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Abstract/Summary

Programmed cell death (PCD) is fundamentally important for plant development, abiotic stress
responses and immunity, but our understanding of its regulation remains fragmented. Building a
stronger research community is required to accelerate progress in this area through knowledge
exchange and constructive debate. In this Viewpoint, we aim to initiate a collective effort to integrate
data across a diverse set of experimental models to facilitate characterization of the fundamental
mechanisms underlying plant PCD and ultimately aid the development of a new plant cell death
classification system in the future. We also put forward our vision for the next decade of plant PCD
research stemming from discussions held during the 315 New Phytologist workshop, “The Life and Death
Decisions of Plant Cells” that took place at University College Dublin in Ireland (14-15% June 2023). We
convey the key areas of significant progress and possible future research directions identified, including
resolving the spatiotemporal control of cell death, isolation of its molecular and genetic regulators, and
harnessing technical advances for studying PCD events in plants. Further, we review the breadth of
potential impacts of plant PCD research and highlight the promising new applications of findings from

this dynamically evolving field.
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Main body

How to describe an elephant?

Programmed cell death (PCD) research has gained considerable momentum in recent years, with a plethora of
new datasets and experimental systems providing key insights into our understanding of molecular regulation of
different PCD events in plants. Nevertheless, the existence of a core PCD machinery in plants is under debate
and the sequence of events leading to controlled self-destruction of plant cells remains poorly characterised.
These open questions, and ways to address them in the future, were the focus of the 31 New Phytologist
workshop ‘The Life and Death Decisions of Plant Cells’ held in Dublin, June 14th and 15th, 2023. The workshop
allowed participants, using a diverse set of model systems and approaches, and studying a range of different
PCD contexts, to exchange ideas and compare their findings with colleagues. The issue of recommended plant
cell death nomenclature and classification systems was also considered; however no unequivocal conclusion has
been reached on the matter. This led to a stimulating discussion, evocative of the parable about the blind men
and the elephant. In this ancient tale, a group of blind men investigate an elephant by touching a different part
of its body, and consequently, each describes a different impression of the animal, comparing it to a snake, a
rope, or a tree, depending on whether they touched the trunk, tail, or a leg, respectively. While each blind man
is partly right, they will not be able to describe the elephant without finding a way of reconciling their individual
observations. This is an excellent analogy to the critical need for knowledge and data integration across systems,
experimental models, and investigated cell death scenarios in PCD research, as well as the importance of
communication, but also debate, between researchers working in the field (Figure 1). The meeting "The Life and
Death Decisions of Plant Cells" provided a small but important forum for such interactions, enabling discussion
on triggers, biomolecular markers, subcellular and organellar control, signalling pathways and genes involved in
the modulation of the PCD process. In this Viewpoint, we aim to maintain this momentum and include the
broader community in the collective effort of integrating data on features of PCD in plants. To achieve this we
provide a living document comparing observations across species and experimental models (Table 1). New
entries can be continually submitted, and we invite all colleagues to join this attempt to “describe the (plant
PCD) elephant” in more detail and from more perspectives. We are hoping that this initiative will inform the
ongoing debate on how cell death programmes in plants should be classified and facilitate development of an
updated nomenclature system akin to guidelines suggested for metazoan cell death pathways (Galluzzi et al.,
2018). At the moment, some researchers favour PCD as a blanket term, that has been used historically to
describe any active, genetically controlled cell death occurring in response to developmental, abiotic and biotic
stimuli, as demonstrated by the early publications in the field (Lam et al., 2001, Lam, 2004, Beers, 1997,

