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Figure 1: Imprimer Overview. Left: a computational notebook documents a process for setting up and controlling a Shopbot
CNC mill. Middle: by writing code, makers create real-time interactive visualizations and inputs to explore machine and control
settings. Right: projecting augmented reality previews onto the Shopbot enables testing and refinement of existing cuts.

ABSTRACT

Digital fabrication in industrial contexts involves standardized pro-
cedures that prioritize precision and repeatability. However, fabrica-
tion machines are now available for practitioners who focus instead
on experimentation. In this paper, we reframe hobbyist CNC milling
as writing literate programs which interleave documentation, in-
teractive graphics, and source code for machine control. To test
this approach, we present Imprimer, a machine infrastructure for a
CNC mill and an associated library for a computational notebook.
Imprimer lets makers learn experimentally, prototype new inter-
actions for making, and understand physical processes by writing
and debugging code. We demonstrate three experimental milling
workflows as computational notebooks, conduct a user study with
practitioners with a range of backgrounds, and discuss literate
programming as a future vision for digital fabrication altogether.
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1 INTRODUCTION

“[The] learner always gets the experience of interactively controlling
the lower-level details, understanding them, developing trust in them,
before handing off that control to an abstraction and moving to a
higher level of control.”

— Bret Victor, Learnable Programming [65]
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Figure 2: Snippets from the D1: QuickDraw Notebook. Left: the notebook is divided up into separate parts (top), for example, a
step for calculating feed and speed values based on the user’s tooling and material setup (bottom). Middle: the user can sketch a
geometry freehand, by defining control points, or by importing geometry (top) and then visualize the toolpath in-situ using the
AR overlay. Right: users can experiment with the cutting depth of the toolpath (top) and dispatch the job to obtain a quickly

milled prototype (bottom).

In the last few decades, digital fabrication tools that previously
existed only in professional machine shops have become increas-
ingly available to a wider and more varied group of makers [3, 19].
As computer systems moved out of the work place to become in-
creasingly prevalent in domestic, educational, ludic, and aesthetic
contexts [6], so did digital fabrication systems reach new sites and
groups, creating new priorities and challenges for digital fabrication
research. In particular, subtractive manufacturing machines such
as CNC (computer numerically controlled) mills—as opposed to
additive manufacturing machines like 3D printers—present addi-
tional barriers to makers without experience in traditional machine
shops, such as safety and tool knowledge. Yet, the existence of dig-
ital fabrication systems outside of exclusively industrial contexts
indicate a new opportunity: to rethink digital fabrication systems in
the light of new priorities, namely expressivity and customization
rather than replication and mass production. Artists, designers, en-
trepreneurs, hobbyists, and other makers prioritize the exploration
of new physical forms, the development of original workflows, and
the production of bespoke or customized artifacts, rather than the
high volume reproduction of a single geometry [26, 64, 73].

We consider the example of a fictional user, Talia. Talia is an
artist and product designer who makes ceramic home decorations
and objects: drinkware, candle holders, plant pots and accessories.
The designs are unique and rely on custom molds that Talia makes
herself with a CNC mill. She generates the mold designs in CAD
software and then creates toolpaths using a CAM tool, which she
then sends to her studio CNC mill. She uses the milled positives to
create plaster molds which she uses to create the ceramic pieces.

While her small local business is thriving, Talia is often frus-
trated with the process of developing new products and designs
because of the labor- and resource-intensive nature of experiment-
ing with new designs. For example, one of her best-selling pieces
is a mug with a gradient glaze and pronounced ridges generated
algorithmically. Talia has spent much time sketching and creating
other patterns in CAD and testing them on a mill, but every time
she wants to adjust her toolpath or tweak an aspect of the design,
she either has to regenerate an entire G-code file in CAM or go
back to the model in CAD and go through the CAD-CAM-CNC
pipeline again. It is also difficult for Talia to document and share
her process with other fabricators at her business because they
frequently invent new techniques or improvement to algorithms
which require documentation to be constantly rewritten.

In this example, we highlight that the software tools used for
CNC miilling are locked into a rigid interaction paradigm that fo-
cuses on faithful replication, rather than exploration. Even though
CNC mills have now become accessible in non-professional spaces
(such as fab labs, makerspaces, professional studios and homes),
the software tools to control them are still built after the model of
this replication-based interaction.

We argue that conventional and hobbyist CAM software tends
to discourage makers from “straying from the path” or exploring
new designs, as in Talia’s example, because they based in a para-
digm of fabrication as executing programs. In these tools, machining
operations are packaged into programs which are relatively easy
for makers to execute, but sacrifice the low-level machine control
needed to pioneer novel techniques with machines and materials.
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Low-level machine control allows makers to quickly dispatch com-
mands to the machine, verify operations in real time, and adjust
their designs accordingly. As such, it supports improvisational and
exploratory fabrication processes. However, writing machine code
for direct control of mills and lathes is largely restricted to specific
scenarios in professional machine shops [10, 54]. It is difficult to
abstract to more complex interactions; its low-level nature also
obscures readability and portability for those besides the author.
Moreover, programs written in machine code (e.g., G-code) afford
very little documentation and explanation which becomes crucial
for less experienced makers.

Altogether, it is difficult to interact with CNC milling machines
in an exploratory way. We define exploratory fabrication as focus-
ing on discovering new material behaviors and developing novel
workflows rather than the faithful translation of digital models. To
achieve exploratory fabrication with CNC mills, makers require
control software that allows for low-level machine control that
can be quickly iterated on, is richly documented, preserves safety
checks, and discourages risky operations.

How can we better support exploratory fabrication with CNC
milling machines? To address this question, we argue for a vision
that treats fabrication as writing programs—not just executing them.
The knowledge required for writing programs for fabrication needs
to be properly scaffolded. To extend direct machine programming
in a supported way, we turn towards literate programming where
programs are human-readable documents that interleave prose,
graphics, and source code [32].

Computational notebooks, a common example of literate pro-
gramming, aid with digital-only programming problems in data
science, machine learning, and related domains [30, 48]. We argue
that a literate programming paradigm, if modified properly, could
catalyze exploratory fabrication for CNC milling by allowing mak-
ers to quickly send commands to the machine, adjust and fine tune
their design iteratively, and acquire the necessary programming
and manufacturing knowledge to develop their own workflows.
Further, literate programming could democratize exploratory fab-
rication by letting users replicate existing workflows simply by
reading and deploying code from a computational notebook.

