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Grass leaf structural and stomatal trait responses to climate gradients assessed over the

20" century and across the Great Plains, USA
Abstract

Using herbarium specimens spanning 126 years and field-collected measurements, we
assessed intraspecific trait (leaf structure and stomata) variability from grass species in the Great
Plains of North America. We focused on two widespread, closely-related grasses from tribe
Paniceae: Dichanthelium oligosanthes subsp. scribnerianum (C3) and Panicum virgatum (Cs).
Thirty-one specimens per taxon were sampled from local herbaria from the years 1887 —2013 to
assess trait responses across time to changes in atmospheric [COz] and growing season
precipitation and temperature. In 2021 and 2022, the species were measured from eight
grasslands sites to explore how traits vary spatially across natural continental precipitation and

temperature gradients.

ABC increased with atmospheric [CO-] for D. oligosanthes but decreased for P.
virgatum, likely linked to increases in precipitation in the study region over the past century.
Notably, this is the first record of decreasing A'*C over time for a C4 species illustrating '3C
linkages to climate. As atmospheric [CO-] increased, C:N increased and '°N decreased for both
species and %N decreased for D. oligosanthes. Across a large precipitation gradient, D.
oligosanthes leaf traits were more responsive to changes in precipitation than those of P.
virgatum. In contrast, only two traits of P. virgatum responded to increases in temperature across
a gradient: specific leaf area (increase) and leaf dry matter content (decrease). The only shared
significant trend between species was increased C:N with precipitation. Our work demonstrates
that these closely-related grass species with different photosynthetic pathways exhibited various
trait responses across temporal and spatial scales, illustrating the key role of scale of inquiry for

forecasting leaf trait responses to future environmental change.
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Introduction

Plant traits are used to predict species responses to changing environmental conditions
including human-induced climate change (Violle et al., 2007; Parmesan & Hanley, 2015), shifts
in nutrient cycling (Bouwman et al., 2009), and habitat loss (Helm et al., 2005). The responses of
species to environmental change across space and time have consequences for understanding
changes to individual water-use strategies (e.g. Voltas et al., 2015; Carlson et al., 2016; Welles &
Funk, 2021), plant community composition (e.g. Jiménez et al., 2011; Cleland et al., 2013;
Griffin-Nolan et al., 2019), and ecosystem-level nutrient dynamics (e.g. De Graaff et al., 2006;
Campbell et al., 2009). These shifts are most commonly assessed by comparing traits across
species to understand how environmental change drives shifts in community composition and
ecosystem function. However, changes in the environment also impact within-species trait
variation (Reich, 2014), and facilitate the existence of some species across large environmental
gradients (Bachle et al., 2018). Thus, intraspecific trait variation is a key determinant forecasting
responses to future environmental conditions (Violle et al., 2012), including existing spatial
variation and assessments of trait responses over time (variation driven by plasticity and/or

adaptation).

Since the Industrial Revolution, atmospheric CO2 concentrations have increased from
anthropogenic fossil fuel emissions, from around 285 parts per million (ppm) since the year 1850
(McCarroll & Loader, 2004) to over 420 ppm as of May 2022 (Keeling et al., 2005). Increased
atmospheric [CO2] increases plant growth and alters plant nutrient concentrations and water-use
strategies (Ainsworth & Long, 2005). One major response has been the increased ratio of carbon
(C) to nitrogen (N) in plant tissues over time (Pefiuelas & Matamala, 1990, McLauchlan et al.,
2010; McLauchlan et al., 2017; Brookshire et al., 2020; Penuelas et al., 2020). All else equal, as
atmospheric [CO»] has become more readily available, plants proportionally acquire more C than
other elements, such as N. This proportional stoichiometric decrease of nutrients in plant
biomass has broad implications for global C and N cycling (Reich et al., 2006). As low-quality
(high C:N) plant litter becomes available for decomposition by microorganisms, decomposition
may slow and lead to increased immobilization or decreased rates of N mineralization, which

ultimately can feed back to decrease future available N for plants (Reich et al., 2006; Welti et al.,
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2020). Increases in atmospheric [COz] can also decrease soil N availability via progressive N

limitation, where elevated rates of photosynthesis retain N in plant biomass (Luo et al., 2004).

