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Abstract—Federated Learning (FL) Services enable customers

(requesters) to outsource their FL tasks to the FL service

provider, who will recruit a group of clients with appropriate

datasets to complete the FL task. For a given FL task, how to

select appropriate clients fairly becomes a challenging problem

due to budget restrictions and client heterogeneity. In this paper,

we propose a new client selection, scheduling, and rewarding

scheme to ensure fairness through a three-stage process: 1) multi-

criteria initial client pool selection, 2) data quality-oriented per-

round client scheduling, and 3) performance-based rewarding.

Specifically, we first define a client selection metric with mul-

tiple criteria, such as client resources, data quality, and client

behaviors. Then, we formulate the initial client pool selection

problem into an optimization problem that aims to maximize

the overall scores of selected clients within a given budget

and propose a greedy algorithm to solve it. Furthermore, we

formulate the per-round client selection problem into a data

quality-oriented scheduling problem that aims to improve model

quality and guarantee fairness. We propose a heuristic algorithm

to divide the pool into several subsets such that the federated

dataset in a subset is close to an independent and identical

distribution (iid) while guaranteeing each client is selected at

least once in a scheduling period. In addition, we propose a

performance-based payment adjustment protocol with a bonus

and punishment mechanism, such that the final payment reflects

the actual performance of each selected client. Our fairness

analysis and experimental results show that our scheme not only

can guarantee fairness but also can improve the model quality

especially when data are non-iid.

Index Terms—Federated Learning Services, Fairness, Client

Selection, Client Scheduling, Reward

I. INTRODUCTION

Federated Learning (FL) enables multiple parties to train
machine learning models collaboratively without sharing the
raw training data [1], [2]. All parties train the model on
their local datasets and send the local model updates to an
aggregator, who will aggregate all the local model updates
and send the global model to each client for the next round
of training until convergence. Due to the privacy-preserving
nature and the decentralized structure, the FL framework can
be widely applied in many AI-driven applications where data
are sensitive or legally restricted, such as smart healthcare
[3], smart transportation [4], smart finance [5], and smart
life [6]. However, when deploying FL in these applications,

This work was supported in part by NSF DGE 2146427, China NSFC
62272316 and Guangdong NSF 2023A1515010663.

it is challenging to find a group of clients who have the
corresponding datasets and are willing to participate in an FL
task.

To cope with this challenge, we envision an FL service
provider that will provide FL as a service for different ap-
plications (e.g., FLaaS [7]). In an FL service system, FL
task requesters (i.e., customers) send different types of FL
tasks to the FL service provider with some requirements (e.g.,
datasets and budgets). The FL service provider will recruit
an appropriate group of clients who can satisfy the task
requirements. Due to the heterogeneity of clients (including
computing and communication resources, dataset size, and
data quality), different clients may ask for different per-round
prices for an FL task. Moreover, even if a client is selected
for an FL task, it does not mean the client can participate in
all the FL rounds because a) only a subset of clients will be
selected from the client pool to participate in an individual FL
round to reduce the communication and computation costs and
b) a client may be unavailable during several FL rounds due
to conflicting scheduling, out-of-battery, unstable networking
environments. This makes the client selection a challenging
problem in the FL service. Specifically, a promising client
selection solution should consider initial client pool selection,
client selection in each FL round, and client rewarding for
each FL task with the following requirements:

Model Quality: The main goal of the client selection is
to maximize the quality of the final model by selecting well-
performed clients within the total budget. However, the actual
performance is unknown during the initial client pool selection
for an FL task. Moreover, many existing client selection al-
gorithms [8]–[12] only focus on the per-round client selection
for a given FL task.

• Client Resources: The client resources are usually mea-
sured in terms of available CPU ratio, memory, energy,
and connection status, etc. Nishio et al. [8] utilized
resource information such as wireless channel states,
CPU/GPU availability and the size of data requested
from clients in client selection. Similarly, Abdulrahman
et al. [9] considered CPU ratio, memory, energy, and data
size provided by clients. These client selection algorithms
aim to maximize the number of selected clients in each
FL round based on computation and communication
resources. However, in the FL service system, the budget



of an FL task is usually limited.
• Data Quality: Due to the data heterogeneity, randomly

selecting a subset of clients (e.g., FedAvg [1]) or selecting
clients based on their computing and communication re-
sources may lead to biased results [10]. Although several
unbiased sampling schemes are proposed based on a
multinomial distribution (MD) where client probabilities
correspond to their relative sample size [11], [12], the
sample size does not reflect the data distribution. Local
data distributions are considered in [13], [14], where a
greedy algorithm is proposed to select a subset of clients
by minimizing the distribution distance.

• Client Behaviors: Some works choose the client based
on the model performance. In [15], each client trains a
local model and sends the norm of its local model to the
server. The server then selects a subset of users who will
further send the local models. This method can reduce
the communication cost of the model updates, however,
it requires all the clients to participate in the training
process and an extra round of norm communication from
all the clients. In [16], a biased client selection method is
proposed to accelerate the convergence speed by selecting
a set of clients with the top-k highest loss. In FL services,
the behavior of a client should be evaluated properly
in both long-term behavior (i.e., accumulated reputation)
and short-term behavior (e.g., model performance in each
round, drop-off rate in an FL task).

Fairness: We consider fairness in FL services during client
selection and rewarding as follows: 1) each client who satisfied
the FL task requirement has the chance to be selected into
the initial client pool for an FL task; 2) each client has a
fair chance to be selected during a given FL task; and 3)
the final payment or reward should consider the performance
in each participated round (i.e., with penalty and bonus on
top of the asked price). Many existing client selection meth-
ods may prefer a specific type of clients (e.g., with high
computing/communication resources [8], [9], low non-iid data
distribution [13], [14], or high model performance [15]), which
makes it unfair for those clients whose resource or data quality
may not be the best, especially for FL services. In [17], the
authors consider fairness during the client selection in each
FL round and aim to minimize the average model training
and exchange time subjecting to long-term fairness guarantee
and client availability. However, the fairness in [17] is limited
to ensuring that each client is selected a specific number of
times. In [18], a reputation-based client selection is proposed
to prioritize clients with high reputations but also provide
opportunities for clients with low reputations. In a recent work
[19], the authors further use Lyapunov optimization to dynami-
cally adjust client selection probabilities by jointly considering
reputations, times of participation and contributions.

