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Heterotrophic microorganisms in marine sediments produce extracellular enzymes to
hydrolyze organic macromolecules, so their products can be transported inside the cell
and used for energy and growth. Therefore, extracellular enzymes may mediate the fate
of organic carbon in sediments. The Baltic Sea Basin is a primarily depositional environment
with high potential for organic matter preservation. The potential activities of multiple
organic carbon-degrading enzymes were measured in samples obtained by the
International Ocean Discovery Program Expedition 347 from the Little Belt Strait, Denmark,
core MO059C. Potential maximum hydrolysis rates (V... were measured at depths down
to 77.9mbsf for the following enzymes: alkaline phosphatase, p-D-xylosidase, p-b-
cellobiohydrolase, N-acetyl-p-D-glucosaminidase, p-glucosidase, a-glucosidase, leucyl
aminopeptidase, arginyl aminopeptidase, prolyl aminopeptidase, gingipain, and clostripain.
Extracellular peptidase activities were detectable at depths shallower than 54.95 mbsf,
and alkaline phosphatase activity was detectable throughout the core, albeit against a
relatively high activity in autoclaved sediments. p-glucosidase activities were detected
above 30mbsf; however, activities of other glycosyl hydrolases (p-xylosidase,
B-cellobiohydrolase, N-acetyl--glucosaminidase, and a-glucosidase) were generally
indistinguishable from zero at all depths. These extracellular enzymes appear to
be extremely stable: Among all enzymes, a median of 51.3% of enzyme activity was
retained after autoclaving for an hour. We show that enzyme turnover times scale with
the inverse of community metabolic rates, such that enzyme lifetimes in subsurface
sediments, in which metabolic rates are very slow, are likely to be extraordinarily long.
A back-of-the-envelope calculation suggests enzyme lifetimes are, at minimum, on the
order of 230days, and may be substantially longer. These results lend empirical support
to the hypothesis that a population of subsurface microbes persist by using extracellular
enzymes to slowly metabolize old, highly degraded organic carbon.

Keywords: extracellular enzymatic activity, Baltic Sea, International Ocean Discovery Program 347, peptidase
activities, subsurface microbial ecosystem
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INTRODUCTION

Subsurface marine sediments contain a diverse community of
heterotrophic microbes which metabolize organic carbon at
extraordinarily slow rates (Hoehler and Jorgensen, 2013; Hoshino
et al., 2020). There has been extensive research on the electron
acceptors that subsurface heterotrophs use to gain energy, but
the nature of electron donors that fuel these metabolisms is
more mysterious (LaRowe et al., 2020). Heterotrophic microbes
access large organic molecules via extracellular or periplasmic
hydrolysis, which is catalyzed by extracellular enzymes (Benz
and Bauer, 1988; Reintjes et al., 2017). These enzymes may
be tethered to cell membranes or released freely into the
extracellular medium; either of these strategies may be optimal
depending on the situation (Vetter et al.,, 1998; Traving et al,
2015). Due to the extreme energy limitation and low
concentrations of labile organic matter that characterize deeply
buried marine sediments (Bradley et al., 2020), extracellular
enzymes may be a particularly important bottleneck for energy
acquisition: Enzymes are expensive to produce in terms of
carbon, nitrogen, and energy, so it is important for extracellular
enzymes to provide a positive “return on investment” to the
microbes that synthesize them. At the same time, any specific
enzyme typically catalyzes only a very narrow set of reactions,
so extracellular enzymes produced by microbes must match
the set of molecules that are present in the environment. Finally,
interspecific interactions must be conducive to enzyme
production: If “cheaters” (microbes which do not produce
extracellular enzymes, but which metabolize hydrolysis products)
can outcompete enzyme producers, this can in principle lead
to the extinction of enzyme producers (Allison, 2005). In a
system, such as subsurface sediments, in which immigration
and evolution are slow (Walsh et al., 2016; Starnawski et al,,
2017; Marshall et al, 2019), such an extinction could
be permanent. Therefore, several factors suggest that metabolism
of high molecular weight organic substrates is a more challenging
proposition in the subsurface than in surface environments.

