
Joint Task Allocation and Scheduling for Multi-Hop
Distributed Computing

Ke Ma
Department of Electrical and Computer Engineering

University of California, San Diego and San Diego State University
La Jolla, USA

kem006@ucsd.edu

Junfei Xie
Department of Electrical and Computer Engineering

San Diego State University
San Diego, USA
jxie4@sdsu.edu

Abstract—The rise of edge computing has shifted computing
resources closer to end-users, benefiting numerous delay-sensitive,
computation-intensive applications. To speed up computation,
distributed computing is a promising technique that allows parallel
execution of computation tasks across multiple compute nodes.
However, current research predominantly revolves around the
master-worker paradigm, limiting resource sharing within one-
hop neighborhoods. This limitation can render distributed com-
puting ineffective in scenarios with limited nearby resources or
constrained/dynamic connectivity. In this paper, we address this
limitation by introducing a new distributed computing strategy
that extends resource sharing beyond one-hop neighborhoods
through exploring layered network structures and multi-hop rout-
ing. Our approach involves transforming the network graph into
a sink tree and solving a joint optimization problem formulated
based on the layered tree structure for task allocation and schedul-
ing. Simulation results demonstrate a significant improvement over
the traditional distributed computing and computation offloading
strategies.

Index Terms—Edge computing, Distributed computing, Multi-
hop offloading

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) devices
has enabled a multitude of delay-sensitive yet computation-
intensive applications, such as monitoring, logistic manage-
ment, and automative [1]. The surge of these applications drives
the migration of computing resources from the remote cloud
to the network edge closer to end-users. While computing
at the network edge offers compelling benefits, such as low
latency, cost effectiveness, and improved data control and
security, it also presents notable challenges. The distributed
nature of edge servers, along with their inherent constraints in
computing power, memory capacity, and available bandwidth
when compared to the cloud, pose significant challenges to
achieving high-performance edge computing [2].

To speed up computation, distributed computing can be
employed. Existing distributed computing strategies typically
adopt a master-worker paradigm [3], where a single master
node partitions and distributes the task to multiple worker
nodes that are directly connected to it. Although the master-
worker paradigm is simple to implement, it restricts resource
sharing within one-hop neighborhoods. In the edge computing
paradigm with constrained computing nodes, scenarios may
happen where the residual resources at nearby edge servers

are very limited or even less than those at the master node,
rendering such master-worker based distributed computing in-
effective. This challenge becomes particularly pronounced in
edge networks with restricted and/or dynamic connectivity, such
as networked airborne computing systems comprised of drones
serving as edge servers [4], [5].

In this paper, we overcome these challenges by exploring
resources at distant servers located multiple hops away. While
a similar idea has been explored in the mobile edge computing
(MEC) domain, where computation offloading is proposed to
address users’ computing demands, most existing studies focus
on offloading to a single MEC server [6]–[8]. A few recent
works [9]–[11] considered offloading tasks to multiple servers,
but they differ in their objectives and have overlooked the task
scheduling problem considered in this work.

The main contribution of this paper is a new distributed
computing strategy that explores layered network structures and
multi-hop routing to fully utilize the capacity of the entire
edge computing network for enhanced system performance.
Our strategy transforms the network graph into a sink tree,
based on which a mixed integer programming (MIP) problem is
then formulated and solved to jointly optimize computation ef-
ficiency and energy consumption by addressing task allocation
and scheduling simultaneously. To evaluate the performance of
the proposed approach, we conduct comprehensive simulation
studies. Our results demonstrate a significant improvement
over the traditional master-worker paradigm and state-of-the-
art computation offloading strategies. Notably, the proposed ap-
proach can be applied to any networked computing system such
as cloud computing, MEC, and networked airborne computing
systems.

The rest of the paper is organized as follows. Section II
discusses related works. Sec. III describes the system model
and the problem to be solved. Sec. IV introduces the proposed
approach and Sec. V conducts simulation studies. Finally, Sec.
VI presents conclusions and future works.

