

1 **Title:** Acrobatics at the insect-scale: a durable, precise, and agile micro-aerial-robot

2 **Authors:**

3 Suhan Kim^{1†}, Yi-Hsuan Hsiao^{1†}, Zhijian Ren¹, Jiashu Huang^{1,2}, Yufeng Chen^{1*}

4

5 **Affiliations:**

6 ¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of
7 Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA

8 ²Department of Physics, Brown University, 69 Brown Street, Providence, RI, 02912, USA

9

10 *Corresponding author. Email: yufengc@mit.edu

11 †These authors contributed equally to this work

12 **Abstract:**

13 Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control.

14 They perform impressive acrobatic maneuvers when they evade predators, recover from wind gust, or

15 land on moving objects. Flapping-wing propulsion is advantageous for achieving flight agility because it

16 can generate large changes of instantaneous forces and torques. During flapping-wing flight, the wings,

17 hinges, and tendons of pterygote insects endure large deformation and high stress hundreds of times each

18 second, highlighting the outstanding flexibility and fatigue resistance of biological structures and

19 materials. In comparison, engineered materials and microscale structures in sub-gram micro-aerial-

20 vehicles (MAVs) exhibit substantially shorter lifespan. Consequently, most sub-gram MAVs are limited

21 to hovering for less than 10 seconds or following simple trajectories at slow speeds. Here, we developed

22 a 750-milligram flapping-wing MAV that demonstrated outstanding lifespan, speed, accuracy, and agility.

23 Owing to transmission and hinge designs that reduce off-axis torsional stress and deformation, the robot

24 achieved a 1000-second hovering flight – two orders-of-magnitude longer than existing sub-gram MAVs.

25 This robot also performed some of the most complex flight trajectories with under 1 centimeter root-mean-

26 square (RMS) error and over 30 centimeter-per-second average speed. With a lift-to-weight ratio of 2.2

27 and a maximum ascending speed of 100 centimeter-per-second, this robot demonstrated double body flips

28 at a rotational rate exceeding that of the fastest aerial insects and larger MAVs. These results highlight

29 insect-like flight endurance, precision, and agility in an at-scale MAV, opening opportunities for future

30 research on sensing and power autonomy.

32 **One-Sentence Summary:** A 750 mg flapping-wing robot demonstrates long endurance flight, precise
33 trajectory tracking, and acrobatic body flips **based on offboard power and control.**

34

35 **Main Text:**

36 **INTRODUCTION**

37 Insect flight is characterized by fast body dynamics, complex flapping-wing kinematics, and unsteady
38 aerodynamics. Fast neuro reflex and motor control enable aerial insects to quickly evade predators (1) and
39 recover attitude stability (2). When aerial insects execute banked turns (3), body saccades (4), or inverted
40 landing (5), they experience large rotational speed ($>2000 \text{ }^{\circ}\text{s}^{-1}$) far exceeding that of birds and **micro-**
41 **aerial-vehicles (MAVs)**. Aerial insects are also precise flyers when they hover around a flower's anther
42 amid gentle breeze. This exceptional agility and precision are enabled by flapping-wing propulsion that
43 can generate large instantaneous forces and torques. During flight, the insect wing hinge converts the
44 power muscle oscillation into the back-and-forth wing motion **ranging from tens to** hundreds of times per
45 second. This biomechanical structure is sophisticated and durable. It exerts precise control of wing
46 kinematics through the many steering muscles while it endures large tensile and compressive stress
47 induced by aerodynamic loading and muscle actuation. For instance, the *Drosophila* wing hinge connects
48 to 12 steering muscles (6) and it can control the wing beat motion along all three rotational axes with a
49 fine resolution of less than 2° . When a fly encounters large disturbance, evades predators, or suffers wing
50 damage (7), the flapping frequency and amplitude are adjusted over large ranges of 50 Hz and 30° ,
51 respectively. Under these harsh mechanical conditions, the hinge can operate millions of wing beat cycles
52 — critical to the survival and functioning of aerial insects.

53 Inspired by tiny natural flyers, researchers have developed numerous biomimetic MAVs (8-12) with
54 the goal of achieving insect-like flight capabilities. Mesoscale (10 – 30 g) flapping-wing robots (8, 9, 13,
55 14) have demonstrated stable hovering flight as well as biomimicking maneuvers such as saccade and

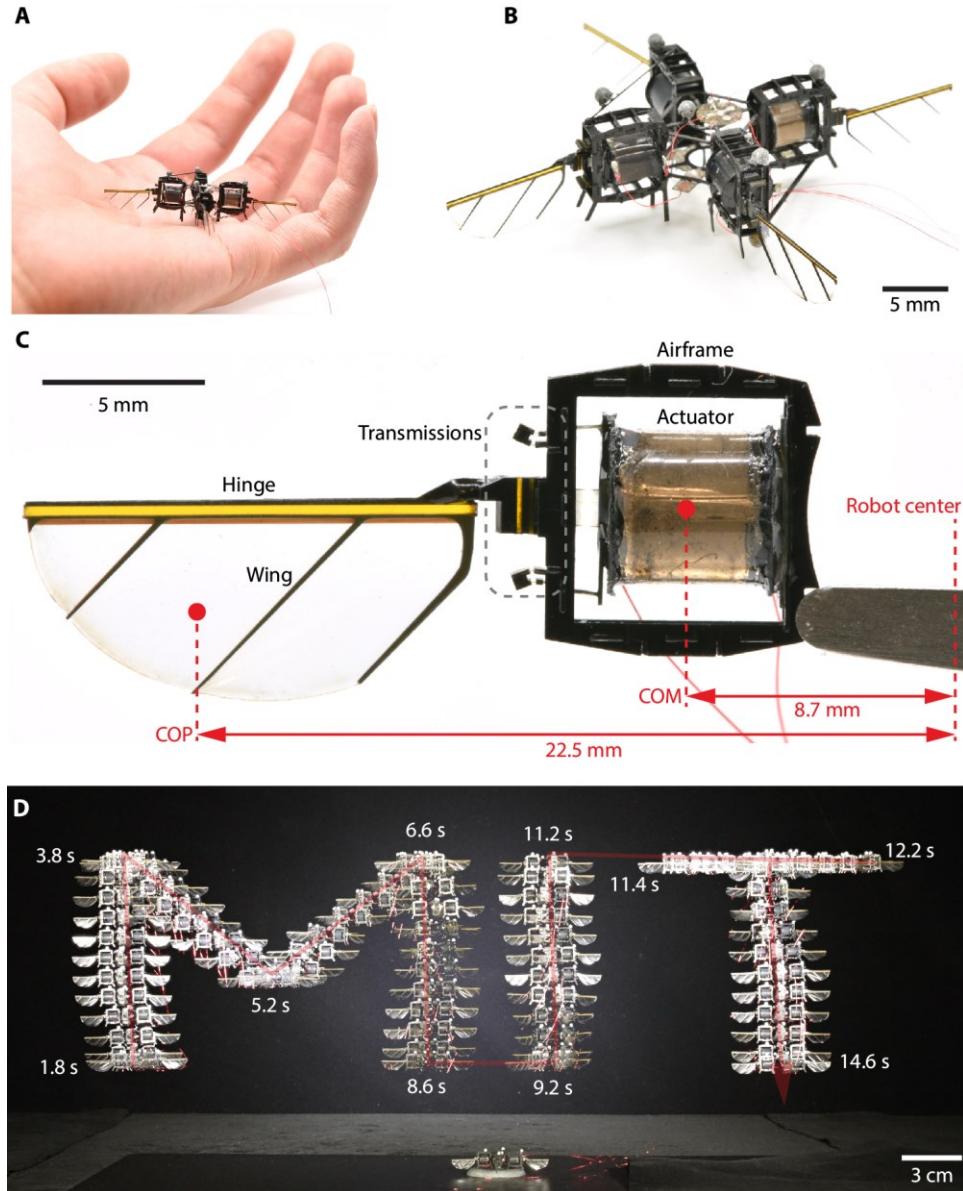
56 body flips. However, owing to larger size and weight, these robots have slower body dynamics. Their
57 wing beat frequency and maximum body angular velocity are substantially slower than that of aerial
58 insects. To miniaturize robot size, electromagnetic motors must be replaced by low friction and power
59 dense microscale actuators. Piezoelectric bimorph actuators (15) exhibit high bandwidth and force density,
60 and they lead to a class of sub-gram MAVs (10, 16-18). These robots have achieved hovering flight (10),
61 trajectory tracking (16), and biomimetic demonstrations such as perching (19) and hybrid aerial-aquatic
62 locomotion (20). Recently, power dense dielectric elastomer actuators (DEAs) were developed and
63 applied in sub-gram MAVs (21). The soft actuators exhibited muscle-like robustness and resilience,
64 enabling damage resilience (22) and collaborative payload transport (23). These advances highlight the
65 unique flight capabilities of sub-gram MAVs in comparison to mesoscale aerial robots.

66 However, the flight performance of aerial insects remains far superior to that of sub-gram MAVs. Aside
67 from relying on offboard power and control, sub-gram MAVs have limited flight endurance, speed,
68 accuracy, and agility. This performance gap is largely contributed by the lack of fabrication methods and
69 engineered materials for building similar biomechanical structures in insects. While the Smart Composite
70 Manufacturing (SCM) (24) method can fabricate 3D structures with micron-level resolution, it remains
71 difficult to incorporate compatible materials that exhibit high flexibility and durability. For example,
72 elastomeric protein resilin is a durable, elastic, and low loss material found in insect wing hinge ligament.
73 It can be stretched up to 3 times and shows a fatigue limit of 300 million cycles (25). In contrast,
74 biomimetic flexures in MAVs are built with thin film polyimide whose elongation ratio and fatigue limit
75 are merely 0.72 and 300,000 cycles. Under a similar geometry, the transmission and hinge in sub-gram
76 MAVs exhibit substantially shorter lifespan. Owing to this materials challenge, most existing sub-gram
77 MAVs (26) are limited to short flights within 10 seconds, and they require frequent tuning and repair. The
78 lack of flight endurance also constrains other flight capabilities. Given a short lifespan, it becomes difficult
79 to accurately estimate the robot's inertial parameters, measure force and torque mappings, and develop
80 well-tuned controllers. Most sub-gram MAVs (10, 16, 27) are limited to performing hovering flights or

81 following simple trajectories at a speed lower than $10 \text{ cm}\cdot\text{s}^{-1}$. In the rare example of performing a
82 somersault (28), prior robots cannot recover attitude stability before rebounding on the floor, which is
83 caused by inaccurate force and torque mappings under a limited number of characterization experiments.
84 These limitations underscore the importance of developing a durable sub-gram MAV, which is critical to
85 improve flight speed, accuracy, and agility.

