
DRL-based Task Offloading for Networked UAVs
with Random Mobility and Collision Avoidance

Xixin Zhang
Department of Electrical and Computer Engineering

University of California San Diego
San Diego State University

La Jolla, USA
xiz166@ucsd.edu

Junfei Xie
Department of Electrical and Computer Engineering

San Diego State University
San Diego, USA
jxie4@sdsu.edu

Abstract—Unmanned Aerial Vehicles (UAVs) have gained
widespread use across various fields due to their flexibility and
multifunctionality. However, their limited onboard computing
capacity is often criticized for hindering their ability to execute
complex tasks in real-time. To address this challenge, Networked
Airborne Computing (NAC) has emerged, which leverages the
collective computing power of multiple UAVs to enable efficient
handling of large-scale data processing, real-time analytics, and
complex mission coordination. Despite its potential, research in
this area is still in its infancy. In this paper, we consider a typical
NAC scenario where multiple UAVs with collision avoidance
capabilities share resources while moving randomly within an
area. Without prior knowledge of the system models, we aim to
optimize task allocation among UAVs with uncertain mobility.
To achieve this, we propose a Deep Reinforcement Learning
algorithm based on the Twin Delayed Deep Deterministic Pol-
icy Gradient (TD3). Simulation results demonstrate that our
approach significantly speeds up task execution compared to
existing methods.

Index Terms—Computation Offloading, Deep Reinforcement
Learning, Unmanned Aerial Vehicle, Edge Computing

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs), or drones,
have seen rapid advancements and growing popularity in
areas such as precision agriculture, disaster response, aerial
photography, and environmental monitoring [1], [2]. As UAV
applications become increasingly complex, the use of multiple
cooperative UAVs has become more common. Nevertheless,
their limited onboard computational resources often become
a bottleneck. One solution that naturally follows is to offload
computationally intensive tasks to external resources.

Extensive research has focused on efficiently utilizing re-
sources on edge servers or remote clouds to support multi-
UAV applications. For instance, Liu et al. [3] proposed to
utilize a UAV-Edge-Cloud computing model and formulate
a joint optimization of workflow assignment and multi-hop
routing scheduling for UAV swarms to minimize computa-
tion cost and latency. Bai et al. [4] investigated delay-aware
cooperative task offloading for multi-UAV enabled edge-cloud
computing, proposing an algorithm to balance task distribution
and minimize completion delay. In these studies, UAVs in the

We would like to thank National Science Foundation under Grant
CAREER-2048266 and CCRI-2235159 for the support of this work.

swarm are typically viewed as relays that bring edge servers
or remote clouds closer, rather than computing nodes. They
get sufficient computing resources at the cost of a high data
transmission delay, which may not be acceptable for time-
sensitive UAV applications not to mention real-time tasks.
Moreover, mobile edge servers require a reliable local network
infrastructure, which is difficult to deploy and scale, especially
in underdeveloped or post-disaster areas [5].

With technological advancements, the emergence of small,
lightweight yet powerful micro-computers has significantly
accelerated the onboard computing capacity of UAVs. This
has spurred researchers to explore UAVs’ potential in acting
as edge servers. In [6], Hu et al. leveraged the computing
resources of a moving UAV to serve ground users, aimed to
minimize the total maximum delays among users by jointly
optimizing offloading ratios, user scheduling, and UAV tra-
jectory in a UAV-aided mobile edge computing system. Miao
et al. [7] proposed a multi-UAV-assisted mobile edge com-
puting (MEC) offloading algorithm that maximizes the access
quantity and minimizes the task completion latency by cluster
path planning based on user mobility and communication
coverage. Although UAVs have proven promising in providing
on-demand computing resources, these studies treat them as
separate servers.