II. RELATED WORKS

In the field of distributed computing, the master-worker
paradigm has been widely used to implement parallel applica-
tions [3]. Another popular paradigm is the hierarchical master-
worker paradigm [12], which involves a supervisor process

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 2664

IC
C

20
24

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-7
28

1-
90

54
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C5

11
66

.2
02

4.
10

62
23

83

Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 00:52:06 UTC from IEEE Xplore. Restrictions apply.

managing multiple sets of processes, each consisting of a
master process and multiple worker processes. Differing from
these paradigms, we investigate a multi-layer master-worker
paradigm that is composed of a single master and multiple
workers operating at different layers.

In the computing offloading domain, most existing studies
consider a single-hop single-server offloading paradigm, where
tasks are offloaded from users to a single edge server within
their communication range [6]–[8]. Under this paradigm, many
algorithms have been designed to make the optimal offloading
decisions, commonly coupled with optimal allocation of re-
sources such as transmission power and computing resources.
As the resources of a single server are bounded, this paradigm
is not scalable to the number of users.

To overcome the limitations of the single-hop paradigm,
multi-hop offloading [9]–[11] has been proposed, enabling the
offloading of tasks from users to remote servers. For instance,
[9] investigates the joint routing and multi-part offloading for
both data and result. It employs a flow model to capture
data/result traffic and introduces a distributed algorithm that
finds optimal solutions in polynomial time. [10] formulates the
multi-hop offloading problem as a potential game. By dividing
tasks subtasks of equal size, each device independently decides
the number of subtasks to forward or compute based on its
economic utility. Another relevant work is presented in [11],
which considers a joint user association, channel allocation, and
task offloading problem. It solves this problem by combining
the genetic algorithm and deep deterministic policy gradient
algorithm. Distinct from previous research, we delve into the
essential benefits of multi-hop routing and multi-part offloading
while investigating how network properties like topology and
server resources affect system performance. We also address
the task scheduling problem that arises when transmissions of
subtasks share channels or relays, which has been overlooked
by existing works.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, we first present the system model for the
network and then describe the problem to be solved.

A. System Model

Consider a network formed by N + 1 edge servers, each
with its own unique set of computing and communication ca-
pabilities. The servers can share resources with their neighbors
through cables (in wired networks) or when they are within
communication range (in wireless networks). The entire system
is supervised and managed by a control center (e.g., a software
defined networking controller [13]) to ensure that all tasks
are completed efficiently and effectively. Suppose one of the
servers, referred to as master, needs to execute a computation-
intensive task that is arbitrarily decomposable, which could be
generated by the server itself or requested by a user nearby. To
complete the task in a timely and energy-efficient manner, the
master decomposes the task into subtasks and distributes them
to the other servers, referred to as workers. The master can
transmit subtasks simultaneously to their neighboring servers.

In the context of wireless communication, we assume the use of
the Orthogonal Frequency Division Multiple Access technology
[11]. However, for workers farther away, multi-hop routing is
required, which means that each server in the network can act
as a worker, a relay, or both. When a subtask arrives at a relay,
it is added to a queue and processed in a first-in-first-out order.
A worker will not start executing the assigned subtask until it
receives the complete subtask package. When a server acts as
both a worker and a relay, it can perform the relay process and
execute the assigned task simultaneously.

In this preliminary study, we adopt several common as-
sumptions made in existing studies [14], [15] to simplify our
analysis. In particular, we assume that the network is stable with
no package losses or retransmissions. Additionally, we assume
that the computation result is relatively small, and hence the
delay incurred in transmitting the result from workers back to
the master is negligible. Under these assumptions, we model
the network as follows.

1) Network Model: The network is modeled as a directed
graph G = {N , E}, where N = {i|0 ≤ i ≤ N} is the set of
edge servers and E = {(i, j)|i, j ∈ N , i ̸= j} is the set of
server-to-server communication links that connect servers that
can communicate directly.

2) Computing model: Let fi denote the computing capacity
of server i, i.e., CPU-cycle frequency (GHz). Given a task of
size y, let b denote the total number of CPU cycles required
to process one task size unit. The time required for server i to
process this task can then be expressed by [16]:

T comp
i =

yb

fi
(1)

3) Communication Model: Let Bi,j denote the bandwidth of
the communication link (i, j), which is assumed to be known.
The data transmission rate from server i to server j can be
expressed by the following equation according to Shannon’s
Theory [5]:

Ri,j = Bi,j log2(1 +
si,j
ni,j

) (2)

where si,j and ni,j represent the signal power and noise power,
respectively.