Plant water-use efficiency (WUE) — the ratio of carbon fixed to water lost via stomata to
the atmosphere (Farquhar et al., 1989) — tends to increase with increased atmospheric [COz].
WUE is determined by the regulation of stomatal conductance of a plant over time, coupled with
the concentration gradients of CO» inside and outside of the leaf. In general, plant species have
been found to have increased WUE when exposed to higher levels of [CO2] (Jackson et al., 1994;
Jianlin et al., 2008; Brodribb et al., 2009; Haworth et al., 2011), though the response may be
optimized in angiosperms compared to other lineages, such as ferns and gymnosperms (Brodribb
et al., 2009). One key indicator of changes in plant WUE over time due to increased
anthropogenic CO; is a directional change in the discrimination of '*C compared to the lighter
12C isotope (A*C) in plant tissues. A'*C is an independent measurement of temporal changes of
8'3C in plant tissue over time, which is affected by decreasing levels of '*C in atmospheric [CO2]
due to the burning of fossil fuels (with relatively lower amounts of 1*C compared to atmospheric
[CO2]) over the past two centuries (Friedli et al., 1986). Analyses of herbarium samples
representing the past 200 years have found patterns of A'3C in C; plant tissue decreasing
(Penuelas & Azcon-Bieto, 1992; Pedicino et al., 2002), increasing (Zhao et al., 2001; Pedicino et
al., 2002), and unchanging trends (Pedicino et al., 2002; del Toro et al., 2024). A*C in C4 plants
has been found to both increase (Pedicino et al., 2002; Eastoe & Toolin, 2018; del Toro et al.,
2024) and remain unchanged (Marino & McElroy, 1991; Pedicino et al., 2002) over time. These
results illustrate that changes in A'*C do not reflect changes in atmospheric [CO2] levels; rather,
AC is linked more tightly to photosynthetic pathway (C3 vs. Cs) or phylogeny (O’Leary, 1988;
Farquhar et al., 1989; Stein et al., 2021). In Cs plants, the bulk of carbon fractionation occurs

during carboxylation by RuBisCO as this enzyme discriminates against the hed C isotope.
8'3C in C4 plants is less variable given that CO. is concentrated in the bundle sheath, resulting in

a higher amount of 13C fixation by RuBisCO (Farquhar et al., 1989).

Stomatal trait differences including stomatal size, density, and distribution vary among
Cs and C4 grass species, and reflect their evolutionary history (Taylor et al. 2012; Zhao et al.
2022). Data from herbarium specimens and elevated [CO;] chamber studies have revealed that

some plant species reduce the number of stomata on their leaves in response to increased [COz]
3
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(Peniuelas & Matamala, 1990; Beerling & Chaloner, 1993a; Beerling & Chaloner, 1993b; Knapp
et al., 1994; Woodward & Kelly, 1995; Bettarini et al., 1998; Doheny-Adams et al., 2012; Large
et al., 2017). Guard cell length (stomatal size) may also decrease (Miglietta & Raschi, 1993).
With higher [COz], plants can reduce their stomatal densities to reduce water loss while
maintaining similar photosynthetic production. However, this response is not uniform across all
species; a wide range of species across different plant families have shown both increases or no
changes in stomatal density with increases in [CO2] (Beerling et al., 1992; Bettarini et al., 1998,
Ydenberg et al., 2021). While herbarium specimens have been used to understand changes in
non-stomatal grass leaf traits (McLauchlan et al., 2010; Brookshire et al., 2020; del Toro et al.,
2024), we lack a clear understanding of how stomatal traits have changed between the varying

photosynthetic pathways over recent centuries.

Many grass species have broad distributions and high abundance across large
environmental gradients. Widespread distributions can be partially explained by trait plasticity
that underlies tolerance to disparate environmental conditions (Siefert et al., 2015; Li et al., 2016;
Moran et al., 2016; Bachle et al., 2018). On a broad scale, this may be due to plastic responses to
differing environmental factors, such as precipitation, temperature, and soil characteristics
(Bernard-Verdier et al., 2012; Westerband et al., 2021). Across the North American Great Plains,
climate varies substantially due to precipitation and temperature gradients (Kunkel et al., 2013;
Nielsen, 2018), with a cold-to-warm gradient running north to south and a dry-to-wet gradient
running west to east. Previous research has shown that for both C3 and C4 grass species,
differences in leaf traits are more often linked to precipitation than temperature gradients, with
C4 grasses exhibiting significantly more variability than C3 grasses (Oyarzabal et al., 2008).
However, it has not been tested how closely-related species with different photosynthetic
pathways respond across large environmental gradients. In addition, further insight into how the
traits of an individual species respond to differences in precipitation and temperature is necessary

to understand how that species may respond to global change.

To assess temporal and spatial differences among traits of C3 and C4 grasses, we
measured a suite of leaf traits (Table 1) on two closely-related (tribe Paniceae), perennial
grasses: Dichanthelium oligosanthes subsp. scribnerianum (C3) and Panicum virgatum (Cs).