Nevertheless, active extracellular enzymes have been observed
in a wide range of subsurface environments (e.g., Coolen and
Overmann, 2000; Engelen et al., 2008; Lloyd et al., 2013; Meyers
et al.,, 2014; Bird et al., 2019), apparently catalyzed by diverse
microbes (Orsi et al., 2018). Notwithstanding the diversity of
subsurface environments in which active extracellular enzymes
have been observed, only a handful studies have addressed
extracellular enzymes below ~20 cm below the seafloor (Arnosti
et al., 2014). The range, diversity, and controls on extracellular
enzymes as a pathway for heterotrophic microbes to obtain
organic carbon in subsurface environments remain
largely unknown.

Here, we report the potential of extracellular enzymes to
provide bioavailable organic carbon to the heterotrophic microbial
communities down to 77.9mbsf in the International Ocean
Discovery Program (IODP) Expedition 347, hole M0059C, in
Baltic Sea sediment. We assayed potential extracellular enzyme
activity using small substrate proxies for six different peptidases
(enzymes that hydrolyze peptide bonds, e.g., in proteins), five
different glycosyl hydrolases (enzymes that hydrolyze glycosidic

bonds, as between sugars in a polysaccharide), and alkaline
phosphatase, which cleaves phosphomonoesters, such as the
phosphate head group on phospholipids. Hole M0059C spanned
a glacial cycle of up to 44,000years (Andrén et al, 2015), with
modern marine deposits underlain by lacustrine deposits below
50mbsf from the last glacial maximum. Total organic carbon
was higher in the upper marine deposits (3-8%), than in the
deeper lacustrine deposits (~1%), meaning that extracellular
enzymes would have very different substrate pools above and
below 50mbsf. We found that the extracellular enzyme activity
profiles were different in these different substrate pools, and
enzymes were highly stable, retaining their activity after autoclaving.

MATERIALS AND METHODS

Site Description and Sample Collection

Sediments were collected from hole M0059C as part of IODP
Expedition 347 (Andrén et al, 2015) on September 19, 2013.
Site M0059 sits in the southern Little Belt, an incised valley
between the island of Als, off the Danish Jutland peninsula, and
the island of Fyn. Hole M0059C is at 55°0.29'N, 10°6.49'E under
37.1m of brackish water. The sediments analyzed in this study
consist of brackish/marine sediments deposited in the past
~7,500years, overlaying freshwater glacial lake sediments deposited
since the beginning of the Holocene. Samples were collected via
piston coring system and stored at —80°C from the time of
collection until analysis. Depths from which samples were selected
and corresponding stratigraphic units and sediment ages as
determined by Van Helmond et al. (2017) are listed in Table 1.

Extracellular Enzyme Assays

Extracellular enzymes were assayed using small fluorogenic
substrate proxies (Hoppe, 1983). Eleven different fluorogenic
substrates were used to assay the activity of corresponding
enzymes (Table 2): six substrates for peptidases, five substrates
for glycosylases, and one substrate for alkaline phosphatase.
Briefly, on the day of analysis, a 1-cm subsample was collected
from frozen core rounds using an electric drill with an ethanol-
sterilized hole saw bit. 3g of this subcore was immediately

TABLE 1 | Depths sampled for enzyme activities, corresponding ages
interpolated from the model of van Helmond et al. (2017), and stratigraphic units
as described by Andrén et al. (2015).

Unit Depth, mbsf Age, yr. (max, min)
la 4.50 792 (656, 928)
11.10 1784 (1,636, 1935)
17.60 3,179 (3,000, 3,357)
24.30 4,311 (4,125, 4,498)
30.90 5,248 (5,052, 5,444)
37.50 6,208 (6,064, 6,352)
43.15 6,958 (6,807, 7,109)
b 48.22 7,401 (7,273, 7,528)
Unit Il: no samples taken; unconformity at 51.68-51.73 mbsf
1l 54.95 n.a.
61.55 n.a.
77.92 n.a.
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TABLE 2 | Enzymes used in this study and the corresponding fluorogenic
substrates.

Enzyme Description Substrate E.C.