In this paper, we propose to ensure the fairness of FL
services by designing a multi-criteria client selection, data
quality-oriented client scheduling, and performance-based re-
warding scheme, which consists of three stages: 1) selecting an

initial client pool for each FL task by mapping requirements
from the FL requester with the client capabilities (e.g., re-
sources, data, previous behaviors, prices) under a given budget;
2) selecting a subgroup of clients in each learning round
of an FL task based on the data quality, model quality and
behavior in previous rounds of this FL task. Specifically, the
client pool will be divided into several subsets which aim
to make the federated dataset in a subset close to the iid
distribution. In a scheduling period, each subset will take
turns participating in one training round. Then, we compute a
reputation score for each participating client according to their
performance measured by model quality and behavior. Clients
who are unavailable during the next scheduling period or have
low reputation scores in the previous scheduling period are
temporarily removed from the client pool and added back after
one or a few scheduling periods; and 3) payment adjustment
based on the overall performance in all participating rounds
of an FL task. Table I compares the fairness and optimization
goals between our scheme and existing methods.

The contributions of this paper are summarized as follows:

• We define a client selection metric based on multiple
criteria, including client resources (e.g., CPU, GPU,
memory, power, communication bandwidth, time avail-
ability), data quality (e.g., dataset size, data distribution)
and client behaviors (e.g., number of FL tasks completed,
model performance in previous FL tasks, and dropoff
ratio, etc.). We further define a score function to quantify
each criterion.

• We formulate the multi-criteria initial client pool selec-
tion problem into an optimization problem that aims
to maximize the overall scores of selected clients in
the initial client pool within a given budget from the
task requester, subjecting to a minimal number of client
constraints and a minimum requirement for each of
the criterion scores of every client. We also propose
an efficient greedy algorithm to solve this optimization
problem.

• We further formulate the per-round client selection into
a client scheduling problem with dynamic availability of
the client pool. Then, we propose a heuristic algorithm to
divide the client pool into several subsets such that each
client can participate at least once while guaranteeing that
the federated dataset in a subset is close to the iid dis-
tribution. We also propose a performance-based payment
adjustment method to provide bonuses and penalties.

• We show that our client selection, scheduling, and re-
warding algorithms can guarantee fairness. The experi-
mental results of training CNN models on MNIST and
CIFAR datasets demonstrate that our scheme can improve
the model quality especially when data are non-iid.

The remainder of this paper is organized as follows. In II,
we present the related work of client selection in FL. Section
III describes the system model of an FL service system and
the basic training process of an FL task. A client selection
metric is defined in Section IV, followed by the problem



TABLE I: Comparison of Fairness and Optimization Goals

Schemes
Fairness in Per-round Client Selection Fairness in Initial Fairness

Optimization Goal Min Selection # Reputation Data Quality Client Pool Selection in Rewards

[17] Training Efficiency 3 7 7 7 7
[18] Model Quality via Reputation 3 3 7 7 7
[19] Model Quality via Reputation 3 3 7 7 7
Our Model Quality via Data Quality&Reputation 3 3 3 3 3

formulation in Section V. In Section VI, we propose a solution
for each formulated problem. Section VII provides the fairness
analysis of our proposed client selection solution, and Section
VIII provides experimental evaluation. Finally, Section IX
concludes the paper.

II. RELATED WORK

In [8], the authors formulated a client selection problem to
maximize the number of selected clients based on computation
and communication resources when applying FL in the mobile
edge computing framework. A greedy algorithm is proposed
to solve the client selection problem. In [9], a multicriteria-
based client selection approach is proposed to maximize the
number of clients selected in each FL round. It first filters
the clients based on time, then uses a linear regression model
to predict whether a client is able to perform the FL task
based on the CPU, memory, and energy. These methods [8],
[9] require an extra round of communication of the resource
information from clients to the server. Moreover, maximizing
the number of clients selected in each FL round will output
a better result and also require a higher cost. However, in
FL services, the budget from an FL task request is usually
limited. In [20], a client’s successful participation probability
is estimated based on the context (e.g., CPU frequency, RAM,
storage, and channel information) in the current and all the
previous rounds. Then, an optimization problem is formulated
to select clients within a given budget for a hierarchical FL.

Randomly selecting a subset of clients (e.g., FedAvg) or
selecting clients based on their computing and communication
resources may lead to biased results. To guarantee unbiased-
ness, Li et al. proposed an unbiased sampling scheme based
on a multinomial distribution (MD) where client probabilities
correspond to their relative sample size [11]. Although MD
sampling can guarantee unbiasedness in expectation, it may
still cause high variance in the amount of times a client is se-
lected in a single FL iteration. In [12], two clustered sampling
algorithms (based on sample size and model similarity) are
introduced to reduce variance and keep unbiasedness during
the client selection in FL.

Many existing client selection methods may prefer a spe-
cific type of client (e.g., with high computing/communication
resources [8], [9], low non-iid data distribution [10], [13], [21],
or high model performance [15], [16]), which makes it unfair
for those clients whose resource or data quality may not be the
best, especially for FL services. In [17], the authors consider
fairness during the client selection and aim to minimize the
average model exchange time. However, the fairness is limited
to ensuring that each client is selected a specific number of
times. In [18], a reputation-based client selection is proposed
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to prioritize clients with high reputations but also provide
opportunities for clients with low reputations. In [19], the
authors further use Lyapunov optimization to dynamically
adjust client selection probabilities by considering reputations,
times of participation and contributions.