86 In this work, we developed a 750 mg four-winged MAV (Fig. 1A-B) with outstanding flight endurance,
87 speed, accuracy, and agility. We identified off-axis loading as the main contributor to flexure fatigue and
88 failure, and then designed airframe, transmission, hinge, and wing (Fig. 1C) to minimize off-axis torsion.
89 The robot demonstrated a 1000-s hovering flight – two orders of magnitude longer than most existing sub-
90 gram MAVs. This long lifespan allows extensive robot characterization and **leads to a new flight controller**
91 **that improves flight precision under dynamic conditions**. The robot demonstrates a sequence of trajectory-
92 tracking flights with sub-centimeter accuracy and an average speed of $30 \text{ cm}\cdot\text{s}^{-1}$, representing the most
93 accurate and fastest flights performed by a sub-gram MAV. As an example, Fig. 1D shows a composite
94 image where the robot follows the letters “MIT”, with a **root-mean-square (RMS)** position error of 0.73
95 cm. Furthermore, the robot design enabled acrobatic maneuvers through reducing moment of inertia and
96 increasing body torque generation. With a lift-to-weight ratio of 2.2 and a maximum ascending speed of
97 $100 \text{ cm}\cdot\text{s}^{-1}$, the robot achieved a double flip within 0.17 second. During this maneuver, the maximum body
98 roll rate exceeds $7200 \text{ }^{\circ}\text{s}^{-1}$, which is 40% faster than fruit flies (5) and quadruples that of the fastest aerial
99 robot (29). These flights showcase insect-level performance in a sub-gram MAV, and they also open
100 opportunities for future research on sensing and power autonomous microsystems.

101 **RESULTS**


102 **Design of a long endurance and agile flapping-wing robot**

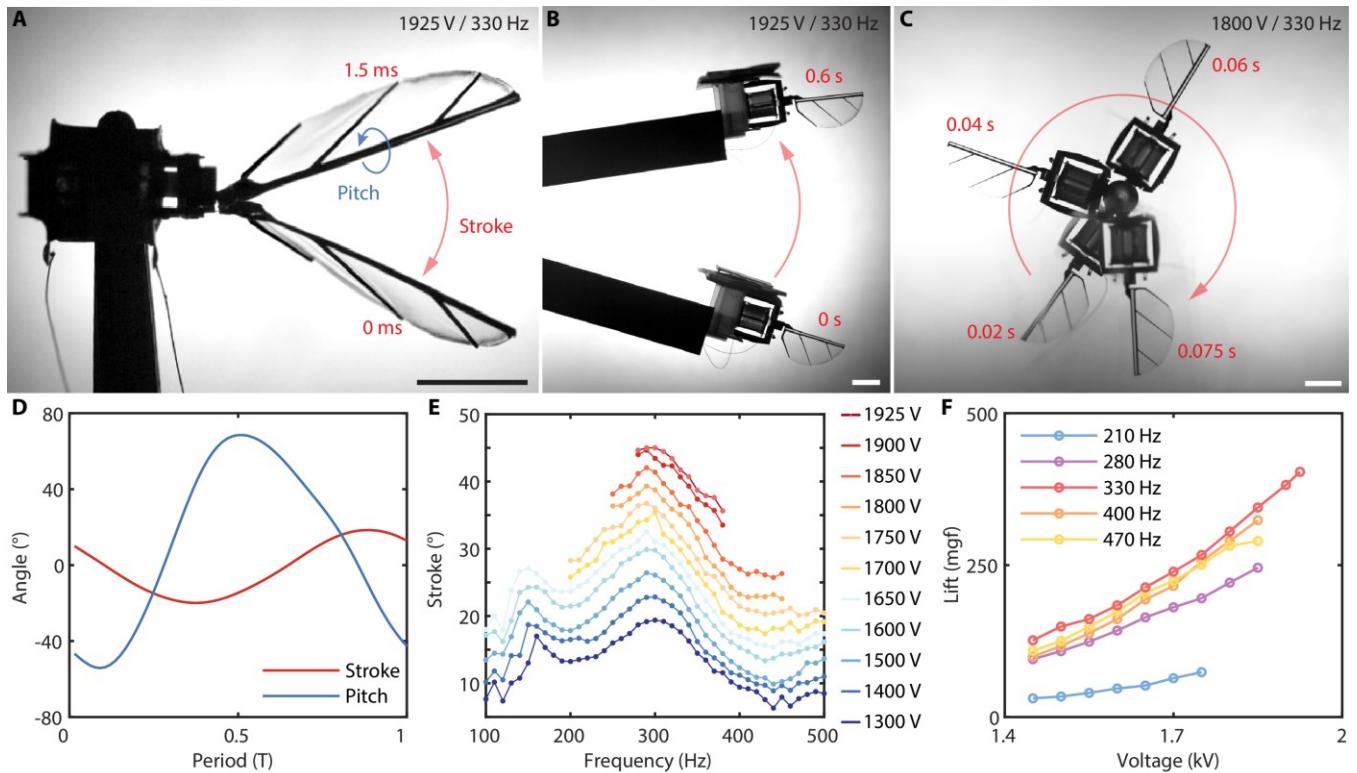
103 Compared to aerial insects, prior sub-gram MAVs have limited flight time and agility. We designed a
104 four-winged aerial robot (Fig. 1A) that can demonstrate **long** flight endurance and **acrobatic** maneuvers.
105 The 750-mg robot has four identical modules with a compact dimension of 4 cm × 4 cm × 0.9 cm (Fig.
106 1B). Each module consists of an airframe, a DEA, a set of transmissions, and a wing with its long hinge
107 (Fig. 1C).

108 The module is designed to maintain high structural consistency under the large stress and strain induced
109 by the flapping-wing motion. The cylindrical DEA has a diameter and length of 5.8 mm and 5 mm,
110 respectively. Compared to rigid actuators, DEAs have lower modulus and they are susceptible to off-axis
111 deformation (21). The carbon fiber airframe (Fig. 1C and fig. S1A) consists of six I-beams to minimize
112 structure oscillations during DEA actuation. Three sets of linear four-bar transmission connect the DEA
113 to the airframe. In addition to converting the DEA's linear elongation to the wing rotational motion (21),
114 the transmissions reduce the DEA off-axis deformation by constraining it along the longitudinal axis. The
115 wing has a long hinge along its leading edge (Fig. 1C) to endure the stress and strain of flapping. Compared
116 to the shorter wing hinges in prior works (21, 30), this new design reduces the hinge stress by over 1000
117 times, leading to a substantial increase of hinge lifespan.

118 This modular design also enables precise and agile flight maneuvers by reducing robot moment of
119 inertia and increasing flight torque generation. Compared to rotary designs where the motor and the
120 propeller are placed along the same axis, flapping-wing designs offset the wing from the actuator. In our
121 robot, the distance from the robot center of mass (COM) to each module's COM and center of pressure
122 (COP) are 8.7 mm and 22.5 mm, respectively (Fig. 1C). The robot has small moments of inertia owing to
123 the small **distance between the robot COM and each module's COM**, yet it can generate large body torques
124 due to the **large robot COM** to COP distance. Consequently, this design allows the robot to generate large
125 angular acceleration under small changes of lift forces, which enable aggressive control and fast

126 maneuvers. The main robot design parameters include the transmission ratio, wing size, and hinge
127 stiffness. A detailed description of parameter selection is given in Supplementary Discussion S1 and fig.
128 S2.

129


130 **Fig. 1. A long endurance, precise, and agile insect-scale flapping-wing robot.** (A) An image of the
131 robot resting on a human palm. (B) This 4 cm × 4 cm × 0.9 cm robot consists of four identical modules.
132 (C) Each robot module has a soft actuator, an airframe, a set of transmissions, and a wing with a long
133 hinge. (D) A composite image of a trajectory tracking flight in which the robot traces the letters "MIT".

134 **Static characterization of robot performance**

135 We conducted a series of statically constrained experiments (Fig. 2A-C, fig. S2A-C) to evaluate robot
136 performance. Fig. 2A and movie S1 part 1 show a static flapping-wing experiment where the DEA
137 operates at 1925 V and 330 Hz. Like prior designs (21), the flapping-wing motion has two degrees of
138 freedom: the wing stroke and pitch motion. The DEA oscillation directly drives the wing stroke motion
139 while the wing pitch motion is passive. The instantaneous wing stroke and pitch angles are shown in Fig.
140 2D and their peak-to-peak amplitudes are 41° and 118°, respectively. Compared to that of prior designs,
141 the stroke amplitude becomes substantially smaller to reduce flexural strain in the four-bar transmission.
142 This reduction of stroke amplitude was compensated by two times increase of the wing area, which
143 generates sufficient lift forces for enabling flight. To measure the net lift force, we mounted the robot on
144 a beam that was balanced around a pivot. We operated the robot at the same condition of 1925 V and 330
145 Hz and filmed its liftoff process (Fig. 2B and movie S1 part 2). The robot ascends 5.2 cm in 0.6 s while it
146 carries a 360 mg payload inclusive of its weight. Through tracking the robot liftoff angle and fitting to a
147 dynamical model (28), we measured the net lift force to be 4.0 mN – equivalent to a lift-to-weight ratio of
148 2.2.

149 To characterize robot performance across different operating conditions, we varied the driving voltage
150 and frequency in static flapping and liftoff experiments. Fig. 2E shows flapping experiments where
151 voltage and frequency **were set independently** in the range of 1300 V to 1925 V and 100 Hz to 500 Hz.
152 The wing stroke amplitude reaches a maximum near 300 Hz, which implies the net lift force also
153 maximizes around similar frequency. Next, we repeated liftoff tests (Fig. 2B and movie S2 part 2) under
154 different driving conditions. Fig. 2F shows the measured lift force as functions of driving voltage and
155 frequency **and it reaches maximum at the 330 Hz condition**. Based on this result, we fixed the operating
156 frequency to 330 Hz for all flight experiments. The red curve in Fig. 2F represents the voltage-to-lift force
157 mapping applied in the flight controller. **Similar to prior works (28, 30), we modeled the DEA as a series**
158 **resistor-capacitor (RC) element and found the equivalent R and C to be $78 \text{ k}\Omega$ and 1.48 nF , respectively. The**

159 330 Hz operating condition is close to the mechanical resonance frequency determined by the wing-
 160 transmission-actuator system, while the electrical resonance frequency is over 1 kHz as predicted by the *RC*
 161 time constant. Using a custom circuit, we measured the robot power consumption during liftoff flight and
 162 obtained a lift-to-power ratio of 9.4 mN W^{-1} . The robot efficiency is similar to our prior works (28, 30) but
 163 approximately 5 times worse than piezoelectric flyers (10).

164 **Fig. 2. Static characterization of robot performance.** (A) A composite image of the robot flapping-wing
 165 motion when it operates at 1925 V and 330 Hz. (B) A composite image of robot liftoff when it carries
 166 180 mg payload. The robot achieves a maximum lift-to-weight ratio of 2.2. (C) A composite image of
 167 robot rotation experiment. (D) Measured instantaneous wing stroke and pitch motion that correspond to
 168 (A). (E) Robot stroke amplitude as functions of operating voltage and frequency in flapping experiments.
 169 (F) Robot lift force as functions of driving voltage and frequency in liftoff experiments. **Each dot in (E-F)**
 170 **corresponds to a separate experiment where the driving frequency and voltage are set independently.**
 171 The scale bars in (A-C) represent 5 mm.