Greenberg et al., 1994). Other research groups follow classification of plant cell death based on the context in
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which PCD is occurring (environmental — ePCD and developmental — dPCD) (Olvera-Carrillo et al., 2015) or adopt
the recommendations of the Nomenclature Committee on Cell Death 2018 that distinguish PCD as a specific
development-related subtype of genetically regulated cell death (RCD) (Galluzzi et al., 2018). Our discussions
highlighted that the new nomenclature system for plant cell death pathways should consider issues such as the
considerable environmental influences that often shape plant development and associated cell death events, as
well as any effect of the proposed new nomenclature system on the communication and collaborative efforts
between the plant and animal cell death communities. Furthermore, as our understanding of the mechanisms
that orchestrate plant cell death expands, efforts defining subroutines of active cell death programmes in
plants, similar to previously proposed classifications based on morphology (Mur et al., 2007, Reape et al., 2008,
van Doorn et al., 2011) or key biochemical pathways, such as ferroptosis (Distéfano et al., 2017), will require
integration of the large volume of new data and findings that have emerged over the last decade across the
diversity of experimental systems. We believe that development of a nomenclature system capturing the plant
cell death modalities should, as widely as possible, consult the broad community of scientists who are driving
progress in this research area, and we hope that this Viewpoint article will lay the initial foundations of this

process.

A vision for the next decade of plant PCD research.

Spatiotemporal, high precision study of PCD in plants

Recent findings and ongoing studies of plant PCD clearly highlight that plant cell death research has entered a
new era, where we are gaining more high-level spatiotemporal insights into plant PCD processes and their
regulation.

Environmentally-induced PCD: One of the model systems that has recently provided advances in our
understanding of finely-tuned PCD regulation is the hypersensitive response (HR). HR occurs when recognition
of pathogen attack leads to a rapid cell death in the cells surrounding the zone of pathogen invasion, preventing
the spread of (hemi-)biotrophic pathogens, and contributes to local and systemic defence signalling (Heath,
2000, Mur et al., 2007). Time- and zone- dependent multi-omic approaches have proven a powerful tool for
dissecting the molecular networks controlling HR and the formation of boundaries between cells that stay alive
and their dying neighbours. In Arabidopsis thaliana (hereafter referred to as Arabidopsis), transcriptomic assays
have revealed spatio-temporal differences in genes and biological processes regulated in the cells undergoing
HR and in the surrounding living tissue, and have consequently defined robust transcriptional in vivo cell death
markers (Salguero-Linares et al., 2022). Similarly in maize, a combination of transcriptomic, proteomic, and

degradomic analyses of dying cells identified time-dependent gene reprogramming and has defined general-
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and trigger specific- cell death markers (Barghahn et al., 2023). These data underpinned the basis for the
mechanistic exploration of new molecular functions involved in life and death decisions, as well as the initiation
and execution of cell death. Moreover, in vivo imaging techniques are currently being explored as tools to study
the dynamics and zonation of HR (Betsuyaku et al., 2017) and the use of genetically encoded biosensors will
allow researchers to closely monitor particular processes such as proteolysis or follow changes in redox
homeostasis and small molecule fluxes [e.g. Ca®*; (Ferndndez-Fernandez et al., 2019)]. Cell suspension cultures
are another well-established model for studying PCD in plants, which have been recently used in combination
with multi-omic approaches to generate new insights into the regulation of cell death and survival decisions in
plant cells. The homogenous cell suspension facilitates precise monitoring of PCD rates induced by a broad
range of stimuli, thus offering an opportunity to specifically sample cells undergoing PCD. Burke et al. (Burke et
al., 2023) compared the transcriptional response to three different PCD-inducing treatments used in
combination with three cell death inhibitors; this enabled inference of core- and stimuli- specific gene
regulatory networks and isolation of putative transcriptional regulators of PCD that were not previously
explored in the context of cell death. Importantly, this study highlighted that, depending on the treatment used
to induce cell death, cell cultures can mimic PCD induced by biotic interactions, abiotic stress, and even
developmental programmes, and in this way facilitate comparisons between cell death occurring in different
contexts. Furthermore, Schwarze et al. (Schwarze et al., 2023) combined the use of Arabidopsis cell suspension
culture with cellular fractionation and proteomic profiling to identify proteins released from plant mitochondria
upon PCD induction, and to characterise changes in cytosolic protein abundance associated with early stages of
PCD. Ease of repeated sampling of cell suspension cultures, and the homogeneity of the observed response, can
powerfully support studies aiming to achieve fine resolution of transcriptional and proteomic patterns
associated with different stages of PCD. In the near future, single cell approaches will almost certainly provide
us with even higher resolution of dynamic spatio-temporal transcriptome maps during ePCD events.
Developmental PCD: Significant spatiotemporal insights into molecular and cellular processes associated
with developmental PCD were provided by studies using the Arabidopsis root cap model (Kumpf and Nowack,
2015). Root cap cells undergo highly organised and temporally coordinated PCD to regulate root cap organ size
in balance with cell division (Fendrych et al., 2014). As this PCD occurs at the periphery of the growing root tip, it
is amenable to a number of analytical approaches, including live-cell imaging (Fendrych et al., 2014), single-cell
transcriptomics (Minne et al., 2022), and pharmacology (Dubreuil et al., 2018), as well as cell-type specific gene
editing by CRISPR (Decaestecker et al., 2019, Bollier et al., 2021). This model system has facilitated resolving
gene regulatory networks (Fendrych et al., 2014, Huysmans et al., 2018, Feng et al., 2023), hormone signalling