4) Energy Consumption Model: The energy consumed for
executing a task mainly constitutes two components: energy
consumed for computing and energy consumed for communi-
cation. The energy consumed for server i to compute a task of
size y is given by [17]:

Ecomp
i (y) = γiyb(fi)

2 (3)

where γi is the effective switched capacitance that depends
on the chip architecture of server i. The energy consumed for
server i to transmit a task of size y to server j is given by [17]:

Ecomm
i,j (y) =

piy

Ri,j
(4)

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

2665
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 00:52:06 UTC from IEEE Xplore. Restrictions apply.

B. Problem Description and Analysis

Without loss of generality, suppose server i = 0 receives a
task of size Y ∈ R+ to complete. Given the computing and
communication characteristics of the whole network, i.e., G,
{fi, Bi,j , si,j , ni,j , pi}, ∀i, j ∈ N are known, the control center
aims to jointly minimize the task completion time and energy
consumption by partitioning the task into small subtasks and
distributing them to other servers in the network.

Finding the optimal solution to this problem is nontrivial
and challenging since it requires making decisions on several
aspects, including identifying which servers the master should
assign subtasks to, determining the amount of workload to be
assigned to each worker, and selecting the transmission route
for sending the subtask. Moreover, the order in which the
subtasks should be sent by the master is also a crucial decision
to make.

IV. MULTI-HOP MULTI-LAYER DISTRIBUTED COMPUTING
STRATEGY

In this section, we present a multi-hop multi-layer distributed
computing strategy to solve the problem described in the
previous section. Motivated by the fact that a layered tree
structure emerges when the master distributes tasks to other
servers in the network, this strategy first transforms the network
graph into a sink tree and exploits this layered tree structure to
find optimal task allocation and scheduling solutions.

A. Transforming Graph into a Sink Tree

Given the network graph G and the characteristics of the
servers and communication links forming the graph, we can find
the shortest route from the master to each of the other servers in
the network that takes the minimum time to transmit one bit of
data. This can be achieved by defining the weight of each edge
(i, j) as the inverse of the associated data transmission rate, i.e.,
1/Ri,j , and applying the Dijkstra’s algorithm [18] to find the
shortest path. The resulting shortest routes can then be used to
construct a K-ary sink tree, where the master is the root node
and all other servers are leaf or internal nodes reachable from
the root via a unique path. This layered tree structure enables
the distribution of tasks from the master to other servers in an
efficient manner.

To facilitate subsequent analysis, we re-label the nodes in
the tree level-by-level from the root downward, and from left
to right within each level (see Fig. 1). Consequently, nodes in
lower levels have larger indices. Let Il denote the set of indices
of nodes in level l ∈ {0, 1, . . . , L}, where L is the height of
the tree. Then, ∪L

l=0Il = N . Notably, the master (root) can
transmit subtasks to its one-hop neighbors, i.e., nodes in Level
1, simultaneously using orthogonal channels. However, if any
one-hop neighbor has children, the subtasks assigned to them,
including the one-hop neighbor, have to be transmitted one by
one. This is because they share the same channel between the
master and the one-hop neighbor, and the data arriving at the
one-hop neighbor is processed in a first-in-first-out manner.
Therefore, the order in which these subtasks should be sent
matters. Based on these analyses, we next formulate a joint

Fig. 1: An example network represented by a layered tree
structure. Servers’ indices are highlighted in red.

task allocation and scheduling problem as a mixed integer
programming (MIP) model.

B. Mixed Integer Programming Model

1) Decision Variables: To specify the computation load
allocated to each server i ∈ N , we introduce decision variables
y = {y0, y1, . . . , yN}, where yi ∈ [0, Y], representing the size
of the subtask assigned to server i. If yi = 0, it implies that
server i is not assigned any workload. Note that the master may
choose to execute (part of) the task locally, in which case y0
would be nonzero.