Leucyl Exopeptidase L-Leucine-AMC 3.4.111

aminopeptidase

Arginyl Exopeptidase L-arginine-AMC 3.4.11.6

aminopeptidase

Prolyl Exopeptidase L-Proline-AMC 3.411.5

aminopeptidase

Ornithyl Exopeptidase Ornithine-AMC na*

aminopeptidase

Gingipain Endopeptidase Z-Phe-Arg-AMC 3.4.22.37

Clostripain Endopeptidase Z-Phe-Val-Arg- 3.4.22.8

AMC

B-D-xylosidase Glycosyl MUB-B-D- 3.2.1.37
hydrolase xylopyranoside

B-b- Glycosyl MUB-B-D- 3.2.1.91

cellobiohydrolase hydrolase cellobioside

N-acetyl-p-D- Glycosyl MUB-N-acetyl-f- 3.2.1.52

glucosaminidase hydrolase D-glucosaminide

B-glucosidase Glycosyl MUB-B-D- 3.2.1.21
hydrolase glucopyranoside

a-glucosidase Glycosyl MUB-a-D- 3.2.1.20
hydrolase glucopyranoside

Alkaline Phosphatase MUB-PO, 3.1.3.1

phosphatase

*We are not aware of a formally described enzyme whose primary function is to
catalyze the hydrolysis of N-terminal ornithine from a broad set of proteins.

AMC stands for 7-amino-4-methylcoumarin. MUB stands for 4-methylumbelliferone. All
amino acids are | stereoisomers.

placed in a sterile serum vial under N, to serve as a sterile
control and autoclaved for 60min on a liquid cycle.

A separate 3 g sample was thawed in 100 ml of sterile, anoxic,
and room-temperature 20 mm borate-buffered saline (BBS) at
pH 8.0. BBS was selected because it buffers reasonably well
at pH 8.0 and does not competitively inhibit any of the enzymes
included in this study, unlike phosphate buffer, which inhibits
alkaline phosphatase, or many organic buffers, which contain
amine groups that competitively inhibit peptidases. The thin
slurry of 3g sediment in 100 ml buffer was chosen to minimize
enzyme inhibition by humic substances and other organics
and to maximize light transmission through the slurry, based
on preliminary methodological experiments (Schmidt, 2016)
and following Bell et al. (2013). The autoclaved sediment was
prepared identically. Enzyme assays were performed in an
anaerobic glove box under a 100% N, atmosphere.

We performed two classes of enzyme assay: V,,,, measurements
and saturation curves. V,,,, measurements, which were designed
to indicate maximum potential enzyme activity at saturating
substrate concentrations, were made at a single concentration
of substrate, 400pm, with three live and three autoclaved
replicates. For V. experiments, 20pul of a 20mm substrate
stock was added to 980pl sample slurry. Saturation curves
were designed primarily to indicate the binding coefficient of
enzymes to the fluorogenic substrate and were made by comparing
hydrolysis rates measured in triplicate to autoclaved controls
measured in triplicate, at each of 10 or 11 substrate concentrations
spaced evenly from 0 to 720 or 800 pm. An appropriate quantity
of substrate stock was added to 940 pl sample slurry, and pure

water (glycosyl hydrolase and phosphatase substrates) or DMSO
(peptidase substrates) was added to a total of 1,000pl, so that
the slurry medium was identical between substrate concentrations.
Standard curves were created with 7-amino-4-methylcoumarin
(AMC) dissolved in DMSO or 4-methylumbelliferone (MUB)
dissolved in pure water, added to sample slurries as described
for the saturation curve measurements.

Substrates were added to each cuvette. The time of substrate
addition constituted time zero. Fluorescence was measured as
soon as possible after substrate addition using a Promega
GloMax Multi JR single-cuvette fluorescence reader set to UV
mode. We have found this approach to be both more precise
than the more-common plate reader method (Bell et al., 2013)
and to reduce fluorescence drift which yields apparently precise
but spurious measures of enzyme activity (Schmidt, 2016).
Fluorescence values were measured 3-5 times over the course
of ~24h, and enzyme activities were calculated as described
in Steen et al. (2019). Raw data and R scripts used to calculate
results are posted at.!

