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Abstract Verruculogens are fumitremorgin alkaloids that contain an eight-
membered endoperoxide ring. Due to their unusual structure and bioactivity,
there has been much interest in these natural products since their discovery
over forty years ago. Similarly, interest in their biosynthesis resulted in the
discovery of verruculogen synthase (FtmOx1) that catalyzes endoperoxide
formation in these natural products. Herein, we describe our work in this area
through the chemoenzymatic synthesis of 13-oxoverruculogen by
endoperoxidation of a substrate analog using FtmOx1.
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Endoperoxide-containing natural products have seen

considerable use in medicine due to their bioactive properties.’.2
Perhaps the most notable is that of artemisinin, isolated from
Artemisia annua in the 1970s, which is used as the frontline
treatment for malaria disease.? The endoperoxide moiety has
been found to be crucial for antimalarial activity of these
compounds. Upon homolysis of the peroxide and B-scission,
carbon centered radicals are formed that cause oxidative stress
and inhibition of key enzymes in cell homeostasis.#> While
antimalarial activity is one of the most recognized properties of
endoperoxide natural products, many other bioactivities have
also been observed.6 For example, verruculogen (1) isolated
from Aspergillus fumigatus was found to possess tremorgenic
properties.6” These properties are common across the
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Figure 1 Fumitremorgin alkaloids and their endoperoxide congeners

fumitremorgin alkaloids (1-4, Figure 1).89 More recently, 13-
oxoverruculogen (2) was isolated and shown to be cytotoxic
(Figure 1).10 Other
fumitremorgin alkaloids, such as fumitremorgin C (4) have been

against multiple cancer cell lines
reported to reverse drug resistance in cancer with potential

applications in chemotherapy.!!

Due to these biological properties, there is much
interest in endoperoxide-containing compounds and how they
originate in nature.l14 Artemisinin, despite its impact on
society, still has unknown biosynthetic origins with regards to
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Figure 2 A) Native reactivity of FtmOx1. B) Deprenylation of 13-
oxofumitremorgin B with FtmOx1 reported by Liu and co-workers.2° C)

Endoperoxidation of 13-epi-fumitremorgin B with FtmOx1.21

the formation of its endoperoxide ring.!s Thus, the biosynthesis
of endoperoxide-containing natural products remains poorly
understood. While many endoperoxide natural products are
known, only several endoperoxide-forming enzymes have been
reported and characterized.’® One of these enzymes is
verruculogen synthase (FtmOx1), which is a part of the non-
heme iron a-ketoglutarate dependent enzyme family.l”
Discovered in 2009, FtmOx1 was found to convert its substrate
fumitremorgin B (3) to verruculogen (1).17 The enzymatic
reaction occurs by hydrogen atom abstraction of the C21
methylene to form an allylic radical. Afterwards, the radical
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Scheme 1 Formation of the pentacyclic core

reacts with molecular oxygen followed by 8-endo cyclization on
to C27 to form the eight-membered endoperoxide ring (Figure
2A).17 Since its discovery, the mechanism of FtmOx1 has been
extensively studied by Bollinger-Krebs-Boal and co-workers.!8-
19 To better understand the mechanism, researchers have also
subjected substrate analogs to FtmOx1 to identify substrate
tolerance.2® Liu and co-workers found that subjecting 13-
oxofumitremorgin B (5) to FtmOx1, o-ketoglutarate, and
molecular oxygen resulted in exclusive deprenylation of the
starting material to produce 12-hydroxyl-13-oxofumitremorgin
C (6) with no endoperoxide formation (Figure 2B).20 Prior to our
work, no substrate analogs have undergone successful
endoperoxide formation by FtmOx1.21 While FtmOx1 has
garnered interest from the biochemistry community due to its
unusual reactivity, verruculogen and other endoperoxide-
containing fungal alkaloids have been long-standing targets for
chemical synthesis. Prior to our work, only Baran, through
early-stage Mukaiyama peroxidation, reported the synthesis of
endoperoxide-containing fumitremorgin alkaloids.22

In our synthesis of 13-oxoverruculogen (2), we
envisioned the use of FtmOx1 for late-stage enzymatic
endoperoxidation. Initially, we planned to convert the native
substrate fumitremorgin B (3) to verruculogen (1), and then
oxidize the C13 alcohol to form 13-oxoverruculogen (2).
However, we were cognizant that the stereochemical
configuration of the C13 alcohol was inconsequential as the
stereocenter is removed upon oxidation of the alcohol. Hence,
an alternative strategy to synthesis 13-oxoverruculogen (2)
would involve the endoperoxidation of the diastereomer, 13-
epi-fumitremorgin B (7), to access the unnatural endoperoxide
13-epi-verruculogen (8, Figure 2C). Subsequent alcohol
oxidation of 8 would also produce 13-oxoverruculogen (2). By
using enzymatic C-H bond functionalization to form the
endoperoxide ring, this strategy allowed us to circumvent the
need for unstable peroxide intermediates and install the

endoperoxide in the penultimate step of the synthesis.2!
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Figure 3 Mechanism of rhodium-catalyzed isomerization of alkylidenecyclopropanes by C—C bond activation

