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A B S T R A C T   

Human-Robot Collaboration (HRC) has shown promise of combining human workers' flexibility and robot as
sistants' physical abilities to jointly address the uncertainties inherent in construction work. In HRC, natural 
language-based interaction can enable human workers who are non-experts in robot programming to intuitively 
communicate with robot assistants. However, limited research has been conducted on this topic in construction. 
This paper proposes a framework to allow human workers to interact with construction robots based on natural 
language instructions for pick-and-place construction operations. The proposed method consists of three mod
ules: Natural Language Understanding (NLU), Information Mapping (IM), and Robot Control (RC). A case study 
for drywall installation evaluates the proposed approach. Results indicate over 99% accuracy in NLU and IM, 
allowing a robot to perform tasks accurately for a given set of natural language instructions. It highlights the 
potential of using natural language-based interaction to replicate human-like communication in human-robot 
teams.   

1. Introduction 

Robotics is considered an effective means to address issues of labor 
shortages and stagnant growth of productivity in construction [1–3]. 
However, it is challenging for robots to work on construction sites due to 
evolving and unstructured work environments [4,5], differing condi
tions from project to project [6], and the prevalence of quasi-repetitive 
work tasks [7]. This is in contrast to automated manufacturing facilities 
that have structured environments [4]. 

Collaboration between humans and robots has the potential to 
address several such challenges inherent in the performance of con
struction tasks in the field. The advantage of collaborative robots lies in 
the opportunity to combine human intelligence and flexibility with 
robot strength, precision, and repeatability [8,9]. Collaboration can 
increase productivity, improve quality and enhance human safety 
[10,11]. It can also reduce physical exertion for humans since repetitive 
tasks will be carried out by robots. Therefore, in Human-Robot Collab
oration (HRC), skills of human operators and robots can complement 
each other to complete designated tasks. 

On today's construction sites, communication between workers is 

essential allowing work crews to have many degrees of freedom in 
organizing and coordinating the work, and dealing with the dynamic 
and unpredictable environments [12]. Similarly, when collaborative 
robots assist human workers, interaction between humans and robots is 
critical [1]. In human-robot construction teams, most of the robots are 
currently in the lower level of robot autonomy where human workers 
determine task plans and robots execute them [13]. To deliver plans 
generated by human workers to robots, human operators need proper 
interfaces [14]. However, designing intuitive user interfaces is one of the 
key challenges of HRC since interaction with robots usually requires 
specialized knowledge in humans [15]. Therefore, intuitive and natural 
interaction enables human operators to easily interact with robots while 
taking full advantage of human skills [15,16]. 

1.1. Enhancing HRC in construction through natural interaction 

Perceived ease of use and usefulness were emphasized as having 
critical roles in encouraging construction personnel to engage with HRC 
[17]. The complexity involved in learning and using new technologies 
was identified as a substantial barrier that negatively impacts workers' 
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willingness to work in the HRC in construction [17]. Thus, it is imper
ative for human workers to experience an effortless learning process, 
ensuring that interactions with the robotic system are straightforward 
and uncomplicated. In this context, we define “natural and intuitive 
interaction” within the context of HRC in the construction industry as a 
mode of communication between humans and robots that is inherently 
understandable and easy to use, requiring minimal training and cogni
tive effort from human operators. This definition emphasizes that the 
interaction should not simply mirror colloquial human-to-human 
communication, but must be easily adapted to the specific context of 
construction tasks while being inherently understandable and straight
forward to implement for human operators. 

Several recent studies have investigated natural HRC in the con
struction industry using various communication channels such as 
gesture [18], Virtual Reality (VR) [19], brainwaves [20], and speech 
[21]. Among them, speech interaction has been considered as the most 
natural and intuitive way of communication in the human-robot inter
action field [22–25]. Natural language instructions, delivered through a 
speech channel, allow human operators to deliver their requests accu
rately and efficiently [26]. Users' intents about action, tools, workpieces, 
and location for HRC can be accurately expressed through natural lan
guage without information loss in ways distinct from other simplified 
requests [27,28]. In addition, users do not need to design informative 
expressions when communicating through existing languages, making 
the interaction efficient. 

Pick-and-place operations, which are commonly performed by in
dustrial robots, have increasingly been guided by natural language in
structions [28–31]. In the construction domain, such operations are 
critical for tasks on structures (e.g., bricklaying and concrete block 
installation), surface (e.g., tile and drywall installation), and fixtures (e. 
g., glass panel installation). However, while there is significant potential 
in applying natural language instructions for these construction tasks, 
collaborating with robots remains a challenge. The primary challenge 
lies in the need for a comprehensive system that can integrate the 
analysis of language instructions with the subsequent robot controls. 
Moreover, there is a need for a language model to extract task-specific 
information for construction as well as a method to map the extracted 
information onto the dynamic construction sites. 

1.2. Objective and structure of this study 

To address this research gap, this study proposes a framework aimed 
at enhancing natural interactions with construction robots consisting of 
three modules: 1) Natural Language Understanding (NLU): to extract 
task-specific information through a language model, 2) Information 
Mapping (IM): to employ conditional statements to deal with discrep
ancies between NLU outputs and building component information, and 
3) Robot Control (RC): to execute action plans using a virtual con
struction robot. The framework supports pick-and-place construction 
operations through natural language instructions. 

Table 1 shows the main characteristics of this study. Diverse inter
action channels have been considered for interaction with construction 
robots, but no prior research has directly investigated how to collaborate 
with the robots using natural language instructions in pick-and-place 

construction operations. While other language instructions used in the 
previous studies describe target objects and destination, pick-and-place 
operations for construction activities require one more piece of infor
mation about placement orientation. To address this issue, a deep 
learning-based language model is trained and tested on language in
structions data for construction tasks. To describe target objects and 
destination in natural language instructions, building component in
formation and working records available from the construction project 
information are used. The target objects and destination are described 
using their IDs, dimension, position or working records. To demonstrate 
and evaluate the proposed approach, a set of experiments on drywall 
installation is conducted as a case study. 

2. Literature review 

Through the review of existing works, the need for this study and 
research gaps are identified. The first section establishes the need for 
analyzing natural language instructions for HRC in the construction 
domain. The second section examines the characteristics of data and 
approach used in other domains in relation to natural language under
standing. The third section investigates studies that performed infor
mation extraction in the construction industry. 

2.1. Interaction between human workers and robots in the construction 
industry 

Advanced interaction methods for HRC enable human workers to 
collaborate with robots easily and naturally. In construction, research 
using gestures, VR, brain signals, and speech has been proposed for 
interaction with robots. Gesture-based interaction using operators' body 
movements can enhance the intuitiveness of communication [32] and 
can be used in noisy environments encountered on construction sites 
[33]. In 2021, Wang and Zhu [33] proposed a vision-based framework 
for interpreting nine hand gestures to control construction machines. 
Sensor-based wearable glove systems were proposed to recognize hand 
gestures for driving hydraulic machines [18] and loaders [34]. How
ever, when using hand gestures, the operators' hands are not free, and 
they have to keep pointing to the endpoint, which may lead to fatigue 
[35]. 

VR interfaces have been used in the construction industry for visual 
simulation, building reconnaissance, worker training, safety manage
ment system, labor management and other applications (e.g., [36–39]). 
It can also provide an opportunity for users to control robots without 
safety risks [40]. Regarding interaction with robots, Zhou et al. [41] and 
Wang et al. [14] tested VR as an intuitive user interface exploring the 
virtual scene for pipe operation and drywall installation, respectively. 
Both studies sent commands to robots by handheld controllers, which 
determined desired poses and actions of robots. 

In addition to the purpose of operating robots, in 2022, Adami et al. 
[19] investigated the impacts of VR-based training for remotely oper
ating construction robots. In the interaction with a demolition robot, 
operators used the robot's controller consisting of buttons and joysticks 
based on digital codes. However, head mounted devices as visual dis
plays may be uncomfortable for operators due to onset of eye strain and 
hand-held devices may limit the operators in their actions [42,43]. In 
addition, the connection between the headset and the controllers can be 
interrupted, and the working space is limited due to cables attached to 
the computer [44]. 

Recently, brain-control methods have been proposed for HRC in 
construction, translating the signals into a set of commands for robots. 
To control robots, users can attempt to convey their intention in a direct 
and natural way by manipulating their brain activities [45]. In con
struction, in 2021, Liu et al. [20] and Liu et al. [46] proposed systems for 
brain-computer interfaces to allow human workers to implement hands- 
free control of robots. Users' brainwaves were captured from an elec
troencephalogram (EEG) and interpreted into three directional 

Table 1 
Characteristics of this study.  