These two taxa are common throughout the Great Plains (Great Plains Flora Association, 1986)
4
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and abundant in local herbarium collections. In this study, we evaluated how functional leaf traits
of these two grasses vary over time as atmospheric [COz] has increased by measuring traits from
herbarium specimens collected in Kansas. We also assessed intra-taxon variability by measuring
traits at eight grassland sites across the Great Plains (Fig. 1). For temporal trends, we predicted
ABC would decrease in D. oligosanthes and exhibit no change in P. virgatum. Dichanthelium
oligosanthes is a Cs species, which we predict will respond to increased [COz] concentrations by
increasing its WUE to either conserve water while maintaining the same rates of photosynthesis
or increase photosynthesis and maintain the same rates of water loss, thus decreasing A*C. We
did not expect A'*C of P. virgatum to respond over time because discrimination in C4 species is
minimally affected by [COz] (O’Leary, 1988). We also predicted both grasses will increase
tissue C:N ratios and decrease stomatal density and stomatal lengths on both sides of the leaves
in response to increased [CO2] over time. Lastly, we hypothesized %N and §'°N would decrease
for both taxa as others have found (McLauchlan et al., 2010; McLauchlan et al., 2014 ). Because
both taxa are widely distributed across North America and are known to exhibit variation in leaf
morphology (Barkworth et al., 2003), we expected SLA to be greater in areas with warmer
temperatures but not be correlated with differences in precipitation (Sandel et al., 2021; Griffin-
Nolan & Sandel, 2023). We expect LDMC to increase with greater precipitation and decrease

with higher temperatures.
Materials and Methods
Collection of Herbarium Material and Field Study Sites

To measure temporal trends in leaf traits, we sampled 14 specimens each of D.
oligosanthes and P. virgatum at the Kansas State University Herbarium (KSC) and 17 specimens
each at the Ronald L. McGregor Herbarium at the University of Kansas (KANU). KSC boasts a
large (ca. 200,000) collection of plant specimens, many of which are historical specimens dating
prior to 1900. KANU hosts approximately double (~400,000) the number of plant specimens as
KSC, most of which were collected post-1950. Together these herbaria complement each other,
allowing us to sample across a wider range of dates (1887 — 2013) than would have been
possible at just one herbarium. For the years 2021 and 2022, plants were collected in the field

and pressed and dried before sampling.
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We used several criteria to standardize our sampling efforts. First, specimens needed to
have ample leafy material, a prerequisite for approval for destructive sampling. Second, all
specimens sampled were collected from the eastern third of the state of Kansas to minimize
environmental variation by location. Third, all specimens sampled were collected during the
species’ respective growing season (May-July for D. oligosanthes and June-August for P.

virgatum) to avoid senesced material.

To compare how D. oligosanthes and P. virgatum leaf traits vary across grasslands of the
Great Plains of the United States, we sampled individuals from eight sites over the summers of
2021 and 2022 (Fig. 1): (1) Woodworth Station Waterfowl Production Area, North Dakota, (2)
Cedar Creek Ecosystem Science Reserve, Minnesota, (3) Valentine National Wildlife Refuge,
Nebraska, (4) T. L. Davis Preserve, Nebraska (5) Kish-Ke-Kosh Prairie, lowa, (6) Konza Prairie
Biological Station, Kansas, (7) Wah’Kon-Tah Prairie, Missouri, (8) Joseph H. Williams
Tallgrass Prairie Preserve, Oklahoma. We sampled plants growing from remnant native prairies
at all sites except the Woodworth Station Waterfowl Production Area, Cedar Creek Ecosystem
Science Reserve, and part of Wah’Kon-Tah Prairie. At the Woodworth Station Waterfowl
Production Area, all P. virgatum represented restored populations. At Wah’Kon-Tah Prairie, two
replicates of P. virgatum came from restored populations. Both restored populations were seeded
with locally sourced seeds. The restored populations at the Cedar Creek Ecosystem Science
Reserve were recovered from the seed bank. Dichanthelium oligosanthes was not collected at the
Woodworth Station Waterfowl Production Area and P. virgatum was not collected at Kish-Ke-

Kosh Prairie.
Trait Measurements

At each grassland site, five replicates of each species (when possible) were measured for
their specific leaf area (SLA), leaf dry matter content (LDMC), leaf thickness, C:N, d13C,
stomatal density, and stomatal length using standardized sampling methods (Pérez-Harguindeguy
et al., 2016). For leaf measurements (SLA, LDMC, and leaf thickness), the most recently
produced, but mature leaf was sampled from each replicate. Leaf area and leaf thickness
were measured in the field. Leaf area was measured using Leafscan, a mobile app for measuring
the surface area of leaves (Anderson & Rosas-Anderson, 2017), and leaf thickness using calipers.

6
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To calculate LDMC, leaves were rehydrated by being submerged in water for 24-72 hours for

wet mass measurements and dried in a drying oven at 60 °C for at least 48 hours for dry mass.

