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Abstract The subpolar North Atlantic plays an outsized role in the atmosphere‐to‐ocean carbon sink. The
central Irminger Sea is home to well‐documented deep winter convection and high phytoplankton production,
which drive strong seasonal and interannual variability in regional carbon cycling. We use observational data
from moored carbonate chemistry system sensors and annual turn‐around cruise samples at the Ocean
Observatories Initiative's Irminger Sea Array to construct a near‐continuous time series of mixed layer total
dissolved inorganic carbon (DIC), pCO2, and total alkalinity from summer 2015 to summer 2022. We use these
carbonate chemistry system time series to deconvolve the physical and biological drivers of surface ocean
carbon cycling in this region on seasonal, annual, and interannual time scales. We find high annual net
community production within the seasonally varying mixed layer, averaging 9.8 ± 1.6 mol m−2 yr−1 with high
interannual variability (range of 6.0–13.9 mol m−2 yr−1). The highest daily net community production rates
occur during the late winter and early spring, prior to the observed high chlorophyll concentrations associated
with the spring phytoplankton bloom. As a result, the winter and early spring play a much larger role in
biological carbon export from the mixed layer than traditionally thought.

Plain Language Summary The subpolar North Atlantic takes in more carbon from the atmosphere
than other areas of the ocean relative to its size. This is partially caused by photosynthesis in the surface ocean,
which turns inorganic carbon into organic carbon that is transported into the deep ocean in a process known as
the biological carbon pump. Using measurements from sensors on moorings in the Irminger Sea, we construct a
7‐year time series of the different parts of the inorganic carbon system. Using these, we separate out the forces
that impact how much inorganic carbon has the potential to be exchanged with the atmosphere. We find that
biological processes remove inorganic carbon from the surface ocean in the spring, summer, and early fall, while
in the winter the surface ocean gets deeper and encompasses waters from below that have higher carbon content.
The total amount of inorganic carbon removed from the surface ocean each year by biological process is
extremely high in the Irminger Sea compared to other global ocean regions. This research highlights the
importance of long‐term, full year measurements to understand carbon cycle dynamics.

1. Introduction

The ocean acts as a key sink in the global carbon cycle, absorbing carbon from the atmosphere at its surface and
then storing it in the deep ocean. Both biological and physical factors work in tandem to drive this uptake. The
biological carbon pump transports organic carbon produced via photosynthesis into the deep ocean, causing a
decrease in surface ocean pCO2 that results in carbon dioxide moving from atmosphere to ocean (DeVries, 2022;
Volk & Hoffert, 1985). Globally, the biological carbon pump moves approximately 10 PgC yr−1 into the ocean
interior and is the main contributor to the 40‐fold difference between the ocean and atmosphere carbon reservoirs
(Caldera et al., 2018; Friedlingstein et al., 2022; Siegel et al., 2023). The North Atlantic accounts for a dispro-
portionately large share of this global export relative to its size, with estimates ranging from 0.55 to 1.94 PgC yr−1

(average 1.27 PgC yr−1; Sanders et al., 2014). While extensive study has taken place in the North Atlantic on the
myriad of pathways contributing to the region’s biological carbon export, there is still high uncertainty in total
flux values and the underlying mechanistic controls (Sanders et al., 2014).

Organic carbon meanders on its path from the surface to the deep ocean. It can be repeatedly aggregated, dis-
aggregated, consumed, and respired by different classes of organisms, and is transported via sinking of particles,
physical injection of high organic carbon waters, and vertical migration of heterotrophic grazers (Boyd, 2015;
Boyd et al., 2019; Huang et al., 2022; Siegel et al., 2023; Stemmann&Boss, 2012). While known as the biological
carbon pump, the physical processes involved in removing organic carbon from the surface cannot be siloed. In
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the North Atlantic, large spring phytoplankton blooms are thought to be the primary driver of high carbon export
(Martin et al., 2011), however physical processes like deep convection have the potential to counterbalance this
export by entraining previously exported carbon (Kortzinger et al., 2008; Palevsky & Nicholson, 2018; Quay
et al., 2012, 2020). These dynamics are especially strong in the subpolar North Atlantic, which contains the
deepest winter convection on Earth (de Jong & de Steur, 2016; de Jong et al., 2018; Holte et al., 2017) and high
primary productivity (Boss & Behrenfeld, 2010; Henson et al., 2006, 2009).

To investigate the intertwined roles of biology and physics on carbon export, we use carbonate chemistry system
measurements of total dissolved inorganic carbon (DIC) and total alkalinity (TA) which provide mechanistically
agnostic tracers of the removal and addition of carbon from the surface ocean. Net community production (NCP)
is a measure of the net biologically produced organic carbon in the upper ocean. It can be determined using
inorganic carbon measurements and, when integrated throughout the year, represents the biological pump on an
annual basis (ANCP, Emerson, 2014). Marine carbon cycling has been studied around the globe by making
inorganic carbon system measurements at regular intervals throughout the year since the early 1980’s (Bates
et al., 2014). However, these historic discrete shipboard measurements have not provided adequate temporal
resolution to constrain the full seasonal and interannual variability influencing ANCP using the carbonate
chemistry system (Bates et al., 2014; Racapé et al., 2013). Technological advances since the turn of the century
have increased observational capacity, providing high frequency time series measurements (more than once a
day) for a number of chemical and physical parameters on both stationary mooring arrays and mobile floats and
gliders. These have enabled the construction of DIC and TA mass balance budgets in the Northeast Atlantic,
North Pacific, and Southern Ocean, and the subsequent disentanglement of biological and physical forcing on
carbon cycling and quantification of annual net community production (Fassbender et al., 2016, 2017; Haskell
et al., 2020; Huang et al., 2022; Knor et al., 2023; Kortzinger et al., 2008; Sauvé et al., 2023; Yang et al., 2021).

The Irminger Sea is an area of particular interest within the North Atlantic and is the location of the Irminger Sea
Array (Figure 1, operated by the NSF's Ocean Observatories Initiative, OOI). The location was selected in order to
provide sustained atmospheric, physical, and biogeochemical observations at a high latitude site, with a focus on
the critical influences that affect the global ocean‐atmosphere system (Ocean Observatories Initiative Science
Prospectus, 2007; Smith et al., 2018). Fast moving currents bring water southward along the eastern coast of
Greenland, and warm waters move northward along the eastern boundary as part of the North Atlantic current,

Figure 1. Map showing the Irminger Sea and location of Ocean Observatories Initiative Irminger Sea Array (red star). The
colored shading is the mean sea surface currents and the black contours are the mean sea surface height in millimeters for
2015–2022, illustrating the counterclockwise rotation of the gyre, with the North Atlantic current bringing water northward
to the east of the Array and faster moving currents bringing water southward to the west of the Array, along the eastern coast
of Greenland. Data are from E.U. Copernicus Marine Service Information, https://doi.org/10.48670/moi‐00148.
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forming the central Irminger Gyre where the array is located (de Jong et al., 2018). A 19‐year time series (2002–
2020) using OOI and nearby mooring data finds extreme variability in the depth of winter convection (285–
1,480 m, de Jong et al., 2024). Prior work in the region has used oxygen production as a tracer of photosynthesis
and respiration (Palevsky & Nicholson, 2018) and the carbonate chemistry system seasonal cycle has been
generally characterized (Bates et al., 2014; Racapé et al., 2013). Mixed layer net community production has been
characterized throughout the subpolar North Atlantic during the highly productive period of the spring bloom,
with rates often exceeding 60 mmol m−2 d−1 (e.g., Alkire et al., 2012; Baetge et al., 2020; Quay et al., 2012),
however this strong seasonality prevents the individual snapshots from being used to calculate annual mean rates.
As with many sites, there has not been sufficient data in the Irminger Sea to resolve full year‐round net community
production until now.