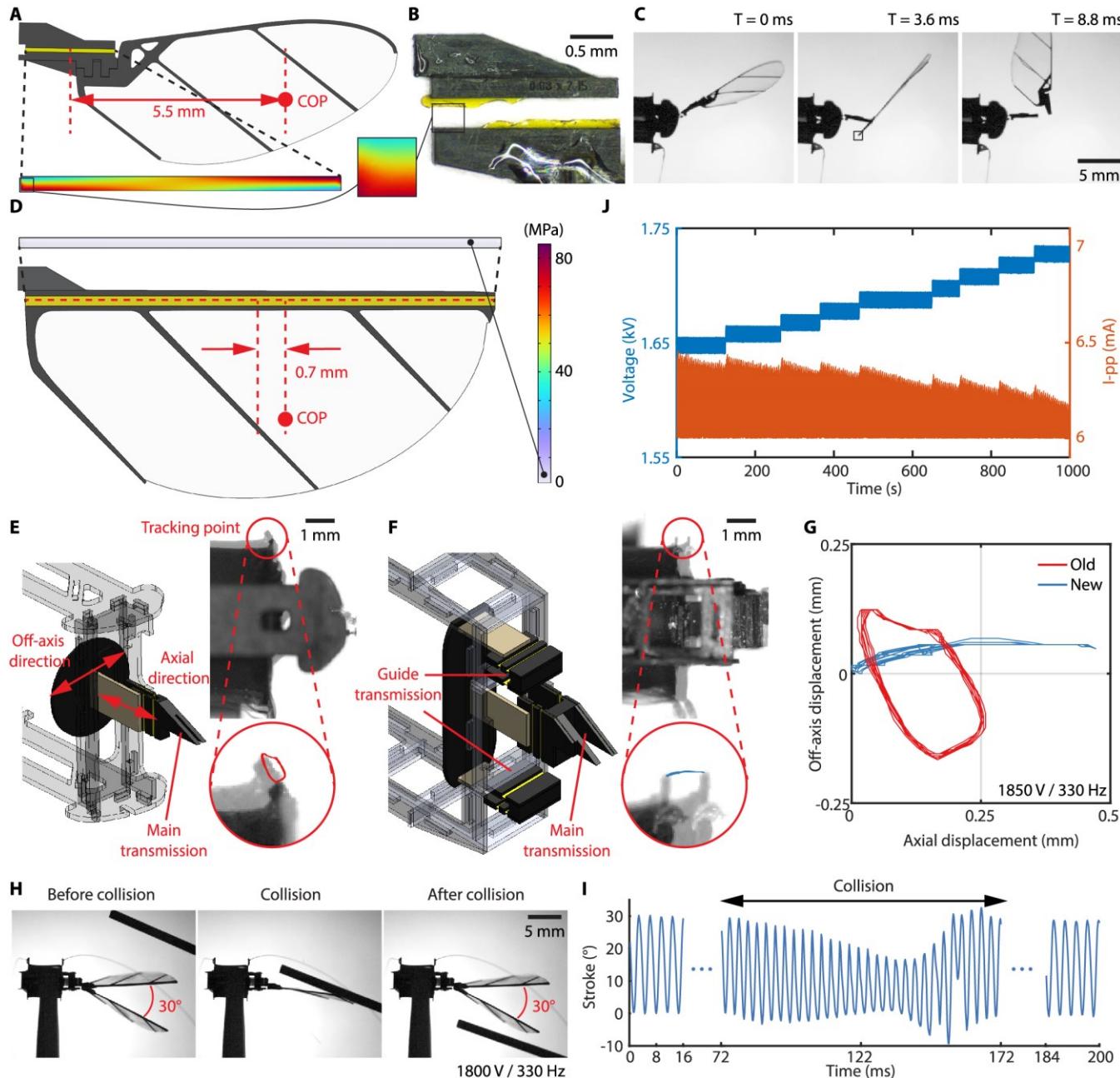
172 Next, we characterized robot torque generation by mounting it around a fixed post and measuring its
 173 rotational speed (Fig. 2C). When the robot was driven at 1800 V and 330 Hz, it revolved around the post
 174 4 times in 0.205 seconds (Fig. 2C and movie S1 part 3). By tracking the instantaneous rotation angle (fig.

176 S2I), we measured an average angular acceleration of $46200 \text{ } \text{°s}^{-2}$. The maximum angular speed reaches
177 $9700 \text{ } \text{°s}^{-1}$, which implies the robot can generate large body torque and perform aggressive maneuvers.

178 In addition to quantifying robot force and torque production, we demonstrated substantial improvement
179 of robot actuation consistency and lifespan. The prior wing hinge design (Fig. 3A) mimics the relative
180 dimension of an insect wing hinge (6), which is less than 20% of the wingspan. While resilin protein in
181 the insect hinge can endure large cyclic loading and deformation, the polyimide flexure in the robot hinge
182 has a far shorter fatigue limit. We conducted numerical simulation where a static load was applied at the
183 wing's COP. The static loading force is set to 5 mN, equivalent to the estimated drag force during hovering
184 flight (31). The insets in Fig. 3A show that stress is concentrated near the hinge's lower left and upper
185 right corners, which suggests cracks may initiate along these high-stress regions.

186 To verify this simulation result, we conducted static flapping-wing experiments with the wing hinge
187 pair in Fig. 3A. We drove the wing at the robot liftoff condition until we observed sudden hinge failure
188 (Fig. 3B-C and movie S2 part 1). In this experiment, the flapping-wing motion became anomalous after
189 approximately 200 seconds, and then a crack quickly developed and propagated through the entire hinge.
190 Fig. 3B shows an image of the torn hinge that failed within 4 wingbeats (Fig. 3C). This sudden hinge
191 failure would immediately lead to a loss of lift force, further destabilizing flight (movie S2 part 2). This
192 hinge fatigue problem exacerbates as the wing size increases. Under the same wing hinge, we found the
193 hinge lifespan decreased by 10 times when the wing area was scaled up by 2 times (fig. S1F).

194 To address this problem, we redesigned the wing hinge to reduce flexural stress. In the new design, the
195 polyimide flexure extends through the entire wing (Fig. 3D). In comparison, the distance from the wing
196 COP to the hinge **center** is reduced from 5.5 mm (Fig. 3A) to 0.7 mm (Fig. 3D). Numerical simulation
197 shows the maximum hinge stress reduces by over 1000 times. Following this simulation result, we
198 conducted static flapping and flight experiments to measure the new hinge lifespan. After enduring over
199 1000 seconds of static flapping and 1500 seconds of flight experiments, the new wing and hinge did not

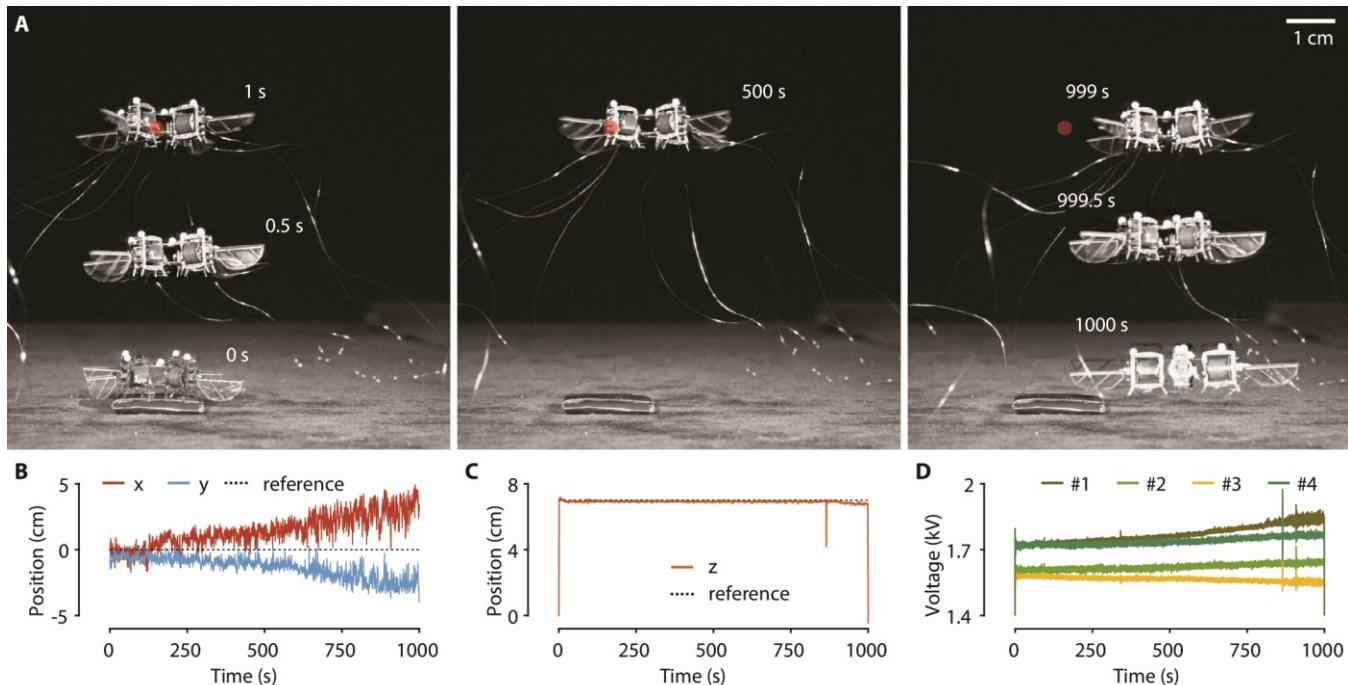

200 exhibit any degradation or failure. This is an important result because the robot would no longer suffer
201 sudden wing loss during flight.

202 Our robot design also mitigated performance degradation due to off-axis actuator bending. The DEAs
203 are muscle-like soft actuators that elongate along the axial direction. However, large axial load due to the
204 aerodynamic forces may lead to dynamic buckling (21) along the off-axis direction. In the original design,
205 the linear four-bar transmission is compliant in the off-axis direction (Fig. 3E). When the robot operates
206 near peak performance conditions, the DEA deforms laterally (Fig. 3E and movie S3), which reduces the
207 wing stroke amplitude and the associated lift force. This off-axis DEA bending may also lead to electrical
208 shorting and degrade DEA performance.