Pentacyclic core formation

Our synthesis of 13-oxoverruculogen begins with commercially
available phosphonoglycine methyl ester 9 which underwent
saponification to form carboxylic acid 10 (Scheme 1).
Compound 10 was subjected to carbodiimide-mediated (DCC)
coupling with L-proline benzyl ester hydrochloride to form
dipeptide 11. The carbamate of 11 was removed by
hydrogenolysis (Pd/C, Hz) and the resulting amine cyclized onto
the benzyl ester using acetic acid. This resulted in the formation
of diketopiperazine 12 in 96% yield over 3 steps. Compound 12
was then subjected to Horner-Wadsworth-Emmons reaction
with aldehyde 13 to form product 14, as a 6.3:1 ratio of Z/E
geometric isomers. The major isomer Z-14 was isolated in 72%
yield. With dehydroamino acid derivative 14 in hand, we set out
to install the central six-membered ring in the pentacyclic core
of the fumitremorgin alkaloids. Alkylation of the amide in 14
with sodium hydride and dehydroprenylbromide 15 afforded
16 in 72% yield (Scheme 1).
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_—
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24, 30%

Scheme 2 Osmium-catalyzed dihydroxylation of 17.

Compound 16 contains an alkylidenecyclopropane (ACP) which
was subjected to Shi's conditions for C-C bond activation and
cycloisomerization to form C2 prenylated indoles.23 In their
proposed mechanism the rhodium catalyst undergoes an
oxidative addition into the ACP to form a four-membered
rhodacyclobutane (18, Figure 3). Intermediate 18 can then
isomerize to 19 through a trimethylenemethane (TMM)-like
19 B-hydride
elimination to form rhodium hydride 20. Reductive elimination

transition state. Rhodacycle undergoes
of 20 produces diene 21 and regenerates the rhodium(I)
catalyst. In the rhodium-catalyzed reaction, diene 21 is formed
as the major product as opposed to the desired compound 17,
the product from cycloisomerization. In Shi's report, the
cyclization is proposed to occur due to adventitious acid.23
Therefore, diene 21 was subjected to trifluoroacetic acid (TFA)
which resulted in the formation of compound 17. This reaction
occurs through protonation of the extended enamide in 21
followed by a Pictet-Spengler reaction to forge the six-
membered ring. Much to our delight, the highly acidic conditions
also removed the Boc group in the same pot to form pentacycle

17 (Figure 3).23

While the pentacyclic core of the fumitremorgin
alkaloids was prepared in six steps, the installation of the cis-
1,2-diol found in fumitremorgin B proved challenging. Hino and
co-workers reported the cis-1,2-diol of fumitremorgin B can be
formed with osmium tetroxide under Upjohn conditions, with
the desired product being formed in only 10% yield (22).2* We
obtained similar results when we tried to form the cis-1,2-diol
and only a 10% yield of the desired product was observed (22,
Scheme 2). Rather than dihydroxylation of the C12-C13 double
bond, the use of 0sO4 primarily results in dihydroxylation of the
indole C2-C3 double bond to form intermediate 23. After
dihydroxylation, a pinacol rearrangement involving a [1,2]-alkyl
shift results in the formation of a spirocyclic oxindole 24 in 30%
yield. A similar rearrangement was reported previously by Li
and co-workers in their synthesis of spirotryptostatins.2s
Various conditions were attempted to improve the selectivity of
this reaction such as different ligands, stoichiometric oxidants
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and solvents. Despite numerous attempts, we were unable to
increase the yield of 22. It is well known that OsOs will
preferentially attack the more electron-rich double bond.
Because the indole contains a 6-methoxy group, the indole C2-
C3 double bond is very reactive. Meanwhile, the C12-C13 is
electronically deactivated due to conjugation with the carbonyl
in the diketopiperazine ring. Dihydroxylation of related systems
lacking the 6-methoxy group of the indole resulted in much
higher yields of the desired diol from functionalization of the
C12-C13 double bond.24 Cis-1,2-diol 22 can be converted to
fumitremorgin B (3) by prenylation in 49% yield using
potassium hydroxide, 18-crown-6 and prenyl chloride. While
FtmOx1 can convert 3 to verruculogen (1) in 62% yield and the
reported alcohol oxidation by Liu and co-workers can be used to
obtain  13-oxoverruculogen (2),20 the low yielding
dihydroxylation step lowers the overall efficiency of this route
(Figure 4a). As such, we investigated alternative strategies to
access 13-oxoverruculogen (2).