# Characteristics 

1 Communication using natural language instructions 
2 Pick-and-place construction operations: target, destination, and placement 

orientation 
3 Use of the building component information (e.g., designs, materials) and 

working records 
4 Natural language instruction data for drywall installation 
5 Object description: ID, dimension, position, and previous working records 
6 Demonstration of drywall installation  
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commands (left, right, and stop) [20]. In the other study [46], brain
waves were classified into three levels of cognitive load (low, medium, 
and high), and the results were used for robotic adjustment. This 
communication using brain signals enables physiologically-based HRC 
by evaluating workers' mental states [45]. However, systems using brain 
signals have to overcome challenges of time consumption for user 
training, non-stationarity of signals affected by the mental status of 
users, and user discomfort from the wearable equipment [47]. It is also 
challenging for users to deliver high-dimensional commands to collab
orative robots because of the limited number of classifiable mental states 
[45]. 

On the other hand, speech is the most natural way of communication 
in humans, even if the objects of their communication are not other 
humans but machines or computers [22,24]. Natural language can be a 
flexible and familiar medium for construction workers to communicate 
with robots, and can be leveraged for hands-free and eyes-free interac
tion with low-level training [48]. Enabling robots to understand natural 
language commands also facilitates flexible communication in human- 
robot teams [49]. Despite the advantages of the speech channel and 
natural language in interaction, there are few studies examining natural 
language instructions for human-robot collaboration in construction. In 
2018, Follini et al. [21] proposed a robotic gripper system integrated 
with voice identification/authentication for automated scaffolding as
sembly, but it was based on a very limited number of simple voice 
commands like stop, grip, and release. In the construction industry, 
speech and natural language-based HRC could be further investigated 
due to the potential benefits discussed above. 

2.2. Natural language instructions for non-construction HRC 

Many studies in which humans give instructions to robots using 
natural language commands have been conducted for manipulation 
tasks, focusing on the identification of target and destination. Regarding 
the placing task, Paul et al. [28] and Bisk et al. [29] leveraged spatial 
relations in natural language instructions to allow robots to move blocks 
on the table. Paul et al. [28] proposed a probabilistic model that in
corporates notions of cardinality and ordinality as well as abstract 
spatial concepts. A neural architecture, consisting of encoder, repre
sentation stages, and grounding to predict three task elements, was 
suggested for interpreting unrestricted natural language commands in 
moving blocks identified by a number or symbol [29]. In 2020, Mees 
et al. [50] developed a network to estimate pixelwise placing probability 
distributions used to find the best placement locations for household 
objects. However, in order to make a robot perform various construction 
tasks, it is necessary to use different kinds of attributes (e.g., dimension, 
material, and ID) describing objects as well as spatial information (e.g., 
vertical and horizontal arrangement) of the objects. 

Several multimodal studies have mapped visual attributes and lan
guage information by using two types of input (an image and an in
struction). In 2018, Hatori et al. [30] integrated deep learning-based 
object detection with LSTM-based language model to deal with attri
butes of household items, such as color, texture, and size. In 2019, 
Magassouba et al. [31] proposed a deep neural sequence model 
including Bi-LSTM-based model to process language instructions. The 
model aimed to predict a target-source pair in the scene from an in
struction sentence for domestic robots. In 2021, Ishikawa and Sugiura 
[51] proposed a transformer-based model [52] including text embedder 
and multi-layer transformer to model the relationship between everyday 
objects for object-fetching instructions. In 2023, Guo et al. [53] devel
oped an audio-visual fusion framework for robot placing tasks, 
employing a bi-GRU encoder with a hierarchical attention module [54] 
to extract text features. A combination of linguistic knowledge with 
visual information can describe targets in many ways. To utilize these 
methods for assembly tasks at unstructured and complex construction 
sites, there is a need for vast collections of image-text pairs as previous 
studies [30,51]. However, limited datasets of image-text pairs in the 

context of construction sites present challenges in applying previous 
multimodal studies to HRC in construction. 

Some methods interpreted natural language instructions given to 
robots without relying on visual information. Language understanding 
using background knowledge [55] and commonsense reasoning [56] 
have been explored to infer missing information from incomplete in
structions for kitchen tasks. In 2018, Nyga et al. [55] generated plans for 
a high-level task in partially-complete workspaces through a probabi
listic model to fill the planning gaps with semantic features. In 2020, 
Chen et al. [56] utilized an RNN-based model to formalize commonsense 
reasoning as outputting the most proper complete verb-frame by 
computing scores of candidate verb frames. However, unlike kitchen 
tasks, it can be challenging to infer targets in construction activities 
using general knowledge or pre-defined verb frames. In 2018, Brawer 
et al. [57] proposed a logistic regression model that estimates the action 
probability to select one target among 20 candidates by contextual in
formation such as the presence of objects and the action history. The 
context information can also be leveraged in HRC for construction ac
tivities, but the proposed model is limited to analyzing language in
structions for the pick-up action. 

2.3. Natural language processing in the construction industry 

Natural language processing (NLP) is a research domain exploring 
computer-assisted analytical technique to automatically interpret and 
manipulate natural language [58]. With the advance of machine 
learning and deep learning, NLP has been increasingly adopted in the 
construction industry. NLP applications in construction have been 
explored in many areas, such as knowledge extraction, question- 
answering system, factor analysis, and checking [59]. Various docu
ments, such as accident cases [60,61], injury reports [62], compliance 
checking-related documents [63], legal texts [64], and construction 
contracts [65] have been analyzed in construction. Analysis on natural 
language instructions for HRC has not been explored in the construction 
industry. 

Collaboration with a construction robot using natural language in
structions requires extracting useful information from the instructions so 
the robot can start working. Previous studies extracted keywords based 
on frequency features [66] and handcrafted rules [67]. These ap
proaches are not robust to unfamiliar input which includes misspelled or 
unseen words rather than the keywords. To address these challenges, 
machine learning and deep learning models have been used to extract 
information about infrastructure disruptions [68] and project con
straints [69,70]. However, entities used in these studies, such as task/ 
procedures [70], interval times [69], and organization [68] are not 
suitable for identifying important information from natural language 
instructions for construction activities. A new group of entities should be 
defined to give essential information to construction robots. For 
example, entities for pick-and-place tasks are relevant to characteristics 
of the tasks such as target objects, placement location, and placement 
orientation. 

Several studies have used natural language queries to change or 
retrieve Building Information Modeling (BIM) data [71–73]. In 2016, 
Liu et al. [71] retrieved wanted BIM information by mapping extracted 
keywords from queries and IFC entities. However, the proposed method 
supported only simple queries such as “quantity of beams on the second 
story” or “quantity of steel columns in the check-in-zone.” In 2021, Shin 
and Issa [72] developed a BIM automatic speech recognition (BIMASR) 
framework to search and manipulate BIM data using a human voice. 
They conducted two case studies for a building element, a wall, but a 
quantitative evaluation of the framework was excluded. A question- 
answering system for BIM consisting of natural language understand
ing and natural language generation was developed [73]. The system 
achieved an 81.9 accuracy score with 127 queries. For example, users 
can obtain answers to questions like “What is the height of the second 
floor?”, “What is the object of door 302?”, or “What is the model 
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creation date?”. These studies have analyzed text inputs to retrieve 
useful project information from language queries. However, the text 
inputs do not address construction-specific information that is requisite 
for HRC commands. Additionally, it is important to note that their 
proposed methods do not primarily aim to interact with robots for 
construction tasks. 

In recent research developments (2023), two studies employed 
ChatGPT, a large language model, to develop an interactive virtual AI 
assistant for construction tasks. Xu et al. [74] introduced a system 
combining AR, Optical Character Recognition (OCR), and the GPT lan
guage model to optimize user performance in operations and mainte
nance tasks. Notably, their system relies on language instructions that 
are set at the beginning of tasks to fine-tune the GPT model, which limits 
the scope for ongoing interaction during the tasks. Moreover, their 
framework does not specifically cater to interactions with construction 
robots. Ye et al. [75] investigated the influence of ChatGPT in fostering 
trust in HRC assembly tasks. In the study, the robot is programmed to 
assist human operators by fetching tools or objects, following simple 
language commands such as “get closer to me” and “give me the screw.” 
However, this approach is limited as it only involves identification of 
objects or tools by name, lacking the integration of more complex de
scriptors such as size, location, object IDs, or historical data of past in
teractions. These observations highlight that while existing research has 
made strides in integrating natural language processing with robotics, 
there remains a significant opportunity for advancement in applying this 
technology to the specific needs and complexities of construction 
environments. 

