Automation in Construction 161 (2024) 105345

AUTOMATION IN
CONSTRUCTION

Contents lists available at ScienceDirect

Automation in Construction

FI. SEVIER

journal homepage: www.elsevier.com/locate/autcon

L)

Check for

Natural language instructions for intuitive human interaction with robotic  [%&s
assistants in field construction work

Somin Park“, Xi Wang ", Carol C. Menassa® , Vineet R. Kamat®, Joyce Y. Chai®

2 Dept. of Civil and Env. Engineering, University of Michigan, USA
b Dept. of Construction Science, Texas A&M University, USA
¢ Dept. of Elec. Engineering and Computer Science, University of Michigan, USA

ARTICLE INFO ABSTRACT

Keywords:

Human-Robot Collaboration (HRC)
Natural interaction

Natural language instruction
Natural Language Processing (NLP)
Natural language understanding
Drywall installation

Human-Robot Collaboration (HRC) has shown promise of combining human workers' flexibility and robot as-
sistants' physical abilities to jointly address the uncertainties inherent in construction work. In HRC, natural
language-based interaction can enable human workers who are non-experts in robot programming to intuitively
communicate with robot assistants. However, limited research has been conducted on this topic in construction.
This paper proposes a framework to allow human workers to interact with construction robots based on natural
language instructions for pick-and-place construction operations. The proposed method consists of three mod-
ules: Natural Language Understanding (NLU), Information Mapping (IM), and Robot Control (RC). A case study
for drywall installation evaluates the proposed approach. Results indicate over 99% accuracy in NLU and IM,
allowing a robot to perform tasks accurately for a given set of natural language instructions. It highlights the
potential of using natural language-based interaction to replicate human-like communication in human-robot

teams.

1. Introduction

Robotics is considered an effective means to address issues of labor
shortages and stagnant growth of productivity in construction [1-3].
However, it is challenging for robots to work on construction sites due to
evolving and unstructured work environments [4,5], differing condi-
tions from project to project [6], and the prevalence of quasi-repetitive
work tasks [7]. This is in contrast to automated manufacturing facilities
that have structured environments [4].

Collaboration between humans and robots has the potential to
address several such challenges inherent in the performance of con-
struction tasks in the field. The advantage of collaborative robots lies in
the opportunity to combine human intelligence and flexibility with
robot strength, precision, and repeatability [8,9]. Collaboration can
increase productivity, improve quality and enhance human safety
[10,11]. It can also reduce physical exertion for humans since repetitive
tasks will be carried out by robots. Therefore, in Human-Robot Collab-
oration (HRC), skills of human operators and robots can complement
each other to complete designated tasks.

On today's construction sites, communication between workers is

* Corresponding author.

essential allowing work crews to have many degrees of freedom in
organizing and coordinating the work, and dealing with the dynamic
and unpredictable environments [12]. Similarly, when collaborative
robots assist human workers, interaction between humans and robots is
critical [1]. In human-robot construction teams, most of the robots are
currently in the lower level of robot autonomy where human workers
determine task plans and robots execute them [13]. To deliver plans
generated by human workers to robots, human operators need proper
interfaces [14]. However, designing intuitive user interfaces is one of the
key challenges of HRC since interaction with robots usually requires
specialized knowledge in humans [15]. Therefore, intuitive and natural
interaction enables human operators to easily interact with robots while
taking full advantage of human skills [15,16].

1.1. Enhancing HRC in construction through natural interaction

Perceived ease of use and usefulness were emphasized as having
critical roles in encouraging construction personnel to engage with HRC
[17]. The complexity involved in learning and using new technologies
was identified as a substantial barrier that negatively impacts workers'
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willingness to work in the HRC in construction [17]. Thus, it is imper-
ative for human workers to experience an effortless learning process,
ensuring that interactions with the robotic system are straightforward
and uncomplicated. In this context, we define “natural and intuitive
interaction” within the context of HRC in the construction industry as a
mode of communication between humans and robots that is inherently
understandable and easy to use, requiring minimal training and cogni-
tive effort from human operators. This definition emphasizes that the
interaction should not simply mirror colloquial human-to-human
communication, but must be easily adapted to the specific context of
construction tasks while being inherently understandable and straight-
forward to implement for human operators.

Several recent studies have investigated natural HRC in the con-
struction industry using various communication channels such as
gesture [18], Virtual Reality (VR) [19], brainwaves [20], and speech
[21]. Among them, speech interaction has been considered as the most
natural and intuitive way of communication in the human-robot inter-
action field [22-25]. Natural language instructions, delivered through a
speech channel, allow human operators to deliver their requests accu-
rately and efficiently [26]. Users' intents about action, tools, workpieces,
and location for HRC can be accurately expressed through natural lan-
guage without information loss in ways distinct from other simplified
requests [27,28]. In addition, users do not need to design informative
expressions when communicating through existing languages, making
the interaction efficient.

Pick-and-place operations, which are commonly performed by in-
dustrial robots, have increasingly been guided by natural language in-
structions [28-31]. In the construction domain, such operations are
critical for tasks on structures (e.g., bricklaying and concrete block
installation), surface (e.g., tile and drywall installation), and fixtures (e.
g., glass panel installation). However, while there is significant potential
in applying natural language instructions for these construction tasks,
collaborating with robots remains a challenge. The primary challenge
lies in the need for a comprehensive system that can integrate the
analysis of language instructions with the subsequent robot controls.
Moreover, there is a need for a language model to extract task-specific
information for construction as well as a method to map the extracted
information onto the dynamic construction sites.

1.2. Objective and structure of this study

To address this research gap, this study proposes a framework aimed
at enhancing natural interactions with construction robots consisting of
three modules: 1) Natural Language Understanding (NLU): to extract
task-specific information through a language model, 2) Information
Mapping (IM): to employ conditional statements to deal with discrep-
ancies between NLU outputs and building component information, and
3) Robot Control (RC): to execute action plans using a virtual con-
struction robot. The framework supports pick-and-place construction
operations through natural language instructions.

Table 1 shows the main characteristics of this study. Diverse inter-
action channels have been considered for interaction with construction
robots, but no prior research has directly investigated how to collaborate
with the robots using natural language instructions in pick-and-place

Table 1
Characteristics of this study.

#  Characteristics

1 Communication using natural language instructions

2 Pick-and-place construction operations: target, destination, and placement
orientation

3 Use of the building component information (e.g., designs, materials) and
working records

4 Natural language instruction data for drywall installation

5 Object description: ID, dimension, position, and previous working records

6 Demonstration of drywall installation
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construction operations. While other language instructions used in the
previous studies describe target objects and destination, pick-and-place
operations for construction activities require one more piece of infor-
mation about placement orientation. To address this issue, a deep
learning-based language model is trained and tested on language in-
structions data for construction tasks. To describe target objects and
destination in natural language instructions, building component in-
formation and working records available from the construction project
information are used. The target objects and destination are described
using their IDs, dimension, position or working records. To demonstrate
and evaluate the proposed approach, a set of experiments on drywall
installation is conducted as a case study.

2. Literature review

Through the review of existing works, the need for this study and
research gaps are identified. The first section establishes the need for
analyzing natural language instructions for HRC in the construction
domain. The second section examines the characteristics of data and
approach used in other domains in relation to natural language under-
standing. The third section investigates studies that performed infor-
mation extraction in the construction industry.

2.1. Interaction between human workers and robots in the construction
industry

Advanced interaction methods for HRC enable human workers to
collaborate with robots easily and naturally. In construction, research
using gestures, VR, brain signals, and speech has been proposed for
interaction with robots. Gesture-based interaction using operators' body
movements can enhance the intuitiveness of communication [32] and
can be used in noisy environments encountered on construction sites
[33]. In 2021, Wang and Zhu [33] proposed a vision-based framework
for interpreting nine hand gestures to control construction machines.
Sensor-based wearable glove systems were proposed to recognize hand
gestures for driving hydraulic machines [18] and loaders [34]. How-
ever, when using hand gestures, the operators' hands are not free, and
they have to keep pointing to the endpoint, which may lead to fatigue
[351].

VR interfaces have been used in the construction industry for visual
simulation, building reconnaissance, worker training, safety manage-
ment system, labor management and other applications (e.g., [36-39]).
It can also provide an opportunity for users to control robots without
safety risks [40]. Regarding interaction with robots, Zhou et al. [41] and
Wang et al. [14] tested VR as an intuitive user interface exploring the
virtual scene for pipe operation and drywall installation, respectively.
Both studies sent commands to robots by handheld controllers, which
determined desired poses and actions of robots.

In addition to the purpose of operating robots, in 2022, Adami et al.
[19] investigated the impacts of VR-based training for remotely oper-
ating construction robots. In the interaction with a demolition robot,
operators used the robot's controller consisting of buttons and joysticks
based on digital codes. However, head mounted devices as visual dis-
plays may be uncomfortable for operators due to onset of eye strain and
hand-held devices may limit the operators in their actions [42,43]. In
addition, the connection between the headset and the controllers can be
interrupted, and the working space is limited due to cables attached to
the computer [44].

Recently, brain-control methods have been proposed for HRC in
construction, translating the signals into a set of commands for robots.
To control robots, users can attempt to convey their intention in a direct
and natural way by manipulating their brain activities [45]. In con-
struction, in 2021, Liu et al. [20] and Liu et al. [46] proposed systems for
brain-computer interfaces to allow human workers to implement hands-
free control of robots. Users' brainwaves were captured from an elec-
troencephalogram (EEG) and interpreted into three directional
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commands (left, right, and stop) [20]. In the other study [46], brain-
waves were classified into three levels of cognitive load (low, medium,
and high), and the results were used for robotic adjustment. This
communication using brain signals enables physiologically-based HRC
by evaluating workers' mental states [45]. However, systems using brain
signals have to overcome challenges of time consumption for user
training, non-stationarity of signals affected by the mental status of
users, and user discomfort from the wearable equipment [47]. It is also
challenging for users to deliver high-dimensional commands to collab-
orative robots because of the limited number of classifiable mental states
[45].