To harness the full computational potential of multi-UAV
systems, a new paradigm called Networked Airborne Com-
puting (NAC) is proposed, where multiple aerial vehicles
share resources among each other [8]. The fast deployment,
infrastructure-free, and low-cost characteristics make the UAV-
based NAC a promising technique. Nevertheless, research in
NAC is still in its early stages. In our previous studies, we
have developed a ROS-based simulator and a hardware testbed
that consists of multiple UAVs to facilitate NAC research [9].
In [10], we introduced a coded distributed computing scheme
based on deep reinforcement learning (DRL) for optimally
partitioning and allocating tasks to multiple networked UAVs.
This scheme addresses two typical NAC scenarios. The first
scenario involves uncontrollable UAV mobility, which can
happen when they are operated by different owners. In the
second scenario, UAVs are controlled to assist in task compu-
tation. Simulation results demonstrate the effectiveness of the

2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

979-8-3503-8744-5/24/$31.00 ©2024 IEEE 514

2
0

2
4

 2
0

t
h

 I
n

t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 W
ir

e
le

s
s
 a

n
d

 M
o

b
il

e
 C

o
m

p
u

t
in

g
,

N
e

t
w

o
r
k

in
g

 a
n

d
 C

o
m

m
u

n
ic

a
t
io

n
s
 (

W
iM

o
b

)
|

 9
7

9
-8

-3
5

0
3

-8
7

4
4

-5
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
W

IM
O

B
6

1
9

1
1

.2
0

2
4

.1
0

7
7

0
4

2
1

Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 01:02:24 UTC from IEEE Xplore. Restrictions apply.

proposed scheme. However, in the first scenario, we assumed
UAVs maintain a consistent movement pattern throughout the
execution of a particular task and did not account for motion
interference between UAVs due to collision avoidance. More-
over, the simple matrix multiplication tasks were considered.

In this paper, we investigate a more common yet challenging
NAC scenario where all UAVs, including both offloaders
and offloadees, move randomly during task execution while
actively avoiding collisions. None of the UAVs have prior
knowledge of the environment or system models, and their
movement patterns or future trajectories are not shared among
each other. Additionally, we generalize computation tasks as
any functions or operations that can be partitioned into arbi-
trary subtasks for parallel computation. To model UAV move-
ment, we extend the traditional Random Direction model [11],
originally designed for individual entities, to capture collision
avoidance interactions among multiple UAVs. Furthermore, we
formulate a nonlinear optimization to optimize task allocation
and develop a DRL algorithm based on the Twin Delayed
Deep Deterministic Policy Gradient (TD3) [12] to solve it.
We evaluate the performance of the proposed method through
extensive comparative simulation studies, which demonstrate
its promising performance.

In the rest of this paper, Sec. II details the system models
and formulates the optimization problem. Sec. III describes
the proposed DRL algorithm. In Sec. IV, simulation results
are presented and discussed. We conclude in Sec. V.

II. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first introduce the system models used
to construct the simulated environment, which are unknown
to the UAVs. Then we formulate the problem to be solved.

A. System Models

Consider a group of N + 1 heterogeneous UAVs with
varying physical configurations, indexed as i 2 N =
{0, 1, 2, ..., N}. Each UAV is equipped with computing and
communication modules, enabling resource sharing and on-
board computation. Their computing, communication, and
mobility characteristics can be modeled as follows.

1) Computing Model: We describe the computing capabil-
ity of each UAV i as CPU cycle frequency fi in Hz. For a
general computing task k, its input data size is Sk (bits), and
its required computation intensity is ⇠k (cycles/bit) [13]. The
total CPU cycles required to compute task k is hence ⇠kSk

and the time required for UAV i to execute this task is

T
comp
k,i =

⇠kSk

fi
(1)

2) Communication Model: Denote the distance between
UAV i and UAV j as dij . The UAV-to-UAV links are typically
Line of Sight (LoS), with propagation speed approaching
the speed of light. Hence, the transmission latency can be
approximated using the transmission time. Here, we model

the transmission rate (bits/s) based on the Simplified Path Loss
Model [14] as follows