There has been no research to plan robot tasks based on natural 
language commands which require interpretation of information from 
both language commands, BIM, and working history. 

2.4. Robot control commands 

The interpretation of natural language instructions is conducted 
entirely independently, and prior to, aspects of robot control [76]. To 
facilitate this, semantic information from human instructions must be 
decoded into structured commands that a robot can comprehend and 
execute. For example, the directive to “take the cable from the floor” or 
to “start painting wall A in room 123” requires a translation into a 
semantically structured input for the robot. This translation is important 
for bridging the communication gap between human language and ro
botic actions, ensuring that the robot performs tasks as intended by the 
operator. 

The translation of natural commands into robot actions can take 
various forms. One direct method, as demonstrated by Ralph et al. [77], 
involves mapping natural language instructions to individual robot 
motions—such as pairing the command “Move Up” with the action 
“translate along +Z world axis,” or “Tilt Down” with “pitch down tool 
frame.” This approach creates a direct link between human commands 
and robot movements. On the other hand, a more structured approach 
incorporates an action verb and relevant contextual information into the 
command. This method, used by Matuszek et al. [78] for robot navi
gation, involves commands like (move-to forward-loc) which combine a 
directive with a spatial reference. Similarly, She and Chai [79] explored 
grounded verb semantics in HRI, employing expressions that vary in 
complexity based on the action's requirements, like (Grasp(Kettle1)) or 
(Keep(Kettle1, on Stovefire4)). Moreover, Chen et al. [56] addressed the 
challenge of interpreting incomplete instructions by using a complete 
verb frame, such as (pour, water, bowl), which details the action, object, 
and destination. This diversity in approaches showcases the adaptability 
of robotic systems to various levels of command detail, depending on the 
robot's capabilities and the complexity of the task at hand. 

3. System architecture 

The proposed system aims to make a robot assistant perform 

construction activities after receiving verbal (natural language) in
structions from a human partner. Specifically, the construction activities 
targeted in this study are pick-and-place construction operations. 
Essentially, the system is designed exclusively to manage the actions 
involving the picking up and placing of materials. Developing this sys
tem necessitates the integration of three modules. Fig. 1 shows critical 
components and data workflows of the system, which comprises three 
modules: Natural language understanding (NLU), Information Mapping 
(IM), and Robot Control (RC). In this system, the three modules work 
together to enable a human operator to interact with a construction 
robot. 

The NLU module takes a natural language instruction as input and 
employs a trained language model to perform sequence labeling tasks, 
generating word-tag pairs. In certain contexts, the word-tag pairs can 
directly provide the final message to the robot, ensuring unambiguous 
communication. However, language instructions can often demand 
contextual understanding and the consideration of historical data. To 
address this, the IM module integrates the interpretation of building 
component information and action history with the output of a language 
model to generate executable robot control commands. Finally, the RC 
module utilizes three types of task information (target, final location, 
and placement method) to control the robot's movement for pick-and- 
place tasks. Within this system, detailed instructions for minor adjust
ments, such as ‘tilt’, ‘fit’, or ‘avoid’, are not necessary for the collabo
rative robot to complete construction tasks. This assumption is grounded 
in the robot's own cognitive capabilities to address minor geometric 
deviation and workspace uncertainties, demonstrating its adeptness in 
detecting geometric discrepancies between as-designed and as-built 
work, as shown in Lundeen et al. [80]. Although the application of the 
robot's capabilities is out of the scope of the current study, they hold 
potential for future integration into the RC module of the proposed 
system to address discrepancies between the robot's expected informa
tion and actual conditions, thus improving a practical implementation of 
on-site construction robots. 

3.1. Dataset generation and labeling 

In the proposed system, two pieces of information source are needed 
for a robot to execute tasks: one from BIM and the other from natural 
language instructions. First, it is assumed that BIM encompasses details 
about construction materials at construction sites. Specifically, BIM 
contains the ID, dimension, and position of a workpiece, which are 
essential data for pick-and-place construction operations. In this regard, 
it is assumed that users have access to mobile devices (e.g., tablet) to 
obtain building component information such as a name, a unique ID, a 
dimension, and an initial position of each workpiece on a future con
struction site. 

Given the potential use of mobile or wearable technologies in the 
construction industry [14,81,82], such technologies could be used to 
provide project information to construction workers making it easier to 
unambiguously specify which workpieces are to be installed and cor
responding location to the robot assistants. As a result, natural language 
instructions will specify targets and destinations based on their ID, 
dimension, or position. Second, natural language instruction serves as 
the medium through which human operators convey task-specific in
formation for pick-and-place construction tasks to robots. 

In data generation, a single natural language instruction for pick- 
and-place construction operations consists of one or multiple senten
ces. There are three rules to generate natural language instruction 
dataset in this study. First, each instruction should contain attributes of 
three key pieces of information, which are a target, a final location, and 
how to place the target, exactly once. For example, it is unacceptable to 
mention two targets in one instruction or solely reference two out of the 
three key information components. Second, expressions clearly indi
cating features related to these three types of information should appear 
only once in each instruction. Human teammates are expected to 
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articulate each piece of task-specific information singularly. For 
instance, it is not acceptable to describe a target using both its ID and 
dimensions within a single natural language instruction. Lastly, a fine- 
grained annotation is employed to assign corresponding labels to attri
butes of the three types of information. In the annotation process, terms 
indicating targets are not labeled as ‘target’; instead, individual attri
butes are annotated with precise information as ‘ID’ or ‘length’. 

Within the dataset, co-reference issues might arise. This is when 
words referring to a target object, a final location, and a placement 
method can be included multiple times within a single instruction. For 
example, in an instruction “Please pick up the object A. Move it on to the 
object B", words ‘the object A' and ‘it’ denote the same object. Relying on 
the second and third rules, only ‘A', which indicates a feature of the 
target object, will be annotated as ‘ID’ during the labeling. The second 
and third rules facilitate the identification of unique workpiece char
acteristics to resolve the co-reference issues. 

In data labeling, IDs in language instructions can be tagged with a 
label such as ‘ID’. BIM models used in previous studies have allocated a 
five to seven-digit number to every building element [83–85]. A list of 
digits can be read out in the working environments such as warehouses 
or factories to increase work performance [86–88]. While it may not be 
common to utter long digits in today's construction workers' practice, 
this study suggests that using IDs could be one of the effective ways for 
workers to unambiguously indicate a target object or a final location 
when interacting with robots to ensure accurate selection and installa
tion of workpieces, particularly in BIM-driven construction workflows. 

Workpiece dimensions in language instructions can be labeled with 
labels like ‘length’, ‘width’, or ‘dimension’. For example, when a target 
object is described in numbers such as “4 by 8 feet”, “12 by 12 feet”, or 
“its length is 12”, the numeric values are annotated as ‘length’ or ‘width’. 
Within the construction industry, there are workpieces conforming to 
established standard sizes widely prevalent in the industry. When 
describing the dimensions of workpieces using terms like “full-size” or 
“standard”, the words representing the size of the workpieces are an
notated as the label ‘dimension.’ Both the target object and the final 
location can also be labeled based on their locations. Instead of speci
fying precise coordinates to describe the placement of workpieces, ex
pressions such as ‘left’ right’ or ‘second to the left’ are employed with 
labels ‘Loc’ in the process of data labeling. 

Finally, regarding how to place target objects in tasks, we consider 
both vertical and horizontal placement. When a target object is posi
tioned either vertically or horizontally, the corresponding terms can be 
annotated as the labels ‘Vr’ or ‘Hr.’ Diverse situations can be explored, 
including situations where a target is placed to the upper, to the bottom, 
to the left, or to the right side of the final location. 

The selection of tags for the system was designed to accurately 
represent the key attributes of construction materials such as ID, size, 
and location, as well as the placement method for tasks. This deliberate 
selection of tags is critical in enhancing the effectiveness of task 
execution, particularly when operators rely solely on voice commands. 
This approach is supplemented by detailed information about con
struction materials. The inspiration for tag selection stems from previous 
studies in the fields of BIM integration with construction robotics 
[89,90]. In these studies, unique identifiers, dimensions, positions or 
main axis of building elements have been used as inputs for robot control 
systems. 