On the other hand, speech is the most natural way of communication
in humans, even if the objects of their communication are not other
humans but machines or computers [22,24]. Natural language can be a
flexible and familiar medium for construction workers to communicate
with robots, and can be leveraged for hands-free and eyes-free interac-
tion with low-level training [48]. Enabling robots to understand natural
language commands also facilitates flexible communication in human-
robot teams [49]. Despite the advantages of the speech channel and
natural language in interaction, there are few studies examining natural
language instructions for human-robot collaboration in construction. In
2018, Follini et al. [21] proposed a robotic gripper system integrated
with voice identification/authentication for automated scaffolding as-
sembly, but it was based on a very limited number of simple voice
commands like stop, grip, and release. In the construction industry,
speech and natural language-based HRC could be further investigated
due to the potential benefits discussed above.

2.2. Natural language instructions for non-construction HRC

Many studies in which humans give instructions to robots using
natural language commands have been conducted for manipulation
tasks, focusing on the identification of target and destination. Regarding
the placing task, Paul et al. [28] and Bisk et al. [29] leveraged spatial
relations in natural language instructions to allow robots to move blocks
on the table. Paul et al. [28] proposed a probabilistic model that in-
corporates notions of cardinality and ordinality as well as abstract
spatial concepts. A neural architecture, consisting of encoder, repre-
sentation stages, and grounding to predict three task elements, was
suggested for interpreting unrestricted natural language commands in
moving blocks identified by a number or symbol [29]. In 2020, Mees
et al. [50] developed a network to estimate pixelwise placing probability
distributions used to find the best placement locations for household
objects. However, in order to make a robot perform various construction
tasks, it is necessary to use different kinds of attributes (e.g., dimension,
material, and ID) describing objects as well as spatial information (e.g.,
vertical and horizontal arrangement) of the objects.

Several multimodal studies have mapped visual attributes and lan-
guage information by using two types of input (an image and an in-
struction). In 2018, Hatori et al. [30] integrated deep learning-based
object detection with LSTM-based language model to deal with attri-
butes of household items, such as color, texture, and size. In 2019,
Magassouba et al. [31] proposed a deep neural sequence model
including Bi-LSTM-based model to process language instructions. The
model aimed to predict a target-source pair in the scene from an in-
struction sentence for domestic robots. In 2021, Ishikawa and Sugiura
[51] proposed a transformer-based model [52] including text embedder
and multi-layer transformer to model the relationship between everyday
objects for object-fetching instructions. In 2023, Guo et al. [53] devel-
oped an audio-visual fusion framework for robot placing tasks,
employing a bi-GRU encoder with a hierarchical attention module [54]
to extract text features. A combination of linguistic knowledge with
visual information can describe targets in many ways. To utilize these
methods for assembly tasks at unstructured and complex construction
sites, there is a need for vast collections of image-text pairs as previous
studies [30,51]. However, limited datasets of image-text pairs in the
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context of construction sites present challenges in applying previous
multimodal studies to HRC in construction.

Some methods interpreted natural language instructions given to
robots without relying on visual information. Language understanding
using background knowledge [55] and commonsense reasoning [56]
have been explored to infer missing information from incomplete in-
structions for kitchen tasks. In 2018, Nyga et al. [55] generated plans for
a high-level task in partially-complete workspaces through a probabi-
listic model to fill the planning gaps with semantic features. In 2020,
Chen et al. [56] utilized an RNN-based model to formalize commonsense
reasoning as outputting the most proper complete verb-frame by
computing scores of candidate verb frames. However, unlike kitchen
tasks, it can be challenging to infer targets in construction activities
using general knowledge or pre-defined verb frames. In 2018, Brawer
et al. [57] proposed a logistic regression model that estimates the action
probability to select one target among 20 candidates by contextual in-
formation such as the presence of objects and the action history. The
context information can also be leveraged in HRC for construction ac-
tivities, but the proposed model is limited to analyzing language in-
structions for the pick-up action.

2.3. Natural language processing in the construction industry

Natural language processing (NLP) is a research domain exploring
computer-assisted analytical technique to automatically interpret and
manipulate natural language [58]. With the advance of machine
learning and deep learning, NLP has been increasingly adopted in the
construction industry. NLP applications in construction have been
explored in many areas, such as knowledge extraction, question-
answering system, factor analysis, and checking [59]. Various docu-
ments, such as accident cases [60,61], injury reports [62], compliance
checking-related documents [63], legal texts [64], and construction
contracts [65] have been analyzed in construction. Analysis on natural
language instructions for HRC has not been explored in the construction
industry.

Collaboration with a construction robot using natural language in-
structions requires extracting useful information from the instructions so
the robot can start working. Previous studies extracted keywords based
on frequency features [66] and handcrafted rules [67]. These ap-
proaches are not robust to unfamiliar input which includes misspelled or
unseen words rather than the keywords. To address these challenges,
machine learning and deep learning models have been used to extract
information about infrastructure disruptions [68] and project con-
straints [69,70]. However, entities used in these studies, such as task/
procedures [70], interval times [69], and organization [68] are not
suitable for identifying important information from natural language
instructions for construction activities. A new group of entities should be
defined to give essential information to construction robots. For
example, entities for pick-and-place tasks are relevant to characteristics
of the tasks such as target objects, placement location, and placement
orientation.

Several studies have used natural language queries to change or
retrieve Building Information Modeling (BIM) data [71-73]. In 2016,
Liu et al. [71] retrieved wanted BIM information by mapping extracted
keywords from queries and IFC entities. However, the proposed method
supported only simple queries such as “quantity of beams on the second
story” or “quantity of steel columns in the check-in-zone.” In 2021, Shin
and Issa [72] developed a BIM automatic speech recognition (BIMASR)
framework to search and manipulate BIM data using a human voice.
They conducted two case studies for a building element, a wall, but a
quantitative evaluation of the framework was excluded. A question-
answering system for BIM consisting of natural language understand-
ing and natural language generation was developed [73]. The system
achieved an 81.9 accuracy score with 127 queries. For example, users
can obtain answers to questions like “What is the height of the second
floor?”, “What is the object of door 302?”, or “What is the model
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creation date?”. These studies have analyzed text inputs to retrieve
useful project information from language queries. However, the text
inputs do not address construction-specific information that is requisite
for HRC commands. Additionally, it is important to note that their
proposed methods do not primarily aim to interact with robots for
construction tasks.

In recent research developments (2023), two studies employed
ChatGPT, a large language model, to develop an interactive virtual Al
assistant for construction tasks. Xu et al. [74] introduced a system
combining AR, Optical Character Recognition (OCR), and the GPT lan-
guage model to optimize user performance in operations and mainte-
nance tasks. Notably, their system relies on language instructions that
are set at the beginning of tasks to fine-tune the GPT model, which limits
the scope for ongoing interaction during the tasks. Moreover, their
framework does not specifically cater to interactions with construction
robots. Ye et al. [75] investigated the influence of ChatGPT in fostering
trust in HRC assembly tasks. In the study, the robot is programmed to
assist human operators by fetching tools or objects, following simple
language commands such as “get closer to me” and “give me the screw.”
However, this approach is limited as it only involves identification of
objects or tools by name, lacking the integration of more complex de-
scriptors such as size, location, object IDs, or historical data of past in-
teractions. These observations highlight that while existing research has
made strides in integrating natural language processing with robotics,
there remains a significant opportunity for advancement in applying this
technology to the specific needs and complexities of construction
environments.

There has been no research to plan robot tasks based on natural
language commands which require interpretation of information from
both language commands, BIM, and working history.

2.4. Robot control commands

The interpretation of natural language instructions is conducted
entirely independently, and prior to, aspects of robot control [76]. To
facilitate this, semantic information from human instructions must be
decoded into structured commands that a robot can comprehend and
execute. For example, the directive to “take the cable from the floor” or
to “start painting wall A in room 123 requires a translation into a
semantically structured input for the robot. This translation is important
for bridging the communication gap between human language and ro-
botic actions, ensuring that the robot performs tasks as intended by the
operator.

The translation of natural commands into robot actions can take
various forms. One direct method, as demonstrated by Ralph et al. [77],
involves mapping natural language instructions to individual robot
motions—such as pairing the command “Move Up” with the action
“translate along +Z world axis,” or “Tilt Down” with “pitch down tool
frame.” This approach creates a direct link between human commands
and robot movements. On the other hand, a more structured approach
incorporates an action verb and relevant contextual information into the
command. This method, used by Matuszek et al. [78] for robot navi-
gation, involves commands like (move-to forward-loc) which combine a
directive with a spatial reference. Similarly, She and Chai [79] explored
grounded verb semantics in HRI, employing expressions that vary in
complexity based on the action's requirements, like (Grasp(Kettle1)) or
(Keep(Kettle1, on Stovefire4)). Moreover, Chen et al. [56] addressed the
challenge of interpreting incomplete instructions by using a complete
verb frame, such as (pour, water, bowl), which details the action, object,
and destination. This diversity in approaches showcases the adaptability
of robotic systems to various levels of command detail, depending on the
robot's capabilities and the complexity of the task at hand.