Understanding the controls on the biological pump in subregions like the Irminger Sea contributes to our overall
understanding of the North Atlantic's current carbon export and the potential changes it may undergo as a result of
climate change, including changes in primary productivity, surface and deep ocean respiration, and physical
transport. Here, we use 7 years of high temporal frequency mooring data from the OOI Irminger Sea Array to
provide the longest near‐continuous daily carbonate chemistry data set to date in this region. We leverage these
data to determine the biological and physical forcing on carbon cycling and quantify net community production
over seasonal, annual, and interannual time scales in the subpolar North Atlantic.

2. Data

All data used in this analysis are publicly available; instructions for access are provided in Data Availability
Statement at the end of this paper.

2.1. Ocean Observatories Initiative Irminger Sea Array

The Ocean Observatories Initiative (OOI) is a 25‐year, NSF funded program that began collecting data in 2014,
after nearly a decade of proposals and planning (Cowles et al., 2010; Isern & Clark, 2003; Smith et al., 2018). Our
primary data source is the OOI Irminger Sea Array, which is comprised of 4 moorings, triangularly arranged and
spaced approximately 20 km apart, and profiling and open ocean gliders (Figure 2). Repeat hydrography at the
mooring locations is also available from annual turn‐around cruises. Our analysis primarily uses the pH and
partial pressure of carbon dioxide (pCO2) sensors and their co‐located CTDs in order to calculate DIC and TA, as
described in Section 3. All carbonate chemistry sensors are located in the upper 130 m of the water column.

All carbonate chemistry system sensors, except at the surface, are Submersible Autonomous Moored Instruments
(SAMI) made by Sunburst Sensors; both the pH and pCO2 versions utilize spectrophotometry and a pH sensitive
indicator dye (Álvarez et al., 2020; Lai et al., 2018). The surface pCO2 sensor is a Pro‐Oceanus CO2‐Pro, which
operates above and below the water, making air and seawater measurements using infrared detection (Jiang

Figure 2. Schematic showing locations of the autonomous biogeochemical sensors and co‐located CTDs on the OOI Irminger
Array used in this analysis. Flanking Mooring A is west of Flanking Mooring B. Contour lines on the map show local
bathymetry (m). The surface pCO2 sensor is a Pro‐Oceanus instrument; all other pCO2 and pH sensors are Submersible
Autonomous Moored Instruments (SAMI) made by Sunbird Sensors.
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et al., 2014). The pH and pCO2 sensors below the surface make a measurement every 2 hr and the surface pCO2
sensor makes a measurement every hour, though occasionally measurements are further apart due to battery
limitations. Shallow sensors (pH sensors at 20 and 30 m; pCO2 sensors at 0, 12, and 40 m) are in the mixed layer
for the majority of the annual cycle, while deeper sensors (pH sensor at 100 m; pCO2 sensors at 80 and 130 m) are
only in the mixed layer in the winter. Two of the carbonate chemistry system sensors deployed by OOI (pH
sensors at 20 and 100 m on the Apex Surface Mooring) have suffered from poor data return; given the limited raw
data available prior to QA/QC, these sensors have been excluded from this analysis.

pH and pCO2 data were quality controlled using gross range and spike tests based on Quality Assurance/Quality
Control of Real Time Oceanographic Data (QARTOD) recommendations, followed by a moving median filter
(Palevsky, Clayton, et al., 2023; U.S. Integrated Ocean Observing System, 2020; Table S1 in Supporting In-
formation S1). We also remove data deemed suspect based on OOI operational annotations (for further detail, see
the OOI Biogeochemical Sensor Data Best Practices and User Guide; Palevsky, Clayton, et al., 2023) and
manually removed related stretches of data that indicate overall sensor failure. The fixed asset data within the
mixed layer for pH, pCO2, temperature, salinity, and pressure are at times sparse, with different depths and lo-
cations available across the time series (Figures S1 and S2 in Supporting Information S1). This sparsity is pri-
marily due to infrastructure and instrument failures, which tend to occur during the late winter when seas are
extremely rough and power becomes limited due to low sun angle. We remove all data from a given deployment if
less than 5% of the data passes QA/QC.

Beyond the upper ocean carbonate chemistry system and CTD sensors, we use calibrated oxygen data from the
wire‐following profiler on the Apex profiler mooring (200–2,000 m, one cycle every 20 hr) and gliders (0–200 m
and 0–1,000 m, varying temporal coverage). These are corrected using repeated stable deep oxygen measure-
ments on the 3.1θ isotherm (∼1,800–2,000 m), based on the approach previous applied at the Irminger Sea Array
by Palevsky and Nicholson (2018). These oxygen data are used for carbonate chemistry system predictions below
the mixed layer using the CONTENT model (Bittig et al., 2018). We also use chlorophyll‐a data from Sea‐Bird/
WETLabs fluorometers deployed on the OOI moorings at 1, 12, and 30 m during periods they are within the
mixed layer. These data are presented for qualitative rather than quantitative interpretation, as end‐user quality
control and calibration of the fluorometer data are beyond the scope of this work.

2.2. Cruise Data

During the turn‐around cruise each summer, discrete DIC, pH, and total alkalinity (TA) samples are collected at
depths corresponding to the deployment depths of moored pH and pCO2 sensors (Palevsky, Clayton, et al., 2023).
In addition to the discrete samples routinely collected and analyzed by the OOI program, we collected and
analyzed additional DIC and TA samples from the 2018 and 2019 turn‐around cruises (Palevsky, Fogaren,
et al., 2023). Quality control of the discrete DIC, pH, and TA samples provided by the OOI program identified
inconsistencies among these three carbonate chemistry system variables that indicate data quality issues with a
subset of the TA samples (Figure S3 in Supporting Information S1). We therefore rely primarily on directly
measured discrete DIC data rather than on other measured or calculated carbonate chemistry system variables in
calibrating and validating the sensor‐based time series. Our analysis also uses calibrated salinity, temperature, and
oxygen depth profiles from sensors on the CTD rosette (Fogaren & Palevsky, 2023; McRaven, 2022a, 2022b,
2022c, 2022d).

3. Methods

3.1. Carbonate Chemistry System Time Series

We synthesize the fixed mooring assets to construct near‐continuous mixed layer DIC and TA, and surface pCO2
time series over the 7‐year period from summer 2015 through summer 2022. Neither DIC nor TA can currently be
measured with commercially available autonomous sensors. Therefore, we leverage the fact that with any two
measured carbonate chemistry system parameters (pH, pCO2, DIC, and TA) and temperature, salinity, and
pressure, the other two unknowns can be calculated.