3.2. Natural Language Understanding (NLU) 

A NLU module aims to predict semantic information from the user's 
input which is in natural language. Two main tasks of the NLU are intent 
classification (IC) predicting the user intent and slot filling extracting 
relevant slots [91]. The NLU module of this study focuses on the slot 
filling which can be framed as a sequence labeling task to extract se
mantic constituents. It extracts semantic information for target, desti
nation, and placement orientation based on characteristics of 
construction materials that were previously unexplored in prior 
research. 

Fig. 2 shows an example of the slot filling for the user command 
“Install the object A on the object B" on a word-level. The word ‘tag’ is 

Fig. 1. The proposed system using natural language instructions for HRC in construction.  

Fig. 2. An example of an instruction labeling for slot filling.  
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used to refer to the semantic label. The objective of the slot filling task is 
to produce word-tag pairs as its output. In this study, two language 
models, which are the typical deep learning architectures for this task, 
are tested to evaluate their capability in assigning the correct tags to 
each word in a user command. This evaluation seeks to determine which 
model offers the most effective and accurate results in the proposed 
system. The first architecture is the Bidirectional Long Short-Term 
Memory (BiLSTM) layer [92] with a Conditional Random Fields (CRF) 
layer [93]. The second architecture is based on the Bidirectional 
Encoder Representations from Transformers (BERT) architecture [94]. 

BiLSTM-CRF is a neural network model that has been used for 
sequence labeling [95–97]. BiLSTM incorporates a forward LSTM layer 
and a backward LSTM layer in order to leverage the information from 
both past and future observations of the sequence. A hidden forward 

layer is computed based on the previous hidden state ( h
→

t−1) and the 
input at the current position while a hidden backward layer is computed 

based on the future hidden state ( h
←

t+1) and the input at the current 
position as shown in Fig. 3. At each position t, the hidden states of the 

forward LSTM ( h
→

t) and backward LSTM ( h
←

t) are concatenated as input 
to the CRF layer. The CRF layer generates the sequence labeling results 
by adding some effective constraints between tags. Each tag score output 
by the BiLSTM is passed into the CRF layer, and the most reasonable 
sequence path is determined according to the probability distribution 
matrix. The BiLSTM-CRF model consists of the BiLSTM layer and the 
CRF layer, which can process contextual information and consider the 
dependency relationship between adjacent tags, resulting in higher 
recognition performance in comparison to a single CRF model with an 
identical set of features [95]. 

BERT, Bidirectional Encoder Representations from Transformers, is a 
bidirectional language model that achieves outstanding performance on 
various NLP tasks including sequence labeling [94]. The architecture of 
BERT is a multilayer transformer structure which is based on the 
attention mechanism developed by Vaswani et al. [52] in 2017. BERT is 
trained to predict words from its left and right contexts using Masked 
Language Modeling (MLM) [94] to mask the words to be predicted. The 
general idea of BERT is to pre-train the model with large-scale dataset, 
and parameters of the model can be updated for the given tasks during 
fine-tuning. 

In this study, pre-trained BERT-base model [94] is fine-tuned for 
sentence tagging tasks. As shown in Fig. 4, the input text is tokenized 
and special token like [CLS], which stands for classification, is added at 
the beginning. It is needed to create an attention mask. The input for 
BERT is the masked sequence and the sum of the token and position 

embeddings (Ei). Then, the final hidden vector is denoted as T, which is 
the contextual representation for each token. The token-level classifier is 
a linear layer using the last state of the sequence as input. In this study, 
when a word is composed of several tokens and the prediction results of 
the tokens are different, the class of the word is determined by the token 
corresponding to more than half of the tokens. 

3.3. Information Mapping (IM) 

The information mapping module aims to generate a final command 
for the robotic system using output of the NLU module, building 
component information, and action history. This module is necessary in 
the proposed system since the results of the NLU module (word-tag 
pairs) cannot be directly used as inputs for the robot control. This 
module is designed to extract three necessary types of information 
crucial for a successful pick-and-place construction operation, including 
the identification of a target object, its destination, and placement 
orientation. 

In the IM module, NLU outputs, building component information, 
and action history are mapped by using conditional statements, and the 
mapping result is recorded in the action history (Fig. 5). Conditional 
statements play a role to find out essential information for tasks by 
dealing with vocabulary discrepancies between words of NLU outputs 
and building component information. The action history record includes 
information about the previously installed object, including its IDs, 
dimension, where it is placed, and how it is placed. The previous action 
record can be used as one of the inputs for the conditional statements to 
find out a target object and its final location for the current action. The 
final command to be delivered to the RC module is determined based on 
the mapping result. 

To address inconsistencies in the vocabularies between the NLU 
output, building component information, and action history, the module 
incorporates a procedure that uses conditional statements to extract 
information about the target object, destination, and placement method. 
These conditional statements are designed to utilize the ID, position, and 
dimension information of each component, which can be obtained from 
the building component information. 

The appropriate conditional statement to use is determined based on 
the tag of each word in the NLU output. For instance, if the NLU output 
contains a tag ‘ID_target’ that refers to the target object's ID, the corre
sponding word is mapped to the ID in the building component infor
mation. The component information associated with that ID is then 
added to the action history as the target object's information. Similarly, 
if the NLU output contains a tag ‘Position_target’ that refers to the 

Fig. 3. A BiLSTM-CRF structure.  
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position of the target object, the corresponding word in a language in
struction is mapped to a component in the building component infor
mation within the conditional statement processing the position 
information. Then, all the information associated with that component is 
then added to the action history as the latest record. 

When the vocabularies in the NLU output, representing the target 
object, destination, and placement method, are accurately mapped to 
their respective items in the building component information, the IM 
module's execution is regarded as successful. The performance is closely 
linked to the output generated by the Natural Language Understanding 
(NLU) module, as the latter's output serves as the input for the former. 
This interdependence implies that the accuracy of the IM module de
pends on the performance of the NLU module. If there are inaccuracies 
or misinterpretations in the results predicted by the NLU module, it can 
lead to errors in the conditional statements of the IM module, hence 
influencing its operational integrity. This relationship underscores the 
importance of precision of the first component in the system, high
lighting the interplay of accuracy across modules. 

Once the action history is updated, the final command for robot 
control is determined as the target object type, destination ID, and 
placement methods from the action and transferred to the Robotics 
Control (RC) module. 

3.4. Robot Control (RC) 

This study uses a virtual robot digital twin to plan and execute ac
tions following natural language instructions and building component 
information processed by the previous modules. Fig. 6 shows the process 
flow for pick-and-place operations implemented in the RC module. The 
initial step is to calculate the precise coordinates for the target and 
destination, as depicted in the figure. This calculation is critical in 
bridging the gap between abstract instructions and actionable data for 
task execution. This process utilizes the geometric points and dimension 
information of the objects, which is derived from the building compo
nent information. A robot in this study is simulated using Robot Oper
ating System (ROS) and Gazebo that is the virtual environment offered 
by the Open-Source Robotics Foundation. The robot is a 6 degrees-of- 
freedom KUKA robotic arm, whose movements are informed by a pre
vious study described in Wang et al. [14]. 

The robot's movements are executed through a sequence of phases. 
The robot establishes a pose target and devises a motion plan. The robot 
arm finds a motion from its original base location at first. Should the 
initial plan prove unfeasible, the robot's base position is adjusted 
accordingly (Pre-Pick). Once a valid path of the robot's base is deter
mined, a motion plan for the movement of the robotic arm is generated. 
This plan ensures that a robot's end-effector aligns precisely with the 
center of the object. In this phase, the orientation of the end-effector is 

Fig. 4. BERT for sentence tagging tasks.  

Fig. 5. Inputs and outputs of the IM module.  
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not adjusted according to the target object's arrangement. Next, a Car
tesian path is computed for the robot's end-effector to secure the target 
object with a gripper (Pick). Then, the robot follows the computed path 
to move to the target object. Next, reflecting the pre-pick stage, calcu
lated destination and placement method are used to adjust the pose 
target and motion plan (Pre-Place). The orientation of the end-effector is 
adjusted for the placement method, with the specific rotation of the sixth 
link being dictated by whether the placement is vertical or horizontal. 
Next, the robot follows the determined Cartesian path to place the object 
at the designated location and releases it (Place). After the placement, 
the robot arm reverts to its pre-placement stance (Post-Movement). 