3. System architecture

The proposed system aims to make a robot assistant perform
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construction activities after receiving verbal (natural language) in-
structions from a human partner. Specifically, the construction activities
targeted in this study are pick-and-place construction operations.
Essentially, the system is designed exclusively to manage the actions
involving the picking up and placing of materials. Developing this sys-
tem necessitates the integration of three modules. Fig. 1 shows critical
components and data workflows of the system, which comprises three
modules: Natural language understanding (NLU), Information Mapping
(IM), and Robot Control (RC). In this system, the three modules work
together to enable a human operator to interact with a construction
robot.

The NLU module takes a natural language instruction as input and
employs a trained language model to perform sequence labeling tasks,
generating word-tag pairs. In certain contexts, the word-tag pairs can
directly provide the final message to the robot, ensuring unambiguous
communication. However, language instructions can often demand
contextual understanding and the consideration of historical data. To
address this, the IM module integrates the interpretation of building
component information and action history with the output of a language
model to generate executable robot control commands. Finally, the RC
module utilizes three types of task information (target, final location,
and placement method) to control the robot's movement for pick-and-
place tasks. Within this system, detailed instructions for minor adjust-
ments, such as ‘tilt’, ‘fit’, or ‘avoid’, are not necessary for the collabo-
rative robot to complete construction tasks. This assumption is grounded
in the robot's own cognitive capabilities to address minor geometric
deviation and workspace uncertainties, demonstrating its adeptness in
detecting geometric discrepancies between as-designed and as-built
work, as shown in Lundeen et al. [80]. Although the application of the
robot's capabilities is out of the scope of the current study, they hold
potential for future integration into the RC module of the proposed
system to address discrepancies between the robot's expected informa-
tion and actual conditions, thus improving a practical implementation of
on-site construction robots.

3.1. Dataset generation and labeling

In the proposed system, two pieces of information source are needed
for a robot to execute tasks: one from BIM and the other from natural
language instructions. First, it is assumed that BIM encompasses details
about construction materials at construction sites. Specifically, BIM
contains the ID, dimension, and position of a workpiece, which are
essential data for pick-and-place construction operations. In this regard,
it is assumed that users have access to mobile devices (e.g., tablet) to
obtain building component information such as a name, a unique ID, a
dimension, and an initial position of each workpiece on a future con-
struction site.

Given the potential use of mobile or wearable technologies in the
construction industry [14,81,82], such technologies could be used to
provide project information to construction workers making it easier to
unambiguously specify which workpieces are to be installed and cor-
responding location to the robot assistants. As a result, natural language
instructions will specify targets and destinations based on their ID,
dimension, or position. Second, natural language instruction serves as
the medium through which human operators convey task-specific in-
formation for pick-and-place construction tasks to robots.

In data generation, a single natural language instruction for pick-
and-place construction operations consists of one or multiple senten-
ces. There are three rules to generate natural language instruction
dataset in this study. First, each instruction should contain attributes of
three key pieces of information, which are a target, a final location, and
how to place the target, exactly once. For example, it is unacceptable to
mention two targets in one instruction or solely reference two out of the
three key information components. Second, expressions clearly indi-
cating features related to these three types of information should appear
only once in each instruction. Human teammates are expected to
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Fig. 1. The proposed system using natural language instructions for HRC in construction.

articulate each piece of task-specific information singularly. For
instance, it is not acceptable to describe a target using both its ID and
dimensions within a single natural language instruction. Lastly, a fine-
grained annotation is employed to assign corresponding labels to attri-
butes of the three types of information. In the annotation process, terms
indicating targets are not labeled as ‘target’; instead, individual attri-
butes are annotated with precise information as ‘ID’ or ‘length’.

Within the dataset, co-reference issues might arise. This is when
words referring to a target object, a final location, and a placement
method can be included multiple times within a single instruction. For
example, in an instruction “Please pick up the object A. Move it on to the
object B", words ‘the object A' and ‘it’ denote the same object. Relying on
the second and third rules, only ‘A, which indicates a feature of the
target object, will be annotated as ‘ID’ during the labeling. The second
and third rules facilitate the identification of unique workpiece char-
acteristics to resolve the co-reference issues.

In data labeling, IDs in language instructions can be tagged with a
label such as ‘ID’. BIM models used in previous studies have allocated a
five to seven-digit number to every building element [83-85]. A list of
digits can be read out in the working environments such as warehouses
or factories to increase work performance [86-88]. While it may not be
common to utter long digits in today's construction workers' practice,
this study suggests that using IDs could be one of the effective ways for
workers to unambiguously indicate a target object or a final location
when interacting with robots to ensure accurate selection and installa-
tion of workpieces, particularly in BIM-driven construction workflows.

Workpiece dimensions in language instructions can be labeled with
labels like ‘length’, ‘width’, or ‘dimension’. For example, when a target
object is described in numbers such as “4 by 8 feet”, “12 by 12 feet”, or
“its length is 127, the numeric values are annotated as ‘length’ or ‘width’.
Within the construction industry, there are workpieces conforming to
established standard sizes widely prevalent in the industry. When
describing the dimensions of workpieces using terms like “full-size” or
“standard”, the words representing the size of the workpieces are an-
notated as the label ‘dimension.” Both the target object and the final
location can also be labeled based on their locations. Instead of speci-
fying precise coordinates to describe the placement of workpieces, ex-
pressions such as ‘left” right’ or ‘second to the left’ are employed with
labels ‘Loc’ in the process of data labeling.

Finally, regarding how to place target objects in tasks, we consider
both vertical and horizontal placement. When a target object is posi-
tioned either vertically or horizontally, the corresponding terms can be
annotated as the labels ‘Vr’ or ‘Hr.’ Diverse situations can be explored,
including situations where a target is placed to the upper, to the bottom,
to the left, or to the right side of the final location.

The selection of tags for the system was designed to accurately
represent the key attributes of construction materials such as ID, size,
and location, as well as the placement method for tasks. This deliberate
selection of tags is critical in enhancing the effectiveness of task
execution, particularly when operators rely solely on voice commands.
This approach is supplemented by detailed information about con-
struction materials. The inspiration for tag selection stems from previous
studies in the fields of BIM integration with construction robotics
[89,90]. In these studies, unique identifiers, dimensions, positions or
main axis of building elements have been used as inputs for robot control
systems.

3.2. Natural Language Understanding (NLU)

A NLU module aims to predict semantic information from the user's
input which is in natural language. Two main tasks of the NLU are intent
classification (IC) predicting the user intent and slot filling extracting
relevant slots [91]. The NLU module of this study focuses on the slot
filling which can be framed as a sequence labeling task to extract se-
mantic constituents. It extracts semantic information for target, desti-
nation, and placement orientation based on characteristics of
construction materials that were previously unexplored in prior
research.

Fig. 2 shows an example of the slot filling for the user command
“Install the object A on the object B" on a word-level. The word ‘tag’ is

Word Install the object A on the object B
Siok O (@] target target O O destination destination
(Tag) Sl

Fig. 2. An example of an instruction labeling for slot filling.
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used to refer to the semantic label. The objective of the slot filling task is
to produce word-tag pairs as its output. In this study, two language
models, which are the typical deep learning architectures for this task,
are tested to evaluate their capability in assigning the correct tags to
each word in a user command. This evaluation seeks to determine which
model offers the most effective and accurate results in the proposed
system. The first architecture is the Bidirectional Long Short-Term
Memory (BiLSTM) layer [92] with a Conditional Random Fields (CRF)
layer [93]. The second architecture is based on the Bidirectional
Encoder Representations from Transformers (BERT) architecture [94].

BiLSTM-CRF is a neural network model that has been used for
sequence labeling [95-97]. BiLSTM incorporates a forward LSTM layer
and a backward LSTM layer in order to leverage the information from
both past and future observations of the sequence. A hidden forward

layer is computed based on the previous hidden state (ﬁt,l) and the
input at the current position while a hidden backward layer is computed

—
based on the future hidden state (h.1) and the input at the current
position as shown in Fig. 3. At each position t, the hidden states of the

forward LSTM (ﬁt) and backward LSTM (‘E) are concatenated as input
to the CRF layer. The CRF layer generates the sequence labeling results
by adding some effective constraints between tags. Each tag score output
by the BiLSTM is passed into the CRF layer, and the most reasonable
sequence path is determined according to the probability distribution
matrix. The BiLSTM-CRF model consists of the BiLSTM layer and the
CRF layer, which can process contextual information and consider the
dependency relationship between adjacent tags, resulting in higher
recognition performance in comparison to a single CRF model with an
identical set of features [95].

BERT, Bidirectional Encoder Representations from Transformers, is a
bidirectional language model that achieves outstanding performance on
various NLP tasks including sequence labeling [94]. The architecture of
BERT is a multilayer transformer structure which is based on the
attention mechanism developed by Vaswani et al. [52] in 2017. BERT is
trained to predict words from its left and right contexts using Masked
Language Modeling (MLM) [94] to mask the words to be predicted. The
general idea of BERT is to pre-train the model with large-scale dataset,
and parameters of the model can be updated for the given tasks during
fine-tuning.

In this study, pre-trained BERT-base model [94] is fine-tuned for
sentence tagging tasks. As shown in Fig. 4, the input text is tokenized
and special token like [CLS], which stands for classification, is added at
the beginning. It is needed to create an attention mask. The input for
BERT is the masked sequence and the sum of the token and position
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embeddings (E;). Then, the final hidden vector is denoted as T, which is
the contextual representation for each token. The token-level classifier is
a linear layer using the last state of the sequence as input. In this study,
when a word is composed of several tokens and the prediction results of
the tokens are different, the class of the word is determined by the token
corresponding to more than half of the tokens.

