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Abstract Exotic tree species, though widely used in for-
estry and restoration projects, pose great threats to local
ecosystems. They need to be replaced with native species
from natural forests. We hypothesized that natural forests
contain large, fast-growing, dominant native tree species that
are suitable for specific topographic conditions in forestry.
We tested this hypothesis using data from a 50-ha forest
dynamics plot in subtropical China. We classified the plot
into the ridge, slope, and valley habitats and found that 34/87
species had significant associations with at least one topo-
graphic habitat. There were 90 tree species with a maximum
diameter > 30 cm, and their abundances varied widely in
all habitat types. In all habitat types, for most species, rate
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of biomass gain due to recruitment was < 1% of its original
biomass, and rate of biomass gain due to tree growth was
between 1 and 5% of its original biomass. For most species,
biomass loss due to tree mortality was not significantly dif-
ferent than biomass gain due to recruitment, but the resulting
net biomass increment rates did not significantly differ from
zero. The time required to reach a diameter of 30 cm from
1 cm diameter for Altingia chinensis in the slope habitat,
for Quercus chungii and Morella rubra in the ridge habitat
and for Castanopsis carlesii in all habitats could be as short
as 30 years in our simulations based on actual distributions
of tree growth observed in the forest. Principal component
analyses of maximum diameter, abundance and net biomass
increment rates suggested several species were worthy of
further tests for use in forestry. Our study provides an exam-
ple for screening native tree species from natural forests for
forestry. Because native tree species are better for local eco-
systems, our study will also contribute to biodiversity con-
servation in plantations.

Keywords Native tree species - Growth simulation -
Timber - Wood product - Subtropical forest

Introduction

The increasing recognition of the importance of biodiversity
has led to calls for planting native tree species as an alter-
native to exotic monocultures (Leakey and Newton 1994;
Leakey and Simons 1997; Nichols and Vanclay 2012; Almas
and Conway 2016; Lu et al. 2017; Wang et al. 2022). Exotic
tree species have been used in forestry in many countries
for a long time (Fiithrer 2000; Quine and Humphrey 2010;
Salmén Rivera et al. 2016). They can alter local nutrient
cycling, energy flow, and the species composition, diversity
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and structure of the ecosystem (Gurevitch and Padilla 2004;
Dyderski and Jagodzinski 2020). They can also be poten-
tially invasive as they acclimatize easily to their environ-
ments and often outcompete native tree species (Wang et al.
2013). Compared with exotic tree species, native tree species
can enhance biodiversity (reviewed by Berthon et al. 2021).
For example, planting native trees rather than exotic trees
in urban areas resulted in significantly higher bird species
richness in Canberra, Australia and understory plant species
diversity in the United Arab Emirates (Ikin et al. 2013; Slate
et al. 2020). Considering the need for biodiversity conserva-
tion, native tree species should thus be prioritized in forestry
(Marianov et al. 2004; Almas and Conway 2016; Cosyns
et al. 2020). Even when it is not practical to entirely replace
exotic species (Manetti et al. 2016; Sjoman et al. 2016), a
mixture of exotic trees with native ones can also benefit the
environment more than an exotic monoculture (Almas and
Conway 2016).

Though native tree species are better for local environ-
ments and biodiversity conservation (Gurevitch and Padilla
2004; Ikin et al. 2013; Dyderski and Jagodziriski 2020; Slate
et al. 2020), the use of native tree species has been hindered
by a lack of information such as their stature, abundance,
distribution and demographic rates, making it difficult to
choose the appropriate species for practical use in a given
environment (Butterfield 1996). Hence, compiling such
basic information is the first step toward their use in forestry
(Lu et al. 2017).