Throughout these stages, the robotic arm's movement, which is 
generated by MoveIt [98], has higher priority than the base movement 
to reduce localization error. This means that the robot's base is only 
repositioned if the robotic arm fails to devise a feasible motion plan for 
picking or placing an object. The Open Motion Planning Library (OMPL) 
[99] and Flexible Collision Library [100] are employed to compute ki
nematics of each joint in planning movements, ensuring collision-free 
trajectories. When the robot is carrying a target object, collision 
checking process is applied while the target is considered as part of the 
robot, so that the robot and the target object will not collide with their 
surroundings. Upon successfully completing the installation, a human 
operator can give the next instructions after target placement is 
completed. 

4. Experimental validation 

4.1. Installation of drywall panels 

Fig. 7(a) shows a robot operation environment for drywall installa
tion. A KUKA robot is positioned between a stud wall and drywall panels 
and the base of the robot can move in a straight line as shown in Fig. 7 
(a). The stud wall consists of thirteen vertical studs as illustrated in Fig. 7 
(b). In this case study, one stud is designated as the final location for 
place operation and the left edge of a drywall panel is laid on the stud. In 
general, drywall panels are available in rectangular shapes. Standard 
panel size is 4 ft wide and 8 ft long and panels of different sizes are cut 
according to the designed dimensions in construction practice. We use 
three sizes of panels including the standard ones as well as two unique 
panel sizes (Fig. 7(c)). The position and dimension information of the 
building components used in the experiment are shown in Fig. 8. 

The drywall panels can be installed in a vertical or horizontal 
orientation. Fig. 9 shows examples of how to place drywall panels onto 
the studs. Examples of vertical placement are shown in Fig. 9(a), and the 
left edge of the panel can be placed on the center line of a stud or the left 
side of a stud. When the panels are placed horizontally perpendicular to 
studs, they can be placed on the top or bottom part of the studs as shown 
in Fig. 9(b). Therefore, natural language instructions for drywall 
placement should include how (i.e., in what configuration) to place the 
drywall panels. 

4.2. Data generation and labeling 

A new dataset of natural language instructions for drywall installa
tion was created and annotated. This study utilized 12 tags that enabled 
the classification of these three essential categories into more detailed 
categories as shown in Fig. 10. These tags include six that describe the 
characteristics of the target object, three that illustrate the final location, 
and the remaining three for the placement orientation. Each instruction 
contains these three pieces of information exactly once. To utilize widely 
used expressions for drywall installation tasks and pick-and-place 
related language instructions, construction videos about drywall 
installation ‘How To Install Drywall A to Z | DIY Tutorial ‘(https://www. 
youtube.com/watch?v=VQIMaR7hWtM) [101] and other studies 
[28,30] exploring pick-and-place language instructions were considered 
when generating the new dataset. In these language instructions, dry
walls and studs are described by combinations of representations related 
to ID, dimensions, and relative location. 

A drywall panel is represented by its ID, dimension, or position, 
while a stud is represented by its ID or position (Figs. 8 and 10). Each 
element ID is represented as a unique 6-digit number in this case study 
and is tagged with ID_stud and ID_wall for stud and a drywall panel, 
respectively. The dimensions of the target drywalls are labeled with 
length, width, or dim. In this study, we considered three distinct panel 
size: 4 by 4 ft, 2.7 by 8 ft, and 4 by 8 ft. Notably, 4 by 8 ft panels are 

Fig. 6. Process flow for pick-and-place operations.  

Fig. 7. Case study settings for drywall installation: (a) robot operation environment; (b) a stud wall consisting of 13 studs; (c) 9 drywall panels on the floor.  
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considered as the standard panel dimensions. 
Both a drywall panel and a stud can be described as their locations 

using one perspective view in this case study. For example, stud 500,100 
is the leftmost stud and drywall sheets 500,300, 500,310, and 500,320 
are the leftmost ones as shown in Fig. 6. The words to indicate locations 
of the stud and drywall panels are labeled as St_loc1 and Dw_loc1. 
Drawing from the work [28], which explored efficient grounding of 
abstract spatial concepts for robot interaction, this study incorporates 
instructions that use both ordinality and relational terms to describe 
objects. It means that the location changes based on the secondary 
location. When a final location of stud is described using relative loca
tion, both St_loc1 and St_loc2 are used together while both Dw_loc1 and 
Dw_loc2 are used together when the target drywall is described. For 
example, in Fig. 5, the location of the stud 500,101 can be expressed as 
“second left to the stud 500103” or “right to the stud 500100.” In this 
case, the direction like “second left” or “right” is also annotated as 
St_loc1 and the word “500,103” or “500,100”, which is corresponding to 
the secondary location, is annotated as St_loc2. 

Finally, regarding how to place drywall panels, there are three labels 
of Vr_md, Hr_top, and Hr_btm. When a panel is vertically placed on the 
middle line of the stud, the corresponding words like “middle line” or 
“center line” are labeled as Vr_md. When a target object is placed hori
zontally on the top row of a stud or on the bottom row of a stud, the 
corresponding words are annotated as Hr_top or Hr_btm. Terms like 
“upper part”, “upper horizontal row”, and “top part” are annotated as 
Hr_top while terms like “lower part” and “bottom row” are annotated as 
Hr_btm. Given this variability, the same words should be annotated as 
different tags, creating a challenge for language models to correctly 

interpret the intended context. When a placement method is not 
mentioned in a language instruction, it means that the panel is installed 
vertically on the left line of the stud. It is considered default in this study 
and the language instruction does not have a tag about this placement 
method. 

There are a total of 13 labels, with 12 of them representing either a 
target drywall, a final location (stud), or a placement method, as shown 
in Fig. 10. The remaining label, referred to as ‘O', is utilized to signify 
that the corresponding word is not associated with any entity. If a target, 
a destination, or a placement is mentioned multiple times in a single 
instruction, words that do not deliver any characteristics of the three 
information are tagged as ‘O.’ For example, in a three-sentences in
struction “Please move the drywall board and drive it vertically in the 
center line of the stud. The width is 4 and the length is 8. The stud is 
laying on the left to the 500103”, ‘the drywall board’ and ‘it’ in the first 
sentence refer to a target object but they do not deliver any important 
characteristic, so they are tagged as ‘O.’ 

In total, 1584 natural language instructions with the 13 labels for 
drywall installation were generated and manually annotated. These in
structions consist of 3072 sentences and a total word count of 39,841. 
The dataset was split into three parts: 1268 instructions for training 
(80%), 158 instructions for validation (10%), and 158 instructions for 
test (10%). Table 2 shows annotation results of the 1584 instructions. 
The dataset includes fine-grained details of the target objects, expressed 
through six tags: Dw_loc1, Dw_loc2, ID_wall, dim, length, and width, which 
account for a total of 2535 words. 

Similarly, the destination details are captured using the tags ID_stud, 
St_loc1, and St_loc2, encompassing 4166 words. Additionally, the dataset 

Fig. 8. Stud and drywall information. (a) x-coordinates of the thirteen studs; (b) dimensions and x-coordinates of the nine drywall panels.  
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incorporates placement orientation information, classified into three 
distinct classes, and comprising a total of 2060 words. Consider the 
example instruction: “Can you install the piece 500310 vertically in the 
stud? The stud is laying third to the left from the stud 500105. Please 
hang the panel into the middle line.” This approach allows for extraction 
of specific details, such as the ID_wall tag for the target, Dw_loc1 and 
Dw_loc2 tags for the destination, and the Vr_md tag representing a spe
cific placement orientation rather than simply highlighting three main 
categories. Such granularity can significantly enhance the richness and 
precision of the data interpretation. 

While the first author performed the initial manual annotation, two 
other individuals checked the appropriateness of annotation guidelines 
by annotating the test dataset in two rounds. Appendix A presents the 
annotation guidelines used in this study. In the first round, the two 
annotators labeled the dataset based on the annotation guidelines and 

several examples. The annotators achieved 96.05% and 89.24% accu
racy, respectively. They received feedback on the results of the first- 
round annotation. In the second round, both annotators achieved 
98.15% and 98.56% accuracy in annotation, which are almost 100% 
accuracy. Any errors in the second round were simple human errors. The 
validation set is used to compare the performance of different models in 
the NLU module. The model with the best performance on the validation 
dataset is used to evaluate the test dataset and the results are delivered 
to the IM. 