⌫ij = B log2(1 +
G(dr/dij)✓ i

N0B
) (2)

where B is the bandwidth (Hz) of the channel, dr is the
reference distance (meter), G is the unitless constant equal to
the path gain of the distance dr, ✓ is the path loss exponent,
 i is the transmitted power (mW) and N0 is the noise power
spectral density (dBm/Hz). The overall transmission time is as
follows

T
trans
k,ij =

Sk

⌫ij
(3)

3) Mobility Model: We assume the UAVs fly at the same
altitude. Therefore, the position of each UAV i at time t can be
depicted as pi(t) = (xi(t), yi(t)) 2 R2 with constraints 0 
xi(t) W , 0  yi(t) W , such that the position is bounded
within an area of W ⇥ W (m2). To model its movement,
we adopt the Random Direction (RD) model [11], which has
been widely used for describing UAVs, particularly multirotor
drones [15]. Given initial position pi(0) = (xi(0), yi(0)),
UAV i randomly picks a constant velocity, where the mag-
nitude ranges uniformly between 0 and vmax 2 R, and the
direction is uniformly distributed across 2⇡. The UAV then
moves in a straight line for a duration randomly selected
from an exponential distribution with parameter �. Once this
duration is completed, the UAV chooses another velocity and
duration, repeating the process. Suppose at the m-th instance
when UAV i changes its velocity, it selects a new velocity
vi,m 2 R2 and duration �i,m 2 R. We define the start time of
the m-th instance as tm =

Pm�1
l=�1 �i,l, with �i,�1 = 0. The

UAV i’s position at time t, where tm  t < tm+1, can be
represented as follows

pi(t) = pi(0) +
m�1X

l=�1

�i,lvi,l + (t� tm)vi,m (4)

The traditional RD model is designed to describe the
mobility of a single entity. However, in multi-UAV systems,
the mobility of UAVs can change to avoid collisions. This ne-
cessitates the incorporation of collision avoidance mechanisms
into the RD model. Here, we assume that each UAV i will turn
around and move in the opposite direction without changing
speed until the current duration is completed when its distance
to any other UAV j falls below a threshold Di. Note that if
both UAVs have the same threshold Di = Dj , UAV j will
also reserve its direction. By treating the boundaries of the
area as obstacles, we ensure that all UAVs move within the
designated area. The mobility of each UAV i with collision
avoidance can then be described as

pi(t) = pi(0) +
m�1X

l=�1

(�oi,l � �ci,l)vi,l

+ (�̃oi,m � �̃ci,m)vi,m

(5)

where 0  �oi,l  �i,l is the time spent moving at velocity vi,l

in the l-th instance before triggering collision avoidance and

2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

515
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 01:02:24 UTC from IEEE Xplore. Restrictions apply.

�
c
i,l = �i,l � �

o
i,l. Likewise, 0  �̃

o
i,m  t � tm is the time

spent moving at velocity vi,m before collision avoidance in
the m-th instance, and �̃cm = (t� tm)� �̃om.

B. Problem Formulation

Without loss of generality, we let UAV i = 0 be the
master (or offloader) and treat the remaining N UAVs as
potential offloadees with idle computing resources. Suppose
a sequence of computing tasks K = {1, 2, ...,K} is generated
at the master, and each task k can be divided into Lk 2 Z+

atomic tasks of size `k = Sk
Lk

, which can be computed in
parallel. To minimize the total task completion time, the master
aims to optimally allocate the Lk atomic tasks among all
the UAVs, including itself. Suppose the workload offloaded
to UAV i 2 N for task k is c

k
i `k, where c

k
i is a non-negative

integer that satisfies 0  c
k
i  Lk. Therefore,

PN
i=0 c

k
i = Lk.

Of note, when there is no workload offloaded to UAV i, then
c
k
i = 0.