To test this hypothesis, we present Imprimer, a machine infras-
tructure for structured, direct control of a CNC mill from a compu-
tational notebook—in our case, the Shopbot CNC router [53] and
the Observable computational notebook [47]. In Imprimer, makers
can prototype new fabrication workflows by writing and modifying
code. Our library provides custom visualizations both in the note-
book and projected onto the machine in-situ. Makers document
their making process by interleaving text and visual documentation.
Imprimer blends traditionally separate parts of the fabrication pro-
cess into a single, live environment where makers can make changes
to code, visualize the results, and deploy cutting jobs immediately
to the machine. Makers can also view or hide the underlying code
for each cell; by hiding all code, makers use the notebook as they
would with any other graphical user interface or tutorial document.

We stress that Imprimer is the beginning of a new paradigm:
sharing ideas about ways to fabricate, not just running code to fab-
ricate. Thus, it does not yet cover all the functionalities currently
available in conventional CNC software tools. Rather, it is a step
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towards a different interaction paradigm which lets makers dis-
cover machine behavior and possibilities gradually, and over time
implement their own functionalities by writing code.

To guide the development of this paradigm, we developed three
demonstration notebooks that represent exploratory workflows:
D1: QuickDraw, AR-assisted sketch-based milling (subsection 5.1),
D2: FunctionTile, surface milling by sampling mathematical func-
tions of two variables (subsection 5.2), and D3: MiniShelf, para-
metric generation of bookshelves (subsection 5.3), alongside two
tutorial notebooks that introduce Imprimer’s connection and ma-
terial setup functionalities. We conducted an in-shop user study
with participants holding a range of backgrounds in CNC milling
and computational notebook programming (Section 6). From these
demonstrations and evaluations, we discuss the challenges, rewards,
and future possibilities of literate programming as an interaction
model for CNC milling.

2 END-TO-END EXAMPLE

To provide a concrete example of using Imprimer, we consider an
improvisational milling workflow with Talia, who wants to explore
different patterns for ceramic molds. She intends to mill shallow
surfaces with various patterns and cast these test pieces in plaster
to assess which would work best for cups. This process, which
would traditionally take place over several CAD and CAM tools, all
happens within a single notebook, enabling rich exploration and
quick iteration.

Step 1: Connection. To begin, Talia connects all the differ-
ent parts of the system—the Observable notebook, the augmented
reality overlay and the ShopBot CNC milling machine—over the
provided WebSocket. She sends a test command to the ShopBot,
“MX, 57, to make sure the notebook effectively communicates with
the milling machine. The ShopBot moves accordingly and the con-
nection is successful.

Step 2: Material setup. Once Talia has established a connection,
she goes through a series of steps to prepare the machine and the
material for milling: she measures her material (in this case, insu-
lating foam, a cheap and forgiving material for pattern exploration)
and fixes it to the machine bed using screws and clamps. Given the
thickness of the piece of foam she uses (2 inches), she chooses a
long square 1/8th inch end mill and installs it. Finally, she zeroes her
axes and moves back to the Observable notebook to start designing
her toolpaths.

Step 3: Overlay calibration. Next, using the AR overlay note-
book (subsubsection 5.1.1), she runs through the overlay’s cali-
bration procedure to match the projected toolpath to where the
machine will actually move. Her material already has some test
cuts made in it, but using the AR overlay she is able to position the
toolpaths into the spaces on the stock with material remaining.

Steps 4 and 5: Designing toolpaths and milling. After this,
Talia uses code from the D2: FunctionTile notebook which lets her
create 3D surface milling patterns using mathematical functions
of two variables. She decides to explore three in particular: sinc,
sine/cosine, and the Goldstein-Price functions. With the notebook,
she designs her patterns by designing her toolpaths and iteratively
explores the effect of various machining parameters on her design,
such as the maximum cutting depth, the stepover, the frequency
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Figure 3: Snippets from the D2: FunctionTile Notebook. Left: users choose a mathematical function of two variables and use
graphical elements to experiment with function parameters and see the toolpath visualization update in real time. Middle:
to ensure feasible milling, users define variables to offset and clip the function within a desirable bounds as described in a
hand-drawn diagram. Right: users specify tooling parameters to calculate feeds and speeds (top) before dispatching the job to

the CNC mill (bottom).

of the patterns, the feeds and speeds, among others. With each
new swatch, she tweaks a few parameters by making simple edits
to the code in the respective cells that calculate these parameters.
She documents each variation both in prose and in a dictionary of
parameter values in a notebook code cell. Within two hours, she
has created over 20 swatches with three different functions that
she is ready to cast to create her test pieces. Once she is done, she
adds notes and comments in the notebook for future reference, and
to eventually share the notebook with her community.

2.1 Target Audience: Novices and Experts Alike

Generalizing from Talia’s case, Imprimer is a paradigm shift to-
wards using code, visualization, and documentation to pioneer and
share knowledge about exploratory fabrication workflows. Users of
varying skills in both programming and in CNC milling can engage
with Imprimer. Because Observable notebooks can operate with
the code completely hidden, those without programming experi-
ence can still use the notebooks with full functionality apart from
code-level customization. In parallel, while there are increasingly
sophisticated tools for learning programming, there are relatively
few innovations in digital fabrication education. Programmers who
lack CNC milling experience can follow Imprimer notebooks that
explain the process where documentation is interleaved with the
controls; this contrasts with conventional CAD/CAM tools where
documentation is separate.

On the other hand, users who are experienced in both program-
ming and CNC milling can remix notebook code and develop en-
tirely new functionality. Unlike conventional CAD/CAM tools, the
source code that drives an interaction can be readily tailored, from
simple customization of toolpath algorithms, to custom forks of
notebooks, to entirely new notebooks representing new workflows
[45]. Imprimer’s library and direct machine communication helps
experienced developers focus on and test their high level goals.

Finally, users of all backgrounds can benefit from Imprimer’s free
and open source nature, whereas common CAM software can cost
up to thousands of dollars per year.

2.2 Sustainability

Exploratory fabrication unavoidably involves creating many itera-
tions of an artifact. Such iteration can be wasteful, especially when
running the machine would consume a larger amount of material
than strictly needed to test concerns such as tolerances or experi-
menting with feeds and speeds. Through Imprimer, users can write
code and documentation to explicitly produce less wasteful test
pieces through code; the advantage is that test pieces can evolve
alongside code that produces the final artifact. In addition, by en-
abling visual debugging, custom visualizations can help reduce the
amount of iterations that require machine time at all.