Because tree species vary in their suitability for different
habitats (Harms et al. 2001; Bin et al. 2016), they need to be
selected for the specific planting site conditions to ensure the
success of forestry and greening projects (McDicken 1994).
Though habitat conditions are multidimensional, topography
is an integrated feature associated with hydrology, soil tex-
ture, nutrient concentrations, and light availability to which
trees respond (Zuleta et al. 2020; Li et al. 2022). Further-
more, topographic conditions have significant effects on tree
demographic rates and distributions (Bin et al. 2016; Zuleta
et al. 2020). Native tree species for such use also often need
to be large and fast-growing so that within a relatively short
time they can provide versatile wood products and ecologi-
cal functions such as preventing soil erosion, reducing car-
bon dioxide and improving biodiversity (Condit et al. 1993).

Since the establishment of the first large-scale forest
dynamics plot in Barro Colorado Island, Panama in 1980
(Condit 1998), 75 plots have been established all around
the world, forming the ForestGEO network (https://fores
tgeo.si.edu/; access on 2023/3/8). Within these plots, a total
of 7,000,000 trees from 12,000 species have been recorded
(https://forestgeo.si.edu/, access on 2023/3/8). Tree species
stature, abundance, distributions and demographic rates can
be understood using these data (Harms et al. 2001; Condit
et al. 2006; Bin et al. 2016; Li et al. 2022). These large-scale
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forest dynamics plots can serve as the basis for screening
native species for forestry and restoration use (Condit et al.
1993).

Regularly censused forest plots provide a unique oppor-
tunity for understanding the distribution and growth rates of
native species, and other essential information for selecting
native species for forestry (Condit et al. 1993) to replace
fast-growing exotic species that pose a potential threat to the
composition and structure of local ecosystems (Gurevitch
and Padilla 2004; Dyderski and Jagodzinski 2020).

In this study, we aimed to provide primary knowledge
of species’ demographic rates and habitat associations in
a primary forest based on the census data obtained from a
50-ha forest dynamics plot in subtropical China. Specifi-
cally, we asked four questions: (Q1) Did native tree species
show significant associations with topographic habitats?
(Q2) What are the stature and abundance of the native tree
species in different habitat types in the plot? (Q3) What are
the demographic rates of these native tree species in different
habitat types? (Q4) Are there any native tree species with
potential for forestry?

Materials and methods
Study site, plot census and studied species

The study was carried out in 2011 in southern China in the
50-ha Heishiding forest plot (HSD plot; 500 m x 1000 m)
in the Heishiding Nature Reserve (111.53° E, 23.27° N).
The reserve is located on the tropic of cancer. It has a south
subtropical monsoon climate and is covered by subtropical
evergreen broad-leaved forests. The reserve has an annual
mean temperature of 19.6 °C and precipitation of 1740 mm.
The forest age is approximately 120 years (Chen et al. 1992;
Jiang et al. 2020) and the forest height is about 60 m. The
altitude of the plot ranges from 435.4 to 698.4 m a.s.l.. In
the first plot census in 2011-2013, 213,969 free standing
stems with DBH > 1 cm from among 213 species, 160 gen-
era, 71 families were recorded (Shi et al. 2018); 156 species
had > 50 individuals in the plot, and 57 species had <50
individuals (Shi et al. 2018). The vegetation was dominated
by Pinus massoniana and Altingia chinensis.

For topography measurement and tree mapping, the 50-ha
forest plot was divided into 1250 non-overlapping contigu-
ous quadrats, each measuring 20 m X 20 m. The corners of
every quadrat were mapped using an electronic total sta-
tion. Altitudes at the four corners of each quadrat were
recorded as described by Harms et al. (2001). All stems with
DBH > 1 cm in the plot were identified, mapped, tagged, and
measured. In the second census in 2016, plant status (dead
or living) was recorded; surviving stems were re-measured
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and stems that had not been recorded in the first census but
reached 1-cm diameter were measured and recorded.

Data analyses

We focused on 90 species with maximum DBH >30 cm
(Table S1). These species belonged to 56 genera and 37
families (Table S1). The families with the most species ana-
lyzed were Fagaceae and Lauraceae, each with 17 species
in the plot (Table S1).

