η′ are i.i.d.. By (187) and the inequalities 1 +
x ≤ ex, cosh(x) ≤ exp(x2) for all x ∈ R, we have

= Eηη′
(
1 + ρ2⟨η, η′⟩

)n
(190)

≤ Eηη′ exp(nρ
2⟨η, η′⟩) (191)

= cosh(nρ2)κ
d

(192)

≤ exp(n2ρ4κd). (193)

Thus, goodness-of-fit testing is impossible unless n ≳
ρ−2κ−d/2 ≍ 1/ε(2β+d/2)/β .

Likelihood-free hypothesis testing. We are now ready
to show the lower bound on the product mn. Once again
η ∈ {±1}κd

is drawn uniformly at random and we apply
Lemma 4 with the choices P0 = f⊗nη ⊗ f⊗n0 ⊗ f⊗mη
against P1 = f⊗nη ⊗ f⊗n+m0 . Let P0,XY Z ,P1,XY Z

denote the joint distribution of the samples X,Y, Z
under the measures EP0,EP1 respectively. By Pinsker’s
inequality and the chain rule we have

TV(P0,XY Z ,P1,XY Z)
2

= TV(P0,XZ ,P1,XZ)
2 (194)

≤ KL(P0,XZ∥P1,XZ) (195)
= KL(P0,Z|X∥P1,Z|X |P0,X)

+ KL(P0,X∥P1,X)︸ ︷︷ ︸
=0

, (196)

where the last line uses that the marginal of X is
equal under both measures. Clearly P1,Z|X is simply
Unif([0, 1]d)⊗m and P0,X ,P0,Z|X have densities Eηf⊗nη
and Eη|Xf⊗mη respectively. Given X , let η′ be an in-
dependent copy of η from the posterior given X . By
Ingster’s trick we have

KL(P0,Z|X∥P1,Z|X |P0,X)

≤ χ2(P0,Z|X∥P1,Z|X |P0,X) (197)

= EX

∫
[0,1]md

Eη|XEη′|X

m∏
i=1

fη(zi)fη′(zi)dz

− 1 (198)

= −1 + Eηη′(1 + ρ2⟨η, η′⟩)m, (199)

where the last line uses (187). Let N = (N1, . . . , Nκd)
be the vector of counts indicating the number of Xi that
fall into each bin {[(j − 1)/κ, j/κ]}j∈[κ]d . Clearly N d∼
Multinomial(n, ( 1

κd , . . . ,
1
κd )). Using that ηjη′j depends

on only those Xi that fall in bin j and the inequality
1 + x ≤ exp(x) valid for all x ∈ R, we can write

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1

≤ ENEηη′|N
∏
j∈[κ]d

exp(ρ2mηjη
′
j) (200)

= EN
∏
j∈[κ]d

Eηjη′j |Nj
exp(ρ2mηjη

′
j). (201)

We now focus on a particular bin j. Define the bin-
conditional densities

p± = κd(1± ρhj)1[(j−1)/κ,j/κ], (202)

where we drop the dependence on j in the notation. Let
X(j) ≜ (Xi1 , . . . , XiNj

) be those Xi that fall in bin j.
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Note that {i1, . . . , iNj} is a uniformly distributed size Nj
subset of [n] and given Nj , the density of Xi1 , . . . , XiNj

is 1
2 (p

⊗Nj

+ + p
⊗Nj

− ). We can calculate

P(ηjη
′
j = 1|Nj) = EX(j)|Nj

P(ηjη
′
j = 1|X(j)) (203)

= EX(j)|Nj

[
P(ηj = 1|X(j))2

+ P(ηj = −1|X(j))2
]

(204)

= EX(j)|Nj

[
1
4 (p

⊗Nj

+ )2 + 1
4 (p

⊗Nj

− )2

1
4 (p

⊗Nj

+ + p
⊗Nj

− )2

]
(205)

=
1

2
+

1

4

(
χ2(p

⊗Nj

+ ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− ))

+ χ2(p
⊗Nj

− ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− ))
)
. (206)

By convexity of the χ2 divergence in its arguments and
tensorization, we have

P(ηjη
′
j = 1|Nj) ≤

1

2
+

1

8

(
χ2(p

⊗Nj

+ ∥p⊗Nj

− )

+ χ2(p
⊗Nj

− ∥p⊗Nj

+ )
)

(207)

=
1

4
+

1

8

∑
ω∈{±1}

(
κd
∫
[ j−1

κ , jκ ]

(1 + ωρhj(x))
2

1− ωρhj(x)
dx

)Nj

·
(208)

Using that ρ∥hj∥∞ ≤ 1/2 by construction, we have∫
[(j−1)/κ,j/κ]

(1 + ρhj(x))
2

1− ρhj(x)
dx

=
1

κd
+

∫
[ j−1

κ , jκ ]

4ρ2h2j (x)

1− ρhj(x)
dx (209)

≤ 1

κd
+ 8ρ2. (210)

The same bound is obtained for the other integral term.
We get

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1

≤ EN
∏
j∈[κ]d

( sinh(ρ2m)

2

(
1 + (1 + 8ρ2κd)Nj

)
+ e−ρ

2m
)
= (†). (211)

The final step is to apply Lemma 6 to pass the expecta-
tion through the product. Assuming that m∨n ≲ ρ−2 ≍
ε−(2β+d)/β for a small enough implied constant, using
the inequalities ex ≤ 1 + x + x2, 1 − x ≤ e−x ≤

1 − x + x2/2 valid for all x ∈ [0, 1], and Lemma 6,
we obtain

(†) ≤ (e−ρ
2m +

sinh(ρ2m)

2
(1 + e8ρ

2n))κ
d

(212)

≤ (1 + cρ4mn)κ
d

(213)

≤ exp(cρ4κdmn) (214)

for a universal constant c > 0. Therefore, if m ∨ n ≲
ε−(2β+d)/β likelihood-free hypothesis testing is impos-
sible unless mn ≳ ρ−4κ−d ≍ 1/ε2(2β+d/2)/β .

Suppose now that m ∨ n ≳ ε−(2β+d)/β instead. We
have two cases:

1) If n ≳ ε−(2β+d)/β then from Proposition 7 we
know that m ≍ 1/ε2 is enough for achievability.
However, by the first part of the proof we know
that m ≳ 1/ε2 must always hold, which provides
the matching lower bound in this case.

2) If m ≳ ε−(2β+d)/β then we can assume m ≳ n also
holds, otherwise the first case above would apply.
From the goodness-of-fit testing lower bound we
know that n ≳ ε−(2β+d/2)/β must always hold,
and from Proposition 7 we know that (m,n) ≍
(ε−(2β+d/2)/β , ε−(2β+d/2)/β) is achievable, so we
get matching bounds in this case too.