Stable isotope measurements for leaf §'°C, §!°N, total C, and total N were performed at
the Stable Isotope Mass Spectrometry Laboratory at Kansas State University. Multiple leaves
from each replicate were dried for at least 48 hours at 60 °C and homogenized with an
amalgamator. Total C and N of homogenized leaf samples were measured using an Elementar
vario Pyro cube coupled to an Elementar Vision mass spectrometer for isotope analysis. Isotopic
abundance ratios were converted to d notation using:

§ = [M—u*moo
Rstandara
where R is the ratio of heavy to light isotopes for the sample and standard, respectively. Working
laboratory standards were annually calibrated against the internationally accepted standard,
Vienna Pee-Dee Belemnite for §'*C, and atmospheric air for §'°N. Within-run and across-run

variability of the laboratory working standard (apple leaves — NIST 1515) was < 0.05%o.

For temporal trends, all §'3C values were corrected for changes in atmospheric §'3C by

converting to carbon isotope discrimination values A'3C according to Farquhar et al. 1982:

st3c air_613C plant
1+ 813C p1ane/1000

A13¢ =

Atmospheric [CO2] and §'3Cair measurements were retrieved from McCarroll & Loader (2004)
for the years preceding 2004 and measurements from the Mauna Observatory Data were used for

years 2004 — 2022 (Keeling et al., 2005).

We measured stomatal density and length using stomatal peels on herbarium samples and
pressed and dried field samples collected from each study site. Stomatal peels were created by
applying clear nail varnish to leaves of the specimens and peeling the varnish once dry with clear
tape. Both D. oligosanthes and P. virgatum are amphistomatous, so peels were made on both the
abaxial and adaxial surfaces of the leaves. For herbarium specimens, the leaves of P. virgatum

were long and folded to fit on the mounting sheet, exposing both sides of the same leaf. Thus,
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abaxial and adaxial peels were taken from the same leaf where the leaf was folded. For D.
oligosanthes, the leaves were short and not folded to fit on the herbarium sheets, so only one side
of each leaf was readily available to perform peels. To circumvent this issue, peels of the abaxial
and adaxial surfaces were made on different (but similarly-developed) leaves of the same

individual. For field-collected material, abaxial and adaxial peels were taken from the same leaf.

Two counts of stomatal density were taken for each peel, and five replicates of stomatal
lengths were measured for each count of stomatal density (10 total per specimen). Stomata were
counted under 20x magnification on the objective lens and 10x magnification on the ocular lens
using an Olympus BH-2 Microscope (Shinjuku City, Tokyo, Japan). An image was taken of each
leaf section using a Lumenera Infinity 2 microscopy camera (Ottawa, Canada). The area of the
image field of view was determined by using a stage micrometer and was 0.120 mm? for each
image. Stomatal densities were then converted to stomata per | mm?. Total stomatal density was
measured as the sum of the abaxial and adaxial stomatal densities. Stomatal length (horizontal
length of the guard cell from end to end) was measuring using ImagelJ; pixel length was
converted to mm using a reference length determined from the stage micrometer. Five herbarium
specimens of P. virgatum that were measured for stable isotopes were unable to be sampled for
stomatal densities or lengths, as either the specimens had leaves that were too curled or wrinkled
to obtain peels, or stomata were too sunken and not visible on the peels. Additionally, we note
that because leaves shrink during dehydration, these measurements are likely overestimations of
stomatal densities and underestimations of stomatal lengths compared to fresh leaf tissue.

However, because all tissue in this study was dry, the values are all comparable.
Statistical Analyses

All statistical analyses were performed in R V4.2.1 (R Core Team, 2022). For temporal
trait responses, we used linear regression models to determine if traits significantly differed due
to changes in environmental variables over time. We performed separate linear regression for
each trait (Table 1) with atmospheric [CO:] (ppm) and growing season precipitation (mm) and
temperature (°C) as separate predictor variables and month of collection as a random effect to
account for natural changes in trait values throughout the growing season. Data for growing

season (April — September) total precipitation and average temperature were retrieved from
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National Oceanic and Atmospheric Administration’s weather station located in Manhattan,
Kansas (Lawrimore et al., 2016; Nippert, 2019). Historic precipitation and temperature data for
years prior to 1891 were not available. For spatial trait responses, we used linear regression
models to determine if traits significantly differed due to climactic variation in precipitation and
temperature. We performed separate linear regressions for each trait (Table 1) and performed
separate models using the mean 30-year growing season precipitation and the mean 30-year
growing season temperature as predictor variables that characterize the local climate. These
values were retrieved from the National Oceanic and Atmospheric Administration’s (NOAA)
U.S. Monthly Climate Normals (1991-2020) (Palecki et al., 2021) for the closest weather station
to each collection site. We determined the length of the growing season for each site separately
based on monthly precipitation and temperature. Mean 30-Year Growing Season Precipitation
(mm) was calculated by summing the monthly precipitation normal for each month in the
growing season for each site and Mean 30-Year Growing Season Temperature (°C) was
calculated by averaging the monthly temperature normal for all months in the growing season for

each site (Table S1). All models were performed separately for each taxon.
Results
Temporal Trends (from Herbarium Specimens)