Because tree species are often associated with certain
habitats (Bin et al. 2016; Harms et al. 2001), we first ana-
lyzed species preference for the three habitat types using
torus translation tests (Harms et al. 2001). For native tree
species in the different habitats, we used the maximum
diameter, abundance, and biomass-related rates, and simu-
lated the time needed for these species to reach 30-cm DBH
from a starting DBH of 1 cm. For evaluating species’ suit-
ability for use in forestry in a specific topographic habitat,
we first excluded those species negatively associated with
that habitat and then evaluated the suitability of the remain-
ing species based on a principal component analysis using
three variables: abundance, maximum diameter measured,
and net biomass increment rate. We also simulated the time
needed to reach 30 cm from 1 cm in diameter (T30) as a
reference of growth rate. All analyses were conducted using
R 3.4.2 (R Core Team 2017). The methods to answer each
question are given next.

Q1: Did native tree species show significant associations
with topographic habitats?

In this analysis, we included 87 species that were repre-
sented by > 50 individuals with maximum DBH > 30. For
the test of the association of a species with the topographic
habitats using torus translation (Harms et al. 2001), the
contour lines obtained using the altitudes at the corners of
each 20 x 20 m? quadrat were used to classify each quad-
rat as ridge, slope, or valley (Fig. 1). For each species, we
then calculated its relative observed density in each habi-
tat type relative to its overall density in the 50-m plot (i.e.,
all habitat types) and compared the overall observed rela-
tive density with the distribution of relative density in this
habitat type, assuming a random distribution of this species
with respect to habitat types. The distribution was obtained
by keeping the distribution of this species but rearranging
the topographic habitat with the torus translation approach
(Harms et al. 2001). Each time the map of the topographic
habitat was rearranged and the distribution of the species
with respect to the habitats changed accordingly. We then
recalculated the relative density in this habitat type based
on the new map of the topographic habitat. The species is
considered to be significantly positively associated with a
habitat type if the observed relative density of the species in
the real habitat map is greater than the upper envelop of the
95% confidence interval of the distribution of the simulated
relative densities (¢ =0.05), and vice versa.

B Valley @ Slope O Ridge

Distance (m)
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Fig. 1 Distribution of the three topographic habitats in a 50-ha plot in the southern subtropical evergreen broadleaved forest in Heishiding

Nature Reserve. Each square represents a 20 m X 20 m quadrat
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Q2: What are the stature and abundance of the native tree
species in the different habitat types in the plot?

Maximum diameter observed in the two censuses for each
species was used to represent the stature of each species. The
number of stems with DBH > 5 c¢m in each habitat type was
used as the abundance of each species.

Q3: What are the biomass-related rates of these native
tree species in the different habitat types?

Because the ecological functions provided by a tree and
the amount of wood it produces are closely related to bio-
mass, we estimated the aboveground biomass AGB, using
the equation of Chave et al. (2014):

AGB
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where, B is aboveground biomass, B, for all stems with
DBH>1 cm at the first census, B, for all living stems with
DBH>1 cm at the second census, B, for all recruits during
the census interval, Bg for all stems that were recorded at
the first census and still alive at the second census, and By
for the stems that were recorded at the first census but were

= exp(—1.803 — 0.976E + 0.976Inp + 2.673InD — 0.0299(InD)?) (1)

where, AGB, is the estimated aboveground biomass, E is
a measure of environmental stress, p is the wood density
of the tree, and D is the DBH of the tree. E increases with
temperature seasonality (Chave et al. 2014). We obtained the
value of E for our study site (—0.1287045) from the web page
with supporting data for Chave et al. (2014); http://chave.
ups-tlse.fr/pantropical_allometry.htm. To estimate wood
density, we took wood samples from a branch or trunk of at
least six randomly chosen individuals for each of 75 species
with maximum DBH > 30 cm. An increment borer (CO400/
CO0O500) was used to extract a 1-cm-diameter core that was
5-10 cm long at ~ 1.3-m height on the main stem for trees
with DBH > 10 cm. For smaller individuals, we cut stem
segments (10-cm long, 1-cm diameter) from branches. Wood
sample volume (cm?) was quantified using water displace-
ment (Cornelissen et al. 2003), and dry mass (g) was deter-
mined after at least 48 h at 80 °C. Wood density was calcu-
lated as dry mass/volume (g cm™>). Wood density was fit as
a function of DBH using standardized major axis regression,
with species identity as a grouping factor. For species with
significant size-dependent wood density variation, we pre-
dicted wood density for each individual based on the fitted
functions; wood density was not predicted by extrapolation.
For species without significant size-dependent wood density
variation, the average wood density for the samples of this
species was used for all individuals of that species.