Summarizing, we’ve shown that for succesful testing
m ≳ 1/ε2, n ≳ 1/ε(2β+d/2)/β and mn ≳ ε−2(2β+d/2)/β

must hold, which concludes our proof.

B. The Class PG

Proposition 12. For any s, C > 0 there exists a finite
constant c independent of ε such that

c

(m,n) :

m ≥ 1/ε2

& n ≥ ε−(2s+1/2)/s

& mn ≥ ε−2(2s+1/2)/s


⊇ RLF(ε,PG(s, C)) (215)

for all ε ∈ (0, 1).

Proof: Adversarial construction. Let γ ∈ ℓ1 be
a non-negative sequence, and let θ ∼ ⊗∞

k=1N (0, γk).
Define the random measure µθ = ⊗∞

j=1N (θj , 1). Let
ε ∈ (0, 1) be given. For our proofs we use

γk =

{
c1ε

(2s+1)/s for 1 ≤ k ≤ c2ε
−1/s

0 otherwise
(216)



for appropriate constants c1, c2. Recall our definition of
the Sobolev ellipsoid E(s, C) with associated sobolev
norm ∥ · ∥s. We have

(E∥θ∥s)2 ≤ E
∞∑
j=1

j2sθ2i = ∥√γ∥2s (217)

= c1ε
(2s+1)/s

c2ε
−1/s∑
j=1

j2s ≤ c1c
2s+1
2 (218)

TV(Pγ ,P0) ≥
1 ∧ ∥θ∥2

200
, (219)

where last line holds by [70, Theorem 1.2].
First, we need to verify that our construction is valid,

that is, that Pγ ∈ PG(s, C) and TV(Pγ ,P0) ≥ ε with
high probability. For standard Gaussian Z ∼ N (0, 1) it
holds that

E exp
(
λ(Z2 − 1)

)
≤ exp(2λ2) (220)

for all |λ| ≤ 1/4. Therefore, for a sequence of indepen-
dent standard Gaussians Z1, Z2, . . . we get

E exp

λ ∞∑
j=1

γj(Z
2
j − 1)

 ≤ exp(2λ2∥γ∥22) (221)

for all |λ| ≤ minj(4γj)
−1 = c−1

1 ε−(2s+1)/s/4. Assum-
ing that c1ε(2s+1)/s ≤ ∥γ∥2, standard sub-Exponential
concentration bounds imply that there exists a universal
constant c3 > 0 such that

P(∥θ∥22 − E∥θ∥22 ≤ −t) ≤ exp(− c3t

∥γ∥2
) (222)

for all t ≥ 0. Since E∥θ∥22 = ∥γ∥1 = c1c2ε
2, and ∥γ∥22 =

c2c
2
1ε

4s+1
s , we can set t = 1

2∥θ∥
2
2 to get

P(∥θ∥22 ≤ 1

2
c1c2ε

2) ≤ exp(−1

2
c3
√
c2ε

−1/(2s)). (223)

Now choose c1 and c2 to satisfy

100c1c
2s+1
2 = C and c1c2 = 2. (224)

and ε small enough to satisfy

c1ε
(2s+1)/s ≤ ∥γ∥2 =

√
c1c1ε

(2s+1/2)/s, (225)

and
1

2
c3
√
c2ε

−1/(2s) ≥ log(100). (226)

Long story short, these conditions ensure that P(µγ ∈
PG(s, C),TV(µγ , µ0) ≥ ε) ≥ 0.98 for all ε small
enough in terms of C and s, and therefore we can
proceed to computation using Lemma 4.

Note that we immediately get the binary hypothesis
testing lower bound m ≳ 1/ε2 via our reduction (34),
as H(µ0, µ√

γ) ≍ TV(µ0, µ√
γ) =

√
2ε by Lemma 2 and

the choice (224).
Goodness-of-fit testing. We show that TV(µ⊗n

0 ,Eµ⊗n
γ )

can be made arbitrarily small as long as n ≲
1/ε(2s+1/2)/s, which yields a lower bound on n via
reduction from goodness-of-fit testing (34). Let us com-
pute the distribution Eµ⊗n

γ . By independence clearly
Eµ⊗n

γ = ⊗∞
k=1Eθ∼N (0,γk)N (θ, 1)⊗n. Focusing on the

inner term and and dropping the subscript k, for the
density we have

Eθ∼N (0,γ)

 1

(2π)n/2
exp

−1

2

n∑
j=1

(xj − θ)2


∝ exp

(
−∥x∥22

2

)
E exp

(
−n
2
(θ2 − 2θx̄)

)
,

(227)
where we write x̄ ≜ 1

n

∑
j xj . Looking at just the term

involving θ, we have

E exp
(
−n
2
(θ2 − 2θx̄)

)
∝
∫

exp

(
−1

2
(θ2(n+

1

γ
)− 2θnx̄)

)
dθ (228)

∝ exp

(
1

2

n2x̄2

n+ 1
γ

)
. (229)

Putting everything together, we see that Eµ⊗n
γ =

⊗∞
k=1N (0,Θ−1

k ), where

Θk ≜ In − γk
1 + nγk

1n1
T
n. (230)

Thus, using Lemma 5 we obtain

TV2(µ⊗n
0 ,Eµ⊗n

γ )

≤
∞∑
k=1

KL
(
N (0, In)∥N

(
0,Θ−1

k

))
(231)

=
1

2

∞∑
k=1

(
− nγk
nγk + 1

+ log(1 + nγk)

)
(232)

≤ 1

2

∞∑
k=1

n2γ2k
1 + nγk

≲
∞∑
k=1

n2γ2k. (233)

Taking γ as in (216) gives

TV2(µ⊗n
0 ,Eµ⊗n

γ ) ≲ n2ε2(2s+1/2)/s. (234)

Therefore, goodness-of-fit testing is impossible unless
n ≳ 1/ε(2s+1/2)/s as desired.
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Likelihood-free hypothesis testing. We apply Lemma
4 with measures P0 = µ⊗n

γ ⊗ µ⊗n
0 ⊗ µ⊗m

γ and P1 =
µ⊗n
γ ⊗ µ⊗n

0 ⊗ µ⊗m
0 . Define the matrices

Θ0 =

1n1
T
n 0 1n1

T
m

0 0 0
1m1

T
n 0 1m1

T
m


Θ1 =

1n1T
n 0 0

0 0 0
0 0 0

 .