3.3. Information Mapping (IM)

The information mapping module aims to generate a final command
for the robotic system using output of the NLU module, building
component information, and action history. This module is necessary in
the proposed system since the results of the NLU module (word-tag
pairs) cannot be directly used as inputs for the robot control. This
module is designed to extract three necessary types of information
crucial for a successful pick-and-place construction operation, including
the identification of a target object, its destination, and placement
orientation.

In the IM module, NLU outputs, building component information,
and action history are mapped by using conditional statements, and the
mapping result is recorded in the action history (Fig. 5). Conditional
statements play a role to find out essential information for tasks by
dealing with vocabulary discrepancies between words of NLU outputs
and building component information. The action history record includes
information about the previously installed object, including its IDs,
dimension, where it is placed, and how it is placed. The previous action
record can be used as one of the inputs for the conditional statements to
find out a target object and its final location for the current action. The
final command to be delivered to the RC module is determined based on
the mapping result.

To address inconsistencies in the vocabularies between the NLU
output, building component information, and action history, the module
incorporates a procedure that uses conditional statements to extract
information about the target object, destination, and placement method.
These conditional statements are designed to utilize the ID, position, and
dimension information of each component, which can be obtained from
the building component information.

The appropriate conditional statement to use is determined based on
the tag of each word in the NLU output. For instance, if the NLU output
contains a tag ‘ID_target’ that refers to the target object's ID, the corre-
sponding word is mapped to the ID in the building component infor-
mation. The component information associated with that ID is then
added to the action history as the target object's information. Similarly,
if the NLU output contains a tag ‘Position target’ that refers to the

CREF layer ( tag H tag H tag )—
A
: LSTM
| output
|
|
BiLSTM : forward
layer | LSTM
|
|
| backward
: LSTM
L)
word
embedding
sentence word word word

word

word

Fig. 3. A BiLSTM-CRF structure.
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Fig. 4. BERT for sentence tagging tasks.
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Fig. 5. Inputs and outputs of the IM module.

position of the target object, the corresponding word in a language in-
struction is mapped to a component in the building component infor-
mation within the conditional statement processing the position
information. Then, all the information associated with that component is
then added to the action history as the latest record.

When the vocabularies in the NLU output, representing the target
object, destination, and placement method, are accurately mapped to
their respective items in the building component information, the IM
module's execution is regarded as successful. The performance is closely
linked to the output generated by the Natural Language Understanding
(NLU) module, as the latter's output serves as the input for the former.
This interdependence implies that the accuracy of the IM module de-
pends on the performance of the NLU module. If there are inaccuracies
or misinterpretations in the results predicted by the NLU module, it can
lead to errors in the conditional statements of the IM module, hence
influencing its operational integrity. This relationship underscores the
importance of precision of the first component in the system, high-
lighting the interplay of accuracy across modules.

Once the action history is updated, the final command for robot
control is determined as the target object type, destination ID, and
placement methods from the action and transferred to the Robotics
Control (RC) module.

3.4. Robot Control (RC)

This study uses a virtual robot digital twin to plan and execute ac-
tions following natural language instructions and building component
information processed by the previous modules. Fig. 6 shows the process
flow for pick-and-place operations implemented in the RC module. The
initial step is to calculate the precise coordinates for the target and
destination, as depicted in the figure. This calculation is critical in
bridging the gap between abstract instructions and actionable data for
task execution. This process utilizes the geometric points and dimension
information of the objects, which is derived from the building compo-
nent information. A robot in this study is simulated using Robot Oper-
ating System (ROS) and Gazebo that is the virtual environment offered
by the Open-Source Robotics Foundation. The robot is a 6 degrees-of-
freedom KUKA robotic arm, whose movements are informed by a pre-
vious study described in Wang et al. [14].

The robot's movements are executed through a sequence of phases.
The robot establishes a pose target and devises a motion plan. The robot
arm finds a motion from its original base location at first. Should the
initial plan prove unfeasible, the robot's base position is adjusted
accordingly (Pre-Pick). Once a valid path of the robot's base is deter-
mined, a motion plan for the movement of the robotic arm is generated.
This plan ensures that a robot's end-effector aligns precisely with the
center of the object. In this phase, the orientation of the end-effector is
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Fig. 6. Process flow for pick-and-place operations.

not adjusted according to the target object's arrangement. Next, a Car-
tesian path is computed for the robot's end-effector to secure the target
object with a gripper (Pick). Then, the robot follows the computed path
to move to the target object. Next, reflecting the pre-pick stage, calcu-
lated destination and placement method are used to adjust the pose
target and motion plan (Pre-Place). The orientation of the end-effector is
adjusted for the placement method, with the specific rotation of the sixth
link being dictated by whether the placement is vertical or horizontal.
Next, the robot follows the determined Cartesian path to place the object
at the designated location and releases it (Place). After the placement,
the robot arm reverts to its pre-placement stance (Post-Movement).

Throughout these stages, the robotic arm's movement, which is
generated by Movelt [98], has higher priority than the base movement
to reduce localization error. This means that the robot's base is only
repositioned if the robotic arm fails to devise a feasible motion plan for
picking or placing an object. The Open Motion Planning Library (OMPL)
[99] and Flexible Collision Library [100] are employed to compute ki-
nematics of each joint in planning movements, ensuring collision-free
trajectories. When the robot is carrying a target object, collision
checking process is applied while the target is considered as part of the
robot, so that the robot and the target object will not collide with their
surroundings. Upon successfully completing the installation, a human
operator can give the next instructions after target placement is
completed.

500100
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4. Experimental validation
4.1. Installation of drywall panels

Fig. 7(a) shows a robot operation environment for drywall installa-
tion. A KUKA robot is positioned between a stud wall and drywall panels
and the base of the robot can move in a straight line as shown in Fig. 7
(a). The stud wall consists of thirteen vertical studs as illustrated in Fig. 7
(b). In this case study, one stud is designated as the final location for
place operation and the left edge of a drywall panel is laid on the stud. In
general, drywall panels are available in rectangular shapes. Standard
panel size is 4 ft wide and 8 ft long and panels of different sizes are cut
according to the designed dimensions in construction practice. We use
three sizes of panels including the standard ones as well as two unique
panel sizes (Fig. 7(c)). The position and dimension information of the
building components used in the experiment are shown in Fig. 8.

The drywall panels can be installed in a vertical or horizontal
orientation. Fig. 9 shows examples of how to place drywall panels onto
the studs. Examples of vertical placement are shown in Fig. 9(a), and the
left edge of the panel can be placed on the center line of a stud or the left
side of a stud. When the panels are placed horizontally perpendicular to
studs, they can be placed on the top or bottom part of the studs as shown
in Fig. 9(b). Therefore, natural language instructions for drywall
placement should include how (i.e., in what configuration) to place the
drywall panels.

4.2. Data generation and labeling

A new dataset of natural language instructions for drywall installa-
tion was created and annotated. This study utilized 12 tags that enabled
the classification of these three essential categories into more detailed
categories as shown in Fig. 10. These tags include six that describe the
characteristics of the target object, three that illustrate the final location,
and the remaining three for the placement orientation. Each instruction
contains these three pieces of information exactly once. To utilize widely
used expressions for drywall installation tasks and pick-and-place
related language instructions, construction videos about drywall
installation ‘How To Install Drywall A to Z | DIY Tutorial ‘(https://www.
youtube.com/watch?v=VQIMaR7hWtM) [101] and other studies
[28,30] exploring pick-and-place language instructions were considered
when generating the new dataset. In these language instructions, dry-
walls and studs are described by combinations of representations related
to ID, dimensions, and relative location.

A drywall panel is represented by its ID, dimension, or position,
while a stud is represented by its ID or position (Figs. 8 and 10). Each
element ID is represented as a unique 6-digit number in this case study
and is tagged with ID_stud and ID wall for stud and a drywall panel,
respectively. The dimensions of the target drywalls are labeled with
length, width, or dim. In this study, we considered three distinct panel
size: 4 by 4 ft, 2.7 by 8 ft, and 4 by 8 ft. Notably, 4 by 8 ft panels are

* 3 standard panels
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Fig. 7. Case study settings for drywall installation: (a) robot operation environment; (b) a stud wall consisting of 13 studs; (c) 9 drywall panels on the floor.
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| stud_id x_| (m) x_m(m) | x_r(m)
I Ii 500100 0 0.0254 0.0508
1 500101 0.381 0.4064 0.4318
| 500102 0.7874 0.8128 0.8382
1 500103 | 1.1938 | 1.2192 | 1.2446
o) | 500104 1.6002 1.6256 1.651
E | 500105 2.0066 2.032 2.0574
1773 1 500106 | 2.3876 | 2.413 2.4384
| 500107 2.4384 2.4638 2.4892
| 500108 3.0226 3.048 3.0734
: 500109 3.6068 3.6322 3.6576
{ 500110 3.6576 3.683 3.7084
X 500111 | 40386 | 4.064 4.0894
x_1 ‘ X1 500112 | 44196 | 4445 | 44704
X m
(@)
dr_id w (m) 1 (m) w_v (ft) | v (ft) | x (m)
500300 | 1.2192 | 2.4384 | 4 8 0.59936
500310 | 1.2192 | 2.4384 | 4 8 0.59936
500320 | 1.2192 | 2.4384 | 4 8 0.59936
500330 | 0.8128 | 2.4384 | 2.7 8 2.59936
500340 | 0.8128 | 2.4384 | 2.7 8 2.59936
500350 | 0.8128 | 2.4384 | 2.7 8 2.59936
500360 | 0.8128 | 2.4384 | 2.7 8 2.59936
500370 | 1.2192 | 1.2192 | 4 4 417446
500380 | 1.2192 | 1.2192 | 4 4 417446
.“W *w: width value in meters used in ROS

*] : length value in meters used in ROS
*w_v: width value in inches used in language instructions
*]_v: length value in inches used in language instructions
*x: x-coordinate of the panels in meters

(b)

Fig. 8. Stud and drywall information. (a) x-coordinates of the thirteen studs; (b) dimensions and x-coordinates of the nine drywall panels.

considered as the standard panel dimensions.