We calculated net biomass increment rate (n), and its
three components: rate of biomass gain due to recruitment
(r), individual growth (g) and biomass loss due to mortality
(m) using:

(Bt — Bo)/Bo
g = ot —bo)/bo

t @)
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dead at the second census; and ¢ is 5 years, the number of
years between the two censuses. We used bootstrap sampling
over the 20 m X 20 m quadrats, i.e., sampling with replace-
ment the same number of quadrats a species was observed
to occupy, for the confidence intervals of the demographic
rates (Muller-Landau et al. 2006).

We also estimated the shortest amount of time that a
tree species needed to reach 30 cm in diameter (T30) as a
measure of tree growth. Because trees with DBH >30 cm
are usually thought to be marketable for timber (Rondon
et al. 2009), for each topographic habitat, we simulated the
minimum number of years needed for a tree of each spe-
cies to reach 30 cm in diameter so that these species can be
compared in terms of the time needed for market in similar,
natural environments.

In a specific habitat type, we first selected all individu-
als of this species within that habitat type and then catego-
rized the sizes into four classes: (1, 5], (5, 10], (10, 15],
and (15, 30]. Trees above 30 cm were excluded because
simulations stopped when trees reached that size. Because
tree size distributions were usually reversed-J shaped (Bin
et al. 2012) and abundance for trees in large size classes
decreased sharply, trees with DBH within the class (15,30]
were pooled so that there were more trees for simulation in
this size range. We then determined the 90th percentile of
diameter increment for each size class and excluded stems
below this threshold. In each simulation, diameter increment
was randomly chosen from the actual diameter increment of
the remaining stems within the corresponding and size class
(Lieberman and Lieberman 1985; Rondon et al. 2009). Sub-
sequently, the increment sampled was added to the original
diameter to yield the new DBH. We then checked which
size class the new DBH fell into and repeated the “growth”
process again. Simulation stopped when the simulated tree
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was not <30 cm in DBH. The time step of simulation was
5 years, which is the time interval between the two complete
censuses (2011 and 2016) of the HSD plot.

Stems with>4 cm of shrinkage in DBH or>20 cm
increment in DBH between the two censuses were excluded
because these records were likely due to measurement error.
After excluding these stems, only species with > 10 stems in
each size classes were included in this analysis.

Q4: Are there any native tree species with potential for
forestry?

We expect species with potential for forestry to be large,
adaptive to local climate, and fast to accumulate biomass,
which are often the selection criteria in other forestry pro-
jects (Meli et al. 2014). Therefore, candidates to test further
were identified using a principal component analysis of three
variables: abundance, maximum diameter observed, and net
biomass increment rate. The time to reach 30 cm in DBH
was not included because many species did not have enough
trees in all size classes for simulation.

Results

Q1: Did native tree species show significant associations
with topographic habitats?

The slope habitat was the largest habitat type, occupying
480 20 m x 20 m quadrats, followed by the ridge habitat
(418 quadrats), then the valley habitat (352 quadrats). Of
the 87 species included in this analysis, 34 had either a posi-
tive or negative association with at least one habitat type. A
small fraction of tree species had positive associations with
the ridge habitat (16/87), and most of these were negatively
associated with the valley habitat (14/16, 87.5%) (Table S1).
Similarly, 16 tree species were positively associated with the
valley habitat, and 93.8% of these (15/16) were negatively
associated with the ridge habitat (Table S1). Nine species
were positively associated with the slope habitat (Table S1);
most of these nine were neutral to the ridge (77.8%) and to
the valley habitat (66.7%) (Table S1).

Q2: What are the stature and abundance of the native tree
species in the different habitat types in the plot?