(Xuan et al., 2016), and autophagy (Feng et al., 2023) involved in developmentally controlled PCD. More
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recently, the root cap system has been used to analyse the sequence of cellular processes during PCD execution
(Wang et al., 2023). Established core events like vacuolar breakdown and plasma membrane permeabilization
for non-membrane permeable dyes such as propidium iodide (PI) occurred late in the execution process and
were preceded by cellular calcium influx, cytosolic acidification, mitochondrial disintegration, and the
breakdown of the nuclear envelope and endoplasmic reticulum (ER) (Wang et al., 2023). Interestingly, despite
plasma membrane permeability to PI, the leakage of used reporter proteins to the apoplast was not observed,
reminiscent of the situation in animal apoptosis (Zhang et al., 2018). Though it cannot be excluded that the
sequence and type of subcellular processes are specific to root cap cell death, the system provides an excellent
framework to formulate and test hypotheses to understand the molecular processes of PCD execution in planta.
Another model system facilitating high precision studies of developmental PCD is provided by leaf perforation
formation of lace plant (Gunawardena et al., 2004). Here, the cell death begins in the centre of areas known as
areoles, between transverse and longitudinal veins, and continues outwards, stopping four to five cells from the
vascular tissue, creating a gradient of living cells surrounding an area of dying cells. The order of cellular events
that occur during lace plant PCD was established using a long-term live cell imaging technique (Wertman et al.,
2012). Indeed, the accessibility and predictability of PCD during lace plant leaf development, combined with
laser capture microdissection-based sampling, recently facilitated comparisons of transcriptional profiles of cells
at different stages of PCD and living cells from the non-PCD zone (Rowarth et al., 2021). The spatiotemporal
predictability of lace plant PCD also makes it a good subject for computational modelling approaches, used
extensively in developmental biology from the molecular to tissue level (Sharpe, 2017). While anthocyanins,
reactive oxygen species (ROS), and auxin were all implicated in the control of lace plant leaf PCD (Denbigh et al.,
2020, Dauphinee et al., 2017), their exact roles and interactions remain elusive, and are currently subject to
computational modelling with the aim of providing a plausible explanation for the underlying mechanisms
involved (unpublished data — Sophie Tattrie, Gunawardena’s lab). Finally, the Papaver self-incompatibility-
induced PCD (SI-PCD) system provides another excellent model to study PCD and provide spatio-temporal
insights in the signalling network involved. Sl triggers a Ca**-dependent signalling network that rapidly inhibits
pollen tube growth and later culminates in PCD in incompatible pollen, thus preventing self-fertilisation (Wang
et al., 2018). The Papaver SI-PCD system has been transferred to Arabidopsis and is fully functional in both
reproductive and vegetative cells (Lin et al., 2015, Lin et al., 2020). This engineered ‘poppydopsis’ system
facilitates a broad diversity of genetic approaches (Wang et al., 2020b) and thus represents a powerful resource
to test new hypotheses and elucidate genetic components and cellular events involved in and leading to PCD in
plants. For example, use of genetically encoded fluorescent probes identified a link between Sl-induced ATP

depletion and cytosolic acidification (Wang et al., 2022), the latter being required for execution of PCD (Bosch
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and Franklin-Tong, 2007). The highly complex, hierarchical signalling events involved in SI-PCD are well suited
for a systems biology approach: modelling the interactions of various components of SI-PCD may facilitate
subsequent examination of these complex and important biological responses in qualitative and quantitative
terms.