III. SYSTEM MODEL

In this section, we first describe the system model of the FL
service system. Then, we describe the basic training process
of an FL task.

FL Service: As shown in Fig. 1, an FL service system
consists of the following entities:

• Task Requester: Task requesters (i.e., customers) send
different types of FL tasks to the FL service provider
with some requirements (e.g., datasets, minimum com-
puting/communication requirement, time, budget, etc.).

• Clients: Clients register with the FL service provider
to participate in some FL tasks for profit. Each client
will ask for a price that may vary for different types of
FL tasks, computing/communication resources, available
time, and datasets.

• Service Provider: The FL service provider will recruit
an appropriate group of clients who can satisfy the task
requirements. However, even if a client is selected for an
FL task, it does not mean the client is able to participate



in all the FL rounds because a) only a subset of clients
will be selected from the client pool to participate in an
individual FL round in order to reduce the communication
and computation costs and b) a client may be unavailable
during several FL rounds due to conflicting scheduling,
out-of-battery, unstable networking environments.

FL Training Process: A general FL training process hap-
pens between an aggregator and a set of clients S. Let Dk be
the local dataset held by the client k (k 2 S). The typical FL
goal [1] is to learn a model collaboratively without sharing
local datasets by solving

min
w

F (w) =
X

k2S

pk · Fk(w), s.t.

X

k2S

pk = 1 (pk � 0), (1)

where Fk(w) = 1
nk

P
nk

jk=1 fjk(w;x
(jk), y(jk)) is the local

objective function for client k with nk = |Dk| available
samples. pk is usually set as pk = nk/

P
k2S

nk (e.g., FedAvg
[1]). An FL training process usually contains multiple rounds,
and a typical FL round consists of the following steps:

1) client selection and model update: a subset of clients St

is selected, each of which retrieves the current global
model wt from the aggregator.

2) local training: each client k trains an updated model
w

(k)
t

with the local dataset Dk and shares the model
update �(k)

t
= wt � w

(k)
t

to the aggregator.
3) model aggregation: the aggregator computes the global

model updates as �t =
P

k2St
pk�

(k)
t

and update the
global model as wt+1 = wt�⌘�t, where ⌘ is the server
learning rate.

IV. CLIENT SELECTION CRITERIA

As aforementioned, clients can be chosen based on var-
ious selection criteria including measures of computation
resources (e.g., CPU, memory, storage, and battery/energy),
communication resources (e.g., connection status, network
bandwidth), data quality (e.g., dataset size and distribution)
and reputation measures (e.g., historical model quality and
behavior). To assist client selection in FL services, we first
define a comprehensive client selection metric that consists
of all of these factors. Specifically, we define a score for
each of these criteria and represent them as a vector s =
(scriterion,1, scriterion,2, ..., scriterion,#). where # is the num-
ber of criteria. Each score scriterion,i is scaled to (0, 1).

TABLE II: Notations

Score Description

sCPU Available CPU ratio
sGPU Available GPU ratio
sMEM Memory size
sSTR Storage size
sPOW Power of the device (e.g., battery life)
sBDW Network bandwidth
sCON Connection status

sDataSize Data size
sDataDist Data distribution
sModelQ Historical model quality
sBhvr Behavior score

Table II summarizes the criteria used in this paper. Depend-
ing on the specific FL task, the server can choose one or
more of the listed scores or add scores for additional criteria
to consider in client selection. Optionally, the server can also
combine two or more of the scores into one score as necessary
for ease of computation or simplicity.

A. Definition of Resource Scores

The computation and communication resources can be
obtained during the client registration or when submit-
ting client preferences for the FL tasks. We can con-
vert the computation and communication information into
the scores by comparing them with the minimal require-
ments of an FL task. Suppose for a given FL task,
the minimal requirement of the computation and commu-
nication resources are defined by the FL task requester
as (CPUmin, GPUmin,MEMmin, Storagemin, POWmin,
BDWmin,CONmin), the score of CPU for client i can be
calculated as sCPU,i = CPUclienti/CPUmin.

Then, all the sCPU,i(i 2 [1, n]) are normalized into the
range of (0, 1). Similarly, sGPU , sMEM , sSTR, sPOW , sBDW ,
sCON can be calculated by the FL service provider. We can
use a similar approach to compute the score sDataSize. Other
approaches can also be applied in calculating resource scores.
For example, the connection channel status sCON can also be
measured using Shannon’s equation as in [20].

B. Definition of Data Distribution Score sDataDist

The data distribution score sDataDist characterizes how the
client’s data is independently and identically distributed (iid).
It is defined as the complement of non-iid degree Nid. That
is, sDataDist = 1 � Nid where Nid is a function of a
histogram h = (h1, h2, ..., hc) which represents distribution of
a client’s data over classes 1, 2, ..., c of a classification task.
For example, h = (10, 20, ...) means the client has 10 data
samples of the first class label, 20 data samples of the second
class label, and so on. We define the non-iid degree as the
fraction of difference between sample sizes of maximum and
minimum classes over the total sample size.

Nid(h) = (max(h)�min(h))/sum(h) (2)

Alternatively, the non-iid degree can also be defined as a
distance between two distributions, i.e., the client’s data dis-
tribution h and the uniform distribution u = ( 1

c
,
1
c
, ...,

1
c
), such

as L2 distance [13], Hellinger distance [14], Kullback–Leibler
(KL) divergence [22], etc.. In this work, we use our definition
(Equation 2) for simplicity and ease of understanding.

C. Definition of Historical Model Quality Score sModelQ

The FL service provider will maintain historical model
quality evaluations for each FL task and every client who
participated in the task. That is, for each client, there is a
vector q = (qtask1 , qtask2 , ...), where qtaski represents the
quality of the model computed by this client for task i. This
per-task model quality qtaski is the average of per-round model



quality values qt for all rounds in which the client successfully
participated. Thus, for each client,

qtaski =
1

|T|⌃t2Tqt (3)

where T is the set of indices of participated rounds.
For each round t, the model quality value qt can be defined

as a cosine or other similarity between the local and global
models: qt = sim(wl,wg) where wl is the local model
parameter vector (model update) computed by the client,
wg is the global model parameter vector obtained after the
aggregation step for this round.