Enzyme assays were performed at 20°C. In situ core
temperatures were not measured, but bottom water temperature
data from Little Belt indicates an average sediment temperature
of 8°C (Ni et al., 2020). Data were analyzed following previously
described procedures (Lloyd et al., 2013; Steen et al., 2019).

Cell Counts

Cell counts were taken from data reported in Buongiorno
et al., 2017. Because cell counts were made close to, but not
precisely at, the same depths as enzyme activity measurements,
cell count data at enzyme measurement depths were interpolated
using locally fitted polynomials above and below
the unconformity.

RESULTS

Absolute and Cell-Specific Potential
Enzyme Activities

Potential activities of each peptidase, with the exception of
ornithyl aminopeptidase (Orn-AP), were greater than the
autoclaved control above the unconformity at 51.7mbsf
(Figure 1). Orn-AP was also elevated at depths above 51.7 mbsf,
but activities in “live” sediments were indistinguishable from
those in autoclaved sediments. For each peptidase, potential
activity increased from 4.3 to 11.1mbsf and then decreased
gradually down to 30mbsf. Maximum potential activities in
the live samples ranged from 22.2+0.1nmolg sed™ h™' for
clostripain to 7.3+ 0.6 nmol g sed™ h™" for prolyl aminopeptidase.
Potential activities of peptidases also tended to increase downcore
from a low value at 30.9mbsf to higher values between there
and the unconformity at 51.7 mbsf. Below that unconformity,
in lacustrine sediments with very low organic carbon content
buried during the last glacial maximum, potential activities
were indistinguishable from zero.

'https://github.com/adsteen/IODP_347_enzymes
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FIGURE 1 | Potential enzyme activities in hole MO059C as a function of depth. Live sample v, data for clostripain, gingipain, arginyl AP, leucyl AP, prolyl AP,
a-glucosidase, p-glucosidase, N-acetyl-p-D-glucosaminidase, and B-D-xylosidase were previously presented in Bird et al. (2018). Open circles indicate autoclaved
killed controls; filled circles indicate live samples. Note that each enzyme class shares a common scale, but scales differ between enzyme classes. Error bars
represent one standard deviation about the mean for triplicate measurements. In cases where the error bars are not visible, they are smaller than the marker.

Glycosyl hydrolases (polysaccharide-hydrolyzing enzymes) had ~ Saturation Curves
lower maximum potential enzymatic rates and followed a different  Satyration curves were measured for each enzyme in the
pattern with depth than peptidases. Only p-glucosidase showed  shallowest sample, 4.5 mbsf. K,, values could only be calculated
a significant difference between the live and autoclaved samples  for a subset of enzymes (Table 3); others exhibited activity
at multiple depths. a-glucosidase potential activity was slightly  that was either indistinguishable from zero or low and not
greater than the autoclaved control at only 24.3 mbsf, and N-acetyl-  qualitatively consistent with Michaelis-Menten kinetics.
glucosaminidase was significantly greater than the killed control Saturation curves were measured for one enzyme, clostripain,
at only 4.3mbsf. Glycosyl hydrolases potential activities were,  at six depths which were selected on the basis of having clearly
in general, considerably less active than aminopeptidases: The  detectable enzyme activity (Figure 4A). The hydrolysis rate
highest potential activity for any glycosylase was p-glucosidase  data qualitatively fit well to a Michaelis-Menten function at
at 4.5mbsf, with 16.1+4.6nmolg sed™ h™". They also did not  all depths. Despite the fact that V,,, values decreased by 94%
increase in activity with depth in any part of the borehole.  with depth, calculated apparent K, values did not change
Similarly, to the peptidases, no activity was seen for glycosylases  significantly with depth (Figure 4B; p =0.12, n =6).
in sediments under 51.7mbsf of lacustrine origin.