By an analogous calculation to that in the previous
paragraph, we obtain

EP0 =
∞⊗
k=1

N

(
0,
(
I2n+m − Θ0

n+m+ 1
γk

)−1
)

(235)

≜ ⊗∞
k=1N (0,Σ0k) (236)

EP1 =
∞⊗
k=1

N

(
0,
(
I2n+m − Θ1

n+ 1
γk

)−1
)

(237)

≜ ⊗∞
k=1N (0,Σ1k). (238)

By the Sherman-Morrison formula, we have

Σ0k = I2n+m + γk

1n1
T
n 0 1n1

T
m

0 0 0
1m1

T
n 0 1m1

T
m

 (239)

Therefore, by Pinsker’s inequality and the closed form
expression for the KL-divergence between centered
Gaussians, we obtain

TV2(EP0,EP1) ≤ KL(EP0∥EP1) (240)

=
1

2

∞∑
k=1

(
γkm− log

(
γk(n+ 2m) + 1

γk(n+m) + 1

))
. (241)

Once again we choose γ as in (216). Using the inequality
log(1 + x) ≥ x− x2 valid for all x ≥ 0 we obtain

TV2(EP0,EP1) ≲ ε−2(2s+1/2)/s(m2 +mn). (242)

Therefore, likelihood-free hypothesis testing is impossi-
ble unless m ≳ ε−(2s+1/2)/s or nm ≳ ε−2(2s+1/2)/s.
Note that we already have the lower bound n ≳
ε−(2s+1/2)/s by reduction from goodness-of-fit testing
(34), so that m ≳ ε−(2s+1/2)/s automatically implies
nm ≳ ε−2(2s+1/2)/s. Combining everything we get the
desired bounds.

C. The Classes PDb and PD

Our first result in this section derives tight minimax
lower bounds for the class PDb. Since PD ⊃ PDb these
lower bounds immediately carry over to the larger class.
However, to get tight lower bounds for all regimes for
PD, we have to prove additional results in Proposi-
tions 14 and 15 below.

Proposition 13. For any C > 1 there exists a finite
constant c independent of ε and k, such that

c

(m,n) :

m ≥ 1/ε2

& n ≥
√
k/ε2

& mn ≥ k/ε4


⊇ RLF(ε,PDb(k,C)) ⊇ RLF(ε,PD(k)) (243)

for all ε ∈ (0, 1) and k ≥ 2.

Proof: The second inclusion is trivial. For the first
inclusion we proceed analogously to the case of PH.
Adversarial construction. Let k be an integer and ε ∈
(0, 1). For η ∈ {−1, 1}k define the distribution pη on
[2k] by

pη(2j − 1) =
1

2k
(1 + ηjε) (244)

pη(2j) =
1

2k
(1− ηjε), (245)

for j ∈ [k]. Clearly H(pη, p0) ≍ TV(pη, p0) = ε, where
p0 = Unif[2k], so that by reduction from binary hy-
pothesis testing (34) we get the lower bound m ≳ 1/ε2.
Observe also that for any η, η′ ∈ {±1}k,∑

j∈[2k]

pη(j)pη′(j) =
1

2k

(
1 +

ε2⟨η, η′⟩
k

)
. (246)

Goodness-of-fit testing. Let η be uniformly random.
We show that TV(p⊗n0 ,Ep⊗nη ) can be made arbitrarily
small as long as n ≲

√
k/ε2, which yields the corre-

sponding lower bound on n by reduction from goodness-
of-fit testing (34). Once again, by Lemma 5 we focus on
the χ2 divergence. We have

χ2(Ep⊗nη ∥p⊗n0 ) + 1

= (2k)n
∑

j∈[2k]n

Eηη′
n∏
i=1

pη(ji)pη′(ji) (247)

= Eηη′
(
1 +

ε2⟨η, η′⟩
k

)n
(248)

≤ exp(n2ε4/k) (249)



where the penultimate line follows from (246) and
the last line via the same argument as in B-A. Thus,
goodness-of-fit testing is impossible unless n ≳

√
k/ε2.

Likelihood-free hypothesis testing. We apply Lemma 4
with the two random measures P0 = p⊗nη ⊗ p⊗n0 ⊗ p⊗mη
and P1 = p⊗nη ⊗p⊗(n+m)

0 . Analogously to the case of PH,
let P0,XY Z ,P1,XY Z respectively denote the distribution
of the observations X,Y, Z under EP0,EP1 respectively.
As for PH, we have

TV2(P0,XY Z ,P1,XY Z)

≤ KL(P0,XY Z∥P1,XY Z) (250)
≤ KL(P0,Z|X∥P1,Z|X |P0,X). (251)

For any X the distribution P1,Z|X is uniform, and
P0,Z|X ,P0,X have pmf Eη|Xp⊗mη and Eηp⊗nη respec-
tively. Once again, by Lemma 5 we may turn our
attention to the χ2-divergence. Given X , let η′ have the
same distribution as η and be independent of it. Then

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1

= (2k)mEX
∑

j∈[2k]m

Eη|XEη′|X

n∏
i=1

pη(ji)pη′(ji)

(252)

= Eηη′
(
1 +

ε2⟨η, η′⟩
k

)m
(253)

≤ Eηη′
∏
j∈[k]

exp

(
ε2mηjη

′
j

k

)
, (254)

where we used Lemma 246. Let N = (N1, . . . , Nk)
be the vector of counts indicating the number of the
X1, . . . , Xn that fall into the bins {2j−1, 2j} for j ∈ [k].
Clearly N ∼ Mult(n, ( 1k , . . . ,

1
k )). Let us focus on a

specific bin {2j − 1, 2j} and define the bin-conditional
pmf

p±(x) =


1
2 (1± ε) if x = 2j − 1,
1
2 (1∓ ε) if x = 2j

0 otherwise,
(255)

where we drop the dependence on j in the notation.
Let Xi1 , . . . , XiNj

be the Nj observations falling in
{2j − 1, 2j}. Given Nj , the pmf of Xi1 , . . . , XiNj

is
1
2 (p

⊗Nj

+ + p
⊗Nj

− ). We have ηjη′j ∈ {±1} almost surely,
and analogously to Section B-A we may compute

P(ηjη
′
j = 1|Nj) = EX|Nj

P(ηjη
′
j = 1|X) (256)

= EX|Nj

[
P(ηj = 1|X)2 + P(ηj = −1|X)2

]
(257)

=
1

2
+

1

4

(
χ2(p

⊗Nj

+ ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− ))

+ χ2(p
⊗Nj

− ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )
)

(258)

≤ 1

2
+

1

8

(
χ2(p

⊗Nj

− ∥p⊗Nj

+ )

+ χ2(p
⊗Nj

+ ∥p⊗Nj

− )
)
. (259)