The studies listed above represent only a handful of examples showing that both established and new
models for studying PCD, when combined with multi-omics technologies, a diversity of genetic tools, and
computational modelling approaches, can collectively inform our understanding of plant cell death as a highly
dynamic process involving complex signalling networks. Many of these models are particularly suitable for
investigating the role of cell-to-cell communication in life and death decisions in plants. As previously
highlighted, integration of a large volume of recent data across these models is one of the challenges ahead, but
also an exciting opportunity to understand the details of regulation of cell death processes operating in plants

with unprecedented accuracy.

Friend, foe or both? - Fine-tuning the regulators that balance cell death or survival outcomes.

Much progress has also been made in terms of exploring the often complex relationships between plant PCD
and other pathways. For example, autophagy is emerging as a critical mediator of the balance between cell
survival and cell death, rather than simply operating as a pro-survival or pro-death response. In plants and other
organisms, autophagy can contribute to cell survival during stress, attenuating cell death by clearing
intracellular damage and preventing toxicity (Nelson and Baehrecke, 2014, Guan et al., 2019, Zhu et al., 2019).
However, a role for autophagy in the execution of cell death pathways has also been established, depending on
the conditions and cell type. For example, in Arabidopsis root caps, autophagy is involved in the timely cell
death of columella cells, but not of the distal root cap cells (Feng et al., 2022). In Arabidopsis, autophagy can
play a positive or negative role in PCD regulation (Xu et al., 2017, Kacprzyk et al., 2014, Coll et al., 2014), and in
maize it is activated at both cell survival and cell death stages of a prolonged ER stress response (Srivastava et
al., 2018). Likewise, during perforation formation in the lace plant leaves, autophagy plays a dual role in
promoting cell survival in non-PCD cells and mediating timely cell death in PCD cells (Rowarth et al., 2023).
Future high-resolution studies and modelling approaches will continue to elucidate the link between plant PCD
and other pathways that, as demonstrated by the example of autophagy, may be dependent on the PCD
context, stage of PCD, timing or intensity of cell death-inducing stimuli. Similarly, studies deciphering the roles
of proteases previously linked to plant PCD (Salguero-Linares and Coll, 2019, Stael et al., 2023, Chichkova et al.,
2010, Ge et al., 2016, Hatsugai et al., 2015, Lampl et al., 2013) are required, as in many cases it remains unclear

whether they act as executioners or alternatively function as signalling molecules that carefully control the cell
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death initiation. To date, understanding the function of individual proteases in plant PCD has been hampered by
the fact that knocking out individual proteases often results in modest, if any, phenotypes, indicating a high
degree of genetic redundancy. However, with the advent of CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) technology the community has started addressing this problem by creating higher-order
protease mutants (Shen et al., 2019). An example that was thoroughly discussed during the Workshop in Dublin
was that of metacaspases, proteases that have been extensively studied as plant PCD regulators since their
discovery more than two decades ago (Uren et al., 2000). Based on their structural resemblance to animal
caspases, metacaspases have been often postulated as "caspase-like" or "apoptotic-like" proteins. However,
their substrate specificity is certainly not caspase-like (Vercammen et al., 2004, Minina et al., 2020) and a
growing body of evidence suggests that at least some of the metacaspases that have been characterised to date
participate in stress responses and may be mainly stress sensors rather than cell death executioners. For
example, the type Il metacaspase AtMC4 is activated upon wounding, generating a signalling peptide essential
for the response to this type of stress (Hander et al., 2019). In turn, the type | metacaspase MC1 participates in
clearance of harmful protein aggregates formed as a result of proteotoxic stress, a function conserved from
fungi to plants (Lee et al., 2010, Hill et al., 2014, Ruiz-Solani et al., 2023, Coll et al., 2014). On the other hand,
both Arabidopsis MC3 and Chlamydomonas CrMCA-Il have been shown to be involved in drought and heat
stress tolerance, respectively, independently of their catalytic activity (Pitsili et al., 2023, Zou et al., 2023).
Collectively, despite the fact that metacaspases may have evolved from the same ancestor as caspases, current
evidence indicates that they are not simply executioner caspases in the context of PCD and that they could
instead function, or have additional, context-dependent roles, as pro-survival proteins. Accumulating evidence
in non-plant fields also supports the idea that other cell death proteins may also have  non-lethal roles (Arama
et al., 2021). These examples highlighted that nuanced aspects of cell death regulation in plants require further