209 To mitigate this problem, we added two guide transmissions that constrain DEA off-axis bending (Fig.
210 3F). Fig. 3F and movie S3 show the new robot was operated at the same condition of 1850 V and 330 Hz.
211 Compared to the old design (red curve in Fig. 3G), the new design shows a 78% decrease in off-axis
212 displacement and 87% increase in axial elongation. This translates to over 80% increase in wing stroke
213 amplitude, suggesting a large increase in lift force production. **This addition of guide transmissions**
214 **increases robot lift force at peak operating conditions, reduces transmission deformation, and improves**
215 **robot endurance. In addition, the robot actuator, transmission, and hinges consist of compliant materials**
216 **that exhibit collision resilience. While the robot operates at 1800 V and 330 Hz, we hit the robot wing**
217 **with a stick (Fig. 3H and movie S1 part 4), which reduced the wing stroke motion. After the stick was**
218 **removed, the robot flapping-wing motion recovered to the nominal amplitude within four wingbeats (Fig.**
219 **3H-I), indicating the robot is robust against collisions.**

220 With this new robot design, we performed constrained liftoff experiments (Fig. 2B) to quantify DEA
221 degradation. The robot was mounted on the liftoff stand and it was driven at 330 Hz and the minimum
222 liftoff voltage for 10 seconds. If the robot could lift off, then we repeated the experiment at the same
223 operating condition. If the robot could not lift off, then we increased the driving voltage by 10 V. We
224 repeated the experiments until the robot completed 1000 seconds of cumulative liftoff flight. Fig. 3J

225 showed the commanded voltage (blue) and the measured current (red). Over the 1000-s operation, the
 226 minimum liftoff voltage increased by 4.8% and the current reduced by 4%. This data shows the robot's
 227 potential to operate for an extended duration far exceeding tens of seconds.


236 of the linear four bar transmission. The overlaid image shows large actuation hysteresis. **(F)** A new
237 transmission design that constrains off-axis motion. The overlaid image shows DEA actuation is mostly
238 axial. **(G)** Comparison of DEA deformation under different transmission designs in (E) and (F). **(H)** The
239 robot wing was hit by a stick while it operated at 330 Hz with 30° stroke amplitude. The flapping-wing
240 motion recovered to nominal amplitude after the stick was removed. **(I)** The measured wing stroke motion
241 before, during, and after collisions. **(J)** Commanded voltage amplitude and measured current during a
242 1000-s static liftoff experiment.

243
244 **Long endurance hovering flight**

245 We conducted a sequence of hovering flights to evaluate robot endurance. In our flight experiments,
246 the robot is tethered to offboard power sources (Trek 2220) and relies on an external motion capture
247 system (Vicon Vantage V5). We designed a feedback flight controller that receives tracking data at 400
248 Hz and commands the robot at 2 kHz. **Compared to prior work (21), this controller introduces three**
249 **features for reducing positional error during dynamic maneuvers.** The controller implementation details
250 are described in Supplementary Discussion S2.

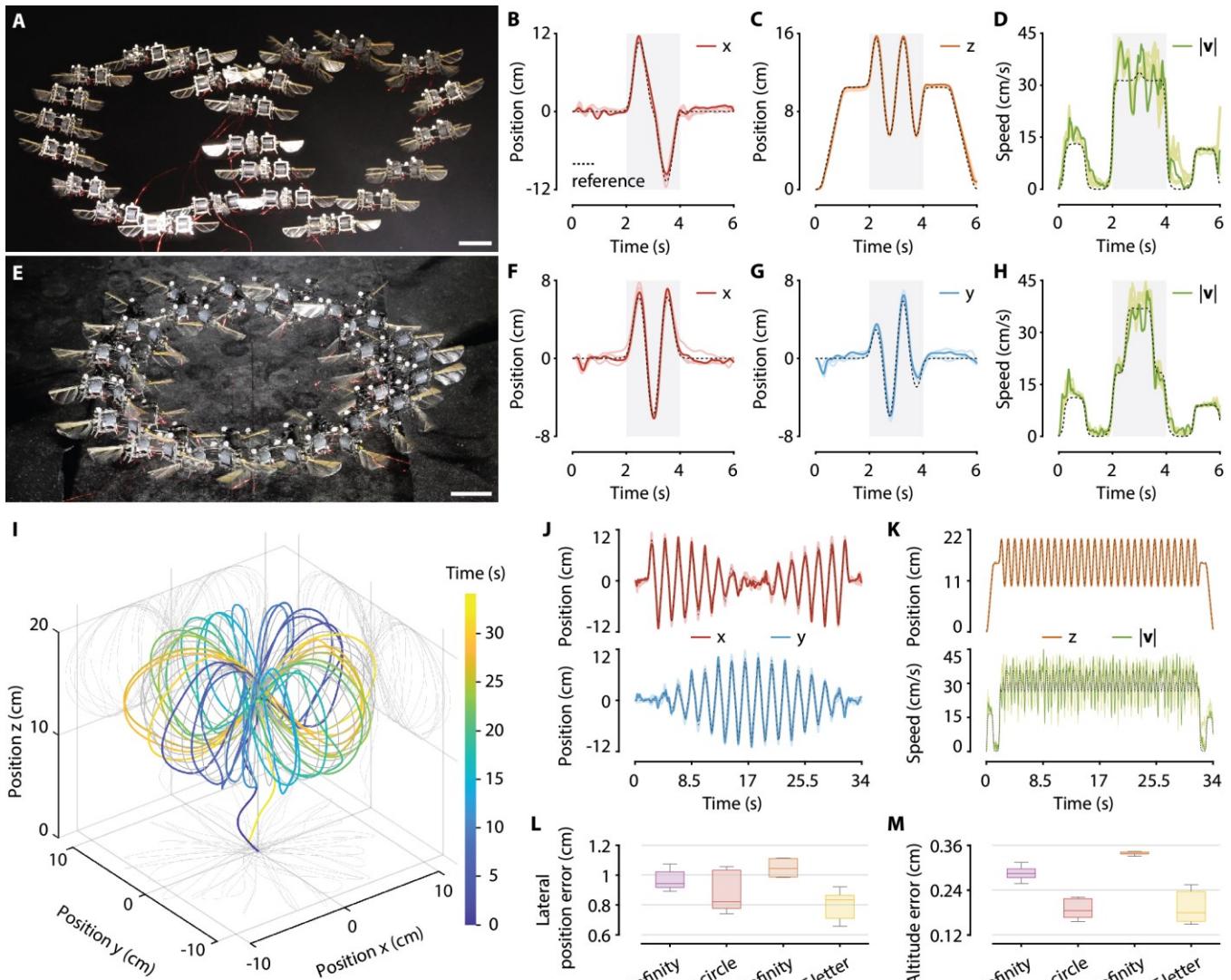
251 To assess robot consistency and lifespan, we gradually increased the flight time from 10 s, 60 s, 100 s,
252 400 s to 1000 s. The shorter flights are described in Supplementary Discussion S3 and fig. S3. Fig. 4A
253 shows a composite image sequence of the 1000-s flight (movie S4) where the robot hovered 7 cm above
254 ground. The RMS error of lateral position (Fig. 4B) and altitude (Fig. 4C) are 2.35 cm and 0.14 cm,
255 respectively. Compared to most prior results (21, 28, 30), the flight time increases by 100 times while the
256 robot maintains similar flight accuracy. During this flight, the robot slowly drifts along the positive x and
257 negative y directions (Fig. 4B), which is contributed by gradual DEA heating and degradation. Fig. 4D
258 shows the driving voltage amplitude of the four actuators. Over this 1000-s flight, the commanded voltage
259 of the first DEA (dark green curve in Fig. 4D) increases from 1720 V to 1850 V, representing a 7.56%
260 deviation from the calibrated controller values. **This performance degradation was likely contributed by**
261 **self-clearing during flight and the DEA did not recover to nominal performance after cooling down to**
262 **room temperature.** The lateral position error could be further reduced under an adaptive flight controller
263 that accounts for changing performance.

264 Overall, this 1000-s flight represents orders-of-magnitude improvement in hovering time among sub-
 265 gram MAVs. **Before requiring actuator replacements, the robot performed consecutive long flights where**
 266 **the total hovering time exceeded 1550 seconds.** Unlike prior designs (movie S2 part 2), this robot never
 267 experienced sudden hinge or actuator failure that could destabilize the flight. This high consistency and
 268 long lifespan enabled follow-up experiments on complex trajectory tracking and aggressive acrobatics.

269
 270 **Fig. 4. A 1000-s, long endurance hovering flight.** (A) A composite image sequence that shows the 1000-s
 271 hovering flight. (B-C) Tracked robot lateral position (B) and altitude (C) during the flight. (D)
 272 Commanded voltage amplitudes sent to the four independent actuators.

273 274 **Fast and precise trajectory tracking flights**

275 In addition to achieving long endurance flights, we performed a sequence of trajectory tracking
 276 demonstrations that highlight robot precision and speed. First, our robot tracked a $20\text{ cm} \times 10\text{ cm}$ “ ∞ ”
 277 sign similar to that of a recent work (16). While performing this flight (Fig. 5A and movie S5), the robot
 278 closely followed the desired x and z trajectories (Fig. 5B-C) with lateral and altitude errors of 0.97 and
 279 0.29 cm, respectively. The average flight speed reached $31.4\text{ cm}\cdot\text{s}^{-1}$ (Fig. 5D) while the robot tracked the
 280 infinity sign. Compared to a recent work (16), our robot tracks the same trajectory with 3.1 times faster
 281 speed yet the position and altitude error are reduced by 61.8% and 42%, respectively. This benchmark