We can bound the two χ2-divergences by

χ2(p
⊗Nj

± ∥p⊗Nj

∓ ) + 1 =

(
1 + 3

2ε
2

1− ε2

)Nj

(260)

≤ (1 + 3ε2)Nj , (261)

provided ε ≤ c for some universal constant c > 0. Using
Lemma 6, we obtain the bound

EN
∏
j∈[k]

Eηη′|Nj
exp

(
ε2mηjη

′
j

k

)

≤ EN
∏
j∈[k]

(
sinh

(
ϵ2m
k

)
2

(1 + (1 + 2ε2)Nj )

+ exp

(
−ε

2m

k

))
(262)

≤

 sinh
(
ϵ2m
k

)
2

(1 + e
2ε2n

k ) + e−
ε2m
k

k

. (263)

Now, under the assumption that m∨n ≲ k/ε2 for some
small enough implied constant, the above can be further
bounded by

≤ (1 + c
ε4mn

k2
)k (264)

≤ exp(
cε4mn

k
), (265)

for a universal constant c > 0. In other words, for
n ∨ m ≲ k/ε2 likelihood-free hypothesis testing is
impossible unless mn ≳ k/ε4. The treatment of the
case m ∨ n ≳ k/ε2 is straightforward, and entirely
analogous to our discussion at the end of the proof
of Proposition 11, so we won’t repeat it here. This
completes the proof.

This takes care of the class PDb. To prove tight bounds
for PD in the large k regime, we have to work harder. Our
second lower bound, Proposition 14 below, proves tight
bounds in the regime n ≤ m and follows by reduction
to two-sample testing Proposition 1.
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Proposition 14. There exists a finite constant c indepen-
dent of ε and k,

c

(m,n) :
m ≥ 1/ε2

& n2m ≥ k2/ε4

& n ≤ m


⊇ RLF(ε,TV,PD) ∩ N2

n≤m (266)

for all k ≥ 2, ε ∈ (0, 2), where N2
n≤m = {(n,m) ∈ N2 :

n ≤ m}.

Proof: Follows from (37) and the lower bound
construction in [26].

1) Valiant’s Wishful Thinking Theorem: For our third
and final lower bound, which is tight in the regime m ≤
n, we apply a method developed by Valiant, which we
describe below.

Definition 6. For distributions p1, . . . , pℓ on [k] and
(n1, . . . , nℓ) ∈ Nℓ, we define the (n1, . . . , nℓ)-based
moments of (p1, . . . , pℓ) as

m(a1, . . . , aℓ) =
k∑
i=1

ℓ∏
j=1

(njpj(i))
aj (267)

for (a1, . . . , aℓ) ∈ Nℓ.

Let p+ = (p+1 , . . . , p
+
ℓ ) and p− = (p−1 , . . . , p

−
ℓ ) be

ℓ-tuples of distributions on [k] and suppose we observe
samples {X(i)}i∈[ℓ], where the number of observations
in X(i) is Poi(ni). Let H± denote the hypothesis that
the samples came from p±, up to an arbitrary relabeling
of the alphabet [k]. It can be shown that to test H+

against H−, we may assume without loss of generality
that our test is invariant under relabeling of the support,
or in other words, is a function of the fingerprints. The
fingerprint f of a sample {X(i)}i∈[ℓ] is the function
f : Nℓ → N which given (a1, . . . , aℓ) ∈ Nℓ counts the
number of bins in [k] which have exactly ai occurences
in the sample X(i).

Theorem 5 ([63, Wishful thinking theorem]). Suppose
that |p±i |∞ ≤ η/ni for all i ∈ [ℓ] for some η > 0, and
let m+ and m− denote the (n1, . . . , nℓ)-based moments
of p+, p− respectively. Let f± denote the distribution of
the fingerprint under H± respectively. Then

TV(f+, f−) ≤ 2(eηℓ − 1)

+ eℓ(η/2+log 3)
∑
a∈Nℓ

|m+(a)−m−(a)|√
1 +m+(a) ∨m−(a)

.
(268)

Proof: The proof is a straightforward adaptation of
[63] and thus we omit it.

Although Theorem 5 assumes a random (Poisson dis-
tributed) number of samples, the results carry over to the
deterministic case with no modification, due to the sub-
exponential concentration of the Poisson distribution. We
are ready to prove our likelihood-free hypothesis testing
lower bound using Theorem 5.

Proposition 15. There exists a finite constant c indepen-
dent of ε and k, such that

c

(m,n) :
m ≥ 1/ε2

& n2m ≥ k2/ε4

& m ≤ n


⊇ RLF(ε,TV,PD) ∩ N2

m≤n (269)

for all ε ∈ (0, 1) and k ≥ 2, where N2
m≤n = {(n,m) ∈

N2 : m ≤ n}.

Proof: We focus on the regime n ≤ k, as otherwise
the result is subsumed by Proposition 13. Suppose that
ε ∈ (0, 1/2), η = 0.01 (say) and n/η ≤ k/2. Define
γ = n/η and let p, q be pmfs on [k] with weight (1 −
ε)/γ on [γ] and k/4 light elements with weight 4ε/k on
[k/2, 3k/4] and [3k/4, k] respectively. To apply Valiant’s
wishful thinking theorem, we take p+ = (p, q, p) and
p− = (p, q, q) with corresponding hypotheses H±. The
(n, n,m)-based moments of p± are given by

1

na+bmc
m+(a, b, c) (270)

=


k, if a+ c = 0 and b = 0,(
1−ε
α

)a+b+c
α, if a+ c ≥ 1 and b ≥ 1,(

1−ε
α

)a+b+c
α+

(
4ε
k

)a+b+c k
4 , otherwise, and

1

na+bmc
m−(a, b, c) (271)

=


k, if a = 0 and b+ c = 0,(
1−ε
α

)a+b+c
α, if a ≥ 1 and b+ c ≥ 1,(

1−ε
α

)a+b+c
α+

(
4ε
k

)a+b+c k
4 , otherwise.

By the wishful thinking theorem we know that

TV(f+, f−) ≤ 0.061 (272)

+ 27.41
∑

a,b,c∈N

|m+(a, b, c)−m−(a, b, c)|√
1 + max(m+,m−)

.

(273)

Let us consider the possible values of |m+(a, b, c) −
m−(a, b, c)|. It is certainly zero if a ∧ b ≥ 1 or



a = b = c = 0. Suppose that a = 0 so that necessarily
b+ c ≥ 1. Then

1

nbmc
|m+(0, b, c)−m−(0, b, c)| =(

4ε

k

)b+c
k

4
1(min{b, c} ≥ 1).