The historical model quality score sModelQ is defined as
the average of all qtask1 , qtask2 , .... The server can maintain
model qualities for a fixed number |q| of recently completed
tasks as sModelQ = (qtask1 + qtask2 + ...)/|q|.

D. Definition of Behavior Score sBhvr

The behavior score measures how often a client drops out
or fails to return a model in an FL task. In the same method
as the model quality score is defined, a per-round behavior
score bt is computed for each participating client after each
round of a task. The per-round behavior score bt is a binary
indicator of whether the client successfully returns its local
model update to the server:

bt =

(
1 if model update is successful
0 else

(4)

The per-round behavior scores are averaged over all rounds
in which the client has participated to obtain a per-task
behavior score:

btaski =
1

|T|⌃t2Tbt. (5)

which is maintained in a vector b = (btask1 , btask2). The
overall behavior score sBhvr is the average of all or recent
per-task behavior scores: sBhvr = (btask1 + btask2 + ...)/|b|.

E. Overall Score and Cost

For convenience, we rewrite the scores in Table II
sCPU , sGPU , ..., sBhvr as s1, s2, ..., s11. So, the score vector
s is written as s = (s1, s2, ..., s11). We take a weighted or
unweighted sum of all the above scores as an overall score
Score to denote how good a client is overall in all aspects:

Score = Score(s) = w · s =
11X

i=1

wisi (6)

where the weight vector w can be defined by the server
according to the specific requirements of the FL task.

Since clients contribute their resources and time when
participating in an FL task, they also ask for a price (e.g.,
per-task price) for the FL task. Here we define the price as
Cost. For example, the Cost can be determined by a function
of the overall score of a client:

Cost = Cost(Score) = aScore+ b (7)

where a, b are constants, a > 0. Alternatively, Cost can
be defined as any increasing function of the overall score
Score, or a combination of one or more of the separate scores
s1, s2, .... Also, each client may give a price of its own as a
constant. In general, clients with higher scores demand higher
costs. The maximal total cost for the selected clients is subject
to a budget defined by the FL task requester.

V. PROBLEM FORMULATION

In this section, we formulate the client selection, scheduling
and rewarding problem based on the criteria defined in the
previous section.

Stage 1: Initial Client Pool Selection for an FL Task

Given an FL task, let K denote the set of all clients willing
to participate, and S ✓ K the set of selected clients for this
task. At Stage 1, we aim to build a client pool from which a
subset is selected to participate in each round. We require that
the number of selected clients is at least n

⇤. The aim is to
select high-score clients as many as possible within a limited
cost budget B. To do this, we want to maximize the sum of
overall scores of selected clients with a budget constraint and
a number-of-clients constraint. We also enforce a minimum
requirement sth = (s1,th, s2,th, ..., s11,th) for each of the
criterion scores sk = (s1, s2, ..., s11) of each client k. We
can formulate the stage-1 client selection problem as follows.

max
S ✓ K

X

k2S
Scorek (8a)

s.t.
X

k2S
Costk  B, (8b)

|S| � n
⇤
, (8c)

sk � sth, 8k 2 S (8d)

Stage 2: Per-round Client Scheduling

At Stage 2, we will partition the client pool S into T subsets
and schedule a subset to participate in each training round such
that the subsets take turns to participate in rounds 1, 2, ..., T .
We refer to these T rounds as one scheduling period in which
all subsets have participated once. Scheduling periods are
repeated until the global model converges. In each scheduling
period, we compute a reputation score for each participating
client according to their performance measured by model qual-
ity and behavior. Clients who are unavailable during the next
scheduling period or have low reputation scores in the previous
scheduling period are temporarily removed from the client
pool and added back after one or a few scheduling periods.
More specifically, given an initial client pool S selected at
Stage 1, each scheduling period includes the following steps:

• Step 1: Generate subsets S1, S2, ..., ST ⇢ S.
• Step 2: For t = 1, 2, ..., T , all the clients in the subset

St participate in round t, update per-round model quality
scores and per-round behavior scores for clients in St.

• Step 3: Update reputation scores and availability infor-
mation for all clients in S.



• Step 4: Update client pool S according to their reputation
scores or updated availability, including

– removing clients that are unavailable in the next
scheduling period;

– removing clients that have bad reputation scores in
the current period;

– adding clients that have been suspended for a fixed
number of rounds due to bad performance.

The reputation score is defined as the sum of per-task
model quality score and per-task behavior score as defined
in Equations 3 and 5: srep = qtask + btask.

Subset Generation Problem: In the subset generation step,
our goal is to let the union of all the subsets cover the pool
to guarantee every client can participate in at least one and
at most a certain number (x⇤) of rounds. Also, we want
each subset to have a size in a fixed range, and the overall
data distribution as uniform as possible. These requirements
can be summarized as follows: a) Each subset has total data
distributed as uniform as possible; b) Subset size is in a certain
range; and c) Each client participates at least 1, at most x

⇤

rounds. We formulate subset generation as an optimization
problem as follows.

min
S1, ..., ST

max{nid(St)|t = 1, ..., T} (9a)

s.t. |St| 2 [n� �, n+ �], t = 1, ..., T, (9b)

1 
TX

t=1

xkt  x
⇤
, 8k 2 S (9c)

In this formulation, we address the above requirement i)
by minimizing the maximum non-iid degree among all the
subsets. The non-iid degree of a subset St is denoted by
nid(St) which is defined as the non-iid degree of the overall
data distribution when data of clients in St are put together,
that is, the Nid function (2) applied to the resultant vector
from addition of all histograms of clients in the subset, n and
� are a desired number of clients and its tolerance of each
subset, and

xkt =

(
1 if k 2 St
0 else

(10)

The constraints (9b), (9c) provide relaxation on the subset
size and number of times a client can be selected.