In order to create as close to a complete mixed layer time series as possible for use in the mass balance budget, it
was necessary to combine measurements and estimates of carbonate chemistry system parameters from a number
of different sensors. For the DIC time series in particular, significant effort was undertaken to calibrate the
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multiple partial datastreams prior to synthesis; a detailed description of the DIC moored time series calibration
can be found in Text S3 of the Supporting Information S1. After calibration, the individual DIC time series from
the separate sensor data streams are combined to create a daily mixed layer average. For the mixed layer time
series, we use only sensors deployed at nominally 40 m and shallower. The mixed layer depth fluctuates
significantly throughout the year, which results in the carbonate chemistry system sensors below the nominal
12 m sensor alternating being in the mixed layer and below it, depending on their deployment depths and the
current depth of mixing (Text S4 in Supporting Information S1). Previous work has shown that the horizontal
spatial variability is low enough to analyze sensors across the array as one data stream (de Jong et al., 2018;
Palevsky & Nicholson, 2018). In the case of brief mooring data overlap (less than a week in summers 2018, 2019,
and 2021), data from both moorings are presented in daily resolution figures (Figure 3). For the weekly mean
budget calculations, data from both deployments are used to calculate the mean for that week.

3.1.1. Total Alkalinity (TA)

Due to the close co‐varying relationship between total alkalinity (TA) and salinity, regressions between the two
have long been used to estimate total alkalinity for carbonate chemistry system calculations (Millero et al., 1998),
with other variables having been incorporated in more recent work. We use the Locally Interpolated Alkalinity
Regression (LIRv2) model to predict TA from mixed layer sensor data, using temperature, salinity, and location
as predictors (Carter et al., 2018). Uncertainty for estimated TA is generated from the LIRv2 model (Carter

Figure 3. Daily mixed layer DIC, TA, pCO2, temperature, chlorophyll‐a, and mixed layer depth (MLD) time series. Colors
correspond with annual cycles beginning on August 15th.
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et al., 2018), which incorporates the uncertainty in CTD measurements of temperature (0.005°C) and salinity
(0.01). While other global and regional models exist to predict TA, we chose LIRv2 because it required fewer
input variables than other models, such as CANYON‐B which needs calibrated dissolved oxygen (Bittig
et al., 2018). We found that the difference in the outputs is within the given uncertainty of the models. Comparison
of the time series TA from the LIRv2 model agrees within uncertainty with nearly all available discrete TA
calculated from DIC and pH samples (94%, Figure S8 in Supporting Information S1).

3.1.2. Total Dissolved Inorganic Carbon (DIC)

For each pCO2 and pH sensor, DIC was calculated from daily averages of the sensor measurements and estimated
total alkalinity (described above) using CO2SYS, with temperature, pressure, and salinity from co‐located CTDs
(Lewis &Wallace, 1998; Orr et al., 2018; Sharp et al., 2020; van Heuven et al., 2011). Silicate and phosphate are
also calculation inputs as they contribute to the acid‐base system, however DIC outputs are very insensitive to
these inputs (<1 μmol kg−1 difference calculated using the minimum and maximum values ever recorded in the
region). As a result, we use mean nutrient values from regional GLODAPv2_2021 data (Lauvset et al., 2021;
Olsen et al., 2016). We used the dissociation constants of Lueker et al. (2000), the KSO4 constant of Dick-
son (1990), and the total boron constant of Uppström (1974). Days with fewer than 2 pCO2 or pH measurements
are excluded for each sensor. There are several short gaps in the time series where no carbonate chemistry system
data is available. In the later part of the time series (summer 2018–summer 2022) we fill these gaps using DIC
predicted using CONTENT from the calibrated 1 and 12 m moored oxygen sensors, with the longest gap being
about 2 months in summer 2019 and all other gaps being less than 2 weeks (Figure S9 in Supporting Informa-
tion S1). CONTENT is a Bayseian neural‐network that predicts the carbonate chemistry system using dissolved
oxygen, temperature, salinity, location, and time (Bittig et al., 2018). CONTENT is similar to its sister model
(CANYON‐B), however it is designed to assess the internal agreement of carbonate chemistry system parameters
and prescribes an uncertainty value based on the goodness of agreement (Bittig et al., 2018). Along with the inputs
of the data themselves, CONTENT also allows the user to input the measurement uncertainty, which is then
factored into the uncertainty of the CONTENT predictions.

3.1.3. Calibrating the DIC Time Series

Our use of a multitude of carbonate chemistry system sensors requires confirmation that these sensors are
accurately measuring our parameters of interest. Intercomparison among multiple array sensors when simulta-
neously measuring within the mixed layer show offsets greater than expected based on the manufacturer‐provided
uncertainties for factory‐calibrated instruments (0.005 for pH and 2 μatm for seawater pCO2; Palevsky, Clayton,
et al., 2023), indicating that further calibration is needed. However, once calibrated, the DIC time series calculated
from individual sensors in the mixed layer match well with validation data from deeper moored assets, as well as
discrete cruise samples (Figure S4c in Supporting Information S1). We present the calibration process and the
rationale for each calibration step below, with further details provided in Text S3 of the Supporting
Information S1.

The SAMI pCO2 sensors show significant offsets from one another and from the Pro‐Oceanus pCO2 sensor
during some deployments, but follow the same seasonal, weekly, and daily patterns when in the mixed layer
(Figure S4a in Supporting Information S1). The SAMI pH sensors also show offsets, though much less sub-
stantial. The offsets between the SAMI sensors are not consistent annually, and there is no offset seen in the
temperature data of the co‐located CTDs, which indicates a known sensor calibration issue that require correction
rather than a true signal (DeGrandpre et al., 2004; Kortzinger et al., 2008). The shallower pCO2 and pH sensors
(12–40 m) used in the mixed layer time series are generally within a steep thermocline during turn‐around cruises
in summer, precluding aligning the moored sensor data with the discrete samples collected from co‐located CTD
casts as a calibration approach itself.

Unlike the SAMI sensors, when the Pro‐Oceanus surface pCO2 sensor measures for the entire deployment, the
newly deployed sensor matches the previously deployed sensor while both are operational, which instills con-
fidence in the accuracy of the surface Pro‐Oceanus (summer 2020 and 2021, Figure S1 in Supporting Infor-
mation S1). The Pro‐Oceanus, however, fails after only weeks to months in five out of the seven deployments
used in this analysis. In order to create a complete mixed layer time series, we leverage the strengths of both types
of carbonate chemistry system sensors on the array, namely the longevity of the SAMI sensors and the accuracy of
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the Pro‐Oceanus. We correct for offsets in the DIC time series calculated from the shallow (12–40 m) SAMI pH
and pCO2 sensors by aligning them with the available DIC time series calculated from the Pro‐Oceanus, after
which we average all DIC data in the mixed layer (Text S3, Figure S4 in Supporting Information S1). The un-
certainty in the individual components of the mixed layer DIC time series is estimated using CO2SYS's error
propagation, with measured temperature, salinity, pressure, pH or pCO2, and estimated TA uncertainties as inputs
(Orr et al., 2018).

While we do not use the 80 and 130 m pCO2 sensor data as part of our mixed layer time series, they provide a
useful check on our calibration process. The final mixed layer DIC time series shows good agreement with these
deeper sensor DIC data, calibrated using predicted DIC from turn‐around cruise CTD dissolved oxygen mea-
surements, once they reenter the mixed layer (Figure S4c in Supporting Information S1, Bittig et al., 2018;
Palevsky, Fogaren, et al., 2023). This agreement with the independently calibrated deep sensors, as well as with
the available discrete cruise data points, further instills confidence in the choice to align the 12–40 m DIC time
series with the DIC time series from the Pro‐Oceanus (Figure S4c in Supporting Information S1). A detailed
explanation of the calibration processes can be found in Text S3 of the Supporting Information S1.