Let Tk denote the time taken to compute task k, and Tk,i

represent the time taken by UAV i to receive the data, process
it and return the result back to the master. We then have

Tk = max
i

Tk,i (6)

For simplicity, we assume the result size is small and the
latency of sending it back is negligible, as often assumed in
existing works [16]. Therefore, Tk,i can be expressed as

Tk,i = T
comp
k,i + T

trans
k,i (7)

According to the computing and communication models de-
scribed in the previous section, we can derive that T comp

k,i =
⇠kc

k
i `k
fi

and T
trans
k,i satisfies
(R T trans

k,i

0 ⌫0i(t) dt = c
k
i `k if i 6= 0

T
trans
k,i = 0 if i = 0

(8)

The problem can then be mathematically formulated as
follows

Minimize
cki ,8i2N ,k2K

KX

k=1

Tk (9a)

subject to
NX

i=0

c
k
i `k = Sk 8k 2 K (9b)

c
k
i 2 Z, 0  c

k
i  Lk, 8i 2 N , k 2 K (9c)

III. DEEP REINFORCEMENT LEARNING SOLUTION

To solve the optimization problem formulated in the pre-
vious section, the greatest challenge lies in the unknown
relationship between Tk and the decision variables c

k
i , as

UAVs lack knowledge of the system models. Additionally,
the randomness of UAVs’ mobility presents another signifi-
cant challenge. In this section, we introduce our model-free
DRL-based algorithm, a variant of the Twin Delayed Deep
Deterministic policy gradient algorithm (TD3) [12], to address
these challenges.

A. Markov Decision Process

We first covert the optimization problem into a Markov
Decision Process represented by a tuple (S,A, r, P), where
S is the state space, A is the action space, P is the state
transition model, and r is the reward function. The master
UAV is the DRL agent that takes actions to minimize the total
task completion time.

1) State: We assume the master agent only has access to
all UAVs’ positions pi(t), 8i 2 N at each time t, and the
prior knowledge about their configurations, i.e. idle computing
resources fi, and communication capabilities characterized
by transmitted powers �i. We discretize the time into steps
of length �t. Let t

k denote the start time of task k, the
state at t

k is defined as the combination of the task size
Sk, all UAVs’ historic trajectories and configurations sk =
[Sk, (⇢0(k), f0,�0), (⇢1(k), f1,�1), ..., (⇢N (k), fN ,�N)] 2
S , where ⇢i(k) = [pi(tk � M�t),pi(tk � (M �
1)�t), ...,pi(tk)] 2 R2⇥(M+1) is UAV i’s trajectory consist-
ing of its most recent M -step positions (including the start
point).

2) Action: Every time a task k arrives, the master agent
partitions it into sub-tasks of varying amounts of atomic tasks
and offloads them to different UAVs. Let µ

k
i � 0 denote

the portion of task k offloaded to UAV i 2 N , such thatPN
i=0 µ

k
i = 1. The action taken by the master at time t

k

is defined as ak = [µk
0 , µ

k
1 , ..., µ

k
N] 2 A, where A is the

space of N -simplex. The workload offloaded to UAV i is then
computed by c

k
i = round(µ

k
i Sk

`k
).

3) Reward: To minimize the total task completion time, we
define the reward function as follows

r(sk, ak) =
SkP

k2K Sk
· T̃k � Tk

T̃k

(10)

where T̃k = ⇠kSk

f0
represents the time required to execute task

k locally at the master and Tk�T̃k
Tk

indicates the acceleration
rate achieved by offloading the task to nearby UAVs. SkP

k2K Sk

is the weight of task k among all tasks.
4) Transition: As discussed in Sec. II, all UAVs move

randomly according to the random mobility model with col-
lision avoidance schemes. Hence, the transition model, which
describes the state transitions given the current action, depends
on the random mobility model and can be abstracted as follows

sk+1 ⇠ P (sk+1|sk, ak; vmax,�) (11)

where P (·) represents the transition model, whose explicit
form is unknown. vmax and � are parameters of the random
mobility model.