Stage 3: Performance-based Payment Adjustment

The problem formulation at Stage 1 selects the initial
client pool based on the resource, data quality, and previous
reputation. However, clients may perform differently during
the practical training rounds. If the FL service provider makes
the payment based on their asked prices, it is unfair to clients
that behave well during an FL task. Therefore, at Stage 3, the
FL service provider will adjust the final payment to the clients
according to their performance across all participated rounds
in the FL task. The performance-based payment adjustment
can be formulated as

Given an overall budget of B for an FL task, an initial
client pool S with an asked price (Costk(k 2 S)) for the
FL task from each client, the total number of periods np

until model convergence, an actual selected number of rounds
nk, a behavior score bk and an evaluation of the model
performance qk for each client k, the goal is to design a bonus
and punishment mechanism for the payment adjustment, such
that the final payment reflects the actual performance of each
selected client.

VI. PROPOSED SOLUTIONS

A. A Greedy Algorithm to Select the Initial Client Pool
To simplify this problem, the constraint (8d) can be first

taken care of by filtering scores based on the minimum
requirements. Let Kf ✓ K denote the set of filtered clients.
Then, the constraint (8c) can be satisfied by selecting the
budget B to be greater than or equal to the sum of top n

⇤

cost values among clients in Kf .

B �
n
⇤X

ranki=1

Costranki (11)

With this budget, the problem becomes a 0-1 knapsack
problem as follows.

max
S ✓ Kf

X

k2S
Scorek (12a)

s.t.
X

k2S
Costk  B (12b)

The well-known dynamic programming algorithm [23]
gives an exact solution with a time complexity of O(nB)
where n = |Kf |. A more efficient greedy algorithm based
on decreasing ratio of score to cost runs in O(nlogn) and
gives an approximation within n

�1/2 [24]. In this article, we
use the greedy algorithm which works as follows: select as
many clients as possible in non-increasing order of score-cost
ratio. We provide an experiment in Section VIII to show the
performance of the greedy algorithm.

B. Subset Generation Algorithm
To solve the optimization problem of subset generation (9),

an algorithm is proposed where we select from the input pool
one subset at a time, making sure that the non-iid degree of
the subset is minimized (9a), the subset size satisfies (9b), and
keeping track of the number of times each client is selected to
satisfy (9c). The next subset is selected from the clients who
have not been selected before, and the selection terminates
when all the clients have been selected once or more.

Multidimensional Knapsack Problem (MKP) The selec-
tion of one subset from a given pool is formulated into a 0-
1 multidimensional knapsack problem (MKP) [25]–[27] with
subset size constraints. Specifically, a client is treated as an
item, and its data histogram h, specifying how many samples
of each label the client has, is treated as c-dimensional weight
where c is the number of classes for the classification task,
each dimension (class/label) corresponding to a knapsack.



The objective is to maximize the total data sample size of
all selected clients, where the same capacity is set for all
the knapsacks to encourage even distribution of data samples
(weights) over classes (knapsacks). In particular, the MKP is
formulated as follows.

max
X

k2S
|hk|1xk (13a)

s.t. Ax  b (13b)

where |hk|1 =
P

c

j=1 hk,j is the size of the data at client k
and simply denoted as |hk| hereinafter, xk is a binary variable
denoting whether client k is selected or not, x is a vector of
xks for all clients, b is a vector of capacities of knapsacks,
and A is the constraint matrix for the MKP problem which is
constructed by putting together histograms of all clients, that
is, A = [h1, h2, ..., hK ] where hk = (hk,1, hk,2, ..., hk,c)T is
the histogram for client k, K = |S| is the number of clients,
and c is the number of classes or knapsacks.

The subset size constraints are applied by adding a row of
1s and a row of -1s to A and correspondingly adding max and
min sizes (n±�) to the capacity vector b. In this way, solving
this MKP problem is equivalent to finding a group of clients
such that their accumulated sample sizes for respective class
labels fill the knapsacks as evenly as possible, thus minimizing
non-iid degree of the selected group. MKP is a well-known
NP-hard problem and there are several open-source solvers
available, such as PuLP, Gurobi, and IBM CPLEX. We use
IBM CPLEX to solve our instances of MKP. The main process
of our subset generation algorithm is to select the first subset
of clients from the input client pool by solving a MKP, and the
second subset from the rest of the clients by solving another
MKP, and so on untill no clients are left.

Nid Improvement: As subsets are selected one by one,
remaining clients become fewer, so the next subset is selected
from a smaller pool. This will lead to less optimal solutions to
later MKPs, which means larger non-iid degrees of subsets. To
mitigate this issue, we introduce Nid improvement process in
which Nid of a selected subset is improved by adding some
clients, who have been selected previously but still available,
to fill in knapsacks as needed. This is made possible by
utilizing constraint (9c) which allows clients to be selected
more than once. In particular, after selecting a subset from
the current pool of remaining clients (clients who have not
been selected so far), if Nid of the subset is greater than
a threshold, the algorithm executes the Nid improvement
process that: 1) finds which knapsacks are less filled (e.g.,
less than a certain percentage of the capacity); 2) finds clients
for compensation, i.e., clients who are available for additional
selection and who has data to fill the less-filled knapsacks; and
3) if found, adds these clients to the pool and selects again.
The Nid improvement process may not always proceed to
step 3) because there may not be any compensation clients
found in step 2). In this case, the Nid cannot be improved
any further with the current pool, so the improvement process
terminates and the current subset is maintained. The execution

Capacity

Knapsack 1 Knapsack 2    … Complementary 
Knapsack 1

Complementary 
Knapsack 2 …

Fig. 2: Complementary Knapsacks

of the Nid improvement process makes sure that the current
subset has the best Nid achievable with the remaining clients.