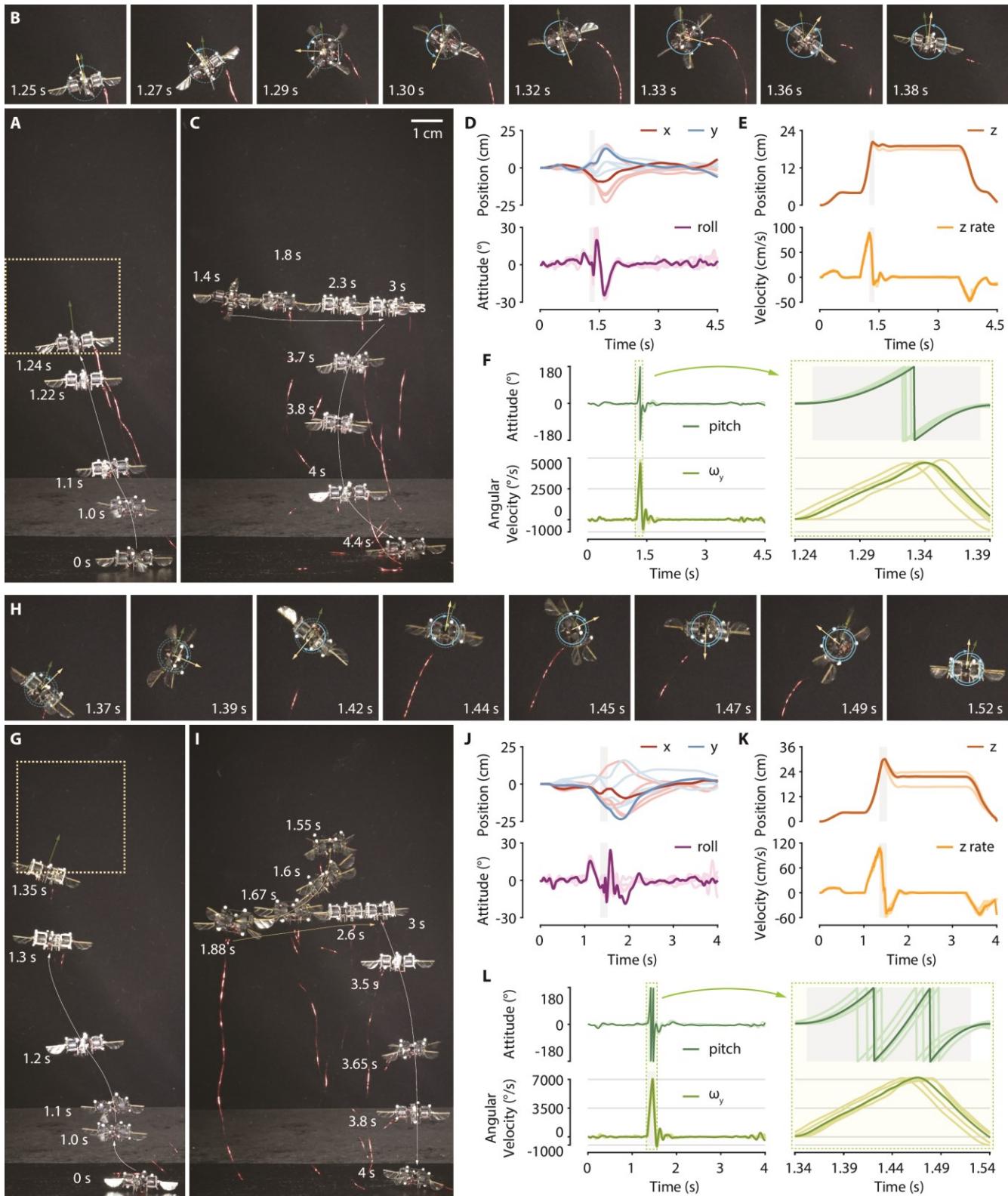

282 flight shows the highest flight precision and speed among sub-gram aerial robots. To demonstrate robot
283 consistency, we repeated the same flight five times (fig. S4).

284 Next, our robot tracked two nested circles that are 10 cm above the xy-plane (Fig. 5E and movie S6).
285 The outer circle has a dimension of 12 cm × 12 cm, and the robot followed it with a speed of 36 cm·s⁻¹
286 and a positional error of 0.91 cm for the entire flight. Compared to a prior work that tracked a similar
287 trajectory (32), our robot demonstrates 5 times reduction of RMS position error (Fig. 5F-G) at 8 times
288 higher flight speed (Fig. 5H). This flight was repeated five times (fig. S5) to highlight robot and controller
289 consistency.

290 In addition to tracking simple trajectories (Fig. 5A-H), our robot can follow complex paths that are
291 difficult for other sub-gram robots. We designed a 20 cm × 20 cm × 10 cm 3D trajectory where an infinity
292 sign gradually rotated along the z-axis (Fig. 5I and movie S7). The robot tracked the rotating pattern 15
293 times during a 34-s flight. Figure 5J-K show the measured x, y, and z positions closely follow the desired
294 path. The robot maintained a mean speed of 30 cm·s⁻¹ (lower panel in Fig. 5K) while it tracked this 9.7 m
295 long trajectory — the longest flight path flown by a sub-gram MAV. The RMS lateral position and altitude
296 errors of this flight are 1.05 cm and 0.34 cm, respectively. This flight was repeated five times (fig. S6).

297 Our robot achieved smaller position and altitude errors when it flew at a slower speed. To demonstrate
298 high flight precision, we commanded the robot to trace the letters “MIT” (Fig. 1E and movie S8) at a
299 slower speed of 7.48 cm·s⁻¹. This trajectory has a dimension of 46 cm × 12 cm, and it is challenging due
300 to frequent stopping and changing of flight directions. Fig. S7 shows the six flights our robot has
301 performed, with a mean RMS lateral position and altitude error of 0.80 cm and 0.20 cm, respectively.
302 Compared to the 3D trajectory in Fig. 5I, the position and altitude error reduce by 24% and 41%,
303 respectively. The lateral position and altitude errors of all four trajectory following flights are compared
304 in Fig. 5L-M, which show the flight precision improves when flight speed reduces. The 3D infinity and
305 letter following flights represent some of the longest and most complex paths flown by sub-gram MAVs.

306 These demonstrations are enabled by the robot's high consistency and its ability to generate large body
 307 torques. The trajectory design is described in Supplementary Discussion S4.


308
 309 **Fig. 5. Trajectory following demonstrations.** (A) A composite image of the robot following an infinity
 310 sign. (B-D) Robot x (B), z (C) positions, and flight speed (D) that correspond to the flight in (A). (E) A
 311 composite image of the robot tracking a planar circle. (F-H) Robot x (F), y (G) positions, and flight speed
 312 (H) that correspond to the flight in (E). (I) The tracked trajectory when the robot follows a rotating infinity
 313 pattern. (J-K) Robot x, y, and z positions, and the flight speed that correspond to the flight in (I). The
 314 trajectory following flights in (A), (E) and (I) were repeated five times. The darker colored curves in (B-
 315 D), (F-H), and (J-K) correspond to the flight in (A), (E), and (I), respectively. The lightered colored curves
 316 represent the repeating flights. (L-M) RMS lateral (L) and altitude (M) error of the four trajectories. The
 317 standard deviation and mean values are computed based on the five repetitions. The scale bars in (A) and
 318 (E) represent 1 cm.
 319

320 **Demonstrations of acrobatic flight maneuvers**

321 In addition to performing fast and precise flights, our robot can demonstrate insect-like acrobatic
322 maneuvers (movie S9-10). Fig. 6A-C show a composite image sequence of a somersault demonstration.
323 The robot takes off and hovers around a setpoint for 1 s (Fig. 6A). Next, it accelerates upward until the
324 ascending speed exceeds $80 \text{ cm}\cdot\text{s}^{-1}$. Then it performs the somersault within 0.11 s (Fig. 6B) and recovers
325 attitude stability (Fig. 6C). Finally, the robot returns to the hovering setpoint and lands (Fig. 6C). Fig. 6D-
326 F show the tracked robot position, altitude, attitude, flight velocity, and angular velocity. This flight is
327 repeated five times (fig. S9) to demonstrate robot consistency. The controller design is described in
328 [Supplementary Discussion S5](#) and fig. S8.

329 This flight [shows a](#) complete body flip performed by a sub-gram MAV. In a prior work (28), another
330 sub-gram MAV demonstrated a body flip but it could not recover altitude before hitting the ground. In
331 comparison, this robot can recover attitude stability without dropping height (upper panel in Fig. 6E). The
332 robot completes the somersault within 0.11 s – the fastest among all existing aerial robots. During this
333 maneuver, the maximum robot angular velocity exceeds $4800 \text{ }^{\circ}\text{s}^{-1}$.

334 Our robot can further perform double body flips – a challenging maneuver that has never been
335 achieved by flapping-wing robots across scales. Fig. 6G-I show a composite image sequence of this flight.
336 Similar to the single body flip, the robot takes off, hovers, ascends, flips, recovers stability, and finally
337 lands. The measured robot position, velocity, attitude, and angular velocity are shown in Fig. 6J-L. In this
338 flight, the robot completes two body flips with 0.17 s. When the robot accelerates upward, its maximum
339 ascending speed exceeds $100 \text{ cm}\cdot\text{s}^{-1}$. During the flipping process, the robot's maximum angular velocity
340 reaches $7200 \text{ }^{\circ}\text{s}^{-1}$ (lower panel in Fig. 6L). After the robot recovers its attitude stability, it only loses 6.22
341 cm of height (upper panel in Fig. 6K) compared to the start of the flip. These flight performances far
342 exceed existing sub-gram MAVs and they are comparable to that of aerial insects (5). The [fast](#) robot speed
343 and turning rate also make it among the most agile soft-driven robots. This highly acrobatic flight is
344 repeated five times (fig. S10) to demonstrate robot consistency under aggressive operating conditions.

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

353 represent the flight data in (A-C) and (G-I). The lighter colored curves are the repeating flights. The scale
354 bar in (C) applies to (A-C) and (G-I). In (A) and (G), the rectangular regions represent the same cropped
355 regions in (B) and (H) where the robot performs the flips. In (B) and (H), the green and yellow arrows
356 indicate the start and instantaneous robot orientations, respectively.

358 DISCUSSION

359 In this work, we developed a soft-actuated MAV that exhibits long endurance, high flight precision,
360 and insect-like agility. These flight capabilities were enabled by new mechanism, configuration, and
361 controller designs. Stress-relieving transmissions and hinges substantially improved the hardware
362 consistency; the four-wing configuration enhanced lift force generation through avoiding adverse wing-
363 wing interactions that relate to the inward facing wing pairs in prior eight-wing designs (21). These
364 hardware designs resulted in remarkable improvements of flight endurance and maximum ascending
365 speed. In the past, sub-gram MAVs were limited to flying for less than 20 s at low speeds (blue dots in
366 Fig. 7A). Our robot showed a 1000-s hovering flight – almost two-orders-of-magnitude longer than most
367 sub-gram MAVs. In addition, its ascending speed exceeds $100 \text{ cm}\cdot\text{s}^{-1}$ – twice that of similar sized rigid-
368 driven MAVs. In addition to hardware advances, we designed a new controller for improving flight
369 precision, which could be quantified by measuring the position error of hovering or trajectory following
370 flights. The position error usually increases in faster and longer flights due to unaccounted aerodynamic
371 effects and hardware drifting. In the past, sub-gram MAVs were limited to slowly ($<15 \text{ cm}\cdot\text{s}^{-1}$) following
372 short ($<20 \text{ s}$) trajectories and their position error ranged from 1.2 to 4.5 cm (blue dots in Fig. 7B). Our
373 robot demonstrated much faster ($>30 \text{ cm}\cdot\text{s}^{-1}$) trajectory tracking flights with smaller position errors (red
374 dots in Fig. 7B). The error in most flights was smaller than 1.4 cm (Fig. 7B), and it grew to 2.3 cm in the
375 1000-s hover due to slow DEA degradation. Our flight trajectories were also more challenging because
376 they had frequent turns and longer pathlengths (Fig. 5). Overall, our new robot and controller design
377 achieved substantial improvements in flight endurance, speed, and precision (Fig. 7A-B).

378 Furthermore, high hardware consistency and precise flight control enabled insect-like agility. Our
379 robot demonstrated double body flips – a challenging acrobatic maneuver that has never been shown in
380 existing flapping-wing robots across scales. This performance is competitive against rotary MAVs and

381 natural flyers (Fig. 7C). Inertial scaling predicts the robot's rotational speed is inversely proportional to
382 the wing or rotor size, suggesting smaller robots can perform somersaults at a faster rate. This trend is
383 supported by Fig. 7C, which shows our robot achieves the fastest rotation compared to existing drones
384 (blue). Remarkably, our robot is also faster than the Blue bottle fly – the fastest flipping aerial insect (5).