4.3. Natural Language Understanding (NLU) 

The specific parameters of the BiLSTM-CRF model used in this case 
study are determined based on previous studies [95,96,102] as follows: 
the number of neural network layers is 2; word embedding size is 50; the 
number of hidden layer LSTM neurons is 300; batch-size is 16; the 
dropout is 0.1; the optimizer is set to Adam [103] with a learning rate of 
0.001; the Adam optimizer trains 20 epochs. The total number of pa
rameters is about 250,000. In the case of BERT, “BertForTokenClassifi
cation” class was used to find-tune the BERT-base-uncased model of the 
original BERT [94]. The specific parameters are as follows: the number 
of encoder layers is 12; the number of attention-heads is 12; the number 
of hidden units: 768; batch-size is 16; the dropout is 0.1; the optimizer is 
Adam with a learning rate of 3e-5; the number of training epochs is 5. 
The total number of parameters is 110 million. Fig. 11 shows network 
architecture diagrams of BiLSTM-CRF and BERT. 

This study trained the BiLSTM-CRF model and BERT by varying the 
number of training data to see the effects of training data size on the 
performance of the model. With different amounts of training data, four 
models with the same architecture were trained for both language 
models. Fig. 12(a) reports the training accuracy of the four BiLSTM-CRF Fig. 9. Two ways of drywall installation: (a) vertical placement of drywall 

panels; (b) horizontal placement of drywall panels. 

Fig. 10. Dataset generation for drywall installation.  

Table 2 
Annotation results of the dataset.  

Tags Number of words 

Dw_loc1 702 
Dw_loc2 368 
Hr_btm 184 
Hr_top 210 
ID_stud 550 
ID_wall 514 
O 31,080 
St_loc1 2652 
St_loc2 964 
Vr_md 1666 
dim 259 
length 346 
width 346 
SUM 39,841  
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models across the 20 epochs. The four BERT models were trained across 
the 5 epochs since they converged quickly as shown in Fig. 12(b). The 
accuracy of the LSTM-M1 and BERT-M1, which were trained with ample 
training data, showed a considerably faster increase in the learning 
progress early in training. 

The performance of the eight models were evaluated on the valida
tion set and compared in Table 3. In this study, two types of accuracy are 
computed to measure performance. Word-level accuracy (Accword) was 
computed based on the number of all the words in the dataset, which 
provides the proportion of words that are correctly predicted. 

The eight models achieved high Accword over 96%. However, even 
one tag incorrectly predicted in a language command can affect the IM 
module that derives the final robot command, causing disruptions in the 

robot's performance. To address this problem, Instruction-level accuracy 
(Accinst) considers whether all words in each instruction are correctly 
predicted or not, thus providing the proportion of language instructions 
in which all words are correctly predicted. For example, as shown in 
Table 3, Accword of LSTM-M4 was measured as high as 96.13%, but Accinst 
of LSTM-M4 showed an accuracy of 48.73%. This means that the robot 
can accurately perform 48% of the given language instructions. 

Out of all eight models, BERT-M1 achieved the highest accuracy, 
with 100.00% accuracy at both the word-level and instruction-level. 
This accuracy, manifesting as 100% on the validation set and nearly 
as high during training might initially seem indicative of overfitting. 

Fig. 11. Network architecture diagrams: (a) BiLSTM-CRF; (b) BERT.  

Fig. 12. Comparison of training accuracy: (a) BiLSTM-CRF and (b) BERT.  

Table 3 
Comparison of model performance on validation dataset.  

Model Result 1 Result 2 

Nw Accword Nl Accinst 

LSTM-M1 2 99.95% 1 99.37% 
LSTM-M2 2 99.95% 2 98.73% 
LSTM-M3 11 99.73% 9 94.30% 
LSTM-M4 144 96.13% 81 48.73% 
BERT-M1 0 100.00% 0 100.00% 
BERT-M2 1 99.97% 1 99.36% 
BERT-M3 6 99.85% 6 96.20% 
BERT-M4 43 98.90% 33 79.11% 

Nw= the number of incorrect prediction of words. 
Nl = the number of language instructions including incorrect prediction. 

Accword=
3, 895 − N w

3895
, Accinst=

158 − N l
158.
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However, it is noteworthy that deep learning models, as documented in 
previous research [104], can often attain zero training error. This phe
nomenon, where models effectively memorize the training set, does not 
necessarily compromise their ability to generalize. In the experiment, 
model performance generally increased with larger amounts of training 
data. BERT models, including BERT-M1, outperformed the BiLSTM-CRF 
model when trained on equivalent amounts of data. This is in conformity 
with previous study to test Name Entity Recognition (NER) dataset in the 
AEC domain [105]. Even with a small dataset (BERT-M4), the model 
achieved an instruction-level accuracy of 79.11%, demonstrating the 
effectiveness of fine-tuning pre-trained models in such cases. The study 
also confirmed that training with a minimal amount of data (equivalent 
to twice the validation set) resulted in a rapid decline in accuracy 
compared to the other models. 

The number of false predictions for the 13 tags is compared in 
Table 4. LSTM-M1 and LSTM-M2 had two wrong predictions for Dw_loc1 
and Vr_md, respectively. As in the example in Fig. 13(a), ‘most left’ was 
incorrectly predicted as St_loc1 representing a stud instead of Dw_loc1 
representing a drywall panel. Within our dataset, the word ‘middle’ is 
contextually labeled as Vr_md or Dw_loc1, which can occasionally in
crease the complexity of predictions. Fig. 13(b) shows that the word 
‘middle’ was predicted as Dw_loc1 instead of Vr_md indicating the 
placement method. BERT-M2 also had one error, the word ‘middle’ 
corresponding to Dw_loc1 was predicted as Vr_md (Fig. 13(c)). These 
results may be due to the similarity of the words referring to the position 
and the placement method. Such issues tend to be mitigated when lan
guage models are trained with a large amount of data as shown in the 
previous deep learning-based studies [106,107]. 

LSTM-M4 and BERT-M4, which were trained with a limited amount 
of data, had 144 and 43 incorrect predictions, respectively. Most 
incorrect predictions occurred in the Dw_loc1 category. LSTM-M4 dis
played a high number of prediction errors for the Dw_loc1, St_loc1, 
Vr_md, and width labels. In contrast, BERT-M4 had far fewer prediction 
errors in these categories, which is attributed to its token-level classifi
cation approach and pre-trained BERT original version. However, unlike 
other models, BERT-M4 exhibited a high error rate in predicting Hr_btm, 
with all corresponding words being incorrectly predicted as Hr_top. This 
suggests that when BERT models are trained with small datasets, 
placement methods may be mispredicted, leading to incorrect posi
tioning of the target panel on the stud by the robot. In the test dataset, 
BERT-M1, which exhibited the best performance, achieved a word-level 
accuracy of 99.95% with two incorrect predictions and an instruction- 
level accuracy of 99.37% with one error. The error occurred when the 
values corresponding to width and length were incorrectly predicted as 
length and width, respectively. 

In the test using the BERT-M1 on the Google Colab platform, which 
offers the use of free GPU, the results showed that the average prediction 
time for one instruction was about 0.025 s. The 158 test data can be 

categorized into four groups based on the number of sentences: 46 one- 
sentence instructions, 74 two-sentences instructions, 27 three-sentences 
instructions, and 11 four-sentences instructions. The average prediction 
time of each group was 0.0224 s, 0.0176 s, 0.0324 s, and 0.0606 s, 
respectively. As the number of sentences in a single instruction 
increased, the analysis time tended to increase as well. In other words, 
time performance is better when the number of sentences is smaller. 
However, the absolute value was negligible across all sentence groups, 
showing the effectiveness of the NLU module. 

4.4. Information Mapping (IM) 

The IM module utilized several rules to extract final information 
about a target panel, a stud as destination, and a placement method 
based on the output of the NLU module and building component in
formation (Fig. 10). The output of this module is recorded in an action 
history table as nine types of values: stud_id (ID of the stud), instal
led_x_left (x coordinate of the left side of the installed panel), instal
led_x_right (x coordinate of the right side of the installed panel), left_cent 
(if the panel is installed on the left side of the stud or the center line of 
the stud), ver_hor (if the panel is installed vertically or horizontally), 
top_btm (if the panel is installed on the top row or the bottom row), 
drywall_id (ID of the drywall panel), w (width of the drywall panel), and l 
(length of the drywall panel). The records in the action history table can 
be used to extract the final command for the robot control. 