exploration across experimental systems, cell death modalities and stages.

Harnessing new technologies and tools to advance our understanding of plant cell death.
Studying plant PCD with high spatiotemporal resolution and dissecting the details of finely tuned regulation of
cell death processes will be supported by the increasing accessibility of new technologies, especially if they are
applied to the range of model systems available for studying PCD in different contexts.

For example, single-cell transcriptomics approaches have started to open up new possibilities in
biological research in recent years. Single-cell RNA-sequencing (scRNA-seq) holds great potential to detect the
rapid gene expression changes during cell death induction and the early stages of plant PCD. While

transcriptional regulation is only one element of PCD control, it has been shown to play decisive roles in both
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developmental and stress-induced PCD processes (Cubria-Radio and Nowack, 2019, Burke et al., 2020).
Interestingly, in the context of developmental PCD in Arabidopsis, scRNA-seq has revealed that only a handful of
cells express late PCD-associated genes (Olvera-Carrillo et al., 2015, Wendrich et al., 2020). As such, scRNA-seq
approaches can become invaluable in identifying the gene regulatory networks that orchestrate the preparation
for PCD in planta.

Beyond the transcriptional level, more advanced and dedicated proteomics approaches (e.g. redox
proteomic, N-terminomics and degradomics) will provide more insights on the intricate networks involved in
plant cell death (Huang et al., 2023, Demir et al., 2022, Rowland et al., 2022). Post-translational oxidative
modifications, phosphorylation, and certainly protein cleavages and degradation, can provoke rapid alterations
or termination to the functionality of either signaling or structural proteins. Therefore, the implementation of
innovative proteomics workflows and the use of more advanced mass spectrometry technologies will certainly
further advance our knowledge in this area. For example, very little is known regarding possible proteolytic
cascades activated during plant PCD, and it would be highly beneficial to systematically identify the substrates
of the cell death proteases that actively take part in the process. For this identification, an N-terminal-based
degradomics approach could be employed, comparing the in vivo population of non-canonical N-termini
between two experimental setups, with one set-up missing the protease activity of interest, either by inhibition
or mutation. In the absence of the protease, the N-termini missing or with a significantly reduced abundance,
will point to candidate substrates that can be subjected to further validation. Techniques based on positive
enrichment or negative enrichment of N termini that have been used to study plant proteases include
Combined Fractional Diagonal Chromatography (COFRADIC) (Gevaert et al., 2003), Terminal Amine Isotopic
Labeling of Substrates (TAILS) (Huesgen and Overall, 2012), and High-efficiency undecanal-based N termini
enrichment (HUNTER) (Weng et al., 2019). COFRADIC, TAILS and HUNTER have all produced interesting results
for groups investigating protease substrates in plants (Tsiatsiani et al., 2013, Willems et al., 2017, Pitsili et al.,
2023), but more research is needed specifically in the context of PCD. Such degradomics techniques have
limitations linked to detection threshold and protein cleavage redundancy. Therefore, it might be advantageous
to additionally use Proximity-dependent biotinylation labelling techniques such as Turbo ID (Mair et al., 2019).
Proximity labelling can identify protease partner proteins, as shown for phytaspase (Teplova et al., 2021) and in
principle, some protease partners could be substrates, depending on how protease-substrates interact.
Systematically identifying protease substrates during plant PCD with support of the above-described approaches
is a much-needed step to fully understanding the function of the candidate cell death proteases.