B. TD3-based Offloading

TD3 [12] is an advanced actor-critic algorithm designed for
continuous action spaces in DRL. Here, we introduce a variant
of the TD3 algorithm to enable the master UAV to identify
trustworthy offloadees and optimize task allocation.

2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

516
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 01:02:24 UTC from IEEE Xplore. Restrictions apply.

1) Actor: The behavior of the master agent is defined
by a policy function ⇡ : S ! A, which maps each state
s 2 S to a continuous action a 2 A. The goal of the
agent is to determine the optimal policy ⇡⇤, which maximizes
the expected return defined as J = Esk⇠P,ak⇠⇡[R1], where
Rk =

PK
i=k �

i�k
r(si, ai) is the accumulative discounted

reward and � is the discount factor.
To approximate the policy function, TD3 [12] utilizes a

neural network parameterized by �, denoted as ⇡�, which
directly maps the state space s 2 S to the action space A.
To satisfy the constraints in (9b), we adjust the actor ⇡� as
follows. By including all UAVs’ historic trajectories in the
state, the neural network can learn the movement patterns
of each UAV and their interactions. Moreover, the network
adjusts weights to prioritize UAVs that have more resources
to share and are more likely to remain close to the master.
Therefore, the neural network’s output logits zk 2 RN+1 can
be interpreted as the reliability score of each UAV. We then
use the Softmax function to decide the offloading portions
according to UAVs’ reliability scores as follows

µ
k
i = Softmax(zki) =

e
zk
i

PN
j=0 e

zk
j

(12)

where z
k
i represents the reliability score of UAV i for com-

pleting task k.
To estimate the parameters �, we apply off-policy learning

to enhance training stability. Moreover, to strengthen the
robustness of the learned policy function against variance
and prevent overfitting to narrow peaks of action values,
we add random noise to the actions of the target actor ⇡�0

parameterized by �0 as follows [12]

µ̃
k
i =(1� �)µk

i + �✏i

✏ ⇠ Dir(↵policy)
(13)

where � is the weight of noise ✏i, and ✏i 2 RN+1 is sampled
from the Dirichlet distribution [17] with a concentration pa-
rameter ↵policy that is uniform across all elements. Of note,
the Dirichlet distribution guarantees that the actions remain
within the space of N -simplex.

2) Critic: Given the state sk and the action ak taken,
the state-action value function Q

⇡ provides the expected
return when following policy ⇡ thereafter, i.e., Q⇡(sk, ak) =
Esi>k⇠P,ai>k⇠⇡[Rk|sk, ak]. To approximate the critic Q

⇡ ,
neural networks are also used. Following TD3 [12], we define
two primary critic networks Q✓1 and Q✓2 and two target critic
networks Q✓0

1
and Q✓0

2
parameterized by ✓1, ✓2, ✓01 and ✓

0
2,

respectively.
3) Training: As shown in Alg. 1, the training starts by

initializing all the parameters and the replay buffer D, which
stores transition samples (Lines 1-3). At each training iteration
u, the master agent interacts with the environment to collect
transition data and store them in the buffer D until the number
of collected transitions exceeds H (Lines 5-6). After that, the
agent utilizes a batch B sampled from the replay buffer to
update the parameters of the critics (Lines 9-11) and actor

(Lines 12-13). Particularly, the parameters ✓i, i 2 {1, 2}, of
each primary critic is updated by minimizing the following
loss over the sampled batch

li =
1

|B|
X

(s,a,r,s0)2B

(y �Q✓i(s, a))
2 (14)

where y = r(s, a) + �mini=1,2 Q✓0
i
(s0, ã) and ã =

(µ̃0, µ̃1, ..., µ̃N) is the regularized action defined in (13).
A lower update frequency is necessary for the policy func-

tion compared to the value function, otherwise, it may lead
to divergence. Hence, we update the policy function every d

iterations by maximizing the expected return in the direction
of the batch gradient of the policy, where the gradient is
computed by

r�J =
1

|B|
X

(s,a,r,s0)2B

[raQ✓1(s, a)|a=⇡�(s)r�⇡�(s)] (15)