3.1.4. pCO2

We fill in the gaps in the surface pCO2 record directly measured by the Pro‐Oceanus using pCO2 calculated from
the mixed layer DIC time series, mixed layer estimated total alkalinity, surface buoy salinity, and the fifth
generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis (ERA5) sea surface
temperature (Figure S10 in Supporting Information S1, Hersbach et al., 2020). When there are gaps in the surface
buoy salinity data due to surface mooring platform failures, we assume a homogeneous mixed layer and use 30 m
salinity (Figure S13 in Supporting Information S1). When both calculated and measured pCO2 are available, the
mean difference between the two is 2 μatm, which is within the measurement error of the Pro‐Oceanus direct
measurements (Palevsky, Clayton, et al., 2023).

3.2. Mixed Layer Budget

Seasonal changes in the observed mixed layer DIC concentration are driven by physical transport (entrainment),
gas exchange, evaporation and precipitation (EP), and biological processes, namely net community production
and calcium carbonate production and dissolution (Equation 1, Fassbender et al., 2016, 2017; Haskell et al., 2020;
Kortzinger et al., 2008; Palevsky & Quay, 2017; Yang et al., 2021). Changes in total alkalinity are driven by the
same processes as DIC, with the exception of gas exchange (Equation 2). The time rate of change terms for each
tracer (left hand side of Equations 1 and 2, respectively) are determined from the DIC and TA time series data.
Observational data allows us to calculate the non‐biological drivers (dDIC/dtGas Exchange, dDIC/dtEP, and
dDIC/dtEntrainment; dTA/dtEP, and dTA/dtEntrainment) and subtract from the weekly overall change (dDIC/dt;
dTA/dt), leaving the biological drivers (dDIC/dtBiology; dTA/dtBiology), as the remainder. The sections below
describe how each of the right hand side terms in these equations are calculated. All right‐hand side terms in both
budgets are calculated at weekly resolution. We smooth the observed carbonate chemistry system time series used
in the budget with a 3 week running mean to remove high‐frequency variability.

dDIC
dt

=
dDIC
dt |Gas Exchange

+
dDIC
dt |EP

+
dDIC
dt |Entrainment

+
dDIC
dt |Biology

(1)

dTA
dt

=
dTA
dt |EP

+
d(TA)
dt |Entrainment

+
dTA
dt |Biology

(2)

3.2.1. Gas Exchange

The rate of DIC change due to gas exchange is influenced by the pCO2 in the atmosphere and surface waters, wind
speed, temperature, and salinity. For calculating this rate, these driving forces are encapsulated by the piston
velocity (k), pCO2 solubility (KH), atmospheric and surface water pCO2 (pCO2Air, pCO2Seawater), and density (ρ),

with positive values indicating a flux from the atmosphere into the ocean (Equation 3).
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dDIC
dt |Gas Exchange

= k ∗KH ∗ (pCO2Air − pCO2Seawater) ∗ ρ (3)

The piston velocity (k) is calculated using the Ho et al. (2006) wind speed‐dependent gas transfer parameteri-
zation, implemented in the MATLAB gas_toolbox (Manning & Nicholson, 2022) and the Schmidt constant
(Wanninkhof, 1992). Of the OOI moored assets, the surface buoy faced the most challenges with continuous data
collection, limiting the ability to use directly measured meteorological data. Therefore, ERA5 products from the
nearest grid cell (60°N, 39.5°W) are used for hourly sea surface temperature and 10 m wind speeds (calculated
from v‐ and u‐winds at 10 m, Hersbach et al., 2020). The ERA5 winds match well with the OOI 10 m measured
wind speeds when available (mean difference −1.5 m s−1, Figure S11 in Supporting Information S1). The slight
overestimate of wind speed by the ERA5 product may mean that, though gas exchange is a small term in our DIC
budget, our calculated contribution of gas exchange may be an overestimate. The solubility of CO2 is calculated
using the temperature and salinity dependent constant (KH) from Weiss (1974). The mixed layer seawater pCO2
data is calculated as described in Section 3.1.4. While the Pro‐Oceanus pCO2 sensor measures air pCO2 on the
OOI Irminger Sea Array surface buoy, the sensor fails frequently and there are no calibration or validation
samples taken that can confirm the accuracy of this sensor. For this analysis, therefore, the air pCO2 data is from
NOAA’s Global CarbonTracker gridded daily average product at 59°N, 40.5°W using CO2 mole fraction, hu-
midity, and barometric pressure (CT_2022 and CT‐NRT.v2023‐4, Jacobson et al., 2023; uncertainty estimated as
5.8°µtm based on comparison with Pro‐Oceanus air pCO2 and with independent flask measurements, see Figure
S12 in Supporting Information S1). Multiplying by the density (ρ) leaves us with the amount of carbon exchanged
in units of mmol m−2 d−1.

3.2.2. Physical Transport

The fixed nature of moored sensors necessitates a Eurlerian approach in order to account for the influence of
horizontal and vertical transport on mixed layer DIC. The primary physical influence is entrainment, whereby the
mixed layer increases in depth and adds water from below into the mixed layer. When the mixed layer shoals
(detrainment), the mixed layer DIC concentration is not impacted. Given that this study site is in the center of the
Irminger Gyre where there are low horizontal velocities (Figure 1), we exclude horizontal transport from our
budget. We also exclude estimating the budget contributions of diffusive vertical mixing across the base of the
mixed layer or of upwelling due to Ekman‐driven mass divergence. Although these have been shown to be
significant in mixed layer mass balance budgets in other regions (Fassbender et al., 2016, 2017; Knor et al., 2023;
Palevsky et al., 2016; Yang et al., 2017), measured values for these terms have been shown to be low in the
Irminger Sea and exceptionally deep winter convection at this site means that entrainment dominates over these
second‐order processes (Fratantoni, 2001; Painter et al., 2014; Våge et al., 2008).

In order to calculate the rate of physical entrainment, we use weekly mixed layer depths (MLDs). There has been
extensive discussion within the literature regarding how to define the MLD with respect to timescales of mixing
and biological processes (Carranza et al., 2018; Carvalho et al., 2017; Lacour et al., 2019). A challenge in defining
a MLD appropriate for our analysis is differentiating between the actively mixing layer and remnant layers of
prior deep mixing events that retain uniform physical properties but are no longer biogeochemically uniform
because they are actively exchanging with the surface ocean (for a more extensive discussion, see Carranza
et al., 2018). We use a combination of methods including temperature thresholds and bio‐optical methods to
determine the MLD depending on the time of year and availability of both OOI and external data (Table S2 in
Supporting Information S1), a full explanation of which can be found in Text S9 of the Supporting
Information S1.