Alkaline phosphatase potential activities were higher ~ Activity in Autoclaved Controls
throughout the core than either of the other classes of enzymes,  Potential enzyme activities in live samples were correlated with
ranging from 74.6+3.2nmolg sed™ h™' at 4.5mbsf to activities in the corresponding autoclaved samples (Figure 5A).
2.12+0.09nmolg sed™ h™', and this was the only enzyme for  For all enzymes and samples (excluding those for which activity
which potential activities were higher in the live sample than  was close to the detection limit), a median of 51.3% of activity
the killed control below the unconformity at 51.68 mbsf. was retained after autoclaving (interquartile range: 11.7-66.4%).

Interpolated cell abundance values decreased from 4.6x10°  These results differed significantly by enzyme class (Figure 5B;
cells g™ sed at 4.35mbsf, to 6.0x107 cells g™ at 78mbsf p <0.001, Kruskal-Wallis test, n =96): Glycosylases retained a
(Figure 2), with the result that patterns of cell-specific potential  median of 77.2% (IQR 29.7-124%), phosphatase retained a median
enzyme activities were qualitatively similar to absolute potential ~ of 54.0% (IQR 45.6-68.8%), and peptidases retained a median
activities (Figure 3). Cell-specific activities ranged from a  of 29.2% (5.38-38.7%). Only the differences between glycosylases
maximum of 151+3.5 fmol cell”' g sed™ h™' for clostripain  and peptidases and between phosphatase and peptidases were
at 11.lmbsf to undetectable for most enzymes below statistically significant (p <0.001 and p <0.01, respectively, Conover-
the unconformity. Iman test using the Conover test package in R; Dinno, 2017).
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Within the peptidases, there were also significant differences
among enzymes in terms of activity retained after autoclaving
(Figure 5C). Ornithyl AP retained the most activity (median=_87.8%,
IQR 56-122%), while leucyl AP, clostripain, and gingipain, the
distributions of which did not differ significantly, retained the
least (leucyl AP: 15.1% [IQR: 6.58-19.6%], gingipain: 9.87% [IQR:
1.67-15.4%], and clostripain: 5.91% [IQR: 1.22-6.35%]).

DISCUSSION

Activities of a broad range of extracellular enzymes were
detectable to a depth of 48mbsf. The presence of active
extracellular enzymes at these depths agree with previous work
showing the presence of mRNA transcripts of extracellular
hydrolases in similarly deep subsurface marine sediments (Zinke
et al., 2017, 2019; Orsi et al.,, 2018; Bird et al., 2019). It is
challenging to know precisely what range of substrates is present
in these sediments, since it is difficult to precisely characterize
the large diversity of organic molecules buried in marine
sediments (Hedges et al., 2000; Wakeham and Lee, 2019). It
is also unknown what range of substrates can be hydrolyzed
by each of the enzymes assayed here, since many extracellular
enzymes have been shown to hydrolyze a wide range of substrates
(Steen et al., 2015). However, the general classes of substrates
that we analyze here polysaccharides, proteins, and
phospholipids - are ubiquitously present in sedimentary organic
matter and a fraction of them are enzymatically labile (Dauwe
et al, 1999; LaRowe et al., 2020). Thus, these enzymes are
active in the presence of environmentally relevant substrates
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FIGURE 3 | Cell-specific potential enzyme activities. Presentation is the same as Figure 1.
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TABLE 3 | K, values for enzymes at 4.5 mbsf.

Enzyme Koy pm (xstd. err)
Clostripain 200+37.5
Gingipain 69.5+38.1
Arginyl AP 61.1+27.3
Leucyl AP 73.0+£53.3
Prolyl AP 168+30.4
Ornithyl AP 997 +489
a-glucosidase n.d.
B-glucosidase 230+72.5
Cellobiosidase n.d.
b-xylosidase n.d.
N-acetylglucosidase 351+128
Alkaline phosphatase 1,013+£613

Error values given are standard error of the parameter estimate.

and therefore must produce a flux of low molecular weight
organic carbon to the in situ heterotrophic microbial community.