Also, the parameters of the target networks are gradually
adjusted towards the weights of the primary networks through
weighted soft updates every d iteration as follows

✓
0
i ✓i + (1� ⌧)(✓0i � ✓i), i = 1, 2

�
0 �+ (1� ⌧)(�0 � �)

(16)

where ⌧ 2 [0, 1] is the weight.

Algorithm 1 TD3 training for task offloading
1: Initialize the critic networks Q✓1 , Q✓2 by randomly assign-

ing values to ✓1, ✓2, and initialize the target critic networks
Q✓0

1
, Q✓0

2
by setting ✓01 ✓1, ✓

0
2 ✓2

2: Initialize the actor network ⇡� and the target actor ⇡�0 by
randomly assigning values to � and setting �0 �

3: Initialize the replay buffer by D ;
4: for u = 1 to U do
5: Select action a ⇠ (1��)⇡�(s)+�✏, with exploration

noise ✏ ⇠ Dir(↵explore), observe reward r and new state
s
0

6: Store the transition tuple (s, a, r, s0) in D
7: if u > H then
8: Sample a batch of |B| transitions (s, a, r, s0) from

buffer D
9: ã

0 (1� �)⇡�0(s0) + �✏, ✏ ⇠ Dir(↵policy)
10: y r + �mini=1,2 Q✓0

i
(s0, ã0)

11: Update the critics by ✓i argmin✓i
1
|B|

P
(y �

Q✓i(s, a))
2, i = 1, 2

12: if u mod d = 0 then
13: Update the actor by �

argmax�
1
|B|

P
Q✓1(s,⇡�(s))

14: Update the target network by ✓
0
i ✓i + (1 �

⌧)(✓0i � ✓i), i = 1, 2 and �0 �+ (1� ⌧)(�0 � �)
15: end if
16: end if
17: end for

2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

517
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 01:02:24 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the
effectiveness and scalability of our proposed TD3-based DRL
algorithm.

A. Environment Setting
We evaluate our method in simulated scenarios with one

master UAV and N = 3, 6, 9, or 12 offloadee UAVs
respectively. For the multi-UAV RD mobility model, we set its
parameters as vmax = 20 m/s, � = 1

15 , and Di = 5, 8i 2 N .
The length of each discrete time step is set to �t = 1 second.
We also vary the size of the flying zone and consider two sizes,
W = 300m and W = 400m. The computing power fi of each
UAV i is randomly configured by selecting values from the
range of [1, 1.6] Ghz. The task list consists of K = 25 tasks
that can be locally completed in T̃k 2 [20, 60] seconds by the
master UAV. All tasks can be divided into Lk = 1000 atomic
tasks. The computation intensity is set to be the same ⇠k = 106

cycles/kB for all tasks, and the size of each task is determined
by Sk = f0T̃k

⇠k
. As a case of a networked UAV swarm utilizing

5G Wi-Fi communication for data transmission, we set the
bandwidth B = 40 MHz, relative distance dr = 1 meter, path
gain G = 40, path loss exponent ✓ = 4, and noise power
spectral density N0 = �174 dBm/Hz. The transmitted power
 i of the master UAV to each UAV i 2 N \ {0} varies from
80 mW to 120 mW.

B. Training Performance
We employ a 3-layer Multilayer Perceptrons (MLP) [18]

architecture for both the actor and critic networks. The actor
network takes observations as input, whose dimension is based
on the number of computing nodes N + 1, and outputs
actions of dimension N . Each UAV trajectory has a length
of M + 1, where M = 20. The critic network takes the
concatenation of observations and actions as input and outputs
a scalar representing the state action value. The width of the
hidden layer in both networks is set to twice the dimension
of the input. All parameters are initialized using Kaiming
initialization [19].