We determine the effects of entrainment on mixed layer DIC, TA, and salinity using a one‐dimensional model that
accounts for the influence of mixing between the prior mixed layer and newly entrained waters, calculated at
weekly time steps. This model uses the mixed layer depth time series to calculate physical entrainment rates. To
determine the properties of the water being entrained from below the base of the mixed layer, we use dissolved
oxygen, temperature, and salinity data from gliders and the wire‐following profiler, from which DIC and TA are
estimated using the CONTENT model (described in Section 3.1.2; Bittig et al., 2018). A detailed explanation of
the entrainment model can be found in Text S10 of the Supporting Information S1. The entrainment model results
track closely with observed concentrations in the fall, showing that the increase in mixed layer DIC during this
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period of time is primarily the result of the entrainment of high DIC waters (Figure S16 in Supporting
Information S1).

3.2.3. Evaporation and Precipitation

To account for dilution and concentration effects on DIC and TA due to evaporation and precipitation, we find the
difference between the observed change in salinity over time and the entrainment‐modeled change in salinity over
time (Fassbender et al., 2016; Haskell et al., 2020).

We attribute the difference between the observations and the modeled change to evaporation and precipitation, as
any change in salinity not due to entrainment is the result of these surface processes, again assuming minimal
horizontal advection.Wemultiply the difference in the two by the ratio of DIC (and TA) to absolute salinity on the
first day of each deployment, working under the assumption that the ratio at which salinity changes due to
evaporation and precipitation relative to DIC (and TA) is constant throughout each deployment (Equation 4). The
same process is followed for TA.

d(DIC,TA)
dt |EP

= (dSal
dt

−
dSal
dt Entrainment

) ∗
(DIC,TA)
Sal t=1

(4)

3.2.4. Biological Processes

The biological drivers are calculated as the residual terms of Equations 1 and 2. These drivers are net community
production (NCP) via photosynthesis and respiration and calcium carbonate (CaCO3) formation and dissolution
(Equation 5).

d(DIC,TA)
dt |Biology

=
d(DIC,TA)

dt |NCP
+
d(DIC,TA)

dt |CaCO3
(5)

In order to separate the soft tissue processes (photosynthesis and respiration, which influence NCP) from calcium
carbonate production and dissolution, we leverage the known production ratio of CO2 and H

+ (117 to −17) from
respiration using 1 mol of phosphate (HPO4

2−) (Anderson & Sarmiento, 1994; Fassbender et al., 2016). This
formation and precipitation of CaCO3 influences TA and DIC in a 2:1 ratio. This allows us to calculate the in-
fluence of NCP on the mixed layer DIC budget (Equation 6). We also calculate weekly and annual NCP within the
seasonally varying mixed layer by integrating to the weekly mixed layer depth.

dDIC
dt |NCP

=
(dTA
dt |Bio − 2 ∗

dDIC
dt |Bio)

−2 + −17
117

(6)

3.3. Uncertainty

Here we present the calculated uncertainties of the calibrated DIC, TA, and pCO2 time series (described in
Sections 3.1.1–3.1.4), as well as uncertainties of all terms in the DIC budget (Table 1). There is uncertainty in each
of the terms of the mass balance budget (Equations 1 and 2, Table 1). The 95% confidence bounds of entrainment
are calculated by taking the minimum and maximum values from the entrainment model runs with a combination
of systematically over‐ and under‐estimated mixed layer depths and the lower and upper uncertainties of the DIC
concentration below the mixed layer. The evaporation‐precipitation uncertainty is estimated using a Monte Carlo
simulation iterated 5,000 times with the salinity and DIC entrainment uncertainty and the uncertainty of the DIC
concentration on the first week of each deployment. The gas exchange uncertainty is also calculated using a
Monte Carlo simulation to account for the uncertainties in temperature, salinity, pCO2 of air and seawater, and a
20% assigned uncertainty in the gas transfer coefficient to account for uncertainty in the wind speed data as well as
in the parameterized relationship between wind speed and gas transfer (Ho et al., 2006; Wanninkhof, 2014; Yang
et al., 2021). Calculating the biological processes as the remainder from the mass balance budget means that the
biological term contains the accumulation of the uncertainties from all the other budget terms. We use a wrap‐
around Monte Carlo containing all the previously discussed uncertainties (Table 1) in which we subtract the
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physical transport, EP, and gas exchange terms from the overall change in DIC in order to determine the un-
certainty in the biological processes.

4. Results and Discussion

4.1. Mixed Layer Time Series

Here we present mixed layer carbonate chemistry system variables (DIC, TA, and pCO2) as well as their potential
drivers (mixed layer depth, temperature, and chlorophyll‐a) in the central Irminger Sea (Figure 3). The carbonate
chemistry system variables follow a similar annual cycle of highs and lows, with the minimums occurring in late
summer at the end of the productive season, then climbing throughout the fall to a maximum in winter, after which
they are drawn down again in the spring (Figure 3).

In the Irminger Sea, sea surface temperatures vary significantly, from around 3°C in the winter up to 12°C in the
summer. The pCO2 is significantly affected by temperature (Weiss, 1974); if there were no biological processes
reducing the pCO2, we would expect to see the highest pCO2 in the summer and the lowest pCO2 in the winter, as
solubility declines as temperature increases (Takahashi et al., 2002). Instead, as has been well documented in prior
literature, the greatest pCO2 are recorded in the winter and lowest are found in the summer due to biological
drawdown, indicating that biophysical effects, rather than temperature, are the primary drivers of pCO2 at our site
(Bates et al., 2014; Landschützer et al., 2018; Takahashi et al., 2002).

The influence of vertical mixing and primary productivity can be clearly seen on the other, temperature‐
insensitive, carbonate system parameters (DIC and TA). In the spring and summer, the mixed layer is strongly
stratified and high chlorophyll concentrations are recorded. At the same time, mixed layer DIC concentrations
reach their minimum in the annual cycle, ranging from 2,074 ± 8 to 2,113 ± 8 μmol kg−1 during our period of
observation (Figure 4). It is important to note that while chlorophyll concentration does indicate primary pro-
ductivity, the amount of inorganic carbon being utilized is not directly reflected, as widely varying chlorophyll to
carbon ratios occur at different global locations, depths in the water column, and times of year (Sathyendranath
et al., 2009). Due to infrastructure failures, the sensors are not always successful in capturing the entire spring
bloom; however, in situ chlorophyll measured by fluorometry and satellite chlorophyll data confirm annual spring
and fall blooms at the Irminger site (Painter et al., 2014).