3 RELATED WORK

Imprimer expands on a body of work on programming in fabrication
emerging in academic and hobbyist settings. Imprimer fosters direct
machine control and lets makers develop their own interactions
in a supported way via literate programming. In this section, we
review contributions in digital fabrication research that propose dy-
namic interaction paradigms alongside research on computational
notebooks for data science applications.

3.1 Conventional CAM in Maker Settings and
the Alternative

Traditional CAD and CAM tools proliferate in makerspaces within
academic and hobbyist contexts. For CNC milling, popular CAD-
CAM software choices include Autodesk Fusion 360 [4] and Solid-
works [11]. While these tools have features that make them more
readily usable by makers, they operate under a CAD-to-CAM par-
adigm which treats CAM as a translation step of digital designs,
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Figure 4: Fabricated Tiles Modeled with the D2: FunctionTile Notebook. Left: a block of molds generated from several mathe-
matical functions of two variables (sinc, sine/cosine, Goldstein-Price) milled in insulation foam. Right: the corresponding tiles

cast in plaster.

rather than as a space for creative decisions. This presents a large
barrier to exploratory fabrication and to newer makers in general,
as suggested by Hudson et al. [24]. This is especially true for CNC
milling, which requires extensive knowledge of materials, tooling,
and toolpathing to use CAM software at all.

Our goal is to facilitate the use of CNC as a medium for creative
exploration, besides its current use as a tool for translating digital
designs to physical form. In a study of makers’ current desires for
fabrication tools, Yildirim et al. [71] reported that “participants
envisioned future [tools] that could improve their current work-
flow by leveraging new machine capabilities. They desired systems
that have personal and collective awareness for additional support
throughout the whole process” We can draw inspiration from key
tenets of Bret Victor’s notion of learnable programming [65] to
imagine learnable fabrication: explaining in context, following the
[program’s] flow, seeing the state, creating by reacting, and creating
by abstracting. Rather than constrain makers into using abstrac-
tions developed for industrial contexts, we seek to give makers
control over low-level movements along with the means to build
and document their own abstractions.

3.1.1 Existing Practice for Directly Writing Machine Instructions.
In the case of exploratory fabrication, directly writing machine
instructions is constrained by the lack of tools that support this
practice and is therefore limited to ad hoc solutions. For instance,
Desjardins and Tihanyi [13] wrote G-code in an Excel sheet to
create the ceramic cups toolpaths, which the authors then copy-
pasted in a text editor to be sent to the Potterbot7 ceramic 3D
printer. In the case of CNC milling, we can look at the example of
the AESTUS vases by ODK.design, which feature milled grooves
made by a robotic arm that the designer Oliver David Krieg created
by developing custom CAM software to generate the toolpaths

[33]. In both these cases, the designers needed better control over
the generation of toolpaths in order to realize their design intent.
They developed their own approach and tool, whereas a system like
Imprimer would have enabled them to directly author the toolpaths
while retaining generative capabilities and enabling documentation.

Given that Imprimer builds on existing practice, we would expect
machinists to appreciate Imprimer’s functionality because it would
allow them to still directly visualize and use G-code with the added
benefit of interleaved documentation and the ability to use condi-
tionals and definite functions to encapsulate common user-defined
behaviors. Because it tends to focus on high-level usability, research
at the intersection of fabrication and HCI has seldom approached
low-level authoring of machine instructions. With Imprimer, we are
extending machinist and inventive practices of low-level machine
control in a supported way so that it can benefit both experienced
and non-professional makers.

3.2 Interaction Techniques for Digital
Fabrication and CNC Milling

Prior research in HCI has explored new paradigms for controlling
digital fabrication machines. During machine operation, interac-
tive fabrication [69] and continuous fabrication [43] creatively map
real-time input to machine output. Kim et al. [28] presented compo-
sitional fabrication, which enables interactions for tuning. Hybrid
[74, 75] and lucid [59, 60] fabrication also provide meaningful aug-
mented feedback and user control. While all of these techniques
promise increased human agency during a machine-centric pro-
cess, they all focus on human input during machine operation. In
contrast, other parts of the fabrication process, namely, material
choice, machine tooling, visualization, and responding to errors,
are less explicitly explored by these paradigms. Imprimer’s goal
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is to support the inherent iterative process of making: fabricating
an object, examining it for issues, and tracing results back to the
control system. We argue the easiest way to do this is not to hide,
but rather to expose machine control code in a structured way,
empowering makers to steer the process.

In particular, compared to interactive systems for 3D printing
and laser cutting, relatively few systems examine CNC milling. Li
et al. [37] built a system that provided immediate engraving from
drawings. Tian et al. [61] used a GUI and specialized CNC for im-
provisational carving of joinery, while Larsson et al. [34] provided a
pipeline to explore and fabricate a large space of voxel-based joints.
Follmer et al. [16] and Weichel et al. [67] used 2D/3D scanning and
milling to prototype copy-and-paste interaction and bidirectional
fabrication, respectively. Teibrich et al. [58] and Mueller et al. [42]
used milling to selectively destroy parts or all of existing objects.
Saakes et al. [52] optimized placement of new cuts given existing
stock material and Miiller et al. [44] used computer vision to help
makers take in-situ measurements. As a whole, these systems deal
with singular fabrication pipelines or parts of the process; they
focus less on making decisions about machine and material setup
or toolpath generation. In contrast, Imprimer’s goal is to open the
space of interactions while not unduly abstracting away intercon-
nected machine factors.

Beyond new interaction paradigms for live machine control,
many researchers have explored novel ways of programming ma-
chines. Many systems (e.g. LabView [5] and Pure Data [49]) have
leveraged dataflow programming to control machines. In particu-
lar, Grasshopper for Rhinoceros [50] has enabled control for new
fabrication applications like bioprinting [66] and 4D printing [57].
Notably, Fossdal et al. [17] extended Grasshopper to provide real-
time control of machine from a CAD environment, eliding con-
ventional distinctions between CAD and CAM. Other work has
explored computer-mediated improvisational making with quilting
[35], weaving [1], and multi-machine fabrication [21]. Li et al. [36]
and Yu and McCann [72] provided tools for mapping output back
to relevant parts of the program in digital drawing and knitting,
respectively. Lin and colleagues explored languages for PCB design
that negotiate trade-offs between high level goals and low-level
circuitry [39, 40] while Tran O’Leary et al. [63] modeled machines
and machine interaction in a unified grammar.