The learning rates for the actor and critic networks are set
to 0.0001 and 0.0002, respectively. The threshold H is set to
1000 and the batch size is |B| = 512. The gradient norm is
clipped between 0 and 0.2. The exploration and policy noise
are sampled from a Dirichlet distribution with parameters
↵explore = 0.1 and ↵policy = 0.99, respectively. The noise
weight is � = 0.1 and the discount factor � is 0.99. The actor
network is updated every d = 25 iterations, and the soft update
weight ⌧ for target networks is 0.005.

In each scenario, we train the agent for 3000 episodes, i.e.,
U = 3000K = 75000 iterations, with three different random
seeds. The results are shown in Fig. 1 and Fig. 2. The latency
reduction is defined as the reduction in total task completion
by task offloading compared to local computing at the master
UAV, i.e.,

Latency Reduction =

P
k2K T̃k �

P
k2K TkP

k2K T̃k

⇥ 100%.

Fig. 1. Learning Curve (300⇥ 300m2)

Fig. 2. Learning Curve(400⇥ 400m2)

The two figures demonstrate that our method converges after
training and shows promising stability. When UAVs are re-
stricted to an area of 300⇥300m2 (Fig. 1), increasing the num-
ber of potential offloadees (workers) reduces task completion
time. The same phenomenon is observed when the flying zone
expands to 400⇥400m2, except when the number of potential
workers increases to N = 12. The performance degradation
at N = 12 may be due to increased collision avoidance
maneuvers, which make UAVs’ mobility more uncertain and
harder to learn and predict. Intuitively, the master agent tends
to share workload with UAVs that are more likely to remain
nearby throughout task execution, as indicated by a higher
reliability score z

k
i . Therefore, when UAV mobility becomes

more uncertain, fewer workers are selected as offloadees due
to reduced reliability. This is confirmed by the results shown in
Fig. 2, where performance improves when collision avoidance
mechanisms are not in place. It also indicates that the task
completion time cannot be infinitely reduced by continuously
adding more UAVs to the region.

C. Comparison Studies

To evaluate the performance of the proposed method, we
compare it with five benchmarks, including (1) Equal (all) that
equally divides and distributes tasks to all UAVs; (2) Equal
(close) that equally partitions and distributes tasks to UAVs
that are close enough with distance to the master satisfying
di < 100m; (3) Naive Prediction that selects offloadees based
on predicted future trajectories and assigns sub-tasks of equal
size to these offloadees. Specifically, it predicts each UAV’s
trajectory for the next 20 steps, assuming the UAVs maintain
their current velocity and ignoring potential collisions. It then
calculates the percentage qi of predicted UAV positions that
remain within 200m of the master (di < 200m). UAVs
with qi � 40% are selected as offloadees; (4) Reliable

2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

518
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 01:02:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Performance Comparison (300⇥ 300m2)

Fig. 4. Performance Comparison (400⇥ 400m2)

that allocates tasks based on a reliability score defined as
reliability = qi ifi. It picks the top dN+1

2 e UAVs with the
highest reliability scores and assigns tasks to these UAVs
proportionally to their reliability scores; (5) Random that
randomly samples actions from the action space.

The results in Fig. 3 and Fig. 4 demonstrate the promising
performance of our method, which achieves the highest latency
reduction across all scenarios. When the area is 300⇥300m2,
the Naive Prediction ranks second in scenarios with 3, 6, and
9 workers, while the Equal (close) ranks second in scenarios
with 12 workers. When the area expands to 400 ⇥ 400m2

(Fig. 4), the Equal (all) and the Random provide no benefit
in reducing latency; instead, they significantly delay task
completion. Comparing Fig. 3 and Fig. 4, we can observe
that as the area increases for a fixed N , the performance
of all methods degrades. This is due to the sparser airspace,
which causes UAVs to be farther apart from each other, thereby
increasing transmission latency and task completion time.