The rules of the IM module about drywall panels are shown in 
Figs. 14 and 15. The pseudocode in Fig. 14 can be used when a target of 
pick-and-place operation is described as its dimension. If the dimension 
of the target drywall panel is described by its length and width values or 
words like ‘standard’ and ‘full-size’, the target features are extracted by 
its length and width values in the drywall information table in Fig. 8(b), 
which is marked as TableD in Fig. 14. When an expression for a previ
ously performed operation is used, such as “previously installed”, the 
target of the last performed operation is retrieved from the action history 
table ActHist and the panel with the same characteristics is determined 
as the target of the current operation. 

Fig. 15 shows pseudocode for the process used when drywall panels 
are labeled as their IDs or position. When the tag of ID_wall is included in 
the output of the NLU, the information of the panel corresponding to 
that tag is returned. If only Dw_loc1 refers to a workpiece at the output of 
the NLU module, the target is determined by the x coordinate value for 
the initial position of drywall panels and the word tag to Dw_loc1. In the 
case that both of Dw_loc1 and Dw_loc2 are included in the output of NLU, 
a target panel is explained by its relative location that changes based on 
the secondary location. The x coordinate of the target panel's initial 
position, which is finally used to extract the target information, is 
determined from the secondary place and the direction tagged with 
Dw_loc2 and Dw_loc1, respectively. 

Table 4 
Comparison of incorrect prediction of each class for the four models.  

Tags # of words (Ground truth) Incorrect prediction 

LSTM-M1 LSTM-M2 LSTM-M3 LSTM-M4 BERT-M1 BERT-M2 BERT-M3 BERT-M4 

Dw_loc1 83 2 – 1 38 – 1 5 12 
Dw_loc2 37 – – – 5 – – – 3 
Hr_btm 16 – – 1 – – – – 11 
Hr_top 26 – – – – – – – – 
ID_stud 56 – – – 3 – – – – 
ID_wall 45 – – – 3 – – – – 
O 3021 – – 1 3 – – 1 – 
St_loc1 259 – – 3 39 – – – 4 
St_loc2 94 – – – 2 – – – 2 
Vr_md 171 – 2 4 16 – – – – 
dim 19 – – – 4 – – – 1 
length 34 – – 1 – – – – 1 
width 34 – – – 31 – – – 9 
TOTAL 3895 2 2 11 144 – 1 6 43  
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Fig. 16 shows how to extract information for a stud that is a final 
location for pick-and-place operations. When the tag of ID_stud is 
included in the output of the NLU, the information of the stud corre
sponding to that tag is returned. Otherwise, the output of NLU includes 
St_loc1 or St_loc2, so that the stud is described by its location. When 
St_loc2 is not included, the stud is either the leftmost one or rightmost 
one. When both St_loc1 and St_loc2 are extracted, the stud as final 
location is determined by the spatial relationship described by words 
tagged by St_loc1 and St_loc2. 

To start a pick-and-place operation for drywall installation, it is 
essential to know the placement method as well as the target and final 
location. Three types of placement methods are used in this study: 

Vr_md, Hr_top, and Hr_btm. If the output of the NLU module does not 
contain these three tags, the left edge of the drywall panel is set to be 
placed vertically to the left of the stud. The three pieces of information 
about the current job are recorded in the action history table. The 
installed_x_left value in the action history table is determined according 
to the combination of the placement method and the final location, and 
the installed_x_right value is calculated based on the placement method, 
the target, and the installed_x_left value. 

Fig. 13. Examples of errors in: (a) LSTM-M1, (b) LSTM-M2, and (c) BERT-M2.  

Fig. 14. Pseudocode for information extraction about drywall panels using 
dimension-related tags. 

Fig. 15. Pseudocode for information extraction about drywall panels using tags 
of ID and positions. 
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4.5. Robot Control (RC) 

Using studs and drywall panels introduced in the case study, drywall 
panels can be placed in three different types as shown in Fig. 17. The 
layouts in Fig. 17(a) and Fig. 17(b) use one unique panel A and one 
unique panel B, and two standard panels installed vertically and hori
zontally, respectively. In the layout in Fig. 17(c), two types of distinct 
panels are placed vertically. Drywall installation is demonstrated based 
on the outputs of the NLU module and the IM module for three drywall 
layouts. The input data of the NLU module were selected from the test 
dataset. 

Demonstration results for the layout 1 are shown in the Fig. 18. 
Figs. 17(a)-(d) show a pair of a natural language instruction and how the 
KUKA robot successfully placed a panel for each instruction. As a result 
of IM for the instruction in Fig. 18(a), the drywall panel 500,320 and the 
stud 500,100 were determined as the target and the final location, 
respectively. The target panel was installed perpendicular to the left line 
of the stud. The first row of the action history table in Fig. 18(c) shows 
this result. 

As shown in Fig. 18(b), the drywall panel was installed vertically on 
the center line of the stud because Vr_md was predicted as a result of the 
NLU module for the second sentence of the language instruction. The 
second row of the fourth and fifth columns in Fig. 18(e) shows this 
result. In Fig. 18(c) and Fig. 18(d), “second to the left” and “left” were 
tagged as St_loc1, and “500,109” and “500,111” were tagged as St_loc2 in 
the NLU module. The rules of the IM module shown in Fig. 15 deter
mined the stud 500,107 and the stud 500,110 as the final location for the 
third and fourth instructions, respectively. According to the action his
tory table about the output of the IM, the robot installed drywall panels 
onto the stud walls. 

Fig. 19 and Fig. 20 show the natural language instructions and 
demonstration results for layout 2 and layout 3. As shown in both fig
ures, the robot successfully installed drywall panels by extracting correct 
information for pick-and-place operations from the NLU and IM 
modules. 

4.6. Co-reference issue 

This study focused on words distinctly characterizing targets and 
destinations when establishing annotation rules, rather than all words 
denoting the targets and destinations. This annotation strategy was 
chosen due to insufficiency of generic words like drywall, stud or pro
nouns in clearly distinguishing among multiple panels or studs. How
ever, co-reference issues are crucial for robots to thoroughly interpret 
human instructions. Thus, additional experiments addressing co- 
reference issues were conducted using BERT to evaluate the impacts of 
the co-reference issues in this study. 

The dataset was re-annotated with two additional labels: Trg and Dst, 
representing a target and destination, respectively. For instance, in a 
three-sentences instruction “Please move the wall panel and move it on 
the stud 500100. Place it to the upper horizontal row. The dimension of 
the drywall is 4 by 8”, ‘wall panel’ in the first sentence, ‘it’ in the second 
sentence, and ‘drywall’ in the third sentence were annotated as Trg while 
‘stud’ in the first sentence was annotated as Dst. BERT was trained 
following the same procedure as the prior experiments with variations in 
the volume of training data. Fig. 21 presents the training accuracy for 
the re-annotated datasets comprising 316, 632, 948, and 1268 
instructions. 

The insights from Fig. 12(b) and Fig. 21 reveal that the impact of the 
co-reference issue on training accuracy is not significant in this study. 
Initially, in epoch 1, the BERT-C models exhibited lower accuracy in 
comparison to the BERT-M models. However, as training progressed up 
to epoch 5, the training accuracy of both BERT-C and BERT-M models 
converged and became similar. Table 5 presents a comprehensive 
summary of the performance of the trained models on the validation 
dataset. It can be observed that BERT-C models, which considered co- 

Fig. 16. Pseudocode for information extraction about studs.  

Fig. 17. Three drywall layouts: (a) layout 1; (b) layout 2; (c) layout 3.  
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reference issues, displayed slightly lower performance compared to the 
BERT-M models, which did not consider co-reference. However, with a 
large amount of training data, both BERT-C1 and BERT-C2 achieved 
accuracy close to 100%. These findings indicate that while co-reference 
issues may have a minor impact on performance, the BERT models 
trained with co-reference consideration can still achieve high accuracy 
when provided with a large amount of training data. 