Neolitsea phanerophlebia Merr. was the most abundant
species (5636 ind., 337.08 ha%; Table S2) in the ridge habi-
tat. Cryptocarya concinna Hance was the most abundant
species in both the slope (11,227 ind., 587.74 ha?; Table S2)
and the valley (9837 ind., 698.65 ha2; Table S2) habitats.
Abundance in the ridge habitat ranged from 2 (0.12 ha™) to
5636 (337.08 ha™?) among the species we tested (Table S2),

with a mean density of 48.29 ha=2. Though species abun-
dance in the slope and valley habitats had wider ranges
(slope: 33—11,227 species; valley: 13—-9837 species) than in
the ridge habitat, the mean density did not differ significantly
among the three habitat types (ridge: 48.29 ha™; slope:
47.46 ha2; valley: 50.56 ha™).

The observed maximum diameter of the studied species
in each habitat ranged from several centimeters to above
130 cm (Table S2). In the slope habitat, the maximum DBH
was 136.94 cm for Castanopsis nigrescens Chun et C. C.
Huang, which was also the largest among all species in the
whole plot (Table S2). In the ridge habitat, the maximum
diameter was 135.25 cm for Castanopsis carlesii (Hemsl.)
Hay., and 130.58 cm in the valley plot also for C. carlesii
(Table S2). For the entire plot, five species had maximum
diameters larger than 100 cm (Table S2): Altingia chinen-
sis (Champ.) Oliver ex Hance, C. nigrescens, Exbucklandia
tonkinensis (Lec.) Steenis, Cinnamomum validinerve Hance
and Mytilaria laosensis Lecomte.

Q3: What are the demographic rates of these native tree
species in the different habitat types?

Excluding 10 species without data available for wood
density, the majority of species tested had »<0.01(upper
CI<0.01) and g between 0.01 and 0.05 (lower CI >0.01and
upper CI <0.05) in all habitat types (for ridge, slope and val-
ley, respectively, r: 91.3%, 86.3%, 85.0%; g: 58.8%, 60.0%,
55.0% of species; Table S3). For about 90% of the species
tested, m was not significantly different from r (Table S3,
overlapping CI). Adding r up with g and subtracting m,
the resulting net biomass increment rates did not differ
significantly from zero for over 90% of the species in the
ridge (93.8%), slope (95.0%) and valley (96.3%) habitats
(Table S3, zero not included in CI). A total of nine spe-
cies had significant net biomass increment rates in the three
habitat types (Table 1). No species tested had a negative net
biomass increment rate.

In the 1000 simulations, the average time for C. carlesii
in all habitat types and Engelhardia roxburghiana Wall in
the ridge habitat to reach 30 cm in diameter was shorter
than 50 years (Fig. 2). Elaeocarpus decipiens, C. nigrescens,
Lindera metcalfiana Allen, Lithocarpus calophyllus Chun
ex C. C. Huang et Y. T. Chang, and Morella rubra Lour. in
the ridge habitat, Cinnamomum austrosinense H. T. Chang
and L. metcalfiana in the slope habitat and M. laosensis
in the valley habitat needed slightly longer time, but were
all <55 years. The lowest T30 could be as short as 30 years
for C. carlesii in all habitats (Fig. 3), A. chinensis in the
slope habitat, Quercus chungii F. P. Metcalf and M. rubra
in the ridge habitat in our simulations. The longest time to
reach 30 cm in our simulation ranged from 55 to 290 years,
depending on species and habitat type. The shortest time to
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Table 1 Species with significant net biomass increment rate in at least one topographic habitat

Significant net biomass increment rate

Species

The ridge habitat Positive Elaeocarpus decipiens, Xanthophyllum hainanense, Ilex rotunda, Symplocos
wikstroemiifolia, Neolitsea phanerophlebia

Negative -

The slope habitat Positive Cryptocarya concinna, Nyssa sinensis, llex rotunda, Neolitsea phanerophlebia
Negative -

The valley habitat Positive Cryptocarya concinna, Symplocos pseudobarberina, Ixonanthes reticulata
Negative -
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Fig. 3 Mean=+SD simulated growth curves in 1000 simulations for
Castanopsis carlesii in the three habitat types based on random sam-
pling of actual diameter increments from stems with diameter incre-
ments above the 90th percentile of diameter increments of all stems
within the corresponding size classes. The curves for the fastest
growth rates are the DBH trajectories for the tree that reached 30 cm
in the shortest time in 1000 simulations

reach 30 cm in our 1000 simulations was only 71.6% (SD
9.9%) of the average T30.