V. CONCLUSION

In this paper, we addressed the optimal task offloading
problem in a typical NAC scenario, where multiple UAVs
with random mobility and collision avoidance capabilities co-
ordinate to perform computational tasks by sharing resources.
This problem is challenged by unknown system models and
uncertainties in UAV mobility. To address these challenges,
we developed a DRL algorithm based on TD3. To capture
the uncertain mobility of the UAVs, we proposed a multi-
UAV random mobility model, which extends the traditional
RD model designed for individual entities by incorporating a
collision avoidance mechanism. The simulation results demon-
strate that our approach significantly reduces task completion

time compared to existing methods. Additionally, they show a
bounded improvement in performance when more UAVs are
engaged in computing, highlighting that performance gains are
not infinite with additional nodes. The results also demon-
strate the negative impact of collision avoidance maneuvers
on system performance, which increases uncertainty in UAV
mobility. Our future work will extend to scenarios where UAVs
have more complex movement patterns and where tasks are
generated at multiple UAVs.

REFERENCES

[1] H. Kurunathan, H. Huang, K. Li, W. Ni, and E. Hossain, “Machine
learning-aided operations and communications of unmanned aerial
vehicles: A contemporary survey,” IEEE Communications Surveys &
Tutorials, 2023.

[2] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,” IEEE Com-
munications magazine, vol. 54, no. 5, pp. 36–42, 2016.

[3] B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, “Online computation
offloading and traffic routing for uav swarms in edge-cloud computing,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8777–
8791, 2020.

[4] Z. Bai, Y. Lin, Y. Cao, and W. Wang, “Delay-aware cooperative
task offloading for multi-uav enabled edge-cloud computing,” IEEE
Transactions on Mobile Computing, 2022.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[6] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading
and trajectory design for uav-enabled mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1879–1892, 2018.

[7] Y. Miao, K. Hwang, D. Wu, Y. Hao, and M. Chen, “Drone swarm path
planning for mobile edge computing in industrial internet of things,”
IEEE Transactions on Industrial Informatics, 2022.

[8] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward uav-based airborne com-
puting,” IEEE Wireless Communications, vol. 26, no. 6, pp. 172–179,
2019.

[9] H. Zhang, B. Wang, R. Wu, J. Xie, Y. Wan, S. Fu, and K. Lu,
“Exploring networked airborne computing: A comprehensive approach
with advanced simulator and hardware testbed,” Unmanned Systems,
2023.

[10] B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “Learning and batch-
processing based coded computation with mobility awareness for net-
worked airborne computing,” IEEE Transactions on Vehicular Technol-
ogy, 2022.

[11] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser, “An analysis of the
optimum node density for ad hoc mobile networks,” in ICC 2001. IEEE
International Conference on Communications. Conference Record (Cat.
No. 01CH37240), vol. 3. IEEE, 2001, pp. 857–861.

[12] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approx-
imation Error in Actor-Critic Methods,” Oct. 2018.

[13] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient joint
offloading and wireless resource allocation strategy in multi-mec server
systems,” in 2018 IEEE international conference on communications
(ICC). IEEE, 2018, pp. 1–6.

[14] A. Goldsmith, Wireless communications. Cambridge university press,
2005.

[15] D. S. Lakew, U. Sa’ad, N.-N. Dao, W. Na, and S. Cho, “Routing in flying
ad hoc networks: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1071–1120, 2020.

[16] N. T. Hoa, N. C. Luong, D. Van Le, D. Niyato et al., “Deep reinforce-
ment learning for multi-hop offloading in uav-assisted edge computing,”
IEEE Transactions on Vehicular Technology, 2023.

[17] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

2024 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

519
Authorized licensed use limited to: San Diego State University. Downloaded on January 23,2025 at 01:02:24 UTC from IEEE Xplore. Restrictions apply.