Both a drywall panel and a stud can be described as their locations
using one perspective view in this case study. For example, stud 500,100
is the leftmost stud and drywall sheets 500,300, 500,310, and 500,320
are the leftmost ones as shown in Fig. 6. The words to indicate locations
of the stud and drywall panels are labeled as Stlocl and Dwlocl.
Drawing from the work [28], which explored efficient grounding of
abstract spatial concepts for robot interaction, this study incorporates
instructions that use both ordinality and relational terms to describe
objects. It means that the location changes based on the secondary
location. When a final location of stud is described using relative loca-
tion, both St loc1 and St loc2 are used together while both Dw loc1 and
Dw_loc2 are used together when the target drywall is described. For
example, in Fig. 5, the location of the stud 500,101 can be expressed as
“second left to the stud 500103 or “right to the stud 500100.” In this
case, the direction like “second left” or “right” is also annotated as
St loc1 and the word “500,103” or “500,100”, which is corresponding to
the secondary location, is annotated as St loc2.

Finally, regarding how to place drywall panels, there are three labels
of Vr.md, Hr top, and Hr.btm. When a panel is vertically placed on the
middle line of the stud, the corresponding words like “middle line” or
“center line” are labeled as Vr.md. When a target object is placed hori-
zontally on the top row of a stud or on the bottom row of a stud, the
corresponding words are annotated as Hr.top or Hr btm. Terms like
“upper part”, “upper horizontal row”, and “top part” are annotated as
Hr top while terms like “lower part” and “bottom row” are annotated as
Hr btm. Given this variability, the same words should be annotated as
different tags, creating a challenge for language models to correctly

interpret the intended context. When a placement method is not
mentioned in a language instruction, it means that the panel is installed
vertically on the left line of the stud. It is considered default in this study
and the language instruction does not have a tag about this placement
method.

There are a total of 13 labels, with 12 of them representing either a
target drywall, a final location (stud), or a placement method, as shown
in Fig. 10. The remaining label, referred to as ‘O, is utilized to signify
that the corresponding word is not associated with any entity. If a target,
a destination, or a placement is mentioned multiple times in a single
instruction, words that do not deliver any characteristics of the three
information are tagged as ‘O.” For example, in a three-sentences in-
struction “Please move the drywall board and drive it vertically in the
center line of the stud. The width is 4 and the length is 8. The stud is
laying on the left to the 500103”, ‘the drywall board’ and ‘it’ in the first
sentence refer to a target object but they do not deliver any important
characteristic, so they are tagged as ‘0.’

In total, 1584 natural language instructions with the 13 labels for
drywall installation were generated and manually annotated. These in-
structions consist of 3072 sentences and a total word count of 39,841.
The dataset was split into three parts: 1268 instructions for training
(80%), 158 instructions for validation (10%), and 158 instructions for
test (10%). Table 2 shows annotation results of the 1584 instructions.
The dataset includes fine-grained details of the target objects, expressed
through six tags: Dw_loc1, Dw _loc2, ID_wall, dim, length, and width, which
account for a total of 2535 words.

Similarly, the destination details are captured using the tags ID_stud,
St loc, and St loc2, encompassing 4166 words. Additionally, the dataset
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Fig. 9. Two ways of drywall installation: (a) vertical placement of drywall
panels; (b) horizontal placement of drywall panels.

incorporates placement orientation information, classified into three
distinct classes, and comprising a total of 2060 words. Consider the
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several examples. The annotators achieved 96.05% and 89.24% accu-
racy, respectively. They received feedback on the results of the first-
round annotation. In the second round, both annotators achieved
98.15% and 98.56% accuracy in annotation, which are almost 100%
accuracy. Any errors in the second round were simple human errors. The
validation set is used to compare the performance of different models in
the NLU module. The model with the best performance on the validation
dataset is used to evaluate the test dataset and the results are delivered
to the IM.

4.3. Natural Language Understanding (NLU)

The specific parameters of the BILSTM-CRF model used in this case
study are determined based on previous studies [95,96,102] as follows:
the number of neural network layers is 2; word embedding size is 50; the
number of hidden layer LSTM neurons is 300; batch-size is 16; the
dropout is 0.1; the optimizer is set to Adam [103] with a learning rate of
0.001; the Adam optimizer trains 20 epochs. The total number of pa-
rameters is about 250,000. In the case of BERT, “BertForTokenClassifi-
cation” class was used to find-tune the BERT-base-uncased model of the
original BERT [94]. The specific parameters are as follows: the number
of encoder layers is 12; the number of attention-heads is 12; the number
of hidden units: 768; batch-size is 16; the dropout is 0.1; the optimizer is
Adam with a learning rate of 3e-5; the number of training epochs is 5.
The total number of parameters is 110 million. Fig. 11 shows network
architecture diagrams of BiLSTM-CRF and BERT.

This study trained the BiLSTM-CRF model and BERT by varying the
number of training data to see the effects of training data size on the
performance of the model. With different amounts of training data, four
models with the same architecture were trained for both language
models. Fig. 12(a) reports the training accuracy of the four BILSTM-CRF

Table 2
Annotation results of the dataset.

Tags Number of words
example instruction: “Can you install the piece 500310 vertically in the
stud? The stud is laying third to the left from the stud 500105. Please ngv-izg ;gz
hang the panel into the middle line.” This approach allows for extraction Hr bim 184
of specific details, such as the ID wall tag for the target, Dw loc1 and Hr top 210
Dw loc2 tags for the destination, and the Vr-md tag representing a spe- ID_stud 550
cific placement orientation rather than simply highlighting three main D wall 514
categories. Such granularity can significantly enhance the richness and gt loc 2;%0280
precision of the data interpretation. Stloc2 964
While the first author performed the initial manual annotation, two Vr.md 1666
other individuals checked the appropriateness of annotation guidelines dim 259
by annotating the test dataset in two rounds. Appendix A presents the ﬁ:ﬁl giz
annotation guidelines used in this study. In the first round, the two SUM 39,841
annotators labeled the dataset based on the annotation guidelines and
12 labels
Drywall Stud Placement
[ID] [ID] [Direction]
— Verb(s) ] - ID wall + ID wall * Vr.md
[Position] [Position] * Hr_top
« Dw locl + St locl * Hr btm
|I'_ * Dw loc2 * St loc2
[Dimension]
e dim
e width
* length

Fig. 10. Dataset generation for drywall installation.
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Fig. 11. Network architecture diagrams: (a) BiLSTM-CRF; (b) BERT.

models across the 20 epochs. The four BERT models were trained across
the 5 epochs since they converged quickly as shown in Fig. 12(b). The
accuracy of the LSTM-M1 and BERT-M1, which were trained with ample
training data, showed a considerably faster increase in the learning
progress early in training.

The performance of the eight models were evaluated on the valida-
tion set and compared in Table 3. In this study, two types of accuracy are
computed to measure performance. Word-level accuracy (Accyorg) Was
computed based on the number of all the words in the dataset, which
provides the proportion of words that are correctly predicted.

The eight models achieved high Accy,q over 96%. However, even
one tag incorrectly predicted in a language command can affect the IM
module that derives the final robot command, causing disruptions in the

11
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Fig. 12. Comparison of training accuracy: (a) BILSTM-CRF and (b) BERT.

Table 3

Comparison of model performance on validation dataset.
Model Result 1 Result 2

N, AcCyord N AcCinst

LSTM-M1 2 99.95% 1 99.37%
LSTM-M2 2 99.95% 2 98.73%
LSTM-M3 11 99.73% 9 94.30%
LSTM-M4 144 96.13% 81 48.73%
BERT-M1 0 100.00% 0 100.00%
BERT-M2 1 99.97% 1 99.36%
BERT-M3 6 99.85% 6 96.20%
BERT-M4 43 98.90% 33 79.11%

N,,= the number of incorrect prediction of words.
N; = the number of language instructions including incorrect prediction.
3,805 - N.w 158 - N.1

Accwurd: 3895 s ACCinst= 158

robot's performance. To address this problem, Instruction-level accuracy
(Accinst) considers whether all words in each instruction are correctly
predicted or not, thus providing the proportion of language instructions
in which all words are correctly predicted. For example, as shown in
Table 3, Accyorg of LSTM-M4 was measured as high as 96.13%, but Accins
of LSTM-M4 showed an accuracy of 48.73%. This means that the robot
can accurately perform 48% of the given language instructions.

Out of all eight models, BERT-M1 achieved the highest accuracy,
with 100.00% accuracy at both the word-level and instruction-level.
This accuracy, manifesting as 100% on the validation set and nearly
as high during training might initially seem indicative of overfitting.
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However, it is noteworthy that deep learning models, as documented in
previous research [104], can often attain zero training error. This phe-
nomenon, where models effectively memorize the training set, does not
necessarily compromise their ability to generalize. In the experiment,
model performance generally increased with larger amounts of training
data. BERT models, including BERT-M1, outperformed the BiLSTM-CRF
model when trained on equivalent amounts of data. This is in conformity
with previous study to test Name Entity Recognition (NER) dataset in the
AEC domain [105]. Even with a small dataset (BERT-M4), the model
achieved an instruction-level accuracy of 79.11%, demonstrating the
effectiveness of fine-tuning pre-trained models in such cases. The study
also confirmed that training with a minimal amount of data (equivalent
to twice the validation set) resulted in a rapid decline in accuracy
compared to the other models.