Complementary Knapsacks: To ensure that the MKP
always has a solution, we relax the subset size constraint
(9b) such that the minimum size of the subset is 1 instead
of n � �, and if the solution includes less than n � � clients
even after adding compensation clients, we enforce selection
of at least n�� clients and further improve Nid by introducing
complementary knapsacks method illustrated in Fig. (2).

Suppose we want to select a fixed group of mandatory
clients (items) in a MKP problem. That is, as shown on
the left of Fig. (2), knapsacks are not all empty, some are
filled to certain degrees from the beginning. Thus, the goal
becomes to find other clients to fill in available spaces of the
knapsacks. The trick is to formulate another MKP by setting
different capacities for new knapsacks to correspond to the
available spaces of current knapsacks, that is, to complement
the already filled spaces, as shown on the right of Fig. (2),
and changing the input client pool to exclude the mandatory
clients. Complementary knapsacks are also used when too few
clients are left, in which case we select all of them and find
additional clients by complementary knapsacks.

Combining the MKP formulation, Nid improvement by
compensation clients and complementary knapsacks, we con-
struct our algorithm Generate Subsets that successfully
addresses subset generation problem (9). More detailed steps
can be found in Algorithm (1) 1.

Selection of Constraint Parameters: The constraints (9b),
(9c) are introduced to provide relaxation on the subset size and
number of times a client can be selected, so that the problem
has at least one solution. While large values of the constraint
parameters � and x

⇤ will make the problem more possible to
solve, some clients may end up being reused for too many
times as a result which is not desirable for fairness guarantee.
Thus, there is a trade-off between fairness and viability of
the solution. Empirically, we found that � with a value not
exceeding 30% of n and x

⇤ no more than 3 work in most
cases for a 10-class classification task.

C. Performance-based Payment Adjustment Strategy
Given an overall budget of B for an FL task, an initial

client pool S with an asked price (Costk(k 2 S)) for the FL
task from each client, the total number of periods np until

1Code is available at https://github.com/MeiyingOrAmy/
Subset-Generation-for-Client-Scheduling-in-Federated-Learning

https://github.com/MeiyingOrAmy/Subset-Generation-for-Client-Scheduling-in-Federated-Learning
https://github.com/MeiyingOrAmy/Subset-Generation-for-Client-Scheduling-in-Federated-Learning


Algorithm 1 Generate Subsets
Input: Client pool S; Histogram hk of client k 2 S; Subset

size n and tolerance �; Max selection times per client x⇤

Output: Subsets S1, S2, ... ✓ S
1: Set knapsack capacities.
2: Define data structure to track client selection status: how

many times each client has been selected.
3: RemainingClients = AllClients

4: while RemainingClients is not empty do

5: if Size(RemainingClients) � n� � then

6: Subset = SolveMKP (RemainingClients).
7: if Nid(Subset) > NidThreshold then

8: Improve Nid by adding compensation clients.
9: end if

10: if Size(Subset) < n� � (selected clients are too
few) then

11: Obtain new Subset that includes n� � clients,
by enforcing mandatory client selection.

12: Improve Nid by complementary knapsacks.
13: end if

14: else Size(RemainingClients) < n � � (too few
clients left)

15: Select all RemainingClients into Subset.
16: Improve Nid by complementary knapsacks.
17: end if

18: Save Subset as Si.
19: Update RemainingClients, client selection status.
20: end while

model convergence, an actual selected number of rounds nk,
a behavior score bk and an evaluation of the model quality
qk for each client k, we design a bonus and punishment
mechanism for the payment adjustment, such that the final
payment reflects the actual performance of each selected client.
The strategy consists of the following steps:

Step 1. Base Reward: According to the client scheduling
algorithm at Stage 2, each client in the client pool will be
selected at least once in each period for fairness. Thus, we
use the number of periods np until model convergence as the
average number of participating rounds. For client k(k 2 S),
we can calculate the per-round cost (reward) as

rCostk =

(
Costk/nk if nkbk � np

Costk/np Otherwise
(14)

The base reward can be calculated as

Basek = rCostk · nk · bk, k 2 S.

On top of this base reward, we will apply penalty to bad
performance and bonus to good performance. Performance
is reflected by two scores: behavior score bk and model
quality score qk. Based on the behavior score, we can obtain
the ‘effective’ participated round as nk · bk where a client
submitted the local model update successfully. Some clients
may perform extra rounds beyond the average number of

rounds (nk · bk � np), and some clients may drop out
resulting in the effective participation less than the average
(nk ·bk < np). Thus, the effective-to-average participation ratio
nk ·bk/np indicates the extra participation beyond the number
of periods np. Similarly, among the ‘effective’ participated
rounds, the model quality score qk is compared with a certain
threshold qth (e.g., the average of all the model quality scores)
to determine the relative performance of the model. That is,
the ratio between the model quality and the threshold qk/qth

indicates the extra model quality beyond the average.
Correspondingly, taking into account the two factors stated

above: 1) extra participation beyond the number of periods
np; and 2) model quality beyond the threshold (e.g., average)
model quality, we define the performance point as

Ppointk =
nkbk

np

· qk

qth

Our penalty and bonus mechanism works based on the
performance point as follows.

Step 2. Penalty due to bad performance: If the performance
point Ppointk is less than 1, the per-round cost will be
discounted by the amount of Ppointk. So, we have the
following final reward for those clients whose performance
failed to reach the average performance of all the clients
(denoted as a subset Sbad):

Rewardk = Basek·Ppointk = Basek·
nkbk

np

· qk
qth

k 2 Sbad.

Step3. Bonus rewards for good performance: Due to the
fixed total budget set by the FL task requester, the gap budget
we can use for the bonus rewards comes from the failed
participation and the punishment due to bad performance,
which can be calculated as

Bbonus = B � (
X

k2Sbad

Rewardk +
X

k2Sgood

Basek).

where Sgood = S/Sbad. This bonus budget is divided among
clients in Sgood, whose performance point Ppointk is at least
1, based on the amount of Ppointk. So, the bonus for client
k is calculated as

Bonusk = Bbonus ·
PpointkP

k2Sgood
Ppointk

Therefore, the final reward for these clients is

Rewardk = Basek +Bonusk k 2 Sgood.