Finally, genome editing using CRISPR technology has revolutionised life sciences in recent years, with

the field of plant PCD being no exception. Interestingly, CRISPR not only enables us to generate single or higher-
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order mutants in an efficient and targeted fashion, but also can be used to generate knock-outs in a tissue-
specific or inducible manner (Decaestecker et al., 2019, Wang et al., 2020c, Bollier et al., 2021). Such conditional
approaches will be particularly suitable for investigating the function of key PCD genes that might lead to

pleiotropic phenotypes or even lethality when mutated.

Plant PCD research: implications for the future

The recent advances in our understanding of plant PCD necessitate highlighting the breadth of the
potential applied impact of studying plant PCD, as well as innovative ways to translate this knowledge
from the lab to the field and beyond. Knowledge generated on the molecular mechanisms and cellular
events that lead to PCD may be applicable to many agriculturally relevant developmental and defence
related cell death events in crops. In addition, in the future it could be used to selectively target and
activate PCD pathways in weeds without affecting crop plants, thereby decreasing further herbicide use
whilst maintaining yield. Another example of the applied potential of PCD research is deepening our
understanding of Papaver SI-PCD that, considering its proven transferability over a large phylogenetic
distance, will open opportunities for its exploitation in agricultural systems, for example in the
production of F1 hybrids. While discussing agriculturally relevant applications of plant PCD research, a
few key points were made regarding studying PCD in the context of a diversity of conditions faced by a
plant in its environment. Firstly, plants exhibit a spectrum of responses to environmental stresses,
ranging from acclimation to cell death, depending on the stress level. The climate change-associated
increasing frequency and intensity of extreme weather conditions leading to heatwaves, droughts and
soil waterlogging suggests that cell death inducing levels of abiotic stresses experienced by plants will be
reached more often, underscoring the need to strongly integrate PCD research into crop improvement
strategies. Secondly, the environmental factors faced in the field may have a considerable effect on
developmental cell death programmes. Finally, while lab-based experiments are generally performed
under controlled conditions with imposition of a single stress or PCD inducing stimuli, in the field plants
encounter multiple simultaneous stresses that can lead to distinct responses (Zandalinas and Mittler,
2022). As an example, mutants in autophagy-related genes are more sensitive to stress combinations
than to individual stresses (Balfagdn et al., 2022). Likewise, research on metacaspases may lead to
increased potential to develop new plant varieties that are more resilient to the increasingly volatile
weather conditions linked to climate change. For example, the metacaspase AtMC3 is involved in
modulating vascular plasticity in response to drought (Pitsili et al., 2023) and overexpressing this

protease results in plants that are more tolerant to drought with no apparent negative effects on growth

10
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oryield. As different stresses elicit both common and distinct pathways for regulation of programmed
cell death (Burke et al., 2023), the coordination of cell death pathways in response to combinations of
stresses, and to adverse conditions outside the laboratory, will be an exciting area for future studies and
an excellent way to validate the impact of findings on how plant PCD is controlled in real-world

scenarios.