Of particular note are tools that have made low-level G-code
programming more accessible beyond a machine terminal. Subbara-
man and Peek [55] presented p5.fab, a creative coding environment
with a Javascript wrapper of G-code that facilitates experimentation
with machine parameters. Relatedly, Gleadall [20] built a system
for fine-grain authoring and previewing low-level primitives and
G-code in Excel. Imprimer is similar to these works in that it pro-
vides unconstrained means of generating low-level G-code versus
conventional CAM, but seeks to do so in a supported way through
the rich documentation afforded by literate programming. This
documented programming approach is particularly well suited to
CNC milling, as it requires more precision and domain knowledge
than additive manufacturing techniques.

Tran O’Leary et al.

3.3 Literate Programming, Computational
Notebooks, and the Physical-Digital Divide

To our knowledge, Imprimer is the first to control CNC mills through
computational notebooks, which are typically used for drastically
different applications like data science. Compared to the myriad
of existing programming techniques for digital fabrication that
we have reviewed above, why might computational notebooks be
uniquely suited for exploratory CNC milling—and for machine
control more broadly? Our key insight is that makers can best
understand machine behavior by writing code, prose, and visual-
izations in tandem. Literate programming, as proposed by Donald
Knuth [32], puts forth a vision where source code can be flexibly
rearranged to complement documentation in natural language, and,
more recently, with graphics, visualizations, and other multimedia.
We argue that computational notebooks offer a medium to quickly
explore not only datasets, but also physical machine behaviors and
interaction techniques.

Yet, even within data science, computational notebooks are still
evolving programming environments. Chattopadhyay et al. [9] dis-
cuss the limitations of computational notebooks by identifying
nine pain points data scientists face when using popular computa-
tional notebooks [31]. Among these pain points is “Reproduce and
Reuse,” where the authors discuss the challenges data scientists run
into when trying to reproduce or adapt existing notebooks. Rule
et al. [51] analyzed 1 million notebooks on Github and found that a
quarter contained no explanation, revealing a tension between ex-
ploration and explanation. In response to this Head and colleagues
proposed systems to organize existing notebooks into “cleaned up”
slices of analysis [22] or flexibly organized tutorials [23]. The Ob-
servable notebook in particular addresses some of these problems
by providing a live, topological runtime environment that permits
notebook cells to be arranged in any order [7]. We argue that these
techniques for organizing notebook code could also help makers
experiment and iterate quickly on novel milling workflows.

Other research on computational notebooks in HCI has examined
more powerful interaction techniques. Kery et al. [27] and Wu
et al. [70] developed direct manipulation techniques to generate
code by manipulating visualizations. Weinman et al. introduced
forking and backtracking to let notebook users explore alternative
approaches [68] and Drosos et al. have presented a Jupyter notebook
extension that supports data wrangling [14]. DeLine et al. developed
Glinda, a domain-specific language for data science workflows that
supports live programming with interactive results [12]. Overall,
these works have explored and addressed issues with notebooks for
data science; in contrast, Imprimer extends notebook programming
to the physical application of CNC milling.

4 INTEGRATING MACHINES AND
COMPUTATIONAL NOTEBOOKS

To provide the foundation for Imprimer, we built a network infras-
tructure to afford direct control of a CNC mill from a computational
notebook environment. To support the creation of workflows, we
contribute a library of functions for a live computational notebook
that facilitate: connecting to and controlling the mill, navigating
tooling options, visualizing geometries and toolpaths, and more.
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Figure 5: Milling Subsets of the Goldstein-Price Function in the D2: FunctionTile notebook. 1) Top-down view of a surface
rendering of nine subsets surrounding the global minimum of the Goldstein-Price function. 2) An isomorphic view of the same
rendering. 3) Toolpath rendering of the single subset containing the global minimum (center of the nine), currently infeasible
to mill due to the toolpath lying almost entirely above the material. 4) After interactively processing the toolpath by dividing
the function output, adding a vertical offset, and clamping the function to a desired bounds, the toolpath becomes feasible to

mill into a mold.

4.1 Machine Network Infrastructure

To support this workflow, Imprimer comprises a web server that co-
ordinates communication between desktop application that relays
information to a full size Shopbot PRSalpha with a 96x60" cutting
bed! and a projector-based augmented reality interface called the
AR overlay. The Shopbot accepts both its native SBP instruction
set alongside the more commonplace G-code. Figure 6 illustrates
the relationship between the user’s current notebook (“authoring
notebook”), the server, and a desktop computer that communicates
over a wired connection to the Shopbot (“Shopbot terminal”). As is
done in our tutorial notebook on connecting to the machine, we
can generate Figure 6 representing the network architecture using
the code that follows the figure.

dot~digraph "networkGraph" {
server [color=${connectedNodes.server
? "black" "gray"}, shape=box]
// More styling info omitted

"authoring notebook" -> server
server -> "overlay notebook"
"Shopbot terminal" -> server
//

Figure 6: Visualizing the status of the machine-notebook
network. connectedNodes is a mutable cell that is updated
with packets from the server whenever a client connects or
disconnects, recoloring the diagram appropriately

To connect the notebooks, we implemented the network using
a WebSocket interface building on the code used by Li et al. [37],

The Shopbot’s default unit of length is inches rather than meters.

which is publicly available. In particular, we built the Shopbot
terminal and server to facilitate direct interaction between multiple
notebooks and with the machine. We installed the terminal on the
computer connected to the Shopbot and deployed the server code
in the cloud. This direct notebook-to-machine job dispatch is not
a typical functionality for the Shopbot, which requires exporting
and importing files, even though similar functionality exists off-
the-shelf for hobbyist 3D printers [15].

4.2 Implementation in Observable Notebooks

To control Imprimer’s machine infrastructure, we implemented a
library for Observable, a browser-based computational notebook
popular for data science applications. Observable runs a modified
version of Javascript, letting it interoperate with many existing
technologies. The notebook differs from other computational note-
books like Jupyter Notebook (Python) or RMarkdown (R) in that
code cells run in topological order, meaning that cells are automati-
cally recomputed whenever any cells they depend on (parent cells)
are themselves recomputed. This produces a live programming [56]
environment where changes in one cell propagate throughout the
notebook; graphical input, visualizations, and underlying data are
always up-to-date, affording quick and interactive iteration. This
contrasts with other notebooks whose code is run in a linear or-
der or must be manually re-run; rather, live topological allows us
to arrange code in the best order for fabrication workflows and
teaching—a key tenet of literate programming [32].