To describe the sending order for subtasks transmitted from
the master to the other servers, we introduce decision variables
o = {o1, o2, . . . , oN}, where oi ∈ N \ {0}, ∀i ∈ N \ {0} and
oi ̸= oj , ∀i, j ∈ N \ {0}, i ̸= j. When oi > oj , server i has
a higher priority than server j to receive its subtask, where
i, j ∈ N \ {0} and i ̸= j.

2) Objective Function: We aim to achieve two objectives
simultaneously: minimize the time spent and minimize the
energy consumed by each server for executing the task. By
employing a weighted sum method, we define the objective
function as follows:

J(y,o) = max
i∈N

w1T
total
i (y,o) + w2E

total
i (y) (5)

where w1, w2 ≥ 0 are the weights, representing the relative
importance of the two objectives. T total

i (y,o) is the total time
required for server i to receive its subtask from the master
and complete the assigned subtask. Note that the time required
for completing the whole task is maxT total

i (y,o), ∀i ∈ N .
Etotal

i (y) is the total energy consumed by server i during task
execution. Next, we derive the formulas for T total

i (y,o) and
Etotal

i (y).
3) Time Consumption: The task completion time

T total
i (y,o) is comprised of three components: 1) time

taken to transmit subtask of size yi from the master to server
i, denoted as T tran

i (yi); 2) time spent waiting in the queues of
relays along the path to server i if any, denoted as Twait

i (y,o);
and 3) time to execute the subtask, i.e., T comp

i (yi). It is noted
that the waiting time Twait

i (y,o) is impacted by the task
sizes assigned to other servers and the sending order, which
complicates the optimization problem considered in this study.

To obtain the transmission time T tran
i (yi), we introduce the

notation Pi to denote the sequence of servers that lie on the
path from the master to server i, and the notation pk to denote

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

2666
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 00:52:06 UTC from IEEE Xplore. Restrictions apply.

the k-th server in the sequence, where 1 ≤ k ≤ |Pi|, p1 = 0
and p|Pi| = i. T tran

i can then be expressed by:

T tran
i (yi) =

{
0, if i = 0∑|Pi|−1

k=1
yi

Rpk,pk+1
, else

(6)

Let’s now consider the waiting time Twait
i (y,o). Let ai

denote the ancestor of server i at Level 1, i.e., ai ∈ I1. In
the special case where server i is at Level 1, we have i = ai.
Additionally, let Ai denote the full set of servers in the subtree
of the master with ai as the root of the subtree. Note that
i ∈ Ai. Additionally, define Bi = {j|oj > oi, j ∈ Ai, i ̸= j}
as the set of servers whose subtasks will be transmitted before
server i. Note that if j /∈ Ai, the subtask for server j is
transmitted using a different channel that is orthogonal to the
one used for server i, and hence server i does not need to wait
for server j’s subtask to be transmitted even if oj > oi. Based
on these definitions, we can then express the waiting time as
follows:

Twait
i (y,o) =

{
0, if i = 0 or Bi = ∅∑

j∈Bi

∑|Pi,j |−1
k=1

yj

Rpk,pk+1
, else

(7)
where Pi,j = Pi ∩ Pj .

Based on (1), (6), and (7), we then have

T total
i (y,o) = T trans

i (yi) + Twait
i (y,o) + T comp

i (yi) (8)

4) Energy Consumption: With T total
i (y,o) and (3)-(4), the

energy consumption Etotal
i (y) can then be expressed by:

Etotal
i (y) = Ecomp

i (yi) +
∑
j∈Ci

Ecomm
i,j (yj) (9)

In the above equation, Ci is the set of children of server i,
whose subtasks will be relayed by server i.

5) Problem Formulation: Mathematically, the multi-
objective optimization problem can be formulated as follows:

P0 : min
y,o

J(y,o)

s.t.