(274)

Using the symmetry between a and b and that 1+m+∨
m− ≥ nbmc((1 − ε)/γ)b+cγ (for m+ ̸= m−), we can
bound the infinite sum above as

≲
∑
b,c≥1

nbmck1−(b+c)εb+c√
nbmcγ1−(b+c)(1− ε)b+c

(275)

≲
∑
b,c≥1

nb/2mc/2

(√
γ

k

)b+c−1

εb+c (276)

Plugging in γ = n/η ≍ n, and using m ≤ n ≤ k, we
obtain

TV(f+, f−)− 0.061

≲
∑
b,c≥1

nb+
c
2−

1
2mc/2 1

kb+c−1
εb+c (277)

=
n
√
mε2

k

∑
b,c≥0

(n
k

)b+ c
2
(m
k

) c
2

εb+c (278)

≤ n
√
mε2

k

∑
b,c≥0

εb+c (279)

≲
n
√
mε2

k
, (280)

where we use that ε < 1/2. Thus, likelihood-free
hypothesis testing is impossible for m ≤ n unless
n2m ≳ k2/ε4.

APPENDIX C
PROOF OF THEOREM 4

A. Upper Bound

We deduce the upper bound by applying the corre-
sponding result for PD as a black-box procedure.

Theorem 6 ([60]). For a constant independent of ε and
k,

nGoF(ε,H,PD) ≍
√
k/ε2. (281)

Write Gℓ for the regular grid of size ℓd on [0, 1]d and
let Pℓ denote the L2-projector onto the space of functions
piecewise constant on the cells of Gℓ. For convenience
let us re-state Proposition 3.

Proposition 16. For any β ∈ (0, 1], C > 1 and d ≥ 1
there exists a constant c > 0 such that

cH(f, g) ≤ H(Pκf, Pκg) ≤ H(f, g) (282)

holds for any f, g ∈ PH(β, d, C), provided we set κ =
(cε)−2/β .

With the above approximation result, the proof of
Theorem 4 is straightforward.

Proof of Theorem 4: Suppose we are testing
goodness-of-fit to f0 ∈ PH based on an i.i.d. sample
X1, . . . , Xn from f ∈ PH. Take κ ≍ ε−2/β and bin the
observations on Gκ, denoting the pmf of the resulting
distribution as pf . Then, under the alternative hypothesis
that H(f, f0) ≥ ε, by Proposition 3

ε ≲ H(Pκf0, Pκf) = H(pf0 , pf ). (283)

In particular, applying the algorithm achieving the upper
bound in Theorem 6 to the binned observations, we see
that n ≳

√
κd/ε2 = ε−(2β+d)/β samples suffice.

B. Lower Bound

The proof is extremely similar to the TV case, except
we put the perturbations at density level ε2 instead of 1.

Proof: Let ϕ : [0, 1] → [0, 1] be a smooth function
such that ϕ(x) = 0 for x ≤ 1/3 and ϕ(x) = 1 for
x ≥ 2/3. Let h : Rd → R be smooth, supported in [0, 1]d,
and satisfy

∫
[0,1]d

h(x)dx = 0 and
∫
[0,1]d

h(x)2dx = 1.
Given ε ∈ (0, 1) let

f0(x) = ε2 +
ϕ(x1)

∥ϕ∥1
(1− ε2), (284)

which is a density on [0, 1]d. For a large integer κ and
j ∈ [κ/3]× [κ]d−1 let

hj(x) = κd/2h(κx− j + 1) (285)

for x ∈ [0, 1]d. Then hj is supported on [(j −
1)/κ, j/κ] ⊆ [0, 1/3] × [0, 1]d−1 and

∫
h2j = 1. For

η ∈ {±1}[κ/3]×[κ]d−1

and ρ > 0 let

fη(x) = f0 + ρ
∑

j∈[κ/3]×[κ]d−1

ηjhj(x). (286)

Then fη is positive provided that ε2 ≥ ρκd/2|h|∞ ≍
ρκd/2. Further, ∥fη∥Cβ is of constant order provided
ρκd/2+β ≲ 1. Under these assumptions fη ∈ PH. Note
that the Hellinger distance between fη and f0 is

H2(f0, fη)
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=
∑

j:j1≤κ/3

∫
[ j−1

κ , jκ ]

(√
f0(x)−

√
fη(x)

)2

dx (287)

=
∑

j:j1≤κ/3

∫
[ j−1

κ , jκ ]

ρ2h2j (x)

(
√
f0(x) +

√
fη(x))2

dx (288)

≥
∑

j:j1≤κ/3

∫
[ j−1

κ , jκ ]

ρ2h2j (x)

4ε2
dx (289)

≳
ρ2κd

ε2
. (290)

Suppose we draw η uniformly at random. Via Ingster’s
trick we compute

χ2(Eηf
⊗n
η ∥f⊗n0 ) + 1

=

∫
Eηη′

n∏
i=1

fη(xi)fη′(xi)

f0(xi)
dx1 . . . dxn (291)

= Eηη′
(∫

fη(x)fη′(x)

f0(x)
dx

)n
. (292)

Looking at the integral term on the inside we get∫
fη(x)fη′(x)

f0(x)
dx

= 1 + ρ
∑
j

(ηj + η′j)

∫
hj(x)dx (293)

+ ρ2
∑
j

ηjη
′
j

∫
hj(x)

2

f0(x)
dx

= 1 +
ρ2

ε2

∑
j

ηjη
′
j

∫
hj(x)

2dx (294)

= 1 +
ρ2

ε2
⟨η, η′⟩, (295)

where we’ve used that hj and hj′ have disjoint support
unless j = j′,

∫
hj = 0,

∫
h2j = 1, and that f0(x) = ε2

for all x with x1 ≤ 1/3. Plugging in, using the inequal-
ities 1 + x ≤ exp(x) and cosh(x) ≤ exp(x2) we obtain

χ2(Eηf
⊗n
η ∥f⊗n0 ) + 1 ≤ Eηη′

(
1 +

ρ2

ε2
⟨η, η′⟩

)n
(296)

≤ Eηη′ exp

(
ρ2n

ε2
⟨η, η′⟩

)
(297)

= cosh(
ρ2n

ε2
)κ

d/3 (298)

≤ exp

(
ρ4n2κd

3ε4

)
. (299)

Choosing κ = ε−2/β and ρ = ε(2β+d)/β we see that
goodness-of-fit testing of f0 is impossible unless

n ≳
ε2

ρ2κd/2
= ε−

2β+d
β . (300)

APPENDIX D
AUXILIARY TECHNICAL RESULTS

A. Proof of Lemma 1

Proof: We prove the upper bound first. Let P0,P1 ∈
P be arbitrary. Then by Lemma 5,

inf
ψ

max
i=0,1

P⊗m
i (ψ ̸= i)

≤ inf
ψ

(
P⊗m
0 (ψ = 1) + P⊗m

1 (ψ = 0)
)

(301)

= 1− TV(P⊗m
0 ,P⊗m

1 ) (302)

≤ 1− 1

2
H2(P⊗m

0 ,P⊗m
1 ) ≜ (†). (303)

By tensorization of the Hellinger affinity, we have

H2(P⊗m
0 ,P⊗m

1 ) = 2− 2

(
1− 1

2
H2(P0,P1)

)m
.