5. Discussion 

This paper presented a framework of a natural language-enabled 

HRC system that consists of three steps: natural language understand
ing, information mapping, and robot control. The proposed approach 
enables human workers to interact with construction robots using nat
ural language instructions and building component information. The 
proposed system was validated through a case study on drywall instal
lation and BERT-M1 achieved a highest accuracy of 99.37% at 
instruction-level for the 158 test data in the NLU module. Even with a 
small amount of training data, BERT achieved an instruction-level ac
curacy close to 80%, suggesting that it is an effective approach for 
analyzing natural language instructions in the context of construction 
robotics. 

Fig. 18. Examples of drywall installation for the layout 1: (a)-(d) show a robot installing drywall panels based on natural language instructions; (e) is the action 
history table. 

Fig. 19. Examples of drywall installation for the layout 2: (a) and (b) are corresponding to the third and fourth placement, respectively; (c) is the recorded ac
tion history. 
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However, it should be noted that BERT-based models may require 
more training time compared to BiLSTM-based models [108]. Therefore, 
if the amount of available data is sufficient, it may be worthwhile to 
consider using the BiLSTM-CRF model, which has shown similar per
formance to BERT for tagging tasks in this study. In the IM and RC 
module, it is observed that drywall installation tasks were performed 
successfully through natural interaction using language instructions. 
This study clearly demonstrates that the proposed system has significant 

potential for field implementation to achieve natural interaction with 
robots in construction. 

Even though the proposed method achieved high performance on the 
given datasets, there are still some challenges that must be addressed. 
First, the conducted experiments did not consider the potential influence 
of background noise typical on construction sites, which could affect the 
voice data processing. However, the recent advancements in noise- 
robust speech recognition techniques [109,110] suggest a promising 
outlook for the implementation of voice commands in noisy construc
tion environments. Additionally, with the increasing integration of 
digital twins in construction and the potential for remote interaction 
system could significantly reduce the adverse effects of on-site noise, 
ensuring clear communication with the construction robots. 

Second, the proposed framework relies entirely on the output of the 
NLU module to generate the final command in the IM module to accu
rately interpret contextual and historical data with language in
structions. However, the proposed system has dependency of the IM 
module on the NLU module's accuracy. Park et al. [111] attempted to 
address this by exploring the combination of these two modules using a 
single language model. While this approach showed potential, it 
encountered limitations in considering historical data due to its reliance 
on single language instructions as inputs. Future studies can explore the 
development of a more integrated language model that leverages natural 
language instructions, building component information, and historical 
work data as input. Such an approach could potentially simplify the 
translation process and enhance the overall accuracy and robustness of 
the system, moving closer to a more streamlined natural language to 
robot language translation. 

Thirdly, there is a data generation rule requiring key information to 
be mentioned only once in a single instruction. In future work, this 
limitation could be mitigated by expanding the dataset in the NLU 
module and incorporating additional conditional statements in the IM 
module. Additionally, the current dataset was never intended to repli
cate human-to-human communication prevalent among field practi
tioners, which means the ways in which objects are described in the 
commands may differ from colloquial on-site language between 
humans. Future studies could further solidify the practicality of the 
interaction system by sourcing or validating data directly from con
struction workers. 

Despite these limitations, it is important to note that the goal of this 
study is to improve the interaction between human operators and robots 
in future work environments. These environments, where both humans 

Fig. 20. Examples of drywall installation for the layout 3: (a) and (b) are corresponding to the second and fifth placement, respectively; (c) is the recorded ac
tion history. 

Fig. 21. Training accuracy on the re-annotated dataset.  

Table 5 
Model performance on validation dataset with co-reference issues.  

Model Result 1 Result 2 

Nw Accword Nl Accinst 

BERT-C1 2 99.95% 2 98.73% 
BERT-C2 2 99.95% 2 98.73% 
BERT-C3 14 99.64% 11 93.04% 
BERT-C4 62 98.41% 44 72.15% 

Nw= the number of incorrect prediction of words. 
Nl = the number of language instructions including incorrect prediction. 

Accword=
3, 895 − N w

3895
, Accinst=

158 − N l
158  
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and robots access databases similar to BIM, necessitate a shift in lan
guage from traditional site commands. To test the practicality of the 
approach, a supplementary study with 12 construction workers was 
conducted in a subsequent study using speech-based commands with a 
robot for panel installation tasks. These workers effectively communi
cated with the robot using specific IDs or location data, with commands 
like “Okay, robot, please pick up panel 504 and place it at the center of 
the stud 606” and “Put 503 on the rightmost section.” A survey using a 
five-point Likert scale (1 being Strongly Disagree and 5 being Strongly 
Agree) on usefulness and ease of use for the interaction yielded an 
average score above 4. This implies that while the current dataset may 
differ from authentic language commands, it remains an acceptable and 
viable command form for construction workers. 

Fourth, the case study was conducted in a single stud structure with a 
fixed perspective for identifying locations of panels and studs. In future 
work, the proposed approach can be improved by extending the system 
with more complex structures and building materials, along with 
considering diverse perspective of human workers. Such advancements 
would require both an expansion of the instruction dataset and refine
ment of the motion planning process. As Wang et al. [14] note, calcu
lating collision-free trajectories in pick-and-place operations becomes 
challenging with large objects and in complex workspace. Future study 
could incorporate operator intervention on the robot's trajectories, as 
proposed by Wang et al. [14]. This would allow operators to actively 
participate in directing the robot by suggesting specific intermediate 
positions, thereby facilitating the generation of optimal path plans. 

Finally, bidirectional communication was not considered in the 
proposed system. It implies that human workers are unable to intervene 
in robot tasks or provide new plans when the robot encounters diffi
culties for higher level of HRC. Additionally, the system does not verify 
whether the instructions from workers are accurate or not, as there is no 
built-in filter to assess this. These limitations highlight the need for more 
complicated communication protocols that require a deeper under
standing of human-robot interaction. To address this, the authors will 
consider bidirectional communication in a future study to improve the 
proposed system and increase the level of natural interaction with 
construction robots. 

6. Conclusion 

This study made several contributions: the research laid the foun
dation for natural interaction with robots by using natural language 
instructions in pick-and-place construction operations. To our best 
knowledge, it is the first study to propose a framework for interaction 
with construction robots using natural language instructions, building 
component information, and working history. It effectively handles 
complex data such as target object, destination, and placement method, 
facilitating natural and intuitive human-robot interactions in pick-and- 
place operations. This integration of three modules – NLU, IM, and RC 
– marks a significant stride in enabling efficient verbal communication 
with construction robots. 

Second, we demonstrated interaction with construction robots using 
natural language instructions. A demonstration of the proposed system 
in drywall installation tasks showed the potential of HRC through speech 
channels in construction. We extracted information about target objects, 
destinations, and placement orientation that can be applied to other 
pick-and-place operations in construction tasks, such as ceiling tile 
installation, wall tile installation, or bricklaying. Even though the 
application of the framework we proposed was demonstrated through a 
drywall installation, the framework itself is generalizable and adaptable 
to any pick-and-place construction task making this technical contri
bution broadly applicable. 

Third, to address the lack of an existing dataset suitable for drywall 
installation, a natural language instruction dataset was created based on 
human interactions and work observed in construction videos and 
related studies. The dataset stands out due to its fine-grained annotation 

as it was meticulously annotated to deal with the necessary information 
for pick-and-place operations including unique characteristics such as 
IDs, dimensions, or locations. This annotation process enhanced the 
quality and depth of the labeled data, making our dataset a valuable 
resource for advancing research in the field of construction-related 
natural language processing. Furthermore, the dataset labeling 
approach can be adapted to create datasets for other pick-and-place 
operations. 

Fourth, the proposed system facilitates interaction with the robot by 
using the information available in the construction projects. The data 
mapping process interprets building component information and pre
vious working records as well as information from analyzed language 
instructions. This empowers human operators to give language in
structions to a robot in a shorter or more intuitive way. We believe that 
this approach significantly contributes to the development of a practical 
and efficient human-robot collaboration system on construction sites. 

Finally, two different language models, which are BiLSTM-CRF and 
BERT, were trained by labels reflecting characteristics of construction 
activities. Our comparative analysis of these models with the newly 
generated dataset revealed their effectiveness in a construction setting. 
In addition, BERT proved to be highly accurate, even with limited data, 
achieving a 96% instruction-level accuracy in the validation set. This has 
important implications for the construction industry, where there is a 
lack of data for natural language instructions. Our study demonstrates 
that leveraging and fine-tuning pre-trained models like BERT can 
address this challenge, enabling high accuracy in interpreting 
construction-related instructions. 
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