N∑
i=0

yi = Y C1

0 ≤ yi ≤ Y, ∀i ∈ N C2

oi ∈ N \ {0}, ∀i ∈ N \ {0} C3

oi ̸= oj , ∀i, j ∈ N \ {0}, i ̸= j C4

C. Solution

To solve problem P0, we first transform it into a mixed
integer linear programming problem by introducing an auxiliary
variable z as follows:

P1 : min
y,o,z

z

s.t. z ≥ w1T
total
i (y,o) + w2E

total
i (y), ∀i ∈ N

C1− C4

Problem P1 can be further decomposed into two subprob-
lems. The first subproblem aims to optimize the task allocation
y, given a particular sending order denoted as o = ok:

P(a)
1 : min

y,z
z

s.t. z ≥ w1T
total
i (y,o) + w2E

total
i (y), ∀i ∈ N

C1− C2

Denote the optimal solution to problem P(a)
1 at o = ok as

{y∗(ok), z
∗(ok)}. The second subproblem aims to optimize

the sending order, given y = y∗(ok) and z = z∗(ok):

P(b)
1 : min

ok

z∗(ok)

Now let’s consider subproblem P(a)
1 , which can be solved

using Lagrange multipliers [19]. Particularly, the Lagrangian
function can be defined as follows:

L(y, z,λ, µ) = z +
N∑
i=0

λi [ci(y)− z] + µ

(
N∑
i=0

yi − Y

)
.

where ci(y) = w1T
total
i (y,o0) + w2E

total
i (y,o0). λ =

{λi}Ni=0 and µ are Lagrangian multipliers. λi ≥ 0, ∀i ∈ N .
Define

g(λ, µ) = min
y,z

L(y, z,λ, µ)

The dual optimization problem is then constructed as follows:

max
λ,µ

g(λ, µ) (10)

s.t. λ ≥ 0

As the objective function and the inequality constraints in our
problem are convex, and the equality constraints are affine
and strictly feasible, Slater’s condition [20] is satisfied and the
strong duality holds. That means p∗ = d∗, where p∗ and d∗

are the optimal values of the primal problem P(a)
1 and the

dual problem (10), respectively. The optimal solution to P(a)
1

can then be found by applying the Karush-Kuhn-Tucker (KKT)
conditions [21] as follows:

∂
∂yi

L(y, z,λ, µ) = 0, ∀i ∈ N
∂
∂zL(y, z,λ, µ) = 0∑N

i=0 yi = Y
λi(ci(y)− z) = 0, ∀i ∈ N
ci(y)− z ≤ 0, ∀i ∈ N
λi ≥ 0, ∀i ∈ N

(11)

Now we have a method for determining the optimal solution
to problem P(a)

1 . Problem P(b)
1 can be solved using exhaustive

search. However, as o can take N ! possible values, evaluating
each possible value is time-consuming. A significant reduction
in the number of possible values to evaluate can be achieved
by exploiting the parallelism in sending subtasks belonging to
different subtrees of the master. Specifically, the sending orders
for servers in any subtree Ai are independent of those in any
other subtree Aj , where i, j ∈ I1 and i ̸= j. Therefore, the
number of possible values of o that need to be evaluated can
be reduced to

∏
i∈I1

|Ai|!.

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

2667
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 00:52:06 UTC from IEEE Xplore. Restrictions apply.

To further improve efficiency, we apply a greedy search that
evaluates the sending orders for the subtrees of the master
one by one and selects the best order for each subtree at the
moment. By doing so, the search space is further reduced to∑

i∈I1
|Ai|!. As we will demonstrate in the following section,

although this strategy causes our approach to lose optimality,
the resulting solution is comparable to the optimal solution.

V. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate the
performance of the proposed multi-hop multi-layer distributed
computing strategy.

A. Experiment Setting

We evaluate our proposed approach on five different network
topologies, each transformed into a tree with varying depths
and breadths as shown in Fig. 2. In each network topology,
we configure the computing capacities fi of the servers by
randomly generating values from the range of [1.4, 2.6]MHz.
The values of the data transmission rates Rij fall within the
range of [40, 50]Mbps. Moreover, we set γi = 10−27, and
pi = 30dBm for ∀i, j ∈ N , i ̸= j. The task size is set to
Y = 1 Mbits and b = 1000 cycles/Mbit.

For comparison, we implement four state-of-the-art dis-
tributed computing and computation offloading schemes as
benchmarks.

• Local computing (Local): In this approach, the master
executes the entire task locally.

• Partial offloading (Partial): In this approach, the master
offloads part of the task to one of its one-hop neighbors.
The offloading ratio and offloadee selection are optimized
to minimize the task completion time.