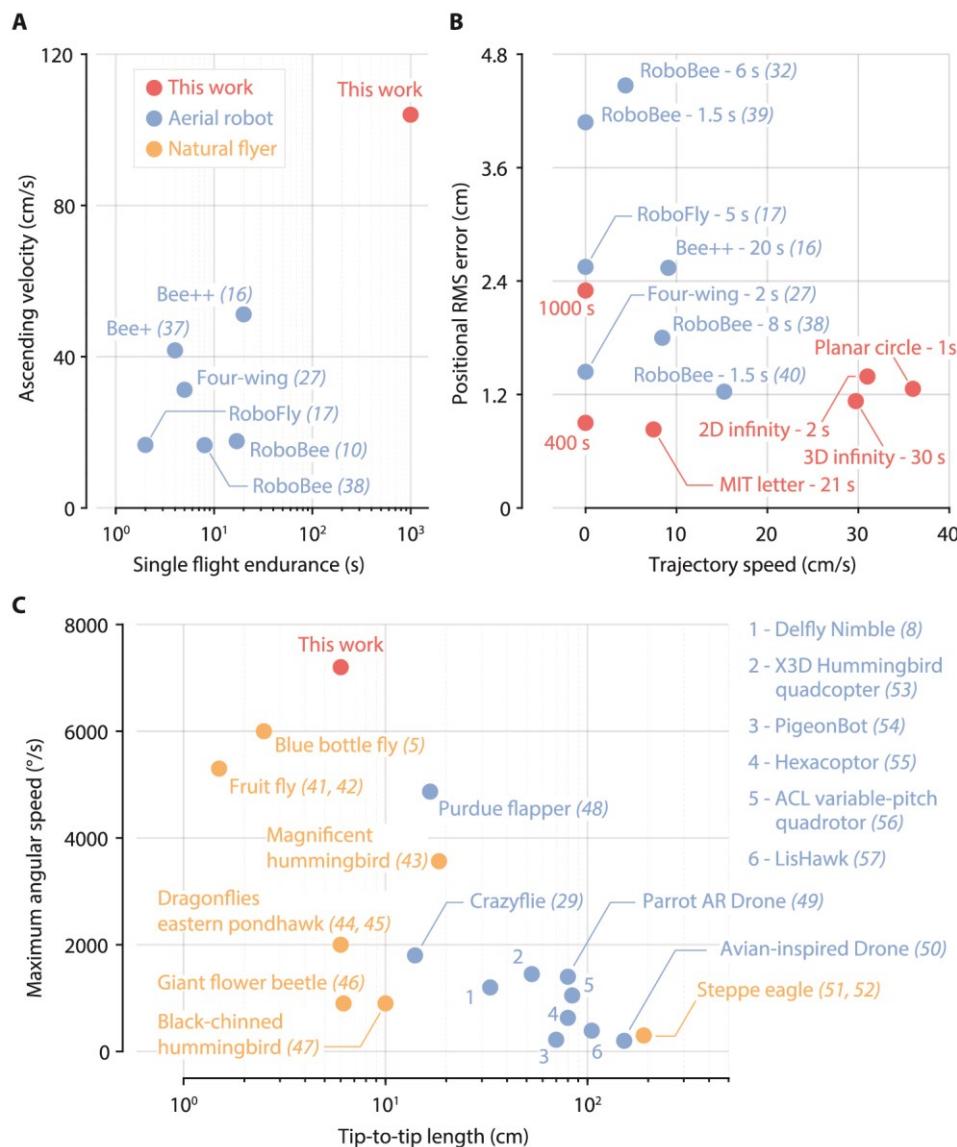
385 These flight demonstrations have far-reaching implications for the microrobotics and the soft robotics
386 communities. Achieving insect-like endurance, precision, and agility opens opportunities for emulating
387 complex insect functions. It will inspire the sub-gram MAV community to move from hovering or simple
388 trajectory following demonstrations to accomplishing complex and extended tasks such as pollination and
389 coordinated swarm flights. From the perspective of the soft robotics community, this work demonstrates
390 controllability and agility **comparable to that of rigid-driven systems**. In the past, robustness and safety
391 were salient features of soft actuators and mechanisms (33), but soft robotic systems fell behind in
392 bandwidth and agility. Compared to existing soft robots, this tiny robot achieves some of the fastest speed
393 and turning rate without requiring normalization by its body length. It demonstrates soft-driven robots can
394 simultaneously embody robustness and agility. During the body flip maneuver, the DEAs respond to
395 aggressive driving signals within milliseconds while they endure high stress and strain. These muscle-like
396 properties outperform rigid actuators such as piezoelectric ceramics and microscale motors. This work
397 will inspire future development of high-power soft actuators (34) and their applications in agile animal-
398 like systems.

399 The substantial improvements in endurance, precision, and agility (Fig. 7A-C) were enabled by new
400 robot designs that carefully considered the similarities and differences between biological and engineered
401 systems. Our goal is to achieve insect-like flight performance in insect-scale robots, and it requires both
402 biomimicking designs and engineered solutions. At this scale, rotary propulsion becomes infeasible due
403 to a lack of efficient microscale motors. We chose the flapping-wing design and developed robust and
404 muscle-like DEAs. These soft actuators have high resonance frequencies of 300 – 500 Hz, which implies
405 the robot can generate large instantaneous changes of forces and torques. In addition, flapping-wing

406 MAVs are tolerant to collisions due to the reciprocal wing motion and the robot's low inertia. The use of
407 artificial muscles and flapping-wing propulsion represents suitable biomimicking designs for achieving
408 biomimetic functions.

409 However, under material and actuation constraints, it is also critical to adopt engineered designs that
410 deviate from that in biological systems. For instance, insect hinges consist of resilin protein that exhibit
411 high fatigue limit under large cyclic loading and strain. In contrast, polyimide has 4 times lower elongation
412 ratio and 1000 times lower fatigue limit. Under a similar geometry, the robot hinge and transmission would
413 experience failure (Fig. 3B) within 200 s. Our new design reduced the hinge flexural stress by 1000 times
414 through elongating the hinge width. It also reduced the transmission strain through decreasing the
415 flapping-wing amplitude and maintained similar lift force through proportionally increasing the wing area.

416 **This wing hinge and transmission design principle can also benefit other sub-gram MAV platforms.**


417 Piezoelectric driven MAVs (10, 16, 19) have a limited lifetime due to actuator cracking, which is caused
418 by resonance mismatch when the flexures gradually soften. Elongated wing hinge and new guide
419 transmission designs can mitigate flexural degradation and contribute to longer endurance. Another design
420 choice that deviates from biology is the use of four independently controlled wings. Insects have delicate
421 muscle groups that exert fine control of the flapping-wing motion, but it is difficult to develop differently
422 sized actuators and delicate transmissions for achieving 3 degrees-of-freedom (DoF) control of wing
423 kinematics. We used four sets of actuators and wings to generate roll and pitch torques, which allowed
424 the robot to achieve insect-like agile maneuvers and precision. This work demonstrates **challenging** bio-
425 inspired locomotive capabilities by combining biomimicking and engineered designs.

426 Despite showing a large improvement of flight endurance, our robot lifetime remains 2-3 orders of
427 magnitude shorter than that of mesoscale aerial robots – limiting potential applications. The robot has
428 three failure modes: transmission softening, wing hinge tearing, and DEA degradation. In our prior works,
429 wing hinge and transmission failure were the major limiting factor (80,000 flapping-wing cycles) while
430 the DEAs only experienced 2% performance reduction after 2 million cycles of operation (30). In this

431 work, we redesigned the transmission and wing hinge to reduce the flexural stress, which substantially
432 improved the hinge and transmission endurance. We have not observed hinge or transmission failure in
433 this work. However, the reduction of transmission ratio led to higher actuation strain and required higher
434 driving voltage. Compared to our prior work (30), the robot hovering voltage increased from 1500 V to
435 1720 V. This high operating voltage caused 7.56% DEA degradation during the 330,000 cycles of
436 operation, implying the robot lifetime was limited by the actuator. There are two directions for further
437 improving the robot lifetime. In the short term, the robot design could be adjusted to balance transmission
438 and DEA degradation. Compared to the present work, the transmission ratio could be moderately
439 increased for reducing actuation strain and improving system endurance. We estimate that a system level
440 redesign can lead to 2 – 5 times improvement of flight time. In the longer term, lifetime improvement will
441 be driven by new materials and processes. From the perspective of flexural materials, future works may
442 incorporate nitinol (58) and polymer (59) hinges in the SCM system because these materials have shown
443 high fatigue limit. From the perspective of DEA fabrication, other electrode materials such as graphene
444 and silver nanowire may be explored because they have higher conductivity and produce less heat.

445 This robot platform has the potential to enable follow up studies on control, sensing, and power
446 autonomy (35). While this work did not demonstrate heading angle control, it could be achieved by tilting
447 each robot module during assembly (16, 36). Owing to its consistency and long lifespan, this robot can be
448 used to evaluate other planning frameworks such as model predicitative control (MPC) or reinforcement
449 learning (RL). These planning methods can enable aggressive maneuvers such as banked turns and
450 perching. More broadly, this robot is a fitting platform for exploring sensing and power autonomy – some
451 of the most challenging directions for insect-scale MAVs. This robot has over 500 mg of payload capacity,
452 which is sufficient for carrying a sensor suite including gyroscopes, accelerometers, and small cameras.
453 There still exists a moderate gap for this robot to achieve power autonomy. **The DEA consumes 2.9 W of**
454 **reactive power ($\frac{1}{2}CV^2f$)** during hovering flight, where C is the total DEA capacitance, V is the applied
455 voltage, and f is the flapping-wing frequency. At this scale, it is difficult for sub-gram circuits and

456 batteries to deliver the required power and voltage. Towards enabling power autonomous flight, future
 457 studies should focus on improving robot aerodynamic efficiency and payload capacity.

458

459 **Fig. 7. Comparison of MAV flight performance.** (A) Flight time and maximum ascending speed of
 460 existing sub-gram MAVs. (B) MAV mean flight speed and RMS position error during trajectory following
 461 flight. (C) Maximum angular rotational rate as a function of vehicle length scale. The blue and orange
 462 dots represent MAV and insect performance, respectively.

463

464

465 MATERIALS AND METHODS

466 1. Fabrication of robot components

467 The robot airframe, transmissions, connecting bars, and wings are made through the SCM process.

468 The airframe is made of 160 μ m carbon fiber, which consists of orthogonally stacked M55J laminates.

469 The airframe has 12 parts that are hand assembled into one structure (fig. S1A). This design has six I-
470 beams for reinforcing structural strength and reducing oscillation during actuation.

471 The robot wing and wing hinge are combined into a single structure (Fig. 1C). There are seven material
472 layers in the laminate fabrication process (fig. S1B). The top five layers consist of carbon fiber (70 μm),
473 adhesive (12 μm), polyimide (25 μm), adhesive (12 μm), and carbon fiber (70 μm), which function as the
474 compliant flexure. The bottom 2 layers consist of adhesive (12 μm) and polyester (1.5 μm), which act as
475 the wing. By combining the wing and wing hinge into one structure, this design removes the prior mating
476 feature (21) and improves the component alignment and consistency. Compared to prior designs (Fig.
477 3A), the wing shape is adjusted to accommodate the long hinge along the wing leading edge, and the wing
478 area is increased by 2 times. The wingspan (R), aspect ratio (AR), first (\hat{r}_1), and second radius moment
479 (\hat{r}_2) are 1.4 cm, 3, 0.49, and 0.55, respectively. Based on a blade element quasi-steady model (60), the
480 distance between the wing root and the wing spanwise COP is given by: $R_{cop} = R \frac{\hat{r}_2^2}{\hat{r}_1} = 8.68 \text{ mm}$.