For species whose T30 were available in all habitat types,
a longer time was needed for trees to reach 30 cm in DBH
in the valley habitat than the ridge and slope habitats (ridge:
t=2.042, P=0.045; slope: t=2.9072, P=0.005; Table S2).
No significant difference in T30 was detected between the
slope and ridge habitats (= —0.833, P=0.408).

Q4: Are there any native tree species with potential for
forestry?

In the ridge and valley habitats, loadings for abundance
(ridge: 0.642; valley: 0.663) and maximum diameter (ridge:
0.678; valley: 0.617) on PC1 were positive and large; on
PC2, the net biomass increment rate had heavy loadings
(ridge: —0.919; valley: —0.883). In the slope habitat, loadings
of abundance and net biomass increment rate were relatively
large (>0.5) on PC1, and on PC2, maximum diameter had
a heavy loading (0.799). Thus, species in the lower half of
the first quadrant and the upper half of the second quadrant
were relatively suitable for the selection purpose compared
with other species (Fig. 4), such as A. chinensis (species
1 in Fig. 4, hereafter listing only the species number), C.
carlesii (51), N. phanerophlebia (73), Schima superba, (53),
Ixonanthes reticulata (88), Manglietia kwangtungensis (48)
in the ridge habitat, Schima superba (53), Symplocos pseu-
dobarberina (67), C. concinna (34), N. phanerophlebia (73),
Litsea lancilimba (7), Machilus breviflora (9) in the slope
habitat and N. phanerophlebia (73), Ardisia elegans (50),

Xanthophyllum hainanense (37), Ixonanthes reticulata (88)
and Cryptocarya chinensis (27) in the valley habitat.

Discussion

Our study made use of two consecutive censuses of a 50-ha
forest plot and found native species that could be valuable
for domestication trials for forestry use under different top-
ographic conditions in subtropical China. Our results will
inform efforts for conserving species diversity in subtropical
China and other areas with similar climatic conditions.

Using the torus translation test to evaluate species’ asso-
ciations with topographic habitats (Harms et al. 2001; Bin
et al. 2016; Li et al. 2022), we identified 16 species associ-
ated positively with the ridge and the valley habitats, respec-
tively, and nine species with the slope habitats, suggesting
that a considerable proportion of species had a preferred
habitat, and thus habitat preference needs to be taken into
account when establishing plantations.

In natural forests, a high abundance of a species within a
habitat is often an indicator of suitability (Harms et al. 2001;
Naimi and Araujo 2016; Noce et al. 2017; Ajene et al. 2020)
because it is the result of long-term species interactions with
the given environments (Harms et al. 2001). In our study, the
wide variation in abundance among species in topographic
habitats suggests that species differ in their suitability to
given habitats, which must also be considered when choos-
ing species for economic use.

Though both of our methods indicated species’ habitat
preference, the torus translation test compared a species’
density in a habitat type with the density in the whole plot
while census data for the habitats can be used to compare
the abundance of the focal species with those of coexisting
species in the plot. As such, a species can be less abundant
relative to other species in a habitat but still be positively
associated with that habitat.