The A3C of D. oligosanthes and P. virgatum showed opposite trends as atmospheric
[CO-] increased over the 20™ century. However, the interpretation of these trendlines indicates a
similar physiological response - a decrease in WUE over time. The A'*C of D. oligosanthes
exhibited a significant, positive correlation with atmospheric [CO2] (R?> = 0.09, P = 0.032; Fig.
2a), and the A'*C of P. virgatum showed a significant, negative correlation with atmospheric
[CO2] (R?=0.32, P <0.001; Fig. 2b). The %N of D. oligosanthes exhibited a significant,
negative correlation with atmospheric [CO2] (R* = 0.09, P = 0.002; Fig. 2c), decreasing about
20.4% over 126 years. However, %N did not change significantly for P. virgatum (Fig. 2d). C:N
showed significant, positive correlations with atmospheric [CO2] for both D. oligosanthes (R* =
0.07, P =0.002; Fig. 2e) and P. virgatum (R* = 0.14, P = 0.025; Fig. 2f). On average, C:N
increased about 18.7% for D. oligosanthes and about 41.6% for P. virgatum over the 126-year
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period. Leaf §'°N showed significant, negative correlations with atmospheric [CO2] for both D.

oligosanthes (R*=0.31, P <0.001; Fig. 2g) and P. virgatum (R*=0.17, P = 0.014; Fig. 2h).

For stomatal traits, the abaxial stomatal length of P. virgatum significantly decreased as
atmospheric [CO2] increased (R? = 0.09, P = 0.047; Fig. 3h) and increased as temperature
increased (R? = 0.25, P = 0.010; Fig. Sla). The adaxial stomatal length of P. virgatum
significantly decreased as precipitation increased (R>=0.21, P = 0.019; Fig. S1b) All other

stomatal traits for both species were unchanged over time (P > 0.05; Fig. 3a-g).

Non-stomatal leaf traits also responded to differences in precipitation or temperature
across time. The %N of D. oligosanthes showed a significant, negative correlation with
precipitation (R? = 0.18, P = 0.008; Fig. S2a) and a significant, positive correlation with
temperature (R? = 0.10, P = 0.009; Fig. S2b). C:N exhibited a significant, positive correlation
with precipitation for D. oligosanthes (R* = 0.13, P = 0.027; Fig. S2¢). Lastly, the A*C of P.
virgatum showed a significant, negative correlation with temperature (R* = 0.19, P = 0.021; Fig.
S2d). For both species, leaf '°N did not respond to differences in precipitation or temperature

across time.
Spatial Trends (Across Grassland Sites)

Three stomatal traits significantly decreased with increasing precipitation for D.
oligosanthes: adaxial stomatal density (R?=0.23, P = 0.009; Fig. 4e), total stomatal density (R>
=0.14, P < 0.046; Fig. 4f), and adaxial:abaxial stomatal ratio (R* = 0.26, P = 0.004; Fig. 4g).
Stomatal traits did not respond to differences in temperature for D. oligosanthes and stomatal
traits showed no responses to differences in temperature or precipitation for P. virgatum (Table

32).

Two structural leaf traits, SLA and C:N, increased with increasing precipitation for D.
oligosanthes (R*=0.15, P = 0.013; Fig. 4a and R? = 0.20, P = 0.003; Fig. 4c, respectively),
whereas §'3C decreased with increasing precipitation (R? = 0.13, P = 0.022; Fig. 4d). Leaf traits
did not respond to differences in temperature for D. oligosanthes (Table S2). For P. virgatum, we

found that LDMC and C:N both increased with increasing precipitation (R?=0.15, P = 0.023;

10
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Fig. 4b and R? = 0.12, P = 0.041; Fig. 4c, respectively). We also found that SLA decreased with
increasing temperature (R?> = 0.31, P = 0.001; Fig. 4h) and that LDMC increased with increasing
temperature (R2=0.21, P = 0.006; Fig. 4i) for P. virgatum.

Discussion

Here, we measured a suite of leaf traits on two widespread, closely-related grasses
representative of the Cs (D. oligosanthes) and Cs (P. virgatum) photosynthetic pathways in the
Great Plains of North America. We assessed temporal (century long responses within eastern
Kansas) and spatial (across the broader Great Plains of North America) variation in leaf
structural and stomatal traits. While we predicted the Cs species would be more sensitive to
changes in [COz] and climate over time, we found similar temporal responses in C3 and Cs
species as both showed decreased WUE (measured by changes in A'*C) and limited changes in
stomatal density in response to increased atmospheric [CO2]. Notably, this is the first time a
decrease in A'3C has been reported for a Cs4 species. Across the spatial gradient, we found the Cs
species responded more to the precipitation gradient than the C4 species, while the temporal
trend identified different traits and relationships for species responses to climate over the past
century. These results highlight the intraspecific trait variability that exists according to
environmental gradients and changes in [CO;], while also clearly illustrating that predictions of
spatial trait-climate relationships in the modern record may be unsuitable for predictions of trait-

climate relationships over the previous century.
Trait responses to changes in atmospheric [CO;] and climate since 1887