The number of false predictions for the 13 tags is compared in
Table 4. LSTM-M1 and LSTM-M2 had two wrong predictions for Dw _loc1
and Vr md, respectively. As in the example in Fig. 13(a), ‘most left” was
incorrectly predicted as St loc1 representing a stud instead of Dw loc1
representing a drywall panel. Within our dataset, the word ‘middle’ is
contextually labeled as Vr_md or Dw_loc1, which can occasionally in-
crease the complexity of predictions. Fig. 13(b) shows that the word
‘middle’ was predicted as Dw locl instead of Vrmd indicating the
placement method. BERT-M2 also had one error, the word ‘middle’
corresponding to Dw_loc1 was predicted as Vr-md (Fig. 13(c)). These
results may be due to the similarity of the words referring to the position
and the placement method. Such issues tend to be mitigated when lan-
guage models are trained with a large amount of data as shown in the
previous deep learning-based studies [106,107].

LSTM-M4 and BERT-M4, which were trained with a limited amount
of data, had 144 and 43 incorrect predictions, respectively. Most
incorrect predictions occurred in the Dw_loc1 category. LSTM-M4 dis-
played a high number of prediction errors for the Dw loc1, Stlocl,
Vr.md, and width labels. In contrast, BERT-M4 had far fewer prediction
errors in these categories, which is attributed to its token-level classifi-
cation approach and pre-trained BERT original version. However, unlike
other models, BERT-M4 exhibited a high error rate in predicting Hr btm,
with all corresponding words being incorrectly predicted as Hr- top. This
suggests that when BERT models are trained with small datasets,
placement methods may be mispredicted, leading to incorrect posi-
tioning of the target panel on the stud by the robot. In the test dataset,
BERT-M1, which exhibited the best performance, achieved a word-level
accuracy of 99.95% with two incorrect predictions and an instruction-
level accuracy of 99.37% with one error. The error occurred when the
values corresponding to width and length were incorrectly predicted as
length and width, respectively.

In the test using the BERT-M1 on the Google Colab platform, which
offers the use of free GPU, the results showed that the average prediction
time for one instruction was about 0.025 s. The 158 test data can be

Table 4
Comparison of incorrect prediction of each class for the four models.
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categorized into four groups based on the number of sentences: 46 one-
sentence instructions, 74 two-sentences instructions, 27 three-sentences
instructions, and 11 four-sentences instructions. The average prediction
time of each group was 0.0224 s, 0.0176 s, 0.0324 s, and 0.0606 s,
respectively. As the number of sentences in a single instruction
increased, the analysis time tended to increase as well. In other words,
time performance is better when the number of sentences is smaller.
However, the absolute value was negligible across all sentence groups,
showing the effectiveness of the NLU module.

4.4. Information Mapping (IM)

The IM module utilized several rules to extract final information
about a target panel, a stud as destination, and a placement method
based on the output of the NLU module and building component in-
formation (Fig. 10). The output of this module is recorded in an action
history table as nine types of values: stud id (ID of the stud), instal-
led x left (x coordinate of the left side of the installed panel), instal-
led x right (x coordinate of the right side of the installed panel), left cent
(if the panel is installed on the left side of the stud or the center line of
the stud), ver_hor (if the panel is installed vertically or horizontally),
top_btm (if the panel is installed on the top row or the bottom row),
drywall id (ID of the drywall panel), w (width of the drywall panel), and
(length of the drywall panel). The records in the action history table can
be used to extract the final command for the robot control.

The rules of the IM module about drywall panels are shown in
Figs. 14 and 15. The pseudocode in Fig. 14 can be used when a target of
pick-and-place operation is described as its dimension. If the dimension
of the target drywall panel is described by its length and width values or
words like ‘standard’ and ‘full-size’, the target features are extracted by
its length and width values in the drywall information table in Fig. 8(b),
which is marked as TableD in Fig. 14. When an expression for a previ-
ously performed operation is used, such as “previously installed”, the
target of the last performed operation is retrieved from the action history
table ActHist and the panel with the same characteristics is determined
as the target of the current operation.

Fig. 15 shows pseudocode for the process used when drywall panels
are labeled as their IDs or position. When the tag of ID_wall is included in
the output of the NLU, the information of the panel corresponding to
that tag is returned. If only Dw loc1 refers to a workpiece at the output of
the NLU module, the target is determined by the x coordinate value for
the initial position of drywall panels and the word tag to Dw_loc1. In the
case that both of Dw _loc1 and Dw _loc2 are included in the output of NLU,
a target panel is explained by its relative location that changes based on
the secondary location. The x coordinate of the target panel's initial
position, which is finally used to extract the target information, is
determined from the secondary place and the direction tagged with
Dw_loc2 and Dw_loc1, respectively.

Tags # of words (Ground truth) Incorrect prediction

LSTM-M1 LSTM-M2 LSTM-M3 LSTM-M4 BERT-M1 BERT-M2 BERT-M3 BERT-M4
Dw_loc1 83 2 - 1 38 - 1 5 12
Dw loc2 37 — - - 5 - - - 3
Hr.btm 16 - - 1 - - - - 11
Hr_top 26 - - - - - - -
ID_stud 56 - - - 3 - - -
ID_wall 45 — - — 3 - - - -
o 3021 - - 1 3 - - -
Stlocl 259 - - 3 39 - - - 4
St loc2 94 - - - 2 - - - 2
Vr.md 171 - 2 4 16 - - - -
dim 19 - - - 4 - - - 1
length 34 - - 1 - - - - 1
width 34 - - - 31 - - - 9
TOTAL 3895 2 2 11 144 - 1 6 43
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Words | True |Prediction Words | True |Prediction Words | True |Prediction
eeenam o install 10 0 can : 0 0
install 0 0 the : 0 0 you : 0 0o
the : 0 Y drywall 1 0 0 place : 0 0
drywall o) 0 to : 0 0 the : 0 o
sheet : 0 0 s 0 dry : 0 0
on 0 0 middle ¢ Vr_md Dw_locl ##wall : 0 0
. line Vr_md Vvr_md in : 0 0
the 0 0 ot 0 0 the : 0 0
most : Dw_locl st_loci the : 0 0 | middle : Dw_locl vr_md |
left : Dw_locl St_loci stud : 0 0 to T 0 0
on 0 0 right 1 St_locl St_locl the : 0 0
the ) 0 to t 0 0 stud HI) 0
the Y 0 500 : ID_stud 1D_stud
stud H ] 0
stud : 0 Y ##10 : ID_stud ID_stud
500100 . ID_StUd ID_StUd 500100 1 St_loc2 St_loc2 ##2 . ID stud ID stud
place : 0 0 the : 0 0 join ;0 0
it : 0 0 size : 0 0 this 10 0
into : 0 0 of : 0 0 and : 0 0
th : 0 0 :
the -0 0 e ; : the . : 0 0
. Hr t He t panel : 0 0 previous : 0 0
UPP‘?" r_top r_top is : 0 0 one ) 0
horizontal Hr_top Hr_top 2:7 . width width in .0 0
row. Hr_top Hr_top by : 0 0 the 1 0 0
8 length length middle : Vr_md vr_md
(a) (b) ()
Fig. 13. Examples of errors in: (a) LSTM-M1, (b) LSTM-M2, and (c) BERT-M2.
Definition Definition

*  Tags for drywalls: Tyim, Tiengen Twidtn
*  Find w(tag): to return a word corresponding to the input tag in
[0,,, O0;] where O,, is a word and O, is a tag in the [word, tag] pair.
*  Find_row (key, value): to return n-th row for the input value in the key
column of the drywall information table TableD.
Input: [word, tag] pair set of NLU output [0,,, O¢]
Drywall information table TableD.
Drywall id list DwldList
Action history table ActHist.
* heads [w] and [1] of TableD and ActHist refer to width and length
of the panels, respectively.

1 def DimDw([0,,, O, |, TableD, ActHist):
2 if Tyim in Oy ¢
3 for i in range (len(0;)):
4 if 0.(i) == Tyim and O0,,(i) € {‘standard’, ‘full’, ‘fullsize’,
5 “full-size’, “full-sized’}:
6 wid_v=4;leng v=28
7 elif 0,(1) == T4i;, and (O, (1) € {‘previous’, ‘previously’}:
8 wid_v = ActHist.iloc[-1][w]; leng_v = ActHist.iloc[-1][1];
9 if Tyiaen in Op and Tiepgep in Oy

10 for i in range (len(0,)):

11 wid_v = 0,,(i) if 0(i) == Tyyiqen:

12 leng_v = 0,,(i) if 0;(i) == Tiengen:

13

14 DwiInfo = Find_row (w, wid_v) N Find_row (1, leng_v)

15 return Dwinfo

Fig. 14. Pseudocode for information extraction about drywall panels using
dimension-related tags.

Fig. 16 shows how to extract information for a stud that is a final
location for pick-and-place operations. When the tag of ID.stud is
included in the output of the NLU, the information of the stud corre-
sponding to that tag is returned. Otherwise, the output of NLU includes
Stlocl or Stloc2, so that the stud is described by its location. When
St loc2 is not included, the stud is either the leftmost one or rightmost
one. When both Stlocl and Stloc2 are extracted, the stud as final
location is determined by the spatial relationship described by words
tagged by St locI and St loc2.