Because fast-growing species enable rapid economic
and ecological returns for forestry and restoration projects
(Guo et al. 2016), we assessed growth rates of these native
tree species using the data from the two censuses of this
plot. Not surprisingly, the native species all grew relatively
slowly compared with the exotic tree species. Annual rate
of biomass gain due to individual growth of our species
centered around 0.02-0.03, regardless of the habitat type.
Additionally, in the fastest simulation of our simulation
tests, only 21 species reached 30 cm in diameter within
40 years, which is about the harvesting cycle of some
plantations (Rondon et al. 2009). However, Eucalyptus
species only need about 10 years for an economic return
(Ouyang et al. 2021). It is important to note that besides
species identity, habitat condition, and tree size, which
we considered here, many other factors such as climate
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Fig. 4 Biplots obtained from principal component analyses of spe- »

cies’ abundance (A), maximum diameter at breast height (D), and net
biomass increment rate (G) when growing in the ridge a, slope,b and
valley, ¢ habitats. Numbers in each panel denote species. 1: Altingia
chinensis; 2: Artocarpus hypargyreus; 3: Styrax faberi; 4: Alniphyl-
lum fortunei; 6: Exbucklandia tonkinensis; 7: Litsea lancilimba; 8:
Elaeocarpus decipiens; 9: Machilus breviflora; 10: Meliosma fordii;
11: Garcinia multiflora; 13: Ormosia fordiana; 14: Quercus chungii;
15: Canarium album; 16: Diplospora dubia; 17: Ilex memecylifolia;
18: Ormosia glaberrima; 19: Syzygium kwangtungense; 20: Beils-
chmiedia fordii; 21: Camellia semiserrata; 23: Madhuca hainanen-
sis; 24: Castanopsis nigrescens; 25: Craibiodendron stellatum; 26:
Castanopsis hystrix; 27: Cryptocarya chinensis; 28: Ternstroemia
gymnanthera; 29: Quercus hui; 30: Daphniphyllum oldhami; 31: Cin-
namomum austrosinense; 32: Machilus chinensis; 34: Cryptocarya
concinna; 35: Engelhardia roxburghiana; 36: Cinnamomum por-
rectum; 37: Xanthophyllum hainanense; 39: Michelia foveolata; 40:
Mpytilaria laosensis; 42: Castanopsis fissa; 43: Reevesia thyrsoidea;
44: Acer tutcheri; 45: Castanopsis faberi; 46: Pinus massoniana; 48:
Manglietia kwangtungensis; 49: Castanopsis fordii; 50: Ardisia ele-
gans; 51: Castanopsis carlesii; 52: Symplocos congesta; 53: Schima
superba; 54: Machilus litseifolia; 55: Manglietia fordiana; 56: Cho-
erospondias axillaris; 57: Ormosia pachycarpa; 58: Lindera met-
calfiana; 60: Vitex quinata; 61: Engelhardia fenzlii; 62: Antidesma
venosum; 63: Photinia prunifolia; 64: Lithocarpus litseifolius; 65:
Castanopsis eyrei; 67: Symplocos pseudobarberina; 68: Beilschmie-
dia tsangii; 69: Eurya hebeclados; 70: Symplocos wikstroemiifolia;
71: Distylium racemosum; 72: Pentaphylax euryoides; 73: Neolitsea
phanerophlebia; 74: Laurocerasus phaeosticta; 76: Helicia cochin-
chinensis; 77: Artocarpus styracifolius; 78: Lithocarpus calophyllus;
79: Neolitsea chui; 80: Schefflera octophylla; 82: Morella rubra; 83:
Olea dioica; 84: Rhododendron simsii; 85: Lithocarpus crassifolius;
87: Meliosma rigida; 88: Ixonanthes reticulata; 89: Meliosma squa-
mulata; 90: Quercus neglecta

and biotic interactions influence the observed growth rate
(Peters 2003; Zuidema et al. 2022). We had only consid-
ered those factors for which data were available.