• Master-worker distributed computing (Master-
worker): In this approach, the master distributes the
task to its one-hop neighbors using the master-worker
paradigm. The task allocation is optimized to minimize
the task completion time.

• Multi-hop offloading (Multi-hop) [22]: In this approach,
the master offloads the whole task to the most powerful
and reliable server in the network, which may be multiple
hops away.

B. Experiment Results

In the first experiment, we set the weights in the objective
function to w1 = 1 and w2 = 0, which transforms the objective

1

2

0

4

5

3

6

Topology 1

1 2

4 5

3

0

76

Topology 2

1 2

4

6

3

0

8

7

Topology 3

5

1 2

3

5 7

0

6

Topology 4

4

1 2

3

5 6

0

7

Topology 5

4

8

Fig. 2: Network topologies evaluated in simulation studies.

(a) (b)

Fig. 3: Total cost J of different methods when (a) w1 = 1,
w2 = 0; and (b) w1 = 0.5, w2 = 0.0416.

(a) (b)

Fig. 4: (a) Task completion time and (b) maximum energy con-
sumption of different methods when w1 = 0.5, w2 = 0.0416.

of our approach to minimize the task completion time only,
just like the benchmarks. As shown in Fig. 3a, our approach
outperforms all benchmarks across all scenarios. Among the
benchmarks, multi-hop offloading and local computing have
the poorest performance since they only use the computing
resources from a singe server. Partial offloading outperforms
local computing and multi-hop offloading by utilizing the
resources from two servers. The master-worker distributed com-
puting achieves even better performance by utilizing computing
resources from all servers within one hop. This experiment
provides evidence that increasing the utilization of resources
leads to better computing performance.

In the second experiment, we randomly set the weights
to w1 = 0.5 and w2 = 0.0416, so that both computation
efficiency and energy consumption are considered in our ap-
proach. Note that these weight values are also used in the
following experiments. Fig. 3b shows the comparison results,
which demonstrate the promising performance of our approach.
In Fig. 4a and Fig. 4b, we also show the task completion time,
i.e., maxi∈N T total

i , and the maximum energy consumption
by any server, i.e., maxi∈N Etotal

i , respectively. The results
indicate that, despite the trade-off between task completion time
and energy consumption in our approach, it still outperforms
all benchmarks when each aspect is considered separately.

To understand the impact of the height of the topology tree,
we evaluate the performance of different methods on Topology
5 (see Fig. 2). The height of the tree is varied by removing
nodes from lower levels. The results, shown in Fig. 5a, reveal
that the advantage of our approach becomes more apparent
as the height increases. However, when the height exceeds a
certain threshold, the performance converges or even degrades

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

2668
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 00:52:06 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 5: Performance comparison of (a) different methods as the
height of the topology tree increases; and (b) different methods
for optimizing the sending order o.

due to the cost of offloading tasks to servers that are too
far away outweighing the benefits in terms of time or energy
savings. Notably, the performance of all benchmarks, except for
multi-hop offloading, remains constant as the height increases
as they only consider servers within one hop.

In the last experiment, we evaluate the performance of our
greedy search strategy for determining the sending order o by
comparing it with 1) the exhaustive search method that exam-
ines all possible sending orders and 2) the random selection
method that randomly picks a value for o. The results, shown
in Fig. 5b, demonstrate that our method achieves comparable
performance to the exhaustive search algorithm.

VI. CONCLUSION AND FUTURE WORKS

This paper presents a new distributed computing strategy
that leverages layered network structures and multi-hop routing
to enable resource sharing beyond one-hop neighborhoods,
effectively utilizing the resources of the entire edge computing
system. To jointly optimize task allocation and scheduling,
we formulate a MIP problem and derive its optimal solution
using Lagrange multipliers. Comprehensive simulation studies
demonstrate the promising performance of our approach, out-
performing the state-of-the-art distributed computing and com-
putation offloading schemes. Our future research will extend
this work to consider multi-user, multi-task scenarios as well
as dynamic and mobile networks. We will also investigate the
hierarchical master-work paradigm.