Previous work in these sediments has shown that hydrolysis
of complex organic matter appears to be central to the life
strategy of the Atribacteria, one of the abundant microbes in
these sediments. Furthermore, Atribacteria may exist in
commensal relationships with other species by “sharing” amino
acids, perhaps in return for some other resource (Bird et al.,
2019). Our data suggest that at least six types of peptidases
are more active than glycosyl hydrolases. This may indicate
that these communities are primed to access complex extracellular
proteins over polysaccharides because peptides bring nitrogen
along with the carbon into the cellular metabolism during
catalysis. It is also possible that glycosyl hydrolases that do
not act on the five different small fluorogenic substrate proxies
used here were present. The activity of multiple, extracellular
hydrolytic enzymes as well as the molecular evidence for
metabolism of the products by diverse members of the subsurface
community highlight the importance of complex organic carbon
metabolism to subsurface ecosystems.

Enzyme assays were performed 12°C above in situ
temperatures for logistical reasons and to maximize the chance
of measuring any enzymes that might have been present.
Reports of the temperature response of marine enzymes vary
widely, but a reasonable approximation is that enzyme activities
tend to increase by a factor of 2 when temperature increases
by 10°C. That would imply that the V,,, values measured
here are higher than in situ values by a factor of 2.4. It is
likely that the different enzymes measured here are affected
differently by the increase in temperature, but the differences
among enzyme classes are not likely large enough to
be responsible for, for instance, the factor-of-four difference
between the most active peptidase (clostripain) and the most
active glycosylase (B-glucosidase).

The absence of detectable activity of extracellular enzymes
for complex organic matter other than phosphomonoesters
below the unconformity in lacustrine sediments of the last
glacial maximum is consistent with much lower concentrations
of organic matter at these depths (Andrén et al., 2015; Marshall
et al, 2018) and lower transcript abundances of genes for
organic matter hydrolysis (Zinke et al, 2019). This result,

A
T 0.025 depth, mbsf
<
B 0.020 - 45
(7]
- 111
ICD 0.015 4 i
17.6
O
<§( 0.010 - _¢_ 24.3
= 0.005 % 375
S 0.000 [ S eSS 43.15
0 200 400 600 800
[phe-val-arg-AMC], uM
B
0 -
Y 10'
[72]
Ne]
E_ 204
_..{_:, ——
)
2 30
40
0 50 100 150
Km, uM phe-val-arg-AMC
FIGURE 4 | (A) Saturation curves of Z-phe-val-arg-AMC (clostripain
substrate) at six depths. (B) Trend of K}, values as a function of depth.

coupled to a higher percentage of genes from the Wood-
Ljungdahl carbon fixation pathway in the lacustrine sediments
(Marshall et al., 2018), suggests that perhaps autotrophy is
more important for the microbial communities at these depths.
This would be consistent with the evidence of phosphatase
activity below the unconformity at 51.7 mbsf, where autotrophs
would still require phosphorus.

We note that absence of evidence of glycosylases below the
unconformity is not necessarily evidence of absence, however.
Polysaccharides and glycosyl hydrolases are both highly diverse,
and it is possible that there were glycosyl hydrolases present
in sediments that did not hydrolyze the fluorogenic substrate
proxies used here.

Broadly, peptidase activities increased from 4.5mbsf to
11.1 mbsf and then decreased to the unconformity. 4mbsf is
already well within the “deep subsurface” because these 4.5-m
deep sediments are approximately 790 years old (Kotthoff et al.,
2017), do not have regular replenishment of oxidants and fresh
organic matter, and experience a steady decline in total cellular
abundance with depth (Figure 2). Multiple scenarios could
account for this increase in peptidase activities with depth
within the deep subsurface. It is possible that the microbial
communities at 11.1 mbsf simply produce more enzymes than
those at 4mbsf, although why that would be is a mystery:
TOC decreased from 7.54% at 4.38 mbsf to 5.79% at 11.27 mbsf
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FIGURE 5 | (A) Measured hydrolysis rates of live vs. autoclaved sediments. In order to increase legibility on the log-log plot, v, values have been adjusted to the
detection limit of 4.77 x 10-2n molg sed~' h~" (live sediments) or 2.41 x 10-2n molg sed~' h~" (killed sediments). Standard error bars that dip below 1x 1072 molg
sed~" h~" are truncated and colored gray. (B,C) Fraction of enzyme activity remaining after autoclaving by (B) enzyme class and (C) enzyme, within the peptidase
class. Horizontal bars indicate distributions that are statistically indistinguishable («=0.05, Conover-Iman test).