4.2.1 Live Cells and Cell Names. All parts of an Observable note-
book are contained in cells which written Markdown, HTML, or
Javascript. For example, we represent the following cell that com-
putes a value and associates it with the cell name stepdownPercent,
representing the proportion of the end mill’s diameter that the mill
advances downward per cutting pass.

stepdownPercent = 0.5

stepdownPercent = 0.5

Figure 7: Declaring a cell variable.
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Whenever the the cell stepdownPercent is recomputed, for ex-
ample, if the maker enters a new percentage, the notebook recom-
putes following cell which calculates the number of cutting passes
required to cut through through the material.

numPasses = 6

numPasses = {
let stepdown = stepdownPercent *
installedEndMill.diameter;
return Math.ceil(thickness / stepdown);

Figure 8: A child cell reactively computes results when a
parent is recomputed. installedEndMill and thickness are
themselves cell values defined elsewhere in the notebook.

Cells can also be Markdown or HTML, so notebooks contain
diagrams, videos, and prose that instruct the maker about various
considerations while programming for CNC machines, as shown
in Figure 2, Figure 3, and Figure 11.

4.2.2 HTML Templating and Views. Cells can also return HTML
that is generated by Javascript, affording custom visualizations
called views. A view has two parts: the view itself, which is typically
an interactive DOM element; and the value, which is any JavaScript
value. For example, consider the following view.

viewof thickness = Inputs.range([0.0625, 2], {
label: "Enter Material Thickness (in)",
step: 0.0001

H

Figure 9: A slider view for setting material thickness.

The result of the right-hand side of the cell evaluates to DOM
element which is rendered above the cell. But, by using the viewof
keyword, the value of thickness is instead the current value of
the DOM element—the value currently selected in the slider: 0.731.
Views can be arbitrarily complex because their appearance and
interactivity can be programmed in HTML and/or Javascript. Im-
primer builds extensively on this functionality to provide intuitive
interfaces for different stages of CNC control.

4.2.3  Bringing Machine State into the Notebooks. Imprimer’s li-
brary provides a streamlined interface to synchronize notebook
state with physical machine state. We configure the Shopbot termi-
nal to periodically emit packets containing the Shopbot’s current
state to the authoring notebook through the server. For example,
whenever the end mill changes position, the Shopbot terminal de-
tects this change and sends the new position in a packet to the
server. On the notebook end, we keep track of the machine state
for library functions to query.
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5 DEMONSTRATIONS

To explore the versatility of Imprimer, we implemented three demon-
stration notebooks: sketch-based milling with augmented reality
(D1: QuickDraw), surface milling molds by sampling functions of
two variables (D2: FunctionTile), and a parametric shelf generator
with associated debugging tools (D3: MiniShelf).

5.1 QuickDraw: Sketch-Based Milling with
Augmented Reality

Following the thread of work on direct drawing with CNC machines
introduced by Li et al. [38], we built QuickDraw, a notebook that lets
users quickly sketch geometries to engrave or cut through, visualize
the resulting toolpaths in-situ on the physical material using an
augmented reality overlay, make adjustments, and directly mill the
job from the notebook. The goal of QuickDraw is for users to quickly
prototype low-fidelity versions of more complicated form they
might want to test later, or test out the effects of different end mills
on material finish. Assuming the machine’s tooling and material are
set up correctly, and that the AR overlay has been calibrated, users
can walk up to the notebook with no prior design file, sketch a quick
concept as in Figure 2, and mill it out completely in around ten
minutes. Once satisfied, users can also import and process existing
2D geometries, create 3D toolpaths while experimenting with scale
and cutting depth, and check the toolpaths using the AR overlay.
They can then move into other notebooks to work at a higher
fidelity. We defer importing 3D geometries for future work.

5.1.1 Augmented Reality Previews. We sought to extend frequent
visualization of data beyond the notebook environment into phys-
ical space. To this end, we installed a projector above the bed of
the Shopbot that projects toolpath visualizations directly onto the
machine’s bed. This provides an AR overlay which can project 2D
views onto the material in-situ; users must flatten 3D views into 2D
before rendering the with the overlay by calculating a 2D projec-
tion or “slice” onto a desired cutting plane. The visualizations are
rendered by a separate notebook which is connected to the network
and listens for updates from the authoring notebook, for example,
any changes in the toolpath’s instructions or in machine parame-
ters that affect the toolpath. We include a calibration routine that
the maker performs when setting up their stock material to ensure
that the visualized path matches the end mill’s physical location
as proposed by Tran O’Leary et al. [62]. This routine involves the
maker dragging four projected points to match the ground truth
corners of their stock material; the notebook then computes a ho-
mography from the mapping of points and uses the homography to
transform all elements of the visualization to match the toolpath’s
true physical location.

5.2 FunctionTile: Surface Milling Tile Molds by
Sampling Functions of Two Variables

One of Imprimer’s strengths is that notebook authors can combine
in a single, documented programming environment parts of a fabri-
cation pipeline that would otherwise be split across applications. In
this demonstration, we created a means of surface milling molds for
plaster tiles based on forms derived from mathematical functions.
D2: FunctionTile includes a visualization for both the surface of a
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function of two variables alongside a derived toolpath that can be
dispatched to a CNC mill (Figure 3). For example, we implemented
the two-variable unnormalized sinc function

_sin(f VA2 +47)
Vi +y?

where f is the frequency or “waviness” of the function, shown
in the cells in Figure 10, which results in the plot in Figure 3 and a
slider which recomputes the plot in real time.

sinc = £(x, y)

function sinc(x, y) {
let r = Math.sqrt(x ** 2 + y *x 2);
let z = Math.sin(sincFreq * r) / r;
return THREE.Vector3(x, y, z);

viewof sincFreg = Inputs.range ([0, 24])

Figure 10: Defining the sinc function with a slider for experi-
menting with frequency.

We provided three example functions of two variables: the sinc
function, a sine/cosine function, and the Goldstein-Price function
[41]. Users can modify these functions or write their own functions
in code as needed.

We then sample points across the surface of the plot and connect
them to generate a toolpath. Several decisions greatly affect how
this toolpath is generated, for example: whether the path passes
row-by-row or column-by-column (e.g. for anisotropic materials
like wood with a grain), the stepover which controls how much
of the end mill’s diameter the mill will remove per pass, and the
z-offset at which the surface is milled relative to the top of the
material. These toolpathing decisions, alongside the mathematical
parameters of the chosen function, are all interconnected and affect
the form and quality of the milled mold. For example, very thin parts
of the surface could break depending on the material, stepdown,
and chosen feed and speed.