An example that reinforces the necessity of studying developmental PCD processes in the context of
specific environmental conditions is senescence-associated cell death. Senescence is finalis ed by PCD
of all cells of the plant organ (Rogers, 2015). Plant senescence and associated remobilisation of nutrients
is critical to crop production especially in cereals (Havé et al., 2016). Critically, senescence requires live
cells for the remobilisation and hence there is a carefully orchestrated balance between senescence and
eventual cell death. Understanding the regulators of this balancing act has progressed through
developments in omics and use of model plants (Woo et al., 2018) with new layers of regulation
continuing to emerge including epigenetic reprogramming (Rogers, 2022). However, senescence is not
only a developmental programme but also a response to adverse environmental conditions and
therefore understanding the tipping point between life and death will be critical for sustained crop
production in the face of environmental uncertainty. Even beyond harvest, cell death continues to play a
part in food security. Shelf life of fresh produce and cut flowers is dependent on delaying cell death
through reduced temperatures of storage and modified atmospheres to slow down metabolism and
reduce the senescence and cell death promoting effects of ethylene (Rogers et al., 2023, Zhang et al.,
2022). Even in the cow rumen, plants respond to the adverse conditions by switching on stress
responses, a specific form of senescence (Hart et al., 2022), and altering the expression of cell-death
related genes, and this has important effects on the nutritional value of forage grass. Thus, how cell
death is regulated even after harvest has important implications for food security and needs to be
carefully considered. Another emerging future area for exploring PCD mechanisms extends not only
beyond the confines of the laboratory, but in fact also beyond plant growth on Earth. Spacecraft and
non-Earth planetary surface environments present a diverse array of relatively understudied stressors,
underlining the critical need to unravel plant developmental responses and stress resilience strategies.
This need is highlighted within the recent NASA decadal survey (National Academies of Sciences and
Medicine, 2023), which describes ‘Plants in Space’ as one of 11 key focus areas for the next decade of
space research. This will require testing how PCD signalling pathways operate in space habitat, that is

characterised by distinct stressors such as microgravity or galactic cosmic rays. In addition to future
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experiments investigating modulation of PCD in space environments, this can be probed using the Open
Science resources, such as NASA’s Genelab (Berrios et al., 2020), providing comprehensive access to 64
multi-omic plant datasets from space experiments as well as user friendly analytical tools. The platform
has already been harnessed by (Choi et al., 2019) to identify spaceflight-associated induction of genes
associated with PCD modulation in Arabidopsis, such as BAG6 (Wang et al., 2020a) and heat shock
proteins (Rowarth et al., 2019, Qi et al., 2011), and general repression of peroxidase transcripts that
indicate altered redox homeostasis (Kolupaev et al., 2019), suggesting that it is likely that space habitat

may have a significant effect on PCD-associated signalling.

It is also becoming increasingly clear that plant PCD research may lead to applications that extend
beyond plant growth and food production, such as in medicine and production of novel therapeutics.
For example, anthocyanins extracted from lace plant, previously shown to modulate the balance
between cell survival and cell death in this model species, were recently demonstrated to induce
apoptosis in breast cancer cells, but not in the normal mammary cell line (Gunawardena et al., 2021).
The underlying mechanism/s responsible for cell death induced by anthocyanins in cancer cells is
currently under investigation. Likewise, metacaspase AtMC1, initially studied mainly in the context of
plant PCD, has been shown to efficiently degrade aggregated cytotoxic proteoforms (Ruiz-Solani et al.,
2023). Progressive protein aggregation is associated with major neurodegenerative pathologies, such as
Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, in addition to being a hallmark of
ageing. Therefore, AtMC1 based solutions may inform therapies targeting these harmful insoluble
aggregates, yet again underscoring the potential of cross-disciplinary knowledge exchange when the
field of plant PCD is considered. Both in Plasmodium and Trypanosoma parasites, metacaspases -being
absent in humans- were studied as potential drug targets. Structural information of plant metacaspases
and identification of small molecule inhibitors might therefore be important to battle human pathogens,
including those triggering neglected diseases (Stael et al., 2023, Yadav et al., 2023). Finally, the ability to
manipulate PCD levels in plant suspension cultures using a diversity of approaches (as demonstrated by
(McCabe and Leaver, 2000) or (Burke et al., 2023)) may have implications for plant cell-culture based
biotechnology and promote the use of plant cell suspension cultures as attractive bioprocessing
platforms for production of secondary metabolites, natural plant products and recombinant proteins.
The importance of translational biology in PCD is also highlighted by findings from animal systems
informing applications in plants. For example, studying the ER stress and untranslated protein response