To start a pick-and-place operation for drywall installation, it is
essential to know the placement method as well as the target and final
location. Three types of placement methods are used in this study:

13

* Tags for drywalls: Typ_aw, Tow_toc1» Tow._toczs Taims Tiengens Twiacn
*  Find_w (tag): to return a word corresponding to the input tag in [0,,, O;]
where 0,, is a word and O, is a tag in the [word, tag] pair.
*  Find_row (key, value): to return n-th row for the input value in the key
column of the drywall information table TableD.
*  DimDw ([0, 0], TableD, ActHisr): a function to extract drywall
information
Input: [word, tag] pair set of NLU output [0y, O;]
Drywall information table TableD.
Drywall id list DwldList
Action history table ActHist.
* A head [x] of TableD and ActHist refers x-coordinate of the panels

1 ifTip g in O :
2 foriinrange (len(0,)) if O, (i) ==Tjp_aw :
3 Dwinfo = Find_row (id, Find_w(0(i))
4 ifTpy 1oc1 and in Oy and Tpyy 152 and not in O :
5 for i in range (len(0;)):
6 if 0¢(1) == Tpw_1oc1 and (0y,(i) € {‘leftmost’, ‘mostleft’, ‘left’}:
7 Dwinfo = Find_row (x, min (‘X’ column in TableD))
8 if 0,(1) == Tpw _toc1 and (0,,(i) € {‘rightmost’, ‘mostright’, ‘right’}:
9 Dwinfo = Find_row (x, max (‘x’ column in TableD))
10 if 04(i) == Tpy _1oc1 and (O, (i) € {‘center’, ‘middle’}:
11 Dwlinfo = Find_row (x, median (‘x’ column in TableD))
12 if Tpy 1oc1 and Tpy toc2 in O
13 SecondLoc = DimDw ([0,,, 0,], TableD, ActHist)
14 foriin range (len(0;)):
15 for j in range (len(DwldList?):
16 if 0¢(i) == Tpyy 10c1 and Oy, (i) =="left’
17 and TableD[x][j] < SecondLoc[x];
18 DwiInfo = Find_row (x, TableD [x][j])

19 return Dwinfo

Fig. 15. Pseudocode for information extraction about drywall panels using tags
of ID and positions.

Vr.md, Hr_top, and Hr btm. If the output of the NLU module does not
contain these three tags, the left edge of the drywall panel is set to be
placed vertically to the left of the stud. The three pieces of information
about the current job are recorded in the action history table. The
installed x left value in the action history table is determined according
to the combination of the placement method and the final location, and
the installed x_right value is calculated based on the placement method,
the target, and the installed x_left value.
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Definition

*  Tags for studs: Tip stua» Tst_toc1s Tst_toc2

» Find_row (key, value): to return n-th row for the input value
in the key column of the stud information table TableS.

Input: [word, tag] pair set of NLU output [0,,, O;] where O, is a
word and O; is a tag
Stud information table TubleS

1 ifTip styq in O :
2 for i in range (len(0;)):
3 if 0,(1) == Tip_stua :
4 StudInfo = Find_row (0,,(1))
5 ifTs jpc1 andin Oy :
6  foriinrange (Ien(0;)) if 0.(i) == Ts¢ 1oc1:
7 n=1; n=2 if ‘second’ in 0, (i);
8 n=3 if ‘third’ in O, (i)
9  foriin range (len(0;)) if O,(i) == Ts¢ joc1 :
10 StudInfo = Find_row (id, O,,) — n if ‘left’ in 0, (i)
11 StudInfo = Find_row (id, 0,,) + n if ‘right’ in 0,,(i)
12 if Tgt jp1 in O¢ and not in Oy
13 for i in range (len(0,)):
14 if 0.(i) == Ts; 1oc1 and O, (1)=="leftmost’:
15 StudInfo = Find_row (min(StudldList))
16 if 0¢(1) == Ts¢ 10¢1 and Oy, (i)=="rightmost’:
17 StudInfo = Find_row (max(StudldList))
18 return StudInfo

Fig. 16. Pseudocode for information extraction about studs.

4.5. Robot Control (RC)

Using studs and drywall panels introduced in the case study, drywall
panels can be placed in three different types as shown in Fig. 17. The
layouts in Fig. 17(a) and Fig. 17(b) use one unique panel A and one
unique panel B, and two standard panels installed vertically and hori-
zontally, respectively. In the layout in Fig. 17(c), two types of distinct
panels are placed vertically. Drywall installation is demonstrated based
on the outputs of the NLU module and the IM module for three drywall
layouts. The input data of the NLU module were selected from the test
dataset.

Demonstration results for the layout 1 are shown in the Fig. 18.
Figs. 17(a)-(d) show a pair of a natural language instruction and how the
KUKA robot successfully placed a panel for each instruction. As a result
of IM for the instruction in Fig. 18(a), the drywall panel 500,320 and the
stud 500,100 were determined as the target and the final location,
respectively. The target panel was installed perpendicular to the left line
of the stud. The first row of the action history table in Fig. 18(c) shows
this result.

As shown in Fig. 18(b), the drywall panel was installed vertically on
the center line of the stud because Vr.md was predicted as a result of the
NLU module for the second sentence of the language instruction. The
second row of the fourth and fifth columns in Fig. 18(e) shows this
result. In Fig. 18(c) and Fig. 18(d), “second to the left” and “left” were
tagged as St loc1, and “500,109” and “500,111” were tagged as St loc2 in
the NLU module. The rules of the IM module shown in Fig. 15 deter-
mined the stud 500,107 and the stud 500,110 as the final location for the
third and fourth instructions, respectively. According to the action his-
tory table about the output of the IM, the robot installed drywall panels
onto the stud walls.

Fig. 19 and Fig. 20 show the natural language instructions and
demonstration results for layout 2 and layout 3. As shown in both fig-
ures, the robot successfully installed drywall panels by extracting correct
information for pick-and-place operations from the NLU and IM
modules.
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Standard panels

Unique panel A

Unique panel B
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Standard panels
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Fig. 17. Three drywall layouts: (a) layout 1; (b) layout 2; (c) layout 3.
4.6. Co-reference issue

This study focused on words distinctly characterizing targets and
destinations when establishing annotation rules, rather than all words
denoting the targets and destinations. This annotation strategy was
chosen due to insufficiency of generic words like drywall, stud or pro-
nouns in clearly distinguishing among multiple panels or studs. How-
ever, co-reference issues are crucial for robots to thoroughly interpret
human instructions. Thus, additional experiments addressing co-
reference issues were conducted using BERT to evaluate the impacts of
the co-reference issues in this study.

The dataset was re-annotated with two additional labels: Trg and Dst,
representing a target and destination, respectively. For instance, in a
three-sentences instruction “Please move the wall panel and move it on
the stud 500100. Place it to the upper horizontal row. The dimension of
the drywall is 4 by 8, ‘wall panel’ in the first sentence, ‘it’ in the second
sentence, and ‘drywall’ in the third sentence were annotated as Trg while
‘stud’ in the first sentence was annotated as Dst. BERT was trained
following the same procedure as the prior experiments with variations in
the volume of training data. Fig. 21 presents the training accuracy for
the re-annotated datasets comprising 316, 632, 948, and 1268
instructions.

The insights from Fig. 12(b) and Fig. 21 reveal that the impact of the
co-reference issue on training accuracy is not significant in this study.
Initially, in epoch 1, the BERT-C models exhibited lower accuracy in
comparison to the BERT-M models. However, as training progressed up
to epoch 5, the training accuracy of both BERT-C and BERT-M models
converged and became similar. Table 5 presents a comprehensive
summary of the performance of the trained models on the validation
dataset. It can be observed that BERT-C models, which considered co-
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“please pick up the 4

by 8 drywall board and
hang it into the 500100
vertically”

(a)

“install  the rightmost
panel vertically in the
stud second to the left of
the stud 500109”

(c)
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“please pick up the full-size
panel and hang it vertically on
the stud 500103. join this
panel and the previously
installed one on the stud in
the middle”

(b)

“move the sheet vertically on
the stud the width of the
drywall is 2.7 and the length
is 8. the stud is laying on the
left to the 500111~

()

stud_id installed x_left | installed x_right left_cent ver_hor top_btm drywall_id w 1
500100 0 1.2192 left vertical 0 500320 1.2192 2.4384
500103 1.2192 2.4384 center vertical 0 500310 1.2192 2.4384
500107 2.4384 3.6576 left vertical 0 500380 1.2192 1.2192
500110 3.6576 4.4704 left vertical 0 500360 0.8128 2.4384

Fig. 18. Examples of drywall installation for the layout 1: (a)-(d) show a robot installing drywall panels based on natural language instructions; (e) is the action

history table.

“can you install the
rightmost drywall panel
in the stud which is left
to the stud 500108”

(a)

“can you place the drywall
piece vertically in the stud
that is second left from the
stud 500112. the dimension
of the panel is 2.7 by 8”

(b)

stud_id | installed x left (m) | installed x_right (m) | left cent ver_hor top_btm | drywall id w (m) 1 (m)

500100 0 1.2192 left | horizontal top 500320 1.2192 2.4384
500100 0 1.2192 left | horizontal bottom 500310 1.2192 2.4384
500107 2.4384 3.6576 left vertical 0 500380 1.2192 1.2192
500110 3.6576 4.4704 left vertical 0 500360 0.8128 2.4384

(©)

Fig. 19. Examples of drywall installation for the layout 2: (a) and (b) are corresponding to the third and fourth placement, respectively; (c) is the recorded ac-

tion history.

reference issues, displayed slightly lower performance compared to the
BERT-M models, which did not consider co-reference. However, with a
large amount of training data, both BERT-C1 and BERT-C2 achieved
accuracy close to 100%. These findings indicate that while co-reference
issues may have a minor impact on performance, the BERT models
trained with co-reference consideration can still achieve high accuracy
when provided with a large amount of training data.