481 The robot transmission consists of three sets of linear four bar mechanisms. The central transmission
482 (fig. S1C) has a width and length of 0.8 mm and 1.8 mm, respectively. Compared to prior works (30), the
483 transmission stiffness increases by 50% and the transmission ratio decreases by 52%. These changes of
484 transmission design aim to increase the system resonance frequency and reduce the wing stroke amplitude.
485 To mitigate off-axis bending, two guide transmissions were placed orthogonal to the main transmission
486 (fig. S1C). The transmission stiffness of the guide transmissions is approximately 10% that of the main
487 transmission, which implies they have small influence on system resonance and operating conditions.

488 The DEA is made using an existing fabrication method (30). We redesigned the DEA geometry to
489 accommodate the new transmission and wing design. Compared to the prior designs (21, 30), the DEA
490 length is reduced from 9 mm to 5 mm, and the number of electrode layers increases from 6 to 10. The
491 electrode layer consists of single-wall carbon nanotube (SWCNT, Invisicon 3500, Nano-C Inc) that is less
492 than 30 nm thick. The elastomeric layer thickness is 36 μm , which is identical to that in a prior work (30).
493 The new DEA weighs 110 mg, and it is shown in fig. S1D. Compared to prior designs, this new DEA

494 shows approximately two times increase of resonance frequency and blocked force but it has a two times
495 reduction of displacement. This new design is advantageous because its short geometry mitigates
496 nonlinear buckling (21). **The robot is driven by four independent DEAs each requiring a high voltage line**
497 and a ground line. We designed two connector plates (fig. S1E) for the DEAs that shared the same ground
498 line. This central connector plate design reduces the number of wires and mitigates wire-induced torques
499 during flight. Supplementary Discussion S1 describes the selection process of the robot design parameters,
500 which is documented in Table S1.

501 **2. Experimental setup for static characterization and flight experiments**

502 We conducted static and free flight experiments to characterize robot performance. In this work, we
503 set up static flapping, constrained liftoff, constrained rotation, and free flight experiments. Fig. S2A shows
504 an image of the static flapping set up. The robot is affixed in front of a high-speed camera (Phantom VEO
505 710) and it is illuminated by a halogen light (Amscope HL150-A). A custom control computer (Speedgoat)
506 sends the command signal into a high voltage amplifier (Trek 677B), which drives the DEA in the range
507 of 200 – 500 Hz and 1200 – 2000 V. The flapping-wing motion is recorded at 22000 frames per second
508 (fps). The recorded high-speed videos are processed manually to extract instantaneous flapping-wing
509 kinematics (Fig. 2D). To extract the stroke amplitudes for multiple experiments (Fig. 2E), we modified an
510 automated tracking method based on a prior work (21).

511 After conducting the static flapping experiments, we drove the robot again under the same operating
512 conditions while mounting it on a liftoff stand (fig. S2B). The liftoff stand consists of a beam that is
513 balanced around a pivot. If the robot generates higher force than its weight, it ascends upward. To precisely
514 measure the average lift force, we placed different payloads on either side of the balance beam under
515 different operating conditions. The liftoff process is recorded by the high-speed camera at 3000 fps, and
516 then the liftoff angle is extracted through an automated algorithm (28). The net lift force is calculated
517 based on the tracked beam angle. The set of liftoff tests determine the optimal operating frequency and
518 the voltage to force mapping in free flight experiments.

519 In preparation for body flip demonstrations, we conducted constrained rotation experiments (Fig.
520 2C). Fig. S2C shows an image of the setup where one robot module is mounted around a beam. To
521 accurately estimate robot rotational speed in free flight experiments, the distance from the robot module
522 to the rotation center is set to half of the robot connector length (Fig. 1B). The rotation center is
523 approximately at the same location as the robot center of mass during free flight. We operated the robot
524 at 1800 V and 330 Hz (movie S1 part 3 and Fig. 3C), and we recorded the high-speed video at 3000 fps.
525 We manually tracked the beam angle (fig. S2I) and found the maximum rotational speed and average
526 acceleration to be $9700 \text{ }^{\circ}\text{s}^{-1}$ and $46200 \text{ }^{\circ}\text{s}^{-2}$. This experiment demonstrates our robot can generate large
527 body torque and achieve large rotational speed.

528 We conducted a sequence of hovering (Fig. 4, fig. S3), trajectory tracking (Fig. 5, fig. S4-7), and
529 body flip (Fig. 6, fig. S8-10) experiments to demonstrate robot flight capabilities. The experiments were
530 performed in an existing flight arena (30) (fig. S3A). The flight arena is equipped with a motion capture
531 system, custom Simulink-Realtime control hardware and high voltage amplifiers. In addition to using the
532 same high-speed camera in previous parts, we also used a color camera (Sony FX3) for recording flight
533 (fig. S3A). To ensure continuous tracking during the fast body flips, seven 1.5 mm reflective markers
534 were mounted on both sides of the robot to improve tracking robustness. **Five markers were placed on the**
535 **robot's upward facing side, and two markers were placed on the bottom side.** These seven markers have
536 a net weight of 40 mg, which is 10% of the estimated net payload. The motion capture system returns
537 tracked position and orientation data. To calculate velocity and rotational speed, we processed the data
538 with a lowpass filter before taking numerical derivatives. The controller runs at 2 kHz and commands the
539 amplifiers at 10 kHz. The robot has four independently controlled DEAs, and it is tethered to the amplifiers
540 through 49-gauge quadruple-insulated wires (MWS).

541 **Supplementary Materials**

542 **Supplementary Discussion S1 to S5**

543 **Figs. S1 to S10**

544 **Table S1**

545 **Captions for Movies S1 to S10**

546 **Movies S1 to S10**

547 References (61–62)

548 **References and Notes**

- 550 1. G. Card, M. H. Dickinson, Visually mediated motor planning in the escape response of *Drosophila*.
Current Biology **18**, 1300-1307 (2008).
- 551 2. Z. J. Wang, J. Melfi Jr, A. Leonardo, Recovery mechanisms in the dragonfly righting reflex.
Science **376**, 754-758 (2022).
- 552 3. P. Henningsson, L. Johansson, Downstroke and upstroke conflict during banked turns in
553 butterflies. *Journal of the Royal Society Interface* **18**, 20210779 (2021).
- 554 4. J. A. Bender, M. H. Dickinson, Visual stimulation of saccades in magnetically tethered *Drosophila*.
Journal of Experimental Biology **209**, 3170-3182 (2006).
- 555 5. P. Liu, S. P. Sane, J.-M. Mongeau, J. Zhao, B. Cheng, Flies land upside down on a ceiling using
556 rapid visually mediated rotational maneuvers. *Science Advances* **5**, eaax1877 (2019).
- 557 6. J. M. Melis, I. Siwanowicz, M. H. Dickinson, Machine learning reveals the control mechanics of
558 the insect wing hinge. *bioRxiv*, 2023.2006. 2029.547116 (2023).
- 559 7. W. Salem, B. Cellini, H. Kabutz, H. K. Hari Prasad, B. Cheng, K. Jayaram, J. M. Mongeau, Flies
560 trade off stability and performance via adaptive compensation to wing damage. *Science Advances*
561 **8**, eab0719 (2022).
- 562 8. M. Karásek, F. T. Muijres, C. De Wagter, B. D. Remes, G. C. de Croon, A tailless aerial robotic
563 flapper reveals that flies use torque coupling in rapid banked turns. *Science* **361**, 1089-1094 (2018).
- 564 9. Z. Tu, F. Fei, J. Zhang, X. Deng, An at-scale tailless flapping-wing hummingbird robot. I. design,
565 optimization, and experimental validation. *IEEE Transactions on Robotics* **36**, 1511-1525 (2020).
- 566 10. K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Controlled flight of a biologically inspired,
567 insect-scale robot. *Science* **340**, 603-607 (2013).
- 568 11. L. Hines, D. Campolo, M. Sitti, Liftoff of a motor-driven, flapping-wing microaerial vehicle
569 capable of resonance. *IEEE Transactions on Robotics* **30**, 220-232 (2013).
- 570 12. D. S. Drew, N. O. Lambert, C. B. Schindler, K. S. Pister, Toward controlled flight of the ionocraft:
571 a flying microrobot using electrohydrodynamic thrust with onboard sensing and no moving parts.
IEEE Robotics and Automation Letters **3**, 2807-2813 (2018).
- 572 13. H. V. Phan, H. C. Park, Mechanisms of collision recovery in flying beetles and flapping-wing
573 robots. *Science* **370**, 1214-1219 (2020).
- 574 14. Y.-W. Chin, J. M. Kok, Y.-Q. Zhu, W.-L. Chan, J. S. Chahl, B. C. Khoo, G.-K. Lau, Efficient
575 flapping wing drone arrests high-speed flight using post-stall soaring. *Science Robotics* **5**,
576 eaba2386 (2020).
- 577 15. R. J. Wood, E. Steltz, R. Fearing, Optimal energy density piezoelectric bending actuators. *Sensors*
578 and *Actuators A: Physical* **119**, 476-488 (2005).
- 579 16. R. M. Bena, X. Yang, A. A. Calderón, N. O. Pérez-Arancibia, High-performance six-DOF flight
580 control of the Bee++: an inclined-stroke-plane approach. *IEEE Transactions on Robotics* **39**, 1668-
581 1684 (2023).
- 582 17. Y. M. Chukewad, J. James, A. Singh, S. Fuller, RoboFly: An insect-sized robot with simplified
583 fabrication that is capable of flight, ground, and water surface locomotion. *IEEE Transactions on*
584 *Robotics* **37**, 2025-2040 (2021).
- 585 18. T. Ozaki, N. Ohta, T. Jimbo, K. Hamaguchi, A wireless radiofrequency-powered insect-scale
586 flapping-wing aerial vehicle. *Nature Electronics* **4**, 845-852 (2021).
- 587 19. M. A. Graule, P. Chirarattananon, S. B. Fuller, N. T. Jafferis, K. Y. Ma, M. Spenko, R. Kornbluh,
588 R. J. Wood, Perching and takeoff of a robotic insect on overhangs using switchable electrostatic
589 adhesion. *Science* **352**, 978-982 (2016).
- 590 20. Y. Chen, H. Wang, E. F. Helbling, N. T. Jafferis, R. Zufferey, A. Ong, K. Ma, N. Gravish, P.
591 Chirarattananon, M. Kovac, R. J. Wood, A biologically inspired, flapping-wing, hybrid aerial-
592 aquatic microrobot. *Science Robotics* **2**, eaao5619 (2017).