A
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NMO
Pyridine
-
THF/H,O0 MeO
10%

MeO

Promiscuous enzymatic peroxidation

The difficulty in forming the cis-1,2-diol of fumitremorgin B (3)
led us to examine if FtmOx1 could accept the trans-diol for
endoperoxidation (Figure 4a). As previously mentioned, the last
step in the synthesis would involve oxidation of the C13 alcohol,
so the stereocenter at this position would be inconsequential in
the synthesis of 13-oxoverruculogen. In 2022, the Zhou group
reported a crystal structure of wild-type FtmOx1 with its
substrate and cofactors bound (Figure 4b).26 Utilizing this
crystal structure, we observed an empty pocket in the active site
of FtmOx1, which could potentially accommodate the trans-diol
in the substrate analog (7). Moreover, the surface model of the
FtmOx1-fumitremorgin B-aKG ternary complex shows
fumitremorgin B (3) is partially solvent exposed which could
allow for modified substrate analogs to fit in the active site
(Figure 4b). With this thought in mind, we decided to investigate
the use of a trans-dihydroxylation reaction.

NBS

THF/H,0  MeO
75%

MeO

fumitremorgin B (3)
FtmOx1 (10 mol%)

FtmOx1 (10 mol%)
(NH4)2Fe(S04)2
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native enzyme
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Figure 4 A) Chemoenzymatic synthesis of 13-oxoverruculogen B) X-ray crystal structure of FtmOx1-fumitremorgin B-a-KG ternary complex reported by Zhou and co-
workers (PDB: 7ETK).26 Surface model of FtmOx1 is shown with fumitremorgin B and a-KG bound. Key amino acids such as active site ligands (D131, H129, H205) and

Y68 and Y224 are highlighted in blue. The empty pocket that would allow for 13-epi-fumitremorgin B to fit in the active site is highlighted in purple.
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Using N-bromosuccinimide (NBS) in aqueous tetrahydrofuran
resulted in the formation of 25 with 75% yield. While installation
of the cis-1,2-diol by 0sOs4 occurs through a concerted
mechanism, the trans-diol is formed through a stepwise
mechanism. NBS reacts from the less hindered back side of the
molecule forming the bromonium intermediate. Ring opening of
the bromonium ion by the amido group of the diketopiperazine
generates an iminium ion on C12. The presence of water readily
attacks this intermediate, resulting in a cis-bromo alcohol. The
C13 bromide is then displaced through an SN2 reaction with the
water in solution forming 25 as the primary product.

Prenylation of the indole was accomplished using
prenyl chloride in benzene to make the substrate analog 13-epi-
fumitremorgin B (7), in analogy to the synthesis of
fumitremorgin B (3) from cis-1,2-diol 22. With the substrate
analog in hand, we subjected it to the optimized conditions we
had found for the synthesis of verruculogen. Initial LC/MS
analysis of the enzyme assay showed the formation of a small
peak with identical mass as verruculogen but with a different
retention time. This indicated that 7 was accepted by FtmOx1 for
endoperoxidation to form 13-epi-verruculogen (8). Thus, 7 was
the first substrate analog found to be endoperoxidized by
FtmOx1. Though the initial yield was only 9%, increasing the
temperature to 37°C and adding ferrous iron in the form of iron
ammonium sulfate increased the isolated yield to 62%,
comparable to our reported yield of verruculogen from
subjecting fumitremorgin B to FtmOx1 (Figure 4a). The addition
of iron (II) and higher temperature were essential to obtain
synthetically useful yields of 13-epi-verruculogen (8). With our
optimized enzymatic peroxidation in hand, the C13 alcohol of 8
was oxidized using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) to complete the first de novo synthesis of 13-
oxoverruculogen (2).21

Conclusion

Central to our strategy was the use of enzymatic peroxidation by
FtmOx1 to avoid the need to prepare reactive peroxide
intermediates. Using a substrate analog, we avoided the need to
synthesize the cis-1,2-diol found in fumitremorgin B (3), which
would have severely hampered the synthetic efficiency of our
route. The use of 13-epi-fumitremorgin B (7) allowed for the
preparation of 13-epi-verruculogen (8), an alcohol diastereomer
that also allowed for the synthesis of 13-oxoverruculogen (2).
Our work highlights the utility of biocatalysis and the use of
native enzyme promiscuity in the synthesis of natural products.
Using biocatalysis, enzymatic reactions that are unprecedent
with small molecule catalysts can be incorporated into multistep
synthesis.2? This strategy could greatly improve the efficiency of
natural product synthesis. Native enzyme promiscuity broadens
the use of biocatalysts by examining alternative intermediates
other than the native substrate that can be functionalized by the
enzyme.?829 Given the use of a-ketoglutarate dependent iron
enzymes in natural product synthesis,30-31 we expect that the
strategies described herein would result in additional flexibility
in retrosynthetic design. As a result, synthetic routes can be
orchestrated to avoid impractical and unstable intermediates
that would otherwise be difficult to prepare. Applications of
enzymatic reactions in multistep synthesis are expanding rapidly
and will continue to advances in

only grow with

biotechnology.3233
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