(Egger et al,, 2017), and carbon oxidation rates tend to decrease
with decreasing TOC and increasing depth (Beulig et al., 2018;
Jorgensen et al., 2020).

Another factor that could contribute to this rise in enzyme
activity with depth could be the release of cytoplasmic peptidases
during cell rupture associated with cell depth between 4mbsf
and 11mbsf. Such “living dead” enzymes (i.e., active enzymes
released from dead cells) have been hypothesized to provide labile,
low molecular weight carbon to deep-sea communities (Baltar,
2018; Baltar et al,, 2019). A similar dynamic in the subsurface
would act as a negative feedback on cell death by starvation in
subsurface sediments, in that cells dying due to lack of carbon
substrates would release enzymes that would provide such substrates
to the surviving community members. The amount of organic
carbon in these dying cells is well below what would be required
to support the community, suggesting that buried organic matter
must also serve as substrates (Bradley et al., 2018), but the amount
of labile carbon that necromass-derived enzymes could liberate
from sedimentary organic matter is as-of-yet unconstrained. There
may be a second increase in enzyme activity with depth between
30 and 50mbsf that might be driven by similar mechanisms,
but this is small and could be noise.

Given the sediment accumulation rate of ~60cm per 100 years
(van Helmond et al., 2017), accumulation of extracellular enzymes
over macroscopic depth scales could only happen if those enzymes
are stable on the timescales of tens to thousands of years. While
this might appear to be an extremely long time for enzymes
to remain active, in the next section we show that these extracellular
enzymes may indeed be extraordinarily stable.

Long Lifetimes of Extracellular Enzymes in
Subsurface Sediments

Two lines of evidence indicate that, once released by active
secretion or cellular death, active extracellular enzymes must
persist in sediments over long timescales. First, the persistence

of enzyme activity after autoclaving indicates that enzymes are
very stable. Soil enzymes have been observed to retain some
activity after autoclaving (Carter et al., 2007; but see Blankinship
et al., 2014 for a counterexample). This is assumed to be because
a relatively large number of non-covalent interactions between
enzymes and clay mineral surfaces (Arnarson and Keil, 2000;
Johnston et al., 2012) prevent denaturation of enzymes at high
temperature. It is also possible that these enzymes do denature
upon autoclaving but re-fold into an active conformation when
they cool. That would suggest that denatured enzymes are likely
to re-enter a correctly folded state, which again would point
toward stability under in situ conditions. A third possibility is
that the substrate hydrolysis observed in these experiments was
primarily catalyzed by abiotic factors, e.g., manganese oxide
(Reardon et al., 2016). However, an abiotic mechanism would
not be expected to follow Michaelis-Menten kinetics, whereas
the hydrolysis rates observed here generally did. Another
possibility would be that intact cells, rather than just their
enzymes survive autoclaving. Autoclaving kills most of the cells
in a natural sample (Tuominen et al, 1994; Otte et al., 2018);
however, some types of spores (O'Sullivan et al, 2015) have
been shown to maintain a fraction of their activity
after autoclaving.

A second, theoretical line of evidence also indicates that
extracellular enzyme lifetimes must be unusually long when
microbial metabolisms are slow, as in these sediments. In
order for enzyme production to represent a viable strategy
to obtain resources, enzymes must “pay for themselves” in
terms of the relevant resource (Vetter et al., 1998). This puts
a lower limit on the amount of hydrolysate that an enzyme
must produce over its lifetime: If we assume that carbon is
the relevant resource an enzyme produces, then the enzyme
must return as much carbon to the community as the enzyme
itself contains. An upper limit on the amount of hydrolysate
an enzyme produces over its lifetime comes from the fact
that hydrolysis products, such as free amino acids, and sugars
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do not generally accumulate in sediments (e.g., Dauwe and
Middelburg, 1998). Exometabolomics measurements on M0059
identified no free amino acids, suggesting that they are not
accumulating in these sediments (Bird et al., 2019). Thus, the
total rate of hydrolysate production by enzymes cannot exceed
the community metabolic rate, including respired C and
biomass production.