We found limited changes in stomatal density in response to increased atmospheric [COz]
or trends in precipitation or temperature over the past 126 years. Our results are contrary to
previous studies that have found decreasing stomatal densities in response to elevated [CO2]
(Penuelas & Matamala, 1990; Beerling & Chaloner, 1993a; Beerling & Chaloner, 1993b;
Woodward & Kelly, 1995; Bettarini et al., 1998; Doheny-Adams et al., 2012; Large et al., 2017).
Stomatal densities are generally expected to decrease with increased atmospheric [CO;] resulting
in increased WUE by reducing transpiration. However, atmospheric [COz] is not the only driver

of stomatal density, which is genetically determined and sensitive to environmental conditions

11
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during leaf maturation (Xu et al., 2016). Climate data from within the study region (Manhattan,

Kansas, USA) over the last century shows a ~7% increase in mean annual precipitation and 0.93

°C increase in mean annual temperature (| = n et al., in press; Sadayappan et al., 2023). A

progressively wetter and warmer climate in the region over the past century may have limited
changes in stomatal density over time as decreased stomatal density and size can constrain gas

exchange and limit photosynthesis and leaf cooling via transpiration (Lin et al., 2015).

Limited change in stomatal density and size in D. oligosanthes may explain increased
ABC over time. The A'*C of D. oligosanthes significantly increased with atmospheric [CO2]
(Fig. 2a), indicating that WUE has decreased through time in this species. Generally, A'3C is
expected to decrease in C3 species in response to elevated [COz] due to decreased stomatal
conductance that reduces water loss without limiting photosynthetic rates (Francey & Farquhar,
1982; Penuelas & Azcon-Bieto, 1992; Araus & Buxo, 1993; Pedicino et al., 2002). However,
other studies have attributed stable A'>C over time to decreases in stomatal density, which
maintains ci/c, (ratio of intercellular to atmospheric [CO2]) and A'>C under elevated [CO:]
(Pedicino et al., 2002; del Toro et al., 2024). We attribute the increase of A'3C in D. oligosanthes
across the studied time period to limited changes in stomatal density corresponding with a

century-long trend of increased precipitation in this region.

The negative trend of A'*C over time for P. virgatum indicates decreased WUE over the
previous century, a response similar to the Cs species (Fig. 2b,a, respectively). While few studies
have measured temporal changes of A'*C in C4 species, only increasing (Pedicino et al., 2002;
Eastoe & Toolin, 2018; del Toro et al., 2024) and unchanging (Marino & McElroy, 1991;
Pedicino et al., 2002) trends have previously been reported. To our knowledge, this is the first
time a decreasing response of A'3C over time has been reported for a C4 species, a finding that
may be owed to little research of temporal variation of A'*C in C4 plants. The A'*C of C4 plants
tends to increase when plants are subjected to dry or shady conditions (Buchmann et al., 1996;
Fravolini et al., 2002; Ghannoum et al., 2002; Cernusak et al., 2013) or increased [CO2] over
time (del Toro et al. 2024). Here, it seems unlikely that the decrease in A!*C over time reflects
changes in light conditions, as P. virgatum typically grows in full sunlight and these conditions
were unchanged over time. A'3C also varies by the subtype of C4 photosynthetic pathway (NAD-

ME, NADP-ME, and PEP-CK) due to variation in bundle sheath leakiness. The A'3C of the
12
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340 NADP-ME subtype responds the least, followed by PCK then NAD-ME (Buchmann et al.,

341  1996). As P. virgatum has the NAD-ME subtype, the ~1%o0 decrease observed since 1887 is

342  reasonable. Thus, the best explanation for the changes reported here are that increased water

343  availability and temperatures over the past century in the study region (Keen et al. in press) may
344  be responsible for the A'’C decrease seen in P. virgatum. If precipitation continues to increase in
345  the region, both P. virgatum and D. oligosanthes may be expected to continue to reduce their

346  water use efficiency to maximize growth.

347 Foliar C:N was positively correlated with atmospheric [COz], suggesting D. oligosanthes
348  and P. virgatum have responded to CO; fertilization over time (Fig. 2e,f). Plants often increase
349  carbohydrate production more than N uptake under elevated [COz] resulting in nutrient dilution
350  (Penuelas & Matamala, 1990, McLauchlan et al., 2010; Feng et al., 2015; McLauchlan et al.,
351  2017; Brookshire et al., 2020; Pefiuelas et al., 2020). Changes in C:N ratios in D. oligosanthes
352  were also driven by decreased %N and indicate decreased N availability despite increases in

353  anthropogenic N deposition over this time period (McLauchlan et al., 2010; McLauchlan et al.,
354  2014). Long-term increases in foliar C:N can limit plant N availability by decreasing foliar

355  decomposition rates and increasing microbial N immobilization (Reich et al., 2006; Feng et al.,
356  2015). Interestingly, changes in C:N and %N in D. oligosanthes showed a stronger relationship
357  with precipitation than [CO2], suggesting that directional changes in precipitation may have as
358 large or larger impacts on plant productivity and nutrient dynamics as CO; fertilization.