With conventional CAD and CAM, it is possible to create similar
molds, but a user would have to work across several programs,
changing parameters in one program before exporting and import-
ing to another. Even programmatic tools such as Grasshopper plus
RhinoCAM [8] which support generating 2D surfaces still require
back-and-forth between the Grasshopper window (“programming
side”), the Rhino interface (“CAM side”), and the RhinoCAM op-
tions interface (“CAM side”) where the user has to know in advance
how changing one parameter affects the design. In contrast, Im-
primer lets the notebook author quickly visualize the effect of each
parameter change on the toolpath and document the flow of data.
The notebook exposes both input elements for experimentation
and the underlying source code, making it easier for users to follow
along without invested expertise in experimental CAD/CAM or
programming tools.
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5.2.1 Translating Abstract Concepts into Millable Forms. Among
the three example functions, the Goldstein-Price function proved
especially challenging to translate into something that could be
physically milled. This is largely because the function was designed
to test optimization algorithms and has volatile behavior spanning
several orders of magnitude around its global minimum. We were
particularly inspired to explore the function as a creative inspiration
when one participant in our user study (Section 6) wanted to have
additional views that showed how the function could be translated
into a millable mold. If we naively map part of the function to the
space occupied by the tile mold, we risk “squashing” much of its the
sloping topology. To address this, as Figure 5 shows, we sampled
several subsets of the function around its global minimum. We then
defined a graphical input so that a notebook user can pick one
subset at a time and experiment with a division term and vertical
offset to fit just a subset into a mold space while preserving as much
detail as possible for the given subset. They then repeat the process
with other subsets to produce a set of tiles that together show the
topology of the function.

5.3 MiniShelf: a Parametric Shelf Generator
with Associated Debugging Tools

MiniShelf is a lightweight parametric toolpath generator for fabri-
cating shelves that includes tools for troubleshooting the fabrication
process. MiniShelf accepts as parameters: the height, width, and
depth of the unit, the number and spacing of shelf spans, and the
thickness of the stock material. For now, the selection of joints are
fixed, though this could be easily extended in the future; we use
assembly-friendly rabbet and groove joints to respectively connect
the sides of the shelf case and to connect the shelf spans to the case.
In the MiniShelf notebook, we implemented from scratch each part
of the fabrication process—from machine setup, to material selec-
tion, to parameter selection, to toolpath generation, to visualization,
to job dispatch.

Upon first implementing this workflow, fabricated shelves did
not yet fit correctly, and we relied heavily on Imprimer’s features to
debug our own process. While multiple things can go wrong while
exploring a new fabrication workflow, by expressing the workflow
in code using Imprimer, we could debug our process by debugging
code. As a result, we not only contributed a parametric pipeline,
but also an associated set of features that we used to debug the
process which we have incorporated into Imprimer’s library which
we describe below.

5.3.1 Debugging Incorrect Logic in Toolpath Algorithms. To cre-
ate rabbets and grooves in the shelf pieces, and to cut out all the
pieces to size, we wrote all the necessary toolpath generation al-
gorithms by hand. Writing bespoke toolpath algorithms allowed
us and future users of the notebook to readily generate just the
right toolpaths for fabricating the shelves, rather than having to
adapt output from a conventional CAM interface. Naturally, while
writing the algorithms, we implemented buggy functionality, for ex-
ample, generating the rabbets in the wrong location. We were able
to catch many of these issues using the top-down view (Figure 11,
right). Though, some issues could not reasonably be identified until
runtime; for example, by not “overshooting” the rabbet toolpath
over the designated region, we were left with artifacts where the
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Figure 11: Snippets from the D3: MiniShelf notebook. Left: notebook users can experiment with different shelf dimensions
and see a 3D rendering of the assembled shelf update immediately. Middle: when any shelf parameters are changed, the
notebook generates new planar geometries of the shelf parts as defined in notebook cells which users can edit if desired. Right:
A generated 3D toolpath (top) which can then be dispatched to a CNC mill (middle); rabbet joint parameters can be adjusted to

achieve a tight fit (bottom).

mill could not reach (Figure 12, left). We could have addressed these
issues by implementing dog bone fillets [46]; in our case, we chose
to overshoot the rabbet toolpaths by editing the algorithm and left
a note about this design decision in an adjacent cell.

5.3.2 Tolerancing with Joints. An inevitable issue with getting
joints to fit together is fabricating both parts within an acceptable
tolerance. While conventional machining practice uses rigorous
techniques like geometric dimensioning and tolerancing to system-
atically address these issues [2], these techniques are generally too
heavyweight for most hobbyist applications. In our case, to debug
issues of getting joints to fit together, we wrote a function that
takes in machine and maker-set parameters in the notebook and
generates small testing pieces (Figure 12, middle). Once we found
the optimal milling depth for the joints, we set it as a cell variable
in the MiniShelf notebook.

6 USER STUDY

To better understand how users conceptualize literate programming
as a technique for CNC milling, we conducted a user study with 6
participants with varying levels of experience in CNC milling and
in programming. We recruited participants from our professional
connections as well as from a makerspace email list. Participants’
CNC backgrounds ranged from no prior experience to those ex-
perienced with advanced CAD, CAM, and manual woodworking
practice. Similarly, participants’ programming skills ranged from
passing knowledge to high expertise in scientific computing and
computational notebooks.

Specifically, P1 is a researcher who studies computational note-
books, P2 is a materials scientist who has used a Shopbot for a digital

fabrication course, P3 is a professor with background in CAD and
computational notebooks, P4 is a user experience designer with
background in CAD and CAM for mechanical engineering, P5 is a
teaching professor who uses computational notebooks for teaching
control theory, and P6 is a student who uses CAD and 3D printing
to design custom camera components. P3 and P5 also each have
over five years of experience with manual woodworking.