In the fall, convection begins and the mixed layer starts deepening. The Irminger Sea's uniquely deep mixed layers
are not observed until later in the season, with mixed layer depths rarely exceeding 100 m before mid November.
Most of the interannual variability in mixed layer depth occurs in the winter, both in the timing of deepening and
the maximum depth reached. Some years, such as 2015–2016, experience early and rapid deepening, but the
deepest sustained winter mixing is usually reached in mid to late March, ranging from ∼400 to ∼1,300 m. The
patterns observed here match previous analysis of MLDs in this region (de Jong et al., 2024). Shoaling in the
spring begins gradually and then intensifies, going from near maximum depths to less than 100 m over the span of

Table 1

Uncertainties of Analyzed Parameters

Time series Uncertainty Primary sources of error

Calibrated DIC (ΔDICObserved) 11.2–11.6 mmol m−3 Measurement of pH and pCO2, calibration of DIC time series (see Section 3.1.3)

TA (ΔTAObserved) 9.7–10.2 mmol m−3 Estimate from LIRv2 model, measurement of salinity (see Section 3.1.1)

pCO2 2 µatm Measurement of surface pCO2, calculation from DIC and TA (see Section 3.1.4)

ΔDICEntrainment 8.7–10.3 mmol m−3 DIC concentration below the mixed layer, mixed layer depth

ΔDICEP 1.1–2.0 mmol m−3 Entrainment salinity model from mixed layer depth and glider/WFP salinity
measurements, ratio of DIC/TA to salinity on first day of deployment

ΔDICGE 0.02–0.05 mmol m−3 Air and sea pCO2, wind speed, gas transfer coefficient

ΔDICNCP 14.7–16.0 mmol m−3 Combined uncertainty of all other budget terms, stoichiometry of photosynthesis‐
respiration and calcium carbonate formation‐dissolution

ΔDICCaCO3 28.5–30.5 mmol m−3 Combined uncertainty of all other budget terms, stoichiometry of photosynthesis‐
respiration and calcium carbonate formation‐dissolution

Note. Values shown are the range of yearly means over all 7 years in the time‐series.
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a few weeks from early April to mid‐May (Sterl & de Jong, 2022). During this time, we observe repeated shoaling
and deepening, a process previously observed in the North Atlantic (Lacour et al., 2019). After the final shoaling,
increased chlorophyll concentrations are observed again. It should be noted that the 7‐year OOI time series
captures a period of time in which there is particularly strong winter convection (3 winters deeper than 1,000 m),
even for the Irminger region. Before the OOI time series, winter mixed layer depths for only 1 year between 2002
and 2013 (2011–2012) were close to 1,000 m (de Jong et al., 2024).

The mixed layer DIC signal generally increases and decreases in concert with the seasonal changes in mixed layer
depth. The increase in mixed layer DIC coincides with mixed layer deepening (Figure 3). It is rapid in mid‐
September through mid‐November and then continues to rise with a less significant slope between mid‐
February to late March, when it reaches the maximum annual concentration. The DIC concentration begins to
decrease moderately in the late winter and then decreases more rapidly in late April–mid‐May, coinciding with the
shoaling of the mixed layer and high chlorophyll concentrations.

The amount of fall‐winter increase and spring‐summer decrease of mixed layer DIC varies from year to year.
While there is a broad interannual range in the amplitude of the DIC seasonal cycle (mean 66 ± 13, range 48–
80 μmol kg−1), the range of the winter maximumweekly DIC concentration is only 14 μmol kg−1 (Figure 4). This
is almost within the uncertainty of the mixed layer DIC time series (∼11 μmol kg−1), making the annual
maximum DIC effectively indistinguishable from year to year. The summer minimum is far more variable,
reflecting more variability in the impact of biological DIC drawdown than winter convection on the mixed layer
DIC annual cycle. The DIC seasonal cycle amplitude is similar to previous measurements in the Irminger Sea
(∼60 μmol kg−1, Bates et al., 2014) and other high latitude regions including the North Pacific
(∼56± 7 μmol kg−1 at Ocean Station Papa, 73± 2 μmol kg−1 in the Kuroshio Extension, Fassbender et al., 2016,
2017) and Western Antarctic Peninsula (∼55 μmol kg−1, Yang et al., 2021), however the interannual variability
observed in the Irminger Sea is higher.

4.2. Mixed Layer Carbon Mass Balance

To investigate the specific drivers of the carbonate chemistry system annual cycle and its interannual variability,
we use a mass balance approach. Comparison among each of the terms influencing the DIC seasonal cycle
(Equation 1) shows that entrainment of deep waters and biological processes have the greatest impact on the DIC
seasonal cycle, with gas exchange and evaporation‐precipitation playing relatively minor roles (Figure 5).

While gas exchange has very little impact on the overall mixed layer DIC concentration, the average total addition
of DIC to the mixed layer due to CO2 influx from the atmosphere is 2.1 mol ± 1.1 mol m

−2 yr−1 over our 7 year

Figure 4. The annual seasonal cycle of DIC concentration in the mixed layer, beginning on August 15th. The diamonds are
the lowest DIC concentration at the end of the productive season and the circles are the annual DIC maximum. The stars
indicate the date at which the mixed layer first shoals above 100 m in the spring. The error bars at the beginning of the time
series show uncertainty derived from the Monte Carlo simulation and apply across the time series. Gaps less than 2 weeks
have been filled via linear interpolation.
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period. A recent pCO2 climatological product reports a mean of 3.0 ± 0.7 mol m
−2 yr−1 during our study period

(range 2.1–3.8 mol m−2 yr−1, Landschützer et al., 2020). This matches our observations within the uncertainty,
and the somewhat higher values can likely be attributed to our differing choice of gas transfer parameterization
(Atamanchuk et al., 2020). From our observational data, the years with the lowest annual carbon uptake via gas
exchange are also the years when the maximummixed layer depth exceeds 1,000 m (2015–2016 and 2017–2018),
potentially indicating that the continued entrainment of high DIC waters suppresses winter uptake driven by
cooling waters. Gas exchange occurs at the surface and therefore has the highest potential to impact DIC con-
centration when the mixed layer is shallowest (has the least volume). The most significant stratification occurs
during the summer when the difference between air and seawater pCO2 is greatest. These conditions would
support strong influx, however the winds tend to be slow this time of year and do not drive vigorous gas exchange.
In the winter when extremely high winds occur, the volume of the mixed layer has expanded by almost two orders
of magnitude, so even the fastest gas exchange has very little impact on overall mixed layer DIC concentration,
making gas exchange (dDIC/dtGE) the least impactful driver of changes in mixed layer DIC (Figure 5d).

The impact of evaporation and precipitation on DIC concentration (dDIC/dtEP) is also low throughout the year,
and, as with gas exchange, has the greatest impact when the water column is stratified due to its influence
occurring only at the air‐sea interface. The impact of evaporation and precipitation varies from year to year but, on

Figure 5. Influences of each term in the mixed layer DICmass balance budget (Equation 1) on (a) the observed change in DIC
concentration since August 15 over each of the 7 years in the time series. Changes in mixed layer DIC are driven by: (b) the
change in DIC concentration due to entrainment, (c) the change in DIC concentration due to biological processes, (d) the
change in DIC concentration due to gas exchange, and (e) the change in DIC concentration due to evaporation and
precipitation, each presented as the cumulative change since August 15 in each year of the time series. Each of these terms is
calculated within the seasonally varying mixed layer depth at weekly resolution (f). Note that the y‐axes are scaled differently
on each plot.
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average, mild dilution occurs in the summer months, reducing DIC concentration by 6.4 ± 4.3 mmol m−3 yr−1

(Figure 5e). The dominant driver of DIC increase in the mixed layer is entrainment (dDIC/dtEntrainment), which
increases mixed layer DIC by 64± 17 mmol m−3 yr−1. The DIC concentration rises concurrently with an increase
in mixed layer depth as high DIC waters from belowmix with the DIC‐depleted surface waters. The concentration
rises rapidly even though the mixed layer does not deepen extremely quickly because of the outsized role of the
addition of water into the shallow end‐of‐summer mixed layer and the very low summer DIC concentration. A
mixed layer of 20 m with DIC of 2,080 mmol m−3 that entrains 80 m of 2,170 mmol m−3 DIC waters then has a
DIC concentration of 2,152 mmol m−3, an increase of 72 mmol m−3 and roughly the amplitude of the seasonal
cycle. Alternatively, a 100 m mixed layer with DIC of 2,152 mmol m−3 that entrains 200 m of 2,170 mmol m−3

DIC waters results in a DIC concentration of 2,164 mmol m−3, only increasing the overall concentration by
8 mmol m−3. The total amount of carbon added via entrainment varies based on each year's maximummixed layer
depth, but brings the surface concentration close to the same value each winter (∼2,220 mmol m−3). While we
have primarily considered the extremely deep winter convection for its role in returning carbon to the surface
ocean in the winter, the subsequent springtime shoaling of the mixed layer detrains water that contains both
inorganic and organic carbon in a process known as the seasonal mixed layer pump (Dall’Olmo et al., 2016). The
intraseasonal and seasonal mixed layer pump has been shown to significantly contribute to carbon export in the
subpolar North Atlantic, a process which is likely occurring at our study site (Lacour et al., 2019).