359  However, the effects of [CO»] and precipitation on foliar nutrient concentrations appear to vary
360 according to species (McLauchlan et al., 2010) and may reflect species-specific resource

361  requirements (Craine et al., 2012) or regional climactic differences (Pefiuelas et al., 2020). For
362  example, P. virgatum is a highly productive species that can displace dominant grasses in areas
363  with high water and N availability (Dybzinski & Tilman, 2007; Collins et al., 2012; Nieland &
364  Zeglin, 2024). As P. virgatum has foliar C:N values nearly double that of D. oligosanthes,

365 changes in species composition to more productive species would likely have more profound and

366  lasting consequences on ecosystem nutrient dynamics than shifts in species-level C:N alone.

367  Foliar '°N is often positively correlated with foliar [N] and terrestrial N availability
368  (McLauchlan et al., 2010). We found that leaf §'°N significantly decreased as atmospheric [CO2]

369 increased for both species (Fig. 2g,h), which supported our hypothesis and is consistent with
13
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previously described results from grasses, other herbaceous species, and woody species
(Penuelas & Filella, 2001; McLauchlan et al., 2010; Tang et al., 2022). In our study region, plant
N availability has decreased despite increased anthropogenic N deposition since at least the
1980s (McLauchlan et al., 2014). Changes in foliar 5!°N over time may reflect increased N
limitation as described by the progressive nitrogen limitation hypothesis — the idea that increased
atmospheric [CO»] causes nitrogen to become more limited in the soil due to increased N
immobilization and sequestration of N by plants benefitting from elevated photosynthetic rates
(Luo et al., 2004). Alternatively, changes in foliar §'°N may reflect changes in the isotopic
signature of N taken up by the plant rather than changes in N availability (Tang et al., 2022).
Foliar depletion of §'°N may be an artifact of changes to the ecosystem N signature due to N
deposition (Tang et al., 2022). Decreased §'°N may also reflect increased mycorrhizal activity
under elevated [CO2] as mycorrhizae tend to deliver depleted N to plants (McLauchlan et al.,
2010; Hobbie & Hogberg, 2012). While we can’t determine the mechanisms driving decreased
8'°N in this study, it is likely this often-reported response is due to a combination of N limitation

and altered N signature under environmental change.
Trait Variation Across the Great Plains

We measured a suite of traits on individuals of D. oligosanthes and P. virgatum across
eight grassland sites located throughout of the Great Plains of North America. We predicted that
we would find differences within stomatal and structural leaf traits across precipitation and
temperature gradients for both grasses, as these species persist across a wide range of

environments with complex temporal and spatial variability.

Species may exhibit intraspecific variation of structural leaf traits to gain competitive
advantages across environmental conditions (Reich, 2014) or across climate gradients (Griffin-
Nolan et al. 2018). As discussed by Griffin-Nolan & Sandel (2023), inconsistent trait responses
by grass species to mean climate conditions can reflect a variety of other biotic and abiotic
factors, including soil characteristics, local topography, and canopy cover. Here, we reported
several leaf-traits correlated with the axes of climate variability, and a few traits that did not vary
by climate. For instance, we found that P. virgatum decreased SLA and increased LDMC as
temperature increased, whereas leaves of D. oligosanthes showed no differences (Fig. 4h,1). In
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contrast, leaves of D. oligosanthes had greater SLA at wetter sites, favoring more rapid growth
with increased water availability, whereas the leaves of P. virgatum did not change significantly
(Fig. 4a). We found that D. oligosanthes and P. virgatum shared only one similar significant
result across all leaf traits we measured: C:N (Fig. 4c). The increase in C:N across greater
precipitation is likely due to growth dilution of N, where both grass species accrue more carbon

in wetter environments and consequently dilute the abundance of N in leaves with greater area.

Though stomatal densities and sizes have been found to change across precipitation and
temperature gradients (Pyakurel & Wang, 2014; Hill et al., 2015; Carlson et al., 2016; Du et al.,
2021), few differences were found for the species investigated here. Stomatal traits remained
unchanged for P. virgatum across gradients that differ in mean precipitation or temperature
(Table S2). For D. oligosanthes, we found that adaxial and total stomatal density and stomatal
ratio decreased with increasing precipitation (Fig. 4e-g). This decrease in stomatal density is
likely an artifact of increasing SLA and leaf size with increasing precipitation (Fig. 4a); if the
number of stomata per leaf remains constant as leaf area increases, then stomatal density will

decrease.