Rather than focus on pure usability, our goal for this user study
was to better understand how users experienced Imprimer as a
novel paradigm. During a 2-hour in-shop session, we asked each
participant to walk through two tutorial notebooks to connect
to the Shopbot and set up the machine and the material. Next,
participants used either the D1: QuickDraw (subsection 5.1) or
D2: FunctionTile (subsection 5.2) notebooks to mill a sketch or
tile?. We paid particular attention to moments of learning, pain
points expressed, and code reading and tailoring. After completing
the study, we conducted brief semi-structured interview where we
asked participants on their experience using the notebooks, how
they learned to use the system, and improvements they would like
to see implemented

6.1 Participants Brought Diverse Fabrication
Goals to the Study

Participants came from varied backgrounds and brought their own

desires for CNC milling to the study. These included creating cus-

tom furniture from precisely specified 2D geometries, rastering and

2We did not ask any participants to use the MiniShelf notebook (subsection 5.3) due to
the relatively long milling time required.
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engraving images, and teaching others. Because Imprimer is a pro-
totype for a new paradigm for controlling CNC mills, participants
understood that it did not yet have the all of the functionality of
more established tools, but were willing to work with the limita-
tions. For example, one participant enjoyed using the FunctionTile
notebook’s sliders to experiment with tile forms, but wanted ad-
ditional functionality beyond defining mathematical functions for
modifying the surface.

P6 I think for many applications, you wouldn’t want
to use math at all; there are only so many 2D functions
that look interesting. I would imagine having [direct
manipulation] like with Rhino where the user could
have control points and edit the surface that way.

We plan on adding control points to 3D surface views as future
work. Another participant wanted to be able to specify geometric di-
mensions in a programmatic way, which we had only implemented
as low level functionality and not yet as a full-fledged API in D1:
QuickDraw. Nonetheless, P3 praised the fact that notebooks could
be extended later on and that functionality could be imported or
swapped out, remarking:

P3 Overall, besides [not having the API], the concept
is neat and I see a lot of applications. It seems if you
can swap out the toolpath generation part to match
an application—as long as you could write [code for]
toolpath generation—then there’s a lot of real world
use. Using a notebook feels like a more natural way
to interact with a machine.

6.2 Code Became Crucial in Understanding
Exploratory Milling Processes

All participants, even with those with less experience programming,
navigated code cells in the notebooks, often exploring, reading, and
experimenting with code from different parts of a given notebook.
In some instances, participants stated that they wanted to do things
differently than we had already written them in the notebook and
proposed their changes by speaking about them in terms of code.

For example, as a matter of preference, P2 wanted to cut a little
deeper than the thickness of the stock material into the machine
bed to make sure that there were not any artifacts left over. To
do this, they created a new cell, epsilon = 0.01, to define an
additional value to add to the last cut-through pass. P2 then used
calipers to visualize one hundredth of an inch physically and then
realized that it was too small to be perceptible practically speaking.
They then manually edited the epsilon cell to be one sixteenth
of an inch, i.e., epsilon = 0.0625. When asked why they picked
this value, P2 reported that they had regularly worked with such
increments in the past.

Introducing code to CNC milling also prompted to participants
to think about how they might learn either basic CNC functionality
through the notebooks, or how they might navigate more exper-
imental workflows. Some participants preferred writing code in a
scaffolded manner to understand what they were implementing.
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P4 [For learning] if I started from scratch, I'd think
about the different things I could make, the differ-
ent materials. I would have liked to have written the
notebook I'm using myself.

Other participants preferred reading code, particularly when
exploring novel forms in the D2: FunctionTile notebook.

P5 I like having text in front of me. I like to start
with having many examples, I like to remix what’s
already there ... Seeing what’s already written helps
me understand what’s possible at all, versus starting
with a blank slate.

6.3 Negotiating Learning and Making within
Notebooks

We noticed that presenting a fabrication workflow in a computa-
tional notebook format often uncovered two competing goals for
new users: the need to understand how Imprimer and the CNC
machine itself work versus the need to actually dispatch jobs and
try things out. P1 in particular had a great deal of background in
computational notebooks but less in CNC milling, and commented
about how CNC-specific practice would need to be introduced and
discussed before getting to the “making” parts of the notebook. For
example, while physically installing an end mill, P1 remarked:

P1 Are you recording what we’re doing now? Because
that could be helpful for somebody installing the end
mill. ... So much information like 80%, 20% of the shaft
in the collet—I'm not sure how bad it is if one thing
is done wrong versus another.

We discussed with P1 this tension between walking through
steps specific to CNC milling versus, in their words, “just getting
things done” They suggested that we might structure a series of
notebooks in a tutorial-and-reference style akin to programming
language tutorials. The tutorial notebooks would then link to refer-
ence notebooks on topics for makers might who more information—
for example, an entire dedicated notebook to understanding what
end mills are, how to install them, and how to program in a note-
book to account for their effects. To this end, we extracted the
“how to” parts from the D1: QuickDraw and D2: FunctionTile
notebooks and placed them in dedicated tutorial notebooks.

6.4 Utility of Custom Views versus Graphical
Input Elements

In both the D1: QuickDraw and D2: FunctionTile notebooks,
participants frequently used visualizations to understand how their
input would map to toolpaths. We found that, in general, partici-
pants preferred to debug their toolpaths by making small adjust-
ments in parameters such as stepover, tool choice, or their choice
of sketch and subsequently inspecting the results in a visualization.
Some participants found that being able to bridge mathematical
renderings with CNC-specific toolpath visualizations in the same
visual space unlocked new forms of interaction.

P3 This is like when I first got Mathematica, I wanted

to see all sorts of things that it would plot. I would just

edit the code—is that something I can do here? Okay

then! I would divide the denominator with another
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Figure 12: Moments from Developing MiniShelf. Left: a miscalculation in generating the rabbet toolpath left artifacts in the
corners. Middle: parametrically generated test pieces to check the cut depth of the joints. Right: two shelves each fabricated

with MiniShelf.

factor of r ... Is that two times symbols in Javascript?
Also I might add a phase shift right in the sine function
to get more activity in the middle of the material.

Conversely, visual input elements often confused participants,
who saw code-generated input elements as conceptually separate
from other code. This differs from other notebooks like Jupyter
Notebook which rarely feature code-defined input elements; in the
context of CNC milling, such elements could present more of a
cognitive gap than they do with purely digital tasks. Instead, while
participants used output visual elements without question, they
generally preferred to write raw cell variable values that did not
obscure underlying code with graphical controls.

P4 How do you even create visual elements, and how
do they work? Sliders don’t make sense to me. It’s
difficult to understand the code that generates them.
I would want to key in important values.

P3 further remarked that anything that took their attention away
from raw code, even though the input elements were themselves
defined in code, detracted from their experience of CNC milling
through programming.