(304)

Plugging in, along with 1 + x ≤ ex gives

(†) ≤ exp(−m
2
H2
(
P⊗m
0 ,P⊗m

1 )
)
. (305)

Taking m > 2 log(3)/H2(P0,P1) shows the existence of
a successful test. Let us turn to the lower bound. Using
Lemma 5 we have

inf
ψ

max
i=0,1

P⊗m
i (ψ ̸= i)

≥ 1

2

(
1− TV(P⊗m

0 ,P⊗m
1 )

)
(306)

≥ 1

2

(
1− H(P⊗m

0 ,P⊗m
1 )

)
. (307)

Note that it is enough to restrict the maximization in
Lemma 1 to P0,P1 ∈ P with H2(P0,P1) < 1. Now,
by (304) and the inequalities e−2x ≤ 1− x valid for all
x ∈ [0, 1/2] and 1 − x ≤ e−x valid for all x ∈ R, we
obtain

H2(P⊗m
0 ,P⊗m

1 ) = 2− 2

(
1− 1

2
H2(P0,P1)

)m
(308)

≤ 2− 2 exp(−mH2(P0,P1)) (309)

≤ 2mH2(P0,P1). (310)

Taking m = 1/(18H2(P0,P1)) concludes the proof via
Lemma 4.



B. Proof of Lemma 2

Proof: By standard inequalities between divergences
(see Lemma 5), omitting the argument (µθ, µ0) for
simplicity we have

TV ≤ H ≤
√
KL ≤

√
χ2 (311)

=
√
exp(∥θ∥22)− 1 ≲ ∥θ∥2. (312)

For the lower bound we obtain TV(µθ, µ0) ≥
min{1, ∥θ∥2/200} ≳ ∥θ∥2 by [70, Theorem 1.2].

C. Proof of Proposition 3

Let us write a+ ≜ a ∨ 0 for both functions and
real numbers. We start with some known results of
approximation theory.

Definition 7. For f : [0, 1]d → R define the modulus of
continuity as

ω(δ; f) = sup
∥x−y∥2≤δ

|f(x)− f(y)|. (313)

Lemma 7. For any real-valued function f and δ ≥ 0,

ω(δ;
√
f+) ≤ ω(δ; f)1/2. (314)

Proof: Follows from the inequality |√a+ −√
b+|2 ≤ |a− b| valid for all a, b ∈ R.

Lemma 8. Let f : [0, 1]d → R be β-smooth for β ∈
(0, 1]. Then

ω(δ; f) ≤ c δβ (315)

for a constant c depending only on ∥f∥Cβ .

Proof: Follows by the definition of Hölder continu-
ity.

Lemma 9 ([71, Theorem 4]). For any continuous func-
tion f : [0, 1]d → R the best polynomial approximation
pn of degree n satisfies

∥pn − f∥∞ ≤ c ω

(
d3/2

n
; f

)
(316)

for a universal constant c > 0.

Definition 8. Given a function f : [0, 1]d → R, ℓ ≥ 1
and j ∈ [ℓ]d, let πj,ℓf : [0, 1]d → R denote the function

πj,ℓf(x) ≜ f

(
x+ j − 1

ℓ

)
. (317)

In other words, πj,ℓf is equal to f zoomed in on the j’th
bin of the regular grid Gℓ.

Recall that here Pℓ denotes the L2 projector onto the
space of functions piecewise constant on the bins of Gℓ.
We are ready for the proof of Proposition 3.

Proof: Let κ ≥ r ≥ 1 whose values we specify later.
We treat the parameters β, d, ∥f∥Cβ , ∥g∥Cβ as constants
in our analysis. Let uf : [0, 1]d → R denote the
(piecewise polynomial) function that is equal to the best
polynomial approximation of

√
f on each bin of Gκ/r

with maximum degree α. By lemmas 7 and 8 for any
ℓ ≥ 1 and j ∈ [ℓ]d

ω(δ;πj,ℓ
√
f) ≤ ω(δ/ℓ;

√
f) ≲ (δ/ℓ)β/2, (318)

so that by Lemma 9

|uf −
√
f |∞ = sup

j∈[κ/r]d
|πj,κ/r(uf −

√
f)|∞ (319)

≲ sup
j∈[κ/r]d

ω(d3/2/α;πj,κ/r
√
f) (320)

≲ (ακ/r)−β/2. (321)

Regarding r as a constant independent of κ, α can be
chosen large enough independently of κ such that |uf −√
f |∞ ≤ c1κ

−β/2 for c1 arbitrarily small. Define ug
analogously to uf . We have the inequalities

H(f, g) = ∥
√
f −√

g∥2 (322)

≤ ∥
√
f − uf∥2 + ∥uf − ug∥2 (323)

+ ∥ug −
√
g∥2

≤ 2c1κ
−β/2 + ∥uf − ug∥2. (324)

We can write

∥uf − ug∥22 =
1

(κ/r)d

∑
j∈[κ/r]d

∥πj,κ/r(uf − ug)∥22

(325)

Now, by [41, Lemma 7.4] we can take r large enough
(depending only on β, d, ∥f∥Cβ , ∥g∥Cβ ) such that

∥πj,κ/r(uf − ug)∥2 ≤ c2∥Prπj,κ/r(uf − ug)∥2 (326)

where the implied constant depends on the same param-
eters as r. Thus, we get

H2(f, g) ≤ 8c21κ
−β

+
2c22

(κ/r)d

∑
j∈[κ/r]d

∥Prπj,κ/r(uf − ug)∥22 (327)

≤ 8c21κ
−β (328)

+
6c22

(κ/r)d

∑
j∈[κ/r]d

(
∥Prπj,κ/ruf −

√
Prπj,κ/rf∥22
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+ ∥Prπj,κ/rug −
√
Prπj,κ/rg∥22

)
+ 6c22H

2(Pκf, Pκf), (329)

where c1, c2 depend only on the unimportant parameters,
and c1 can be taken arbitrarily small compared to c2. We
also used the fact that Prπj,κ/r = πj,κ/rPκ. Looking at
the terms separately, we have

∥Prπj,κ/ruf −
√
Prπj,κ/rf∥2

≤ ∥Prπj,κ/ruf − Pr

√
πj,κ/rf∥2

+ ∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥2 (330)

≤ cκ−β/2

+ ∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥2, (331)

since Pr is a contraction by Lemma 10. We can decom-
pose the second term as

∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥22 (332)

=
∑
ℓ∈[r]d

∫
[ ℓ−1

r , ℓr ]

(
rd
∫
[ ℓ−1

r , ℓr ]

√
πj,κ/rf(x)dx

−
√
rd
∫
[ ℓ−1

r , ℓr ]
πj,κ/rf(x)dx

)2
= (†).