Biological processes (dDIC/dtBiology) lead to a net drawdown of DIC on an annual basis (Figure 5c), with
photosynthesis and calcium carbonate formation outpacing respiration and calcium carbonate dissolution. In the
fall, the influence of biology is near zero, with slight heterotrophy in some years and autotrophy in others;
however, the uncertainty crosses zero most years, obscuring any definitive fall trend. Each winter shows the same
pattern: from February to May there is a slow but persistent decrease in DIC concentration due to biological
processes. Once the mixed layer shoals, there is much more rapid drawdown, which comprises the bulk of the
change in concentration due to biology over the annual cycle. While we cannot quantitatively relate the measured
chlorophyll to DIC drawdown, the chlorophyll data clearly supports the rapid reduction due to primary pro-
ductivity in the late spring (Figure 3). The calcium carbonate formation and dissolution is a very small portion of
the overall change in DIC due to biological processes, accounting for 5.1 ± 1.1 mmol m−3 drawdown in DIC
annually (Figure S17 in Supporting Information S1). This value falls within the average annual uncertainty of the
dDIC/dtCaCO3 budget term (6.1 mmol m−3) and thus we do not further interpret the role of calcium carbonate
dissolution and formation.

4.3. Annual Net Community Production

The annual net community production (ANCP) within the mixed layer is the upper bound on the amount of carbon
removed from the surface ocean by the biological pump each year (NCP = −ΔDICNCP). The choice of depth of
integration for calculating ANCP varies depending on the method of export research. This can lead to discrep-
ancies when intercomparing ANCP rates, particularly in high latitude regions with deep winter convection, where
a significant fraction of the carbon removed from the mixed layer during spring and summer is subsequently
respired within the seasonal thermocline and re‐entrained into the mixed layer during winter (Palevsky &
Doney, 2018). Here, we leverage our mixed layer DIC budget to determine the seasonal cycle and interannual
variability of NCP and ANCP integrated to the seasonally varying mixed layer depth. While not all of this NCP
will lead to long‐term carbon sequestration at depth, this value is of particular interest as the surface ocean pCO2,
and in turn the influx of carbon from the atmosphere to the upper ocean, is strongly influenced by NCP‐driven
changes in mixed layer DIC concentration.

We find net autotrophy in the Irminger Sea for most of the year, with the highest NCP rates occurring in the early
spring prior to mixed layer shoaling (Figure 6). NCP rates in this paragraph are the mean and standard deviation
across all 7 years. In the late summer into the late fall, we observe NCP from near neutral to mildly heterotrophic
(−5 ± 17 mmol m−2 d−1 from August 15 to November 15). In January, there is a transition to autotrophy with an
NCP of 24 ± 43 mmol m−2 d−1 until the end of February. By April, shoaling has begun and the mixed layer is
strongly autotrophic, with an NCP of 77 ± 26 mmol m−2 d−1 from the beginning of April to mid‐May. From then
until August 15th, the mixed layer is relatively shallow and continues to be autotrophic at a much lower NCP of
28 ± 24 mmol m−2 d−1.
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We find that the central Irminger Sea has high ANCP as well as high interannual variability, with an annual mean
of 9.8 ± 1.6 mol C m−2 yr−1 (±signifies propagated error, not standard deviation, Figure 6). The highest ANCP
recorded during our study period was 13.9 ± 2.4 mol C m−2 yr−1 during 2017–2018. This year had a later‐than‐
average onset of mixed layer deepening, resulting in a shallow fall mixed layer that caused the high fall chlo-
rophyll concentration without a high depth‐integrated rate of NCP. This is the only year with a decrease in DIC
due to entrainment in the fall, likely indicating photosynthesis below the mixed layer during the large fall bloom.
There is a late fall respiration signal, potentially fueled by sinking organic carbon from the fall bloom. 2017–2018
had very deep winter convection, as well as a decrease in DIC due to NCP from early March to mid‐April that
outpaced the time series mean (12 mmol m−3 reduction in DIC over this time period compared to the time series
mean of 5 mmol m−3), which together resulted in high integrated NCP over this time period and for the yearly
total. The lowest ANCP recorded occurred during 2021–2022 (6.0 ± 1.3 mol m−2 yr−1), which also had the
earliest spring shoaling of the observed period (Figure 3). DIC increased in the late fall due to both entrainment
and respiration and there were relatively low NCP rates in the winter and early spring. These findings indicate that
the depth and timing of winter mixing substantially impacts the overall annual net community production;
however, the rate of DIC drawdown by biology prior to mixed layer shoaling is also an important control on
ANCP.

This study adds to a growing body of research using DIC and TA as mass balance tracers to quantify ANCPwithin
the seasonally varying mixed layer depth. The majority of sites have yielded lower ANCP than we find in the
Irminger Sea (2 ± 1 mol C m−2 yr −1 in the subpolar Northeast Pacific, 1.2 ± 2.8 mol C m−2 yr−1 in the North
Pacific subtropical gyre, and 2.8 ± 2.4 mol C m−2 yr−1 on the West Antarctic Peninsula shelf; Fassbender
et al., 2016; Knor et al., 2023; Yang et al., 2021). However, in the Kuroshio extension in the western North
Pacific, ANCP was 7 ± 3 mol C m−2 yr−1 (Fassbender et al., 2017). The Kuroshio site has the deepest winter
mixed layer depths of other sites where these methods have been used (up to 300 m), and similarly to the Irminger
Sea, there are extremely high NCP rates seen in early spring as a result. A mixed layer carbon budget in the eastern
subpolar North Atlantic (Porcupine Abyssal Plain site, 49°N, 16.5°W) found NCP within the seasonally varying
mixed layer of 6.4 ± 1.1 mol m−2 yr−1, with over two thirds of the production occurring prior to the spring
shoaling of the mixed layer, a similar seasonal partitioning and annual magnitude as at our site (Kortzinger
et al., 2008). Kortzinger et al. also found that 40% of the carbon exported from the seasonally varying mixed layer
was subsequently offset by entrainment of respired carbon during deep winter mixing. Reduced ANCP when
integrating to the winter mixed layer depth as compared to ANCP within the seasonally varying mixed layer has
been corroborated by oxygen budgets using data from across the subpolar North Atlantic (Quay et al., 2012,
2020). Given the uniquely deep winter mixing in the Irminger Sea, it will be important for future work to
contextualize our ANCP results by determining what fraction of this NCP contributes to long‐term carbon

Figure 6. Net community production (NCP) rates integrated to the seasonally varying mixed layer depth. The colored lines show each individual year, the thick black line
shows the mean across all years, and the gray shading is one standard deviation of the interannual mean. The bar chart shows total annual net community production
(ANCP). ANCP error bars are the uncertainty as calculated through Monte Carlo analysis (details in Section 3.3).
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sequestration, as well as the mechanistic relationship between NCP‐driven DIC‐drawdown in the mixed layer and
air‐sea CO2 flux.