Lastly, we also observed a decrease in §'°C with increasing precipitation in D.
oligosanthes (Fig. 4d), a trend that was previously observed in C3 grasses across a precipitation
gradient (Weiguo et al., 2005). In C; plants, differences in §'°C are strongly driven by
instantaneous ci/ca, the ratio of intracellular [CO;] to the ratio of atmospheric [COz] (Cernusak et
al., 2013). Instantaneous ci/c, has a negative relationship with leaf §'3C (Cernusak et al., 2013)
and is influenced by many environmental factors including water availability, nutrient
availability, irradiance, and reduced CO» partial pressures due to elevation (Tieszen, 1991).
Tieszen (1991) predicted irradiance affects ci/ca the most and water availability second, but D.
oligosanthes was collected in open grasslands at all sites in this study, so differences in
irradiance are likely unimportant as drivers of §'*C in this dataset. Reduced water availability
decreases ci/ca by increasing stomatal regulation and decreasing discrimination against 1*C,
resulting in higher foliar §'3C values (Tieszen, 1991; Cernusak et al., 2013). We conclude that it
is unlikely that other factors besides growing season precipitation are driving this trend of

decreasing 8'3C across the precipitation gradient of the Great Plains.
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Conclusion

Using a long temporal record and an extensive spatial record, we reported both
similarities and unique responses to varying environmental conditions in two closely-related
grass species, D. oligosanthes (C3) and P. virgatum (Ca). Using herbarium samples, leaf A*C
suggested that both species reduced water-use efficiency in response to century-long increases in
water availability. For some traits, such as stomatal density, hypothesized responses to
environmental changes over the past century were not evident, which contrasts with results from
other studies. When the same leaf traits were measured in field populations sampled across a
north-south gradient in the Great Plains, we found that many traits, including SLA, LDMC, C:N,
8'13C, adaxial stomatal density, total stomatal density, and stomatal ratio had statistically-
significant relationships with spatial patterns of precipitation, while fewer traits (SLA and
LDMC for P. virgatum only) had statistically-significant responses to spatial variation in
temperature. These results demonstrate the importance of characterizing trait variation across
both temporal and spatial scales. For instance, predictions of how C; and C4 grasslands will
change in the future are usually made based on the examination of the results of just a few grass
species in the modern record. Our work shows that many typically held assumptions of how
traits will change in response to environmental variables vary with different trait-climate
relationships across space and time. If we are to understand how plants will respond to global
change, especially with regard to changes in precipitation regimes, it may be necessary to first
document how plants have responded to historical changes in the environment, as well as the

intraspecific trait variation that currently exists.
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Tables and Figures

Table 1: A list of traits measured in this study.

Traits measured across time

Traits measured across space

Total Stomatal Density (stomata/mm?)

Total Stomatal Density (stomata/mm?)

Adaxial Stomatal Density (stomata/mm?)

Adaxial Stomatal Density (stomata/mm?)

Abaxial Stomatal Density (stomata/mm?)

Abaxial Stomatal Density (stomata/mm?)

Adaxial Stomatal Length (mm)

Adaxial Stomatal Length (mm)

Abaxial Stomatal Length (mm)

Abaxial Stomatal Length (mm)

Stomatal Ratio (Adaxial:Abaxial)

Stomatal Ratio (Adaxial:Abaxial)

ATC (%) 35C (%)

C:N C:N

%N Specific Leaf Area; SLA (cm? g!)
SN Leaf Dry Matter Content; LDMC

Leaf Thickness (mm)
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Figure 1: A map of the North American Great Plains ecoregion within the United States and its
average annual total precipitation from 1991 — 2020. Each grassland site is represented by a red
circle and each number corresponds to the site’s name. We used the ecoregion boundary
determined by the United States Environmental Protection Agency’s Level I Ecoregions and
cropped the boundary to be within the continental United States. Annual precipitation data were

retrieved from the PRISM Climate Group at Oregon State University (2022).
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Figure 2: The change in A*C, %N, C:N, and §'°N of D. oligosanthes (left column) and P.
virgatum (right column) leaves as atmospheric CO> increased from the years 1887 — 2020.
Regression lines and confidence intervals are displayed when P < 0.05. Please note differing

scales for trait values on the y-axis for both species.
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789  Figure 3: The change in stomatal density, stomatal ratio, and stomatal length of D. oligosanthes
790  (left column) and P. virgatum (right column) leaves as atmospheric CO; increased from the years
791 1887 —2020. Regression lines and confidence intervals are displayed when P < 0.05. Please note

792  differing scales for trait values on the y-axis for both species.
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Figure 4: The change of stomatal and structural leaf traits across precipitation and temperature

gradients of D. oligosanthes (red) and P. virgatum (blue). Regression lines and confidence

intervals are displayed when P < 0.05. Non-significant results for traits not displayed here can be

found in Table S2.
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