For x ∈ [(ℓ− 1)/r, ℓ/r] we always have

|πj,κ/rf(x)− πj,κ/rf(ℓ/r)| (333)

≤ ω

(√
d

r
;πj,κ/rf

)
≲

(√
d/r

κ/r

)β
≲ κ−β .

Using the inequality
√
a+ b−

√
(a− b)+ ≤ 2

√
b valid

for all a, b ≥ 0, we can bound (†) by κ−β up to constant
and the result follows.

D. Proof of Proposition 5

For f ∈ L2(µ) write fi = ⟨fϕi⟩ and fii′ = ⟨fϕiϕi′⟩,
assuming that the quantities involved are well-defined.
We record some useful identities related to Pr that will
be instrumental in our proof of Proposition 5.

Lemma 10. Pr is self-adjoint and has operator norm

∥Pr∥ ≜ sup
f∈L2(µ):∥f∥2≤1

∥Pr(f)∥2 ≤ 1. (334)

Suppose that f, g, h, t ∈ L2(µ) and that each quantity
below is finite. Then∑

ii′

figi′hii′ = ⟨hPr(f)Pr(g)⟩, (335)

∑
ii′

figihi′ti′ = ⟨fPr(g)⟩⟨hPr(t)⟩ (336)∑
ii′

fii′gii′ =
∑
i

⟨fϕiPr(gϕi)⟩, (337)

where the summation is over i, i′ ∈ [r].

Proof: Let P⊥
r denote the orthogonal projection

onto the orthogonal complement of span({ϕ1, . . . , ϕr}).
Then for any f, g ∈ L2(µ) we have

⟨fPr(g)⟩ = ⟨(Pr(f) + P⊥
r (f))Pr(g)⟩ (338)

= ⟨Pr(f)Pr(g)⟩ (339)
= ⟨Pr(f)g⟩, (340)

where the last equality is by symmetry. We also have

∥Pr(f)∥22 ≤ ∥Pr(f)∥22 + ∥P⊥
r (f)∥22 (341)

= ∥Pr(f) + P⊥
r (f)∥2 (342)

= ∥f∥22. (343)

Let f, g, h, t ∈ L2(µ). Then∑
ii′

figi′hii′ =
∑
i

fi
∑
i′

gi′hii′ (344)

=
∑
i

fi
∑
i′

⟨gPr(hϕi)⟩ (345)

=
∑
i

fi⟨Pr(g)hϕi⟩ (346)

= ⟨Pr(f)hPr(g)⟩ (347)

∑
ii′

figihi′ti′ = (
∑
i

figi)(
∑
i′

hi′ti′) (348)

= ⟨fPr(g)⟩⟨hPr(t)⟩ (349)∑
ii′

fii′gii′ =
∑
i

⟨fϕi
∑
i′

⟨gϕiϕi′⟩ϕi′⟩ (350)

=
∑
i

⟨fϕiPr(gϕi)⟩. (351)

Proof of Proposition 5: Let us label the different
terms of the statistic T−d

LF :

T−d
LF =

r∑
i=1

{
2

n2

n∑
j<j′

ϕi(Xj)ϕi(Xj′)

− 2

n2

n∑
j<j′

ϕi(Yj)ϕi(Yj′)

− 2

nm

n∑
j=1

m∑
u=1

ϕi(Xj)ϕi(Zu)



+
2

nm

n∑
j=1

m∑
u=1

ϕi(Yj)ϕi(Zu)

}
(352)

=
2

n2
I− 2

n2
II− 2

nm
III+

2

nm
IV. (353)

Recall that X,Y, Z ∼ f⊗n, g⊗n, h⊗m respectively. A
straightforward computation yields

ETLF = ∥Pr(f − h)∥22 − ∥Pr(g − h)∥22

− 1

n

(
∥Pr(f)∥22 − ∥Pr(g)∥22

)
. (354)

We decompose the variance as

var(TLF) =
4

n4
var(I) +

4

n4
var(II) (355)

+
4

n2m2
var(III) +

4

n2m2
var(IV)

− 8

n3m
Cov(I, III)− 8

n3m
Cov(II, IV)

− 8

n2m2
Cov(III, IV),

where we used independence of the pairs
(I, II), (I, IV), (II, III). Expanding the variances we
obtain

var(I) =
∑
ii′

{(
n

2

)
(f2ii′ − f2i f

2
i′)

+
((n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

))
×
(
fifi′fii′ − f2i f

2
i′
)}

(356)

var(II) =
∑
ii′

{(
n

2

)
(g2ii′ − g2i g

2
i′)

+

((
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

))

×
(
gigi′gii′ − g2i g

2
i′
)}

(357)

var(III) =
∑
ii′

{
nm(fii′hii′ − fifi′hihi′) (358)

+ nm(m− 1)(fii′hihi′ − fifi′hihi′)

+mn(n− 1)(fifi′hii′ − fifi′hihi′)

}

var(IV) =
∑
ii′

{
nm(hii′gii′ − hihi′gigi′) (359)

+mn(n− 1)(hii′gigi′ − hihi′gigi′)

+ nm(m− 1)(gii′hihi′ − hihi′gigi′)

}
.