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
under Grant CAREER-2048266 and CCRI-1730675 for the
support of this work.

REFERENCES

[1] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision
of iot: Applications, challenges, and opportunities with china
perspective,” IEEE Internet of Things journal, vol. 1, no. 4,
pp. 349–359, 2014.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE internet of things journal, vol. 3,
no. 5, pp. 637–646, 2016.

[3] J Linderoth, J. Goux, and M Yoder, “Metacomputing and the
master-worker paradigm,” Mathematics and Computer Science
Division, Argonne National Laboratory, Tech. Rep. ANL/MCS-
P792–0200, 2000.

[4] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward uav-based airborne
computing,” IEEE Wireless Communications, vol. 26, no. 6,
pp. 172–179, 2019.

[5] H. Zhang, B. Wang, R. Wu, et al., “Exploring networked
airborne computing: A comprehensive approach with advanced
simulator and hardware testbed,” Unmanned Systems, 2023.

[6] A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, “A survey
on task offloading in multi-access edge computing,” Journal of
Systems Architecture, vol. 118, p. 102 225, 2021.

[7] M. A. Hossain, W. Liu, and N. Ansari, “Computation-efficient
offloading and power control for mec in iot networks by meta
reinforcement learning,” IEEE Internet of Things Journal, 2024.

[8] D. Xu, “Device scheduling and computation offloading in
mobile edge computing networks: A novel noma scheme,” IEEE
Transactions on Vehicular Technology, 2024.

[9] J. Zhang, Y. Liu, and E. Yeh, “Result and congestion aware
optimal routing and partial offloading in collaborative edge
computing,” arXiv preprint arXiv:2205.00714, 2022.

[10] J. Xie, Y. Jia, W. Wen, Z. Chen, and L. Liang, “Dynamic d2d
multihop offloading in multi-access edge computing from the
perspective of learning theory in games,” IEEE Transactions on
Network and Service Management, vol. 20, no. 1, pp. 305–318,
2022.

[11] H. Zhang, Y. Yang, B. Shang, and P. Zhang, “Joint resource
allocation and multi-part collaborative task offloading in mec
systems,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 8, pp. 8877–8890, 2022.

[12] K. Aida, W. Natsume, and Y. Futakata, “Distributed computing
with hierarchical master-worker paradigm for parallel branch
and bound algorithm,” in The 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE, 2003,
pp. 156–163.

[13] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking:
A comprehensive survey,” Proceedings of the IEEE, vol. 103,
no. 1, pp. 14–76, 2014.

[14] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation
rate maximization in uav-enabled wireless-powered mobile-
edge computing systems,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 1927–1941, 2018. DOI:
10.1109/JSAC.2018.2864426.

[15] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep
learning for the internet of things with edge computing,” IEEE
network, vol. 32, no. 1, pp. 96–101, 2018.

[16] J. Chen and J. Xie, “Joint task scheduling, routing, and charging
for multi-uav based mobile edge computing,” in ICC 2022
- IEEE International Conference on Communications, 2022,
pp. 1–6. DOI: 10.1109/ICC45855.2022.9839040.

[17] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint
offloading and trajectory design for uav-enabled mobile edge
computing systems,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1879–1892, 2019. DOI: 10.1109/JIOT.2018.2878876.

[18] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” in Edsger Wybe Dijkstra: His Life, Work, and Legacy,
2022, pp. 287–290.

[19] S. Boyd, Convex optimization–boyd and vandenberghe, 2004.
[20] A. Auslender and M. Teboulle, “Lagrangian duality and related

multiplier methods for variational inequality problems,” SIAM
Journal on Optimization, vol. 10, no. 4, pp. 1097–1115, 2000.

[21] Z.-Q. Luo and W. Yu, “An introduction to convex optimization
for communications and signal processing,” IEEE Journal on
selected areas in communications, vol. 24, no. 8, pp. 1426–
1438, 2006.

[22] W. Gao, “Opportunistic peer-to-peer mobile cloud computing
at the tactical edge,” in IEEE Military Communications Con-
ference, IEEE, 2014, pp. 1614–1620.

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

2669
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 00:52:06 UTC from IEEE Xplore. Restrictions apply.