Let us imagine that enzyme production and degradation
are in quasi-steady state. If we imagine that all biomass
production goes toward producing enzymes, then biomass
production equals enzyme degradation rate, so we can constrain
the turnover time of enzymes, T, as:

enzyme concentration (1)

= community biomass production rate

where enzyme concentration and community biomass production
rate are both expressed in C units. Community respiration
rates (e.g., sulfate reduction rates) are more easily measured
than biomass production rates, so this can also be expressed
in terms of community respiration and growth efficiency, GE.
When GE is low, as in the subsurface, GE = biomass production
rate/respiration rate, so that:

enzyme concentration (2)

" GE X community respiration rate

Thus, for a fixed enzyme concentration, enzyme turnover
times - and thus enzyme lifetimes - scale inversely with
community respiration rates. It is extremely challenging to
precisely measure either enzyme concentration or growth
efficiency in the subsurface, but growth efficiency can
be assumed to be low (Hoehler and Jorgensen, 2013; Jorgensen
and Marshall, 2016). Enzyme concentrations in sediments
can be constrained using specific activities (V,,x per mol of
enzyme), which are sometimes reported for purified enzymes
in buffer solutions:

enzyme concentration (mol Cg sedfl)

potential activity (mol bondshr ' gsed™ 1)

= (©)
specific activity (rnol bonds hr ™' mol C enzymefl)
Thus, enzyme half-life is bounded by:
Vinax (mol bondshr ! g sedfl)
T (hr) > )

B [specific activity (mol bonds hr)71 (mol C enzyme)71 X

GE x community respiration rate (mol Chr~'g sed ™! )]

This formula will almost certainly yield an underestimate
of enzyme concentration, because specific activities of enzymes
in sediments will be reduced due to interactions with mineral
surfaces and humic substances compared to activities in buffer
solution (Boavida and Wetzel, 1998; Tietjen and Wetzel, 2003).
This effect would not be relevant to the V,, term because
our measurements of V. would reflect any suppression of
enzyme activity by mineral sorption.

Using a range of reported enzyme-specific activities and
assuming that community carbon oxidation rates are on the
order of 0.1 nmolcm™ day™" (Beulig et al., 2018), that bacterial

growth efficiency is 10% (likely an overestimate) and that
surface/humic interactions have no effect, we calculate a median
clostripain lifetime of 230days (see Supplementary Material
for a more detailed description of these calculations). Considering
that both the growth efficiency is likely an overestimate and
that 100% of biomass production is not invested in clostripain
alone, this value represents a lower-bound estimate for clostripain
lifetime. For instance, a conservative guess is that sorption to
surfaces reduces specific activity by a factor of three, and del
Giorgio and Cole estimate a minimum growth efficiency of
3.7% in seawater. Accounting for these two factors would
increase estimated minimum enzyme lifetimes by a factor of
10. Just as microbial metabolic rates in the subsurface are
orders of magnitude slower than what can be observed in
pure cultures, it seems that enzyme lifetimes in the subsurface
are substantially longer than what we typically observe for
purified enzymes.

The active respiration of electron acceptors, such as oxygen,
nitrate, iron, sulfate, and carbon dioxide in deep subsurface
marine sediments, has been well-established (D'Hondt et al,
2004). However, direct measurements of the activity of the
organic matter presumed to donate the electrons for these
respiratory metabolisms are less well-studied. We conclude that
the microbial community in sediments up to 50mbsf in the
Baltic Sea Basin metabolizes complex, old, and diverse organic
matter. This organic matter is complex because extracellular
enzymes are used to degrade it. It is old because the sediments
are old and no advective processes introduce fresh organic
matter into the system. It is diverse because a range of substrates
are metabolized by these active extracellular enzymes.
Furthermore, the enzymes that perform these functions are
very stable. Stability of purified enzymes is usually measured
with lifetimes of hours or days. Our results suggest that
extracellular enzymes in the Baltic Sea deep subsurface sediments
may be stable for months or years, and possibly much longer.
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