The growth rates simulated in our study were chosen
from the top 10% fastest observed in this forest. In nat-
ural forests, trees are under intensive competition from
neighboring plants (Uriarte et al. 2012; Bin et al. 2019),
resources are less available than in managed plantations
that are fertilized and watered (Samuelson et al. 2001;
Uriarte et al. 2012; Bin et al. 2019). The time to reach
30 cm in the fastest simulation was only about 70% of
average T30, suggesting that the growth of most individu-
als of these species was suppressed. Many tree species
grow faster in plantations than in natural forests (Lawson
1994; Burns et al. 1996; Samuelson et al. 2001; Dickens
et al. 2003; Guo et al. 2016). For example, mean DBH was
40.20 cm and tree height was 19.50 m for a 99-year-old
Parakmeria lotungensis (Chun et C. Tsoong) Law trees in
a natural forest, but 18.30 cm and 16.20 m, respectively,
for 29-years old trees in plantations (Lin 2013). Lindera
communis Hemsl. also grows faster in plantations than in
natural forests (Liu 2006). Thus, it is likely that our simu-
lations did not reveal the fastest growth our native tree
species can potentially achieve.
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These native tree species will likely grow faster when
planted in habitats that match their preferences, especially
with optimal spacing, thinning, and fertilization (Lawson
1994; Burns et al. 1996; Samuelson et al. 2001; Dickens
et al. 2003; Guo et al. 2016). For example, most of our tree
species needed longer to reach 30 cm in diameter in the val-
ley habitat than in the slope and ridge habitats. Soil fertil-
ity and water availability, in general, increase from ridge to
valley habitats, but light availability had an opposite trend
(Scholten et al. 2017). Therefore, slower growth rates in
the valley might be due to limited light availability in this
habitat type. In this case, species that favor low light such
as Ardisia elegans and Cryptocarya chinensis should be pri-
oritized, and species such as Schima superba and Quercus
chungii should be avoided. Thinning can also improve light
availability and increase growth rates (Burns et al. 1996;
Samuelson et al. 2001).

Temperature, light and moisture availability, and biotic
interactions can also differ greatly between natural forests and
plantations (Taki et al. 2011). Therefore, domestication and
small-scale experiments are essential for selecting the best
species for the conditions in forestry and restoration projects.

Besides information from our analytical results, the
international timber market also provides information on
the economic potential of tree species. In the international
market, 1713 species from 108 families were used for com-
mercial timber (Mark et al. 2014), including three species
in our study that had maximum DBH > 30: Engelhardia
roxburghiana, Cinnamomum porrectum (Roxb.) Kosterm.,
and Vitex quinata (Lour.) Will. Among them, Engelhardia
roxburghiana also had a relatively short T30 in our study.
About half (48.8%) of the species with maximum DBH > 30
in our study were in genera with at least one commercial
timber tree species (Mark et al. 2014), suggesting that a
considerable proportion of these species could potentially
be used in forestry given that growth rate can be increased
under proper management.

Native tree species establish close associations with the
local biome during their evolution and are thus especially
important for biodiversity conservation (Marianov et al.
2004; Cosyns et al. 2020). With regard to conservation,
planting exotic tree species with native tree species may be
an alternative to solely planting native species when native
species cannot meet the need for wood products (Amazonas
et al. 2018). When planted with native tree species, Euca-
lyptus trees grew larger and produced about 75% of the basal
area yielded by Eucalyptus monocultures even though they
accounted for only 50% of the seedlings in the mixtures
(Amazonas et al. 2018). In addition, the productivity of four
of five plantation species was on average 55% higher when
planted in mixtures than in monocultures (Erskine et al.
2006), and mixtures can also increase biodiversity because
native tree species are more friendly to the environment than

exotic monocultures (Liu et al. 2018; Schuldt et al. 2022).
However, exotic tree species, however, are often supplied by
nurseries at relatively low prices and with detailed planting
techniques that enhance their survival in plantations.

As we mentioned earlier, some native tree species grow
slower than the exotics. Their wood can also be very dense.
For example, in our study, the wood density of Syzygium
kwangtungense, Olea dioica and Distylium racemosum was
over 1 g cm™>. Although they are probably suitable for fine
furniture and musical instruments and have commercial
potential, they are not fast-growers, which was the focus of
this study.

Conclusion

In conclusion, based on two complete censuses of a for-
est dynamics plot, we identified native tree species with a
relatively large stature, high abundance and fast growth rate
that are worth testing further in domestication trials. If they
grow well in these trials, their use in this region and regions
with similar climatic conditions will help achieve sustain-
able forestry goals.
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