One can easily confirm that the good performance clients
receive reward beyond the base reward: Rewardk > Basek

when k 2 Sgood, the bad performance clients receive reward
under the base: Rewardk < Basek when k 2 Sbad, and the
better the performance, the higher the reward.



VII. ANALYSIS ON FAIRNESS GUARANTEE

We show that our proposed solutions for initial client pool
selection, per-round client scheduling, and performance-based
payment adjustment guarantee fairness in all parts defined
previously.

Each client satisfying the minimum requirements has a
chance to be included in the initial client pool. This is
guaranteed by the fact that clients filtered by the minimum
requirements are all considered for the optimization problem
(12). Once filtered, due to the budget limit, the chance of being
selected into the pool may be different between clients. In a
scenario where the cost is given by individual clients, clients
with a high score-cost ratio are more likely to be selected.
So, those clients whose scores are low can also increase their
chances by claiming a relatively lower price. In general, the
chance relies on the client’s score which is an overall score
based on multiple criteria considered altogether. Thus, even if
a client has a low score on some of the criteria, they can still
improve the overall score by improving their scores on other
criteria, thus increasing their chance of being selected.

Once selected into the pool, each client has a similar chance
to participate in each round. Our subset generation algorithm
solves the MKP problem (9) in which each client is selected
into at least one subset. So, it is guaranteed that each client
participates in at least one round of each scheduling period.
Further, during the Nid improvement process, a small portion
of the clients may be selected into additional subsets, resulting
in more than one round of participation. The proportion of
these clients can be kept small by controlling the values of �
and x

⇤. Thus, assuming an insignificant drop-out rate, most of
the clients will participate in one round per scheduling period.

The final payment is based on performance in all the ‘ef-
fective’ participated rounds. The payment adjustment scheme
in Stage 3 considers both the behavior and the model quality
of each participating client in all participated rounds to assign
a bonus or penalty to the final payment, such that a client
who behaves well (successfully returns the model update
without dropping out) and/or contributes a good quality model
will receive a bonus which is obtained by deducting from
payment to those whose behavior/model quality is poor. This
ensures that the clients are rewarded fairly according to their
performance.

VIII. EXPERIMENTAL EVALUATION

A. Experiment Settings
For Stage 1 Initial Client Pool Selection for FL Task, we

created virtual clients by randomly assigning them scores
defined in Section (IV) and compared performance of dynamic
programming (DP) algorithm, random selection algorithm and
the proposed greedy algorithm for selecting initial client pool
from the created clients based on their scores.

For Stage 2 Per-round Client Scheduling We trained CNN
models using MNIST and CIFAR-10 datasets distributed
across 100 clients in a non-iid manner. We tested our sub-
set generation algorithm on three different types of non-iid
settings:

• Type 1 non-iid setting (one label), each client has data
samples for one class label;

• Type 2 non-iid setting (two labels 9:1), each client has
data samples distributed over two different labels with
ratio 9:1;

• Type 3 non-iid setting (three labels 5:4:1), most clients
have data samples distributed over three different labels
with ratio 5:4:1, and a few clients have data samples
distributed over two different labels with ratio 5:1 or 4:1.

In each type of non-iid setting, we selected 10 ± 3 clients
as a subset to participate in a round, resulting in 10 to 20
subsets per scheduling period during which every client gets
to participate at least one round.

The experiments were conducted in a Python environment
with common ML libraries such as PyTorch, TensorFlow,
Keras, etc. The basic federated learning process was imple-
mented using a public code repository [28] on top of which
we integrated our Algorithm (1) Generate Subsets to
schedule clients for each round. We ran our experiments on
a computer equippted with a 11th Gen Intel(R) Core(TM) i7
processor, 16.0 GB RAM on a Windows 11 operating system.
Further details and results are presented in the subsections
below.

B. Stage 1: Initial Client Pool Selection for an FL Task
In Experiment 1, to evaluate the performance of the score-

cost ratio-based greedy algorithm, we generated 10 clients
with random scores, calculated costs using the formula 7, with
a = 2, b = 5, that is, Cost = 2Score + 5 rounded to the
nearest integer for convenience, and applied the dynamic pro-
gramming (DP), the greedy algorithm, and random selection
under the same cost budget B = 100. The random selection
algorithm randomly selects clients until the budget is short.
In practice, a and b are chosen considering the budget, the
desired number of clients to select, and the actual scores of the
clients. For example, if we wish to select about 5 clients with
the budget of $100, then each selected client will be allocated
with about $20 on average. Since the maximum score among
the 10 candidates is about 7, we can choose a and b such that
aScoremax + b ⇡ 20.

Table III and Table IV show the input and results of
Experiment 1. The dynamic programming (DP) algorithm
gives the optimal solution of 6 clients with a total score of
36.85, the greedy algorithm selects 5 clients with a total score
of 32.78 and an approximation ratio of 0.11 compared to the
optimal solution, and the random selection results in 28.26
total score and 0.23 approximation ratio. From this example,
it can be seen that, in terms of maximizing the total score, DP
is undoubtedly the best, and the greedy algorithm outperforms
random selection by achieving about 90% of the best total
score. In the next experiment, we compare the time efficiencies
of these three algorithms.