5. Discussion

This paper presented a framework of a natural language-enabled
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HRC system that consists of three steps: natural language understand-
ing, information mapping, and robot control. The proposed approach
enables human workers to interact with construction robots using nat-
ural language instructions and building component information. The
proposed system was validated through a case study on drywall instal-
lation and BERT-M1 achieved a highest accuracy of 99.37% at
instruction-level for the 158 test data in the NLU module. Even with a
small amount of training data, BERT achieved an instruction-level ac-
curacy close to 80%, suggesting that it is an effective approach for
analyzing natural language instructions in the context of construction
robotics.
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“install the custom-cut drywall panel
vertically on the stud 500102. join
this panel and the previously installed
one on the stud in the middle. the
width is 2.7 foot, and the length is 8
foot”

“please pick up the sheet
500330 and position it in
the stud 500110”

(@) (b)

stud_id installed x left (m) | installed x right (m) | left cent ver_hor top_btm drywall_id w (m) 1 (m)

500100 0 0.8128 left vertical 0 500360 0.8128 2.4384
500102 0.8128 1.6256 center vertical 0 500350 0.8128 2.4384
500104 1.6256 2.4384 center vertical 0 500340 0.8128 2.4384
500107 2.4384 3.6576 left vertical 0 500380 1.2192 1.2192
500110 3.6576 4.4704 left vertical 0 500330 0.8128 2.4384

(©)

Fig. 20. Examples of drywall installation for the layout 3: (a) and (b) are corresponding to the second and fifth placement, respectively; (c) is the recorded ac-

tion history.

1.00 - ———— * °
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0.96 -
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e
S 0.92
. BERT-C1 >
0.90 T —e— Training data#: 1268
BERT"('Z 2 —— Training data#: 948
0.88 o .
BERT-C3 > —&— Training data#: 632
0.86 - Training data#: 316
1 2 3 4 5
Epochs
Fig. 21. Training accuracy on the re-annotated dataset.
Table 5
Model performance on validation dataset with co-reference issues.
Model Result 1 Result 2
Ny AcCyord N, ACCinst
BERT-C1 2 99.95% 2 98.73%
BERT-C2 2 99.95% 2 98.73%
BERT-C3 14 99.64% 11 93.04%
BERT-C4 62 98.41% 44 72.15%

N,,= the number of incorrect prediction of words.
N; = the number of language instructions including incorrect prediction.
3,895 - N.w 158 — NI

AcCyora= 3895 5 ACCinst= 158

However, it should be noted that BERT-based models may require
more training time compared to BiLSTM-based models [108]. Therefore,
if the amount of available data is sufficient, it may be worthwhile to
consider using the BiLSTM-CRF model, which has shown similar per-
formance to BERT for tagging tasks in this study. In the IM and RC
module, it is observed that drywall installation tasks were performed
successfully through natural interaction using language instructions.
This study clearly demonstrates that the proposed system has significant
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potential for field implementation to achieve natural interaction with
robots in construction.

Even though the proposed method achieved high performance on the
given datasets, there are still some challenges that must be addressed.
First, the conducted experiments did not consider the potential influence
of background noise typical on construction sites, which could affect the
voice data processing. However, the recent advancements in noise-
robust speech recognition techniques [109,110] suggest a promising
outlook for the implementation of voice commands in noisy construc-
tion environments. Additionally, with the increasing integration of
digital twins in construction and the potential for remote interaction
system could significantly reduce the adverse effects of on-site noise,
ensuring clear communication with the construction robots.

Second, the proposed framework relies entirely on the output of the
NLU module to generate the final command in the IM module to accu-
rately interpret contextual and historical data with language in-
structions. However, the proposed system has dependency of the IM
module on the NLU module's accuracy. Park et al. [111] attempted to
address this by exploring the combination of these two modules using a
single language model. While this approach showed potential, it
encountered limitations in considering historical data due to its reliance
on single language instructions as inputs. Future studies can explore the
development of a more integrated language model that leverages natural
language instructions, building component information, and historical
work data as input. Such an approach could potentially simplify the
translation process and enhance the overall accuracy and robustness of
the system, moving closer to a more streamlined natural language to
robot language translation.

Thirdly, there is a data generation rule requiring key information to
be mentioned only once in a single instruction. In future work, this
limitation could be mitigated by expanding the dataset in the NLU
module and incorporating additional conditional statements in the IM
module. Additionally, the current dataset was never intended to repli-
cate human-to-human communication prevalent among field practi-
tioners, which means the ways in which objects are described in the
commands may differ from colloquial on-site language between
humans. Future studies could further solidify the practicality of the
interaction system by sourcing or validating data directly from con-
struction workers.

Despite these limitations, it is important to note that the goal of this
study is to improve the interaction between human operators and robots
in future work environments. These environments, where both humans
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and robots access databases similar to BIM, necessitate a shift in lan-
guage from traditional site commands. To test the practicality of the
approach, a supplementary study with 12 construction workers was
conducted in a subsequent study using speech-based commands with a
robot for panel installation tasks. These workers effectively communi-
cated with the robot using specific IDs or location data, with commands
like “Okay, robot, please pick up panel 504 and place it at the center of
the stud 606 and “Put 503 on the rightmost section.” A survey using a
five-point Likert scale (1 being Strongly Disagree and 5 being Strongly
Agree) on usefulness and ease of use for the interaction yielded an
average score above 4. This implies that while the current dataset may
differ from authentic language commands, it remains an acceptable and
viable command form for construction workers.

Fourth, the case study was conducted in a single stud structure with a
fixed perspective for identifying locations of panels and studs. In future
work, the proposed approach can be improved by extending the system
with more complex structures and building materials, along with
considering diverse perspective of human workers. Such advancements
would require both an expansion of the instruction dataset and refine-
ment of the motion planning process. As Wang et al. [14] note, calcu-
lating collision-free trajectories in pick-and-place operations becomes
challenging with large objects and in complex workspace. Future study
could incorporate operator intervention on the robot's trajectories, as
proposed by Wang et al. [14]. This would allow operators to actively
participate in directing the robot by suggesting specific intermediate
positions, thereby facilitating the generation of optimal path plans.

Finally, bidirectional communication was not considered in the
proposed system. It implies that human workers are unable to intervene
in robot tasks or provide new plans when the robot encounters diffi-
culties for higher level of HRC. Additionally, the system does not verify
whether the instructions from workers are accurate or not, as there is no
built-in filter to assess this. These limitations highlight the need for more
complicated communication protocols that require a deeper under-
standing of human-robot interaction. To address this, the authors will
consider bidirectional communication in a future study to improve the
proposed system and increase the level of natural interaction with
construction robots.

6. Conclusion

This study made several contributions: the research laid the foun-
dation for natural interaction with robots by using natural language
instructions in pick-and-place construction operations. To our best
knowledge, it is the first study to propose a framework for interaction
with construction robots using natural language instructions, building
component information, and working history. It effectively handles
complex data such as target object, destination, and placement method,
facilitating natural and intuitive human-robot interactions in pick-and-
place operations. This integration of three modules — NLU, IM, and RC
- marks a significant stride in enabling efficient verbal communication
with construction robots.

Second, we demonstrated interaction with construction robots using
natural language instructions. A demonstration of the proposed system
in drywall installation tasks showed the potential of HRC through speech
channels in construction. We extracted information about target objects,
destinations, and placement orientation that can be applied to other
pick-and-place operations in construction tasks, such as ceiling tile
installation, wall tile installation, or bricklaying. Even though the
application of the framework we proposed was demonstrated through a
drywall installation, the framework itself is generalizable and adaptable
to any pick-and-place construction task making this technical contri-
bution broadly applicable.

Third, to address the lack of an existing dataset suitable for drywall
installation, a natural language instruction dataset was created based on
human interactions and work observed in construction videos and
related studies. The dataset stands out due to its fine-grained annotation
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as it was meticulously annotated to deal with the necessary information
for pick-and-place operations including unique characteristics such as
IDs, dimensions, or locations. This annotation process enhanced the
quality and depth of the labeled data, making our dataset a valuable
resource for advancing research in the field of construction-related
natural language processing. Furthermore, the dataset labeling
approach can be adapted to create datasets for other pick-and-place
operations.

Fourth, the proposed system facilitates interaction with the robot by
using the information available in the construction projects. The data
mapping process interprets building component information and pre-
vious working records as well as information from analyzed language
instructions. This empowers human operators to give language in-
structions to a robot in a shorter or more intuitive way. We believe that
this approach significantly contributes to the development of a practical
and efficient human-robot collaboration system on construction sites.

Finally, two different language models, which are BiLSTM-CRF and
BERT, were trained by labels reflecting characteristics of construction
activities. Our comparative analysis of these models with the newly
generated dataset revealed their effectiveness in a construction setting.
In addition, BERT proved to be highly accurate, even with limited data,
achieving a 96% instruction-level accuracy in the validation set. This has
important implications for the construction industry, where there is a
lack of data for natural language instructions. Our study demonstrates
that leveraging and fine-tuning pre-trained models like BERT can
address this challenge, enabling high accuracy in interpreting
construction-related instructions.
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