P3 To me, input elements defeat the purpose of the
notebook. I want to see the code, and I want to edit
things myself. When it comes to widgets, that’s some-
thing that you might want your boss to play around
with, but the scientist needs to be working with just
the code.

6.5 Scaffolding and Sharing Experimental
Milling with Others

However, in contrast to other participants, P5 saw great value in
graphical input elements because of their potential value for scaf-
folding and sharing knowledge about novel production processes
with others. P5 cited their background as an electrical engineer and
engineering educator in how they interacted with the Imprimer

notebooks. In particular, they mentioned how computational note-
books such as Jupyter Notebook and Google Colab helped their
students collaborate around projects in control theory, and how
such code needed to be curated and documented.

P5 I really like that you can write code that creates
buttons and sliders. This way you could limit the note-
book to specific functionalities, like you can adjust
and play with these numbers, but not these other ones
that might be more dangerous to mill. Like you’d say
“I only want you to change this number from 1 to 10
Like, well you could [edit more] if you went into the
code, but most students would stick to the controls
you give them.

P3 echoed the value of interleaved documentation, saying “I use
FJupyter notebook to teach my classes—having tons of lines of prose for
Jjust one line of code is very helpful” In addition, P5 noticed which
code cells were and were not pinned open to always show their
code implementations rather than collapsing the code after editing.
While we had originally considered pinning to be a superfluous
detail, P5 insisted that proper choice of what code to show and
hide was crucial for allowing others to experiment with notebooks
without being misled.

7 DISCUSSION

Deep engagement with digital fabrication requires both program-
ming and manufacturing knowledge. Fabrication systems in HCI
research tend to lower the threshold to fabrication by abstracting
away complexity. This approach invites more users in, which is
extremely valuable to increase and diversify participation and nor-
malize fabrication practices. Yet, rather than asking how we can
facilitate the fabrication process, we were motivated to ask how we
can support the acquisition of programming and manufacturing
knowledge necessary to transform makers from passive users to
active developers of workflows.
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Because the computational notebook paradigm offers the ability
to weave rich documentation with machine code, it moves the pro-
gramming practices of machine shops to a wider audience, and with
better readability and portability than raw G-code. Instead of es-
pousing a vision of fabrication as more streamlined, with the divide
between bits and atoms rendered invisible by “seamless couplings”
[25], we suggests a different type of interaction with CNC machines
rooted in sustained engagement and an attitude of troubleshooting.
We argue that a literate programming environment such as compu-
tational notebooks best supports this approach, which exposes all
the “wiring” while offering scaffolding, support, and flexibility.

For example, P2 demonstrated that their fabrication process was a
series negotiations between physical contingencies, the notebook’s
code, and its visual debugging tools. When they sought to make
a profile cut and discovered that this function was not supported
in the notebook, they went ahead and wrote their own code for a
profile cut. They then adjusted the cut depth by first checking in
the notebook’s 3D view, then by measuring the stock with calipers.
That P2 did so indicated not only their understanding of machine
behavior (the CNC machine cutting deeper through the material
with each pass, and the importance of defining each pass’s depth),
but also how their engagement was sustained by the back and forth
between programming, digital, and physical verification. Rather
than going through the process of “loading computer-aided design
(CAD) files into a fabricator” [29], P2 could directly sketch their
design, generate toolpaths, and make adjustments on the fly.

Another tension that arose during the user study was what to
show in the notebook and the order in which to show it. What
we initially considered a logical sequence of steps and parameters
selection turned out to rely heavily on mental models built on prior
fabrication experience. P1 commented several times on the diffi-
culty to know how much precision was required as they progressed
through the notebook: “It’s difficult to know how exact I have to
be when I measure things, and to know what would go wrong if I
didn’t measure something right.” As a result, P1 had to trust the
support and indications we provided. This revealed the importance
of developing the notebooks to support different levels of expertise:
we authored separate notebooks for core workflows versus supple-
mentary skill-building. In parallel, P3 described his experience of
using Imprimer as sometimes “confusing” compared to digital-only
computational notebooks in which physical machine state is not a
concern. In the case of Imprimer, “mixing state between the notebook
and the machine was hard” As we work to empower makers to
become developers of workflows, these insights became important
design considerations for the future development of Imprimer.

Regardless of user background, because they include source code,
notebooks can be customized to support various fabrication goals
and expertise. We started this project wondering how to write and
format the notebooks so that they were legible and provided optimal
machine control, but this question became less important as more
participants used them. Each user came with a different background,
programming sensibility and sense of possibilities of what they
could make with a CNC mill. The principles of universal design
[18] paled when faced with the diversity of fabrication experience
and contexts, even with such a small sample. For instance, P3 and
P4 both mentioned that the graphical elements of the notebooks did
not add to the experience of programming the ShopBot. P5, on the
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other hand, saw great pedagogical value in the ability to constrain
the notebooks to specific functionalities and value ranges. While
P2 enjoyed the ability to sketch freehand geometry, P3 would have
liked to connect the notebook to a drawing API for cutting accurate
shapes. The level and the locus of complexity varied for each user
according to their personal goals and concerns—for some it was
at the design level, for others in the machining aspects, for others
in the particulars of programming. Complexity was not a fixed
variable that one system could address; it was a shifting tension
that varied with each maker and with each session.

The entangled challenges and benefits of representing aspects
of the machining process through literate programming raise the
question of how to appropriately guide makers through a note-
book. In particular, we observed a tension between the goals of
getting something done versus learning how something works. Many
existing systems will orient makers towards getting things done,
hiding complexity and making design decisions that ensure manu-
facturability and ease of use. Others will offer many functionalities
as well as in-app and external support to guide makers through the
many features. With Imprimer, we contemplate a third alternative:
to show the code underlying each functionality from the start so
that makers can develop their own practice of machine control.

8 CONCLUSION AND FUTURE WORK

Ultimately, Imprimer is only the beginning of an emerging para-
digm: digital fabrication as writing literate programs. Leveraging its
network of notebooks, a machine, and an augmented reality overlay,
we showed how to extend computational notebooks beyond their
envisioned use in data science into the physical world. Through
demonstrations and a user study, we examined the effectiveness
of starting with low-level machine control and abstracting up to
more human-centered machine interactions. Future work will be
needed to incorporate the vast breadth of existing CNC milling
techniques into open source literate code while also adding entirely
novel ones. Nevertheless, it is precisely through programming that
we aim to anchor further thought and experimentation with CNC
milling across physical and digital worlds.
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