For the covariance terms we obtain

Cov(I, III) =
∑
ii′

2m

(
n

2

)
(fii′fihi′ − f2i fi′hi′) (360)

Cov(II, IV) =
∑
ii′

2m

(
n

2

)
(gii′gihi′ − g2i gi′hi′) (361)

Cov(III, IV) =
∑
ii′

mn2(hii′figi′ − figi′hihi′). (362)

We can now start collecting the terms, applying the
calculation rules from Lemma 10 repeatedly. Note that(
n
2

)2− (n2)− (42)(n4) = n3−3n2+2n, and by inspection
we can conclude that 1/n, 1/m, 1/nm, 1/n2 and 1/n3

are the only terms with nonzero coefficients. We look at
each of them one-by-one:

Coef

(
1

n

)
=

r∑
ii′

{
4(fifi′fii′ − f2i f

2
i′)︸ ︷︷ ︸

var(I)

(363)

+ 4(gigi′gii′ − g2i g
2
i′)︸ ︷︷ ︸

var(II)

+ 4(hihi′fii′ − fifi′hihi′)︸ ︷︷ ︸
var(III)

+ 4(gii′hihi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 8(fii′fihi′ − f2i fi′hi′)︸ ︷︷ ︸
Cov(I,III)

− 8(gii′gihi′ − g2i gi′hi′)︸ ︷︷ ︸
Cov(II,IV )

)
= 4⟨fPr(f)2⟩ − 4⟨fPr(f)⟩2 (364)

+ 4⟨gPr(g)2⟩ − 4⟨gPr(g)⟩2

+ 4⟨fPr(h)2⟩ − 4⟨fPr(h)⟩2

+ 4⟨gPr(h)2⟩ − 4⟨hPr(g)⟩2

− 8⟨fPr(f)Pr(h)⟩+ 8⟨fPr(f)⟩⟨fPr(h)⟩
− 8⟨gPr(g)Pr(h)⟩+ 8⟨gPr(g)⟩⟨gPr(h)⟩
= 4⟨f(Pr(f − h))2⟩ (365)

+ 4⟨g(Pr(g − h))2⟩
− 4⟨Pr(f − h)⟩2
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− 4⟨Pr(g − h)⟩2

≤ 4Affh + 4Aggh, (366)

recalling the definition Auvt = ⟨u
[
Pr(v − t)

]2⟩ for
u, v, t ∈ L2(µ). Similarly, we get

Coef

(
1

m

)
=

r∑
ii′

{
4(hii′fifi′ − fifi′hihi′)︸ ︷︷ ︸

var(III)

(367)

+ 4(hii′gigi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 8(hii′figi′ − fihihi′gi′)︸ ︷︷ ︸
Cov(III,IV )

}

= 4⟨h(Pr(f − g))2⟩
− 4⟨hPr(f − g)⟩2 (368)

≤ 4Ahfg. (369)

For the lower order terms we obtain

Coef

(
1

nm

)
=

r∑
ii′

{
4(fii′hii′ − fifi′hihi′)︸ ︷︷ ︸

var(III)

(370)

− 4(fii′hihi′ − fifi′hihi′)︸ ︷︷ ︸
var(III)

− 4(fifi′hii′ − fifi′hihi′)︸ ︷︷ ︸
var(III)

+ 4(hii′gii′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 4(hii′gigi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 4(gii′hihi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

}

= 4Bfh − 4⟨fPr(h)⟩2 (371)

− 4⟨fPr(h)2⟩+ 4⟨fPr(h)⟩2

− 4⟨hPr(f)2⟩+ 4⟨fPr(h)⟩2

+ 4Bgh − 4⟨gPr(h)⟩2

− 4⟨hPr(g)2⟩+ 4⟨gPr(h)⟩2

− 4⟨gPr(h)2⟩+ 4⟨gPr(h)⟩2

≤ 4⟨fPr(h)⟩2 + 4⟨gPr(h)⟩2 (372)
+ 4Bfh + 4Bgh

≲ |Bfh|+ |Bgh|+ ∥f + g + h∥42 (373)

where we recall the definition Buv =
∑
i⟨uϕiPr(vϕi)⟩

for u, v ∈ L2(µ) and apply the Cauchy-Schwarz inequal-
ity. Next, we look at the coefficient of 1/n2 and find

Coef

(
1

n2

)
=
∑
ii′

{
2(f2ii′ − f2i f

2
i′)︸ ︷︷ ︸

var(I)

(374)

− 12(fii′fifi′ − f2i f
2
i′)︸ ︷︷ ︸

var(I)

+ 2(g2ii′ − g2i g
2
i′)︸ ︷︷ ︸

var(II)

− 12(gii′gigi′ − g2i g
2
i′)︸ ︷︷ ︸

var(II)

+ 8(fii′fihi′ − f2i fi′hi′)︸ ︷︷ ︸
Cov(I,III)

+ 8(gii′gihi′ − g2i gi′hi′)︸ ︷︷ ︸
Cov(II,IV)

}

= 2Bff − 2⟨fPr(f)⟩2 (375)

− 12⟨fPr(f)2⟩+ 12⟨fPr(f)⟩2

+ 2Bgg − 2⟨gPr(g)⟩2

− 12⟨gPr(g)2⟩+ 12⟨gPr(g)⟩2

+ 8⟨fPr(f)Pr(h)⟩
− 8⟨fPr(f)⟩⟨fPr(h)⟩
+ 8⟨gPr(g)Pr(h)⟩
− 8⟨gPr(g)⟩⟨gPr(h)⟩

≤ 2Bff + 2Bgg (376)
+ 8⟨fPr(f)Pr(h− f)⟩
+ 8⟨gPr(g)Pr(h− g)⟩
+ 40∥f + g + h∥42

≲ |Bff |+ |Bgg|+ ∥f + g + h∥42 (377)

+
√
Aff0Affh +Agg0Aggh.

Finally, we look at the coefficient of 1/n3:

Coef

(
1

n3

)
=
∑
ii′

{
−2(f2ii′ − f2i f

2
i′)︸ ︷︷ ︸

Cov(I,III)

(378)

+ 8(fii′fifi′ − f2i f
2
i′)︸ ︷︷ ︸

Cov(I,III)

− 2(g2ii′ − g2i g
2
i′)︸ ︷︷ ︸

Cov(I,III)



+ 8(gii′gigi′ − g2i g
2
i′)︸ ︷︷ ︸

Cov(I,III)

}

= −2Bff + 2⟨fPr(f)⟩2 (379)

+ 8⟨fPr(f)2⟩ − 8⟨fPr(f)⟩2

− 2Bgg + 2⟨gPr(g)⟩2

+ 8⟨gPr(g)2⟩ − 8⟨gPr(g)⟩2

≲ |Bff |+ |Bgg| (380)

+ ∥f + g + h∥42 +Aff0 +Agg0.

E. Proof of Lemma 6

Proof: Expanding via the binomial formula and
using the fact that sums of Nj’s are binomial random
variables, we get

EN

k∏
j=1

(a+ b(1 + c)Nj )

= E
k∑
ℓ=0

(
k

ℓ

)
bℓ(1 + c)Bin(n,ℓ/k)ak−ℓ (381)

=
k∑
ℓ=0

(
k

ℓ

)
bℓ
(
1 +

cℓ

k

)n
ak−ℓ (382)

≤ (a+ becn/k)k, (383)

where we used 1 + x ≤ ex for all x ∈ R.
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