597 21. Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E. F. Helbling, N. S. P. Hyun, D. R. Clarke, R. J.
598 Wood, Controlled flight of a microrobot powered by soft artificial muscles. *Nature* **575**, 324-329
599 (2019).

600 22. S. Kim, Y.-H. Hsiao, Y. Lee, W. Zhu, Z. Ren, F. Niroui, Y. Chen, Laser-assisted failure recovery
601 for dielectric elastomer actuators in aerial robots. *Science Robotics* **8**, eadf4278 (2023).

602 23. Y.-H. Hsiao, S. Kim, S. Ceron, Z. Ren, Y. Chen, Modular and Scalable Fabrication of Insect-Scale
603 Aerial Robots toward Demonstrating Swarm Flights. *Advanced Intelligent Systems* **6**, 2300059
604 (2024).

605 24. J. P. Whitney, P. S. Sreetharan, K. Y. Ma, R. J. Wood, Pop-up book MEMS. *Journal of*
606 *Micromechanics and Microengineering* **21**, 115021 (2011).

607 25. E. Appel, J. Michels, S. N. Gorb, Resilin in insect flight systems. *Advanced Functional Materials*,
608 2215162 (2023).

609 26. O. Kraft, R. Schwaiger, P. Wellner, Fatigue in thin films: lifetime and damage formation.
610 *Materials Science and Engineering: A* **319**, 919-923 (2001).

611 27. S. B. Fuller, Four wings: an insect-sized aerial robot with steering ability and payload capacity for
612 autonomy. *IEEE Robotics and Automation Letters* **4**, 570-577 (2019).

613 28. Y. Chen, S. Xu, Z. Ren, P. Chirarattananon, Collision resilient insect-scale soft-actuated aerial
614 robots with high agility. *IEEE Transactions on Robotics* **37**, 1752-1764 (2021).

615 29. Y. Chen, N. O. Pérez-Arcibia, Controller synthesis and performance optimization for aerobatic
616 quadrotor flight. *IEEE Transactions on Control Systems Technology* **28**, 2204-2219 (2019).

617 30. Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui, J. Kong, Y. Chen, A high-lift micro-aerial-robot powered
618 by low-voltage and long-endurance dielectric elastomer actuators. *Advanced Materials* **34**,
619 2106757 (2022).

620 31. Y. Chen, K. Ma, R. J. Wood, Influence of wing morphological and inertial parameters on flapping
621 flight performance, in *2016 IEEE/RSJ International Conference on Intelligent Robots and Systems*
622 (*IROS*), pp. 2329-2336 (2016).

623 32. R. McGill, N.-S. P. Hyun, R. J. Wood, Modeling and control of flapping-wing micro-aerial
624 vehicles with harmonic sinusoids. *IEEE Robotics and Automation Letters* **7**, 746-753 (2021).

625 33. P. Sareh, P. Chermprayong, M. Emmanuelli, H. Nadeem, M. Kovac, Rotorigami: A rotary origami
626 protective system for robotic rotorcraft. *Science Robotics* **3** (2018).

627 34. T. Helps, C. Romero, M. Taghavi, A. T. Conn, J. Rossiter, Liquid-amplified zipping actuators for
628 micro-air vehicles with transmission-free flapping. *Science Robotics* **7**, eabi8189 (2022).

629 35. E. F. Helbling, R. J. Wood, A review of propulsion, power, and control architectures for insect-
630 scale flapping-wing vehicles. *Applied Mechanics Reviews* **70**, p.010801 (2018).

631 36. Y.-H. Hsiao, S. Kim, Z. Ren, Y. Chen, Heading control of a long-endurance insect-scale aerial
632 robot powered by soft artificial muscles, in *2023 IEEE International Conference on Robotics and*
633 *Automation (ICRA)*, pp. 3376-3382 (2023).

634 37. X. Yang, Y. Chen, L. Chang, A.A. Calderon, N.O. Perez-Arcibia, Bee+: A 95-mg four-winged
635 insect-scale flying robot driven by twinned unimorph actuators. *IEEE Robotics and Automation*
636 *Letters* **4**, 4270-4277 (2019).

637 38. P. Chirarattananon, K. Y. Ma, and R. J. Wood, Adaptive control of a millimeter-scale flapping-
638 wing robot. *Bioinspiration & Biomimetics* **9**, 025004 (2014).

639 39. A. De, R. McGill, and R. J. Wood, An efficient, modular controller for flapping flight composing
640 model-based and model-free components. *The International Journal of Robotics Research* **41**,
641 441-457 (2022).

642 40. P. Chirarattananon, K. Y. Ma, and R. J. Wood, Single-loop control and trajectory following of a
643 flapping-wing microrobot, in *2014 IEEE International Conference on Robotics and Automation*
644 (*ICRA*) (2014).

645 41. F. T. Muijres, M. J. Elzinga, J. M. Melis, M. H. Dickinson, Flies evade looming targets by
646 executing rapid visually directed banked turns. *Science* **344**, 172-177 (2014).

647 42. A. Susanto, S. Sudarjat, E. Yulia, A. D. Permana, A. Gunawan, D. H. Yudistira, Effectiveness of
648 modified traps for protection against fruit flies on mango. *Jurnal Biodjati* **5**, 99-106 (2020).

649 43. B. Cheng, B. W. Tobalske, D. R. Powers, T. L. Hedrick, Y. Wang, S. M. Wethington, G. T. Chiu,
650 X. Deng, Flight mechanics and control of escape manoeuvres in hummingbirds. II. Aerodynamic
651 force production, flight control and performance limitations. *Journal of Experimental Biology* **219**,
652 3532-3543 (2016).

653 44. S. Zeyghami, H. Dong, Study of turning takeoff maneuver in free-flying dragonflies: effect of
654 dynamic coupling, arXiv preprint arXiv:1502.06858 (2015).

655 45. C. Li, H. Dong, Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
656 *Bioinspiration & Biomimetics* **12**, 026001 (2017).

657 46. Y. Li, F. Cao, T. T. V. Doan, H. Sato, Controlled banked turns in coleopteran flight measured by
658 a miniature wireless inertial measurement unit. *Bioinspiration & Biomimetics* **11**, 056018 (2016).

659 47. W. H. Baltosser, S. M. Russell, Black-chinned Hummingbird (*Archilochus alexandri*). *The birds
660 of North America* **495**, 32 (2000).

661 48. Z. Tu, F. Fei, X. Deng, Bio-inspired rapid escape and tight body flip on an at-scale flapping wing
662 hummingbird robot via reinforcement learning. *IEEE Transactions on Robotics* **37**, 1742-1751
663 (2021).

664 49. F. Oliva-Palomo, A. Sanchez-Orta, P. Castillo, H. Alazki, Nonlinear ellipsoid based attitude
665 control for aggressive trajectories in a quadrotor: Closed-loop multi-flips implementation. *Control
666 Engineering Practice* **77**, 150-161 (2018).

667 50. E. Ajanic, M. Feroskhan, V. Wüest, D. Floreano, Sharp turning maneuvers with avian-inspired
668 wing and tail morphing. *Communications Engineering* **1**, 34 (2022).

669 51. G. Taylor, M. Bacic, A. Carruthers, J. Gillies, Y. Ozawa, A. Thomas, Flight control mechanisms
670 in birds of prey, in *45th AIAA Aerospace Sciences Meeting and Exhibit*, pp. 39, (2007).

671 52. B.-U. Meyburg, P. Paillat, C. Meyburg, Migration routes of Steppe Eagles between Asia and
672 Africa: a study by means of satellite telemetry. *The Condor* **105**, 219-227 (2003).

673 53. S. Lupashin, A. Schöllig, M. Sherback, R. D'Andrea, A simple learning strategy for high-speed
674 quadrocopter multi-flips, in *2010 IEEE International Conference on Robotics and Automation*, pp.
675 1642-1648 (2010).

676 54. E. Chang, L. Y. Matloff, A. K. Stowers, D. Lentink, Soft biohybrid morphing wings with feathers
677 underactuated by wrist and finger motion. *Science Robotics* **5**, eaay1246 (2020).

678 55. A. Tagliabue, J. P. How, Efficient deep learning of robust policies from MPC using imitation and
679 tube-guided data augmentation, arXiv preprint arXiv:2306.00286 (2023).

680 56. M. Cutler, J. P. How, Analysis and control of a variable-pitch quadrotor for agile flight. *Journal
681 of Dynamic Systems, Measurement, and Control* **137**, 101002 (2015).

682 57. E. Ajanic, M. Feroskhan, S. Mintchev, F. Noca, D. Floreano, Bioinspired wing and tail morphing
683 extends drone flight capabilities. *Science Robotics* **5**, eabc2897 (2020).

684 58. R.A. York, and R.J. Wood, Nitinol living hinges for millimeter-sized robots and medical devices.
685 in *International Conference on Robotics and Automation*, pp. 889-893 (2019).

686 59. M.H. Rosen, G. Le Pivain, R. Sahai, N.T. Jafferis, and R.J. Wood, Development of a 3.2 g
687 untethered flapping-wing platform for flight energetics and control experiments. in *IEEE
688 international conference on robotics and automation*, pp. 3227-3233 (2016).

689 60. J.P. Whitney, and R.J. Wood, Aeromechanics of passive rotation in flapping flight. *Journal of fluid
690 mechanics*, **660**, 197-220 (2010).

691 61. H. Zhao, A. M. Hussain, M. Duduta, D. M. Vogt, R. J. Wood, D. R. Clarke, Compact dielectric
692 elastomer linear actuators, *Advanced Functional Materials* **28**, 1804328 (2018).

693 62. Y. Chen, N. Gravish, A. L. Desbiens, R. Malka, R. J. Wood, Experimental and computational
694 studies of the aerodynamic performance of a flapping and passively rotating insect wing, *Journal
695 of Fluid Mechanics* **791**, 1-33 (2016).

696

697 **Acknowledgments:**
698 The authors thank Q. Kieu for discussion and help with image processing.
699

700 **Funding:**
701 National Science Foundation grant 2202477, 2236708 (YC)
702 Mathworks Fellowship (YH)
703

704 **Author contributions:**
705 Conceptualization: SK, YH, YC
706 Methodology: SK, YH, YC
707 Software: YH, SK, ZR, JH, YC
708 Validation: YH, SK, ZR, JH, YC
709 Formal analysis: YH, SK, ZR, JH, YC
710 Investigation: SK, YH, YC
711 Resources: YC
712 Data curation: SK, YH, YC
713 Writing – Original draft: SK, YH, YC
714 Writing – Review & editing: YH, SK, ZR, JH, YC
715 Visualization: YH, SK, ZR, JH, YC
716 Supervision: YC
717 Project administration: YC
718 Funding acquisition: YC
719

720 **Competing interests:** Authors declare that they have no competing interests.
721

722 **Data and materials availability:** The flight data is available in the data repository Dryad with DOI:
723 <https://doi.org/10.5061/dryad.0p2ngf28q>. The reviewers can use this link provided by Dryad:
724 <https://datadryad.org/stash/share/WdnrDpF-kbItUEEgK1-mzQD5uT-Fh1hnP-aZ-DHosmY>.