(UPR) in animal models has led to the identification of chemical chaperones that prevent proteins from
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383 being misfolded and aggregating in vitro, and their subsequent use for academic research and clinical
384  trials (He and Moreau, 2019). Among those chemicals is 4-phenylbutyric acid (4-PBA), which has been
385 used for probing and alleviating ER stress in yeast and plants (Watanabe and Lam, 2008, Yang et al.,
386 2016, Mai et al., 2018). In agreement with its ER stress-resolving activity, 4-PBA was found to abrogate
387  Arabidopsis HR cell death with no apparent effect on avirulent bacteria (Cacas and Champion, 2017).
388 Further work unexpectedly revealed a potent fungicidal activity for this molecule, associated with a

389  broad range of cryptogamic diseases that could potentially be targeted (Cacas et al., 2023).

390  Conclusions: Improving our knowledge of plant PCD will have a significant breadth of implications

391 ranging from better understanding of fundamental biological processes operating in plants, to

392 development of innovative solutions to grand challenges in plant science and beyond. Technical

393 advances and newly available resources and data are already contributing to progress in this area and
394  will be further enhanced by data integration and the growth of a stronger research community. Both
395 the early career scientists and principal investigators attending the 315 New Phytologist workshop in
396 Dublin agreed that it is an exciting time to be a plant PCD researcher, and the meeting created an

397 appetite for holding larger conferences open to all members of the plant PCD community. We are

398 looking forward to future opportunities for exchanging ideas and discussing different aspects of the life

399 and death decisions of plant cells.
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Figures

Figure 1. How to describe the plant PCD elephant? Images of PCD research highlight the diversity of
experimental systems used by participants of the meeting in Dublin. Integration of data across the systems,
communication and debate will underpin the progress in the field, lead to better understanding of the cell
death pathways operating in plants, and support the development of an agreed cell death nomenclature and
classification systems. Image credits: 1. Arabidopsis thaliana suspension cells that have undergone PCD induced by heat
treatment (J. Kacprzyk), 2. Lace plant window stage leaf close up (A.N. Gunawardena). 3. Senescence in rocket leaves (H.J.
Rogers). 4. Hypersensitive response cell death triggered by Pseudomonas syringae carrying the effector AvrRpm1 in
Arabidopsis thaliana (Nerea Ruiz-Solani from N.S. Coll’s lab). 5. Chloroplasts forming a ring around the nucleus in the lace
plant during the mid to late stages of PCD (S.B. Tattrie from A.N. Gunawardena’s lab). 6. Lace plant fenestrate mature leaf
with perforations formed via PCD (A.N. Gunawardena). 7. GFP-ATG8e labelled autophagosomes in an Arabidopsis thaliana
root cell (D.C. Bassham). 8. Developmentally controlled programmed cell death at the edge of the root cap in Arabidopsis
thaliana (M. K. Nowack). 9. Root hair that has undergone PCD in Arabidopsis thaliana (Johanna Schwarze from J. Kacprzyk’s
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763 lab). 10. Dahlia flowers as a model for studying petal senescence associated PCD (H. J. Rogers). 11. PCD phenotype of

764 catalase deficient plant (F. Van Breusegem). 12. PCD mediated formation of aerenchyma in barley roots under waterlogging
765 conditions (Orla Sherwood from J. Kacprzyk’s lab).
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771 Tables

772 Table 1. Features of Plant Cell Death. By creating this live document, we want to facilitate comparing

773 observations on cell death features across species and experimental models, and stimulate discussion among plant
774 programmed cell death (PCD) research community. If you would like your own observations and experimental

775 system for studying plant PCD to be included in this table, please use the submission form included. The table

776 below will be updated by Dr Joanna Kacprzyk (joanna.kacprzyk@ucd.ie) based on the submitted information.

777

778 Note: Below a screenshot of Table 1 is provided. Table 1 is a live online document that will remain open for

779 submissions from the members of plant PCD research community, available at: https://shorturl.at/dxHU8
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