Experiment 2 measures computation time of DP, greedy, and
random selection algorithms for different number of candidate
clients. The scores and costs of the candidate clients are set in
the same manner as in Experiment 1. The cost budget is set



TABLE III: Experiment 1 Input
Client 0 1 2 3 4 5 6 7 8 9
Score 6.92 4.89 6.8 6.08 6.9 6.08 3.74 3.36 5.26 3.39
Cost 18 14 18 17 18 17 12 11 15 11

TABLE IV: Experiment 1 Results

Selected Clients Total Score Approx. Ratio
Dynamic Programming 8, 5, 4, 2, 1, 0 36.85 0

Greedy Algorithm 0, 4, 2, 5, 3 32.78 0.11
Random Selection 2, 1, 5, 7, 6, 9 28.26 0.23

(a) Our v.s. DP (b) Our v.s. Random

Fig. 3: Computation Time vs. # of Candidate Clients

proportional to the number of clients (candidates). Figs. 3(a)
and 3(b) show how computation time changes with the number
of candidates. Fig. 3(a) plots the computation time of the
dynamic programming (DP) and greedy algorithm (Greedy).
As expected, DP time observes quadratic increase with the
number of candidates, while the greedy algorithm runs in
almost the same time, compared to DP, across different sizes of
input clients. Fig. 3(b) shows how the greedy algorithm looks
compared with the random selection. Both algorithms are very
fast but the greedy algorithm becomes slightly slower than
the random as the number of clients increases, which aligns
with our expectation since the greedy algorithm has a time
complexity of O(nlogn) and the random has that of O(n) (n
being the number of candidates).

C. Stage 2: Per-round Client Scheduling
We tested the subset generation algorithm on input client

pools generated according to the three types of non-iid settings
defined previouly. For each non-iid type, an input pool consist-
ing of 100 clients is generated by assigning a data distribution
histogram for each client.

Each of the three types of client pools is fed into Algorithm
(1) to obtain a group of subsets for one scheduling period.
Since the algorithm optimizes non-iid degree for each subset
by re-selecting some clients, the resulting number of subsets
may not be exactly T = |S|/n, but greater than T , mostly
between T and 2T . In our experiments where the size of the
pool |S| = 100, subset size n± � = 10± 3 and max selection
times x

⇤ = 3, the algorithm generated 10-20 subsets most of
the time. The first step of Algorithm (1) is setting capacities
of knapsacks. We set one capacity for all the knapsacks since
we want them evenly filled. The capacity is set according to
the client pool and desired number of rounds T . To distribute
clients’ data evenly across subsets, we set the capacity such
that the knapsacks can accommodate data from the maximum

class (label) which is the class of which data is the most
abundant across the client pool.

Fig. 4 shows examples of subsets generated by Algorithm
1 (left half) and subsets randomly selected (right half) from
Types 1-3 input pools. Each bar graph indicates the total
number of samples for each class label, where different colors
represent data from different clients. For each pool type, the
first and last subsets from Algorithm 1 are shown, the rest
subsets are similar to the first. Most Algorithm 1 subsets have
a close-to-uniform data distribution over labels, except for
the last one which is due to the lack of remaining clients
towards the end of the process. Random subsets are obtained
by randomly selecting 10 clients from the pool, which have
stacked histogram far away from uniform distribution.

Based on our subset generation algorithm, we scheduled
clients for each round to train a FL model according to 4 steps
described in Section V, one subset participating one round
respectively, and then, the client pool is updated and a new
set of subsets are generated for the next scheduling period.
The pool update is simplified such that randomly selected 5%
of the clients drop out from the pool and come back after one
scheduling period. For comparison, we also trained the same
model using random client selection.

For each of the 3 non-iid types, we trained a CNN model
with MNIST and CIFAR datasets based on our client schedul-
ing and random client selection. The resulting learning curves
are plotted in Figs. 5 and 6. For MNIST dataset (Fig. 5),
the advantage of our scheduling method is the most obvious
in Type 1 pool (each client has data of only one label), the
accuracy for scheduling (blue solid line) is well above that
of random selection (blue dashed line), reaching an accuracy
of 0.94 after 200 rounds compared to 0.78 of random. With
Type 2 pool (two labels each client), the difference between
scheduling and random selection reduced compared to Type
1, but still the accuracy converges faster and reaches a higher
value (0.96 compared to 0.94) than random. In Type 3 pool (3
labels each client), the dashed almost caught up with the solid,
but the solid shoots up a bit faster at early rounds, reaches a
slightly higher accuracy (0.98 compared to 0.97), and stays
more stable with less fluctuations. For CIFAR dataset (Fig.
6), with Type 1 pool, we could not reach a convergence after
training for 400 rounds, but with our scheduling method, the
accuracy is higher and grows faster especially towards later
rounds. With Type 2 and 3 pools, our method has a better
curve as expected, reaching convergence faster and achieving
higher accuracy across the rounds, the difference being more
significant for Type 2 than for Type 3. For both datasets,
we can observe a trend that the more non-iid data individual
clients have (fewer labels), the more improvement achieved
by our scheduling method compared to random selection. This
indicates our scheduling method works better for more extreme
non-iid settings.

IX. CONCLUSION

In this paper, we focused on how to select clients fairly and
improve learning performance for FL services and proposed



Fig. 4: Subsets Generated by Algorithm 1 and Random Subsets from Types 1-3 Pools

Fig. 5: MNIST Learning Curves Trained from Type 1-3 Pools

Fig. 6: CIFAR Learning Curves Trained from Type 1-3 Pools

a multi-criteria client selection and scheduling scheme with
a fairness guarantee. It consists of three stages: 1) initial
client pool selection, 2) per-round client scheduling, and 3)
performance-based rewarding. Specifically, we first defined a
client selection metric based on multiple criteria, including
client resources, data quality, and client behaviors. Then, we
formulated the initial client pool selection problem into an
optimization problem aiming to maximize the overall scores
of the initial client pool within a given budget and proposed a
greedy algorithm to solve this problem. To guarantee fairness,
we further formulated the per-round client scheduling problem
and proposed a heuristic algorithm to generate several subsets
from the client pool, while guaranteeing that the federated
dataset in a subset is close to a uniform distribution and
every client is selected at least once to guarantee fairness.
We further proposed a rewarding mechanism to adjust the
final payment according to the performance of the clients.
Our fairness analysis and experimental results show that our
scheme not only can guarantee fairness but also can improve
the model quality especially when data are non-iid.
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