Our chemical tracer approach cannot provide insight into the complex ecosystem level dynamics that likely
contribute to the observed high interannual variability in ANCP, however there is a clear connection between
strong convection and high ANCP. Prior work investigating interannual variability of phytoplankton productivity
in the Irminger Sea based on satellite chlorophyll data (which therefore does not capture early spring NCP
discussed here) found that the onset of elevated chlorophyll concentrations varies by as much as 30 days (Henson
et al., 2006). Their analysis found that timing of spring mixed layer shoaling influenced the timing and magnitude
of the spring bloom; stormier winters with a high number of days with gale‐force winds in turn delayed spring
stratification, corresponding to later onset of elevated chlorophyll and lower peak chlorophyll concentrations
(Henson et al., 2006). However, our work shows significant DIC drawdown by NCP within the deep late winter‐
early spring mixed layer, prior to mixed layer shoaling and increase in surface chlorophyll concentrations. During
our period of observation, between 59% and 90% (mean across all years of 73%) of annual NCP occurs prior to the
mixed layer shoaling above 100 m for the first time in the spring. Our finding of elevated NCP during deep winter
mixing is consistent with the disturbance‐recovery spring bloom hypothesis, in which the decoupling of
zooplankton predator and prey during deep mixing enables enhanced primary productivity due to relief of grazing
pressure (Behrenfeld & Boss, 2014). Historically, increased light availability with a shoaling mixed layer has
been thought to be the catalyst of increased phytoplankton growth (Sverdrup, 1953), however more recent work
has demonstrated that though high chlorophyll concentrations may be driven by this critical depth hypothesis, a
combination of more complex ecosystem interactions caused by winter mixing are at play (Behrenfeld &
Boss, 2014 and references within; Mignot et al., 2018). Our results suggest that deeper mixed layers in the later
winter and early spring may actually drive higher ANCP, potentially the result of inhibition of grazing due to
mixing.

5. Conclusions

This work constructs the first multi‐year, high‐frequency time series of the inorganic carbon system in the
subpolar North Atlantic using daily measurements of the carbonate chemistry system. Strong biological draw-
down is the primary removal mechanism of inorganic carbon from the mixed layer. Increases in mixed layer DIC
are primarily controlled by entrainment of high DIC waters as the mixed layer deepens due to winter convection.
Similar maximum DIC concentrations are found each winter despite interannual variability in winter mixing,
implying that variations in the depth of winter convection do not drive wintertime mixed layer DIC concentra-
tions. While previous analysis at this site has emphasized the role of deep winter mixing reintroducing respired
carbon to the mixed layer that has been previously exported (Palevsky & Nicholson, 2018), we find that strong
NCP in the late winter and early spring begins reducing DIC concentration prior to shoaling in all years, such that
years with extremely deep convection actually drive higher ANCP from the seasonally varying mixed layer than
those with shallower convection. The highest rates of NCP occur prior to the appearance of high chlorophyll
concentrations, highlighting the utility of in situ sensing of carbonate parameters rather than relying on chloro-
phyll measurements as a proxy for biological productivity in the mixed layer. It is probable that the detrainment of
water containing freshly produced organic carbon in the spring contributes to a high magnitude of carbon export, a
subject which warrants further exploration. Future work is also needed to determine what fraction of the ANCP
contributes to long‐term carbon sequestration and to elucidate the connection between biologically driven DIC‐
drawdown and air‐sea CO2 flux.

The average annual net community production within the seasonally varying mixed layer is
9.8 ± 1.6 mol C m−2 yr−1 and ranges from 6.0 to 13.9 mol C m−2 yr−1 over the 7‐year study period. Sparsity of
data often leads to averaging across multiple years in ocean biogeochemistry and specifically when determining
ANCP, however doing so can blur the important differences from year to year in both the drivers and magnitude.
Averaging across multiple years does not sufficiently capture the complex carbonate chemistry system dynamics
in the central Irminger Sea, driven by high interannual variability of winter convection and primary productivity.
Collecting observational data is both costly and challenging, however if only 1 year of data is collected or multiple
years are averaged together, ANCP in areas with high interannual variability like the Irminger Sea will be
misrepresented. This is highly relevant in the context of efforts to detect the emerging impacts of ongoing
anthropogenic climate change on biogeochemical cycles relative to baseline natural variability (Henson
et al., 2016). The intended 25‐year time series of the OOI Irminger Sea Array will provide more information about
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the interconnected physical and biogeochemical controls on interannual variability in ANCP, as well as potential
long‐term trends.

Data Availability Statement

Data Availability: Ocean Observatories Initiative mooring and glider data used in this analysis are all from the
THREDDS Gold Copy catalog (https://thredds.dataexplorer.oceanobservatories.org/thredds/catalog.html).

Reference designators for each depth and deployment can be found in the OOI Data Explorer (https://ocean-
observatories.org/knowledgebase/how‐to‐decipher‐a‐reference‐designator/, https://dataexplorer.oceanobservato
ries.org/). OOI DIC and TA bottle samples were accessed through the OOI Alfresco portal (https://alfresco.
oceanobservatories.org/alfresco/faces/jsp/browse/browse.jsp).

DIC and TA bottle samples run at Boston College can be accessed at https://www.bco‐dmo.org/dataset/904722
(Palevsky, Fogaren, et al., 2023). ERA5 Reanalysis hourly sea surface temperature and 10 m wind speed data,
used for mixed layer calculations and air‐sea gas exchange, are from https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023). Sea surface height and current data used in Figure 1 are from E.U. Copernicus Marine
Service Information, https://doi.org/10.48670/moi‐00148 (Global Ocean Gridded L4 Sea Surface Heights And
Derived Variables Reprocessed, 1993‐Ongoing, n.d.). NOAA's CarbonTracker data, used in air‐sea gas calcu-
lations, are from https://doi.org/10.15138/ffxv‐2z26 (Jacobson et al., 2023). Nutrient mean values at our site are
from GLODAPv2_2021, accessible at https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0237935/
(Lauvset et al., 2021).

Software Availability: All analyses were conducted inMATLAB fromMathWorks. Basic physical oceanographic
conversions were done using the Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS‐10, available at
http://www.TEOS‐10.org. Calculations within the carbonate chemistry system used CO2SYS, accessible at
https://doi.org/10.5281/zenodo.3952803 (Sharp et al., 2020). Predicted DIC and TA were determined using the
CONTENT model, accessible at https://github.com/HCBScienceProducts/CANYON‐B (Bittig et al., 2018). Gas
transfer parameterizations were calculated using the Gas_Toolbox, accessible at https://doi.org/10.5281/zenodo.
6126685 (Manning & Nicholson, 2022).
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