

Patterns in the genetic structure of 49 lowland rain forest tree species co-distributed on opposite sides of the northern Andes

Jordan B. Bemmels¹ | Álvaro Pérez² | Renato Valencia^{3,4} | Christopher W. Dick^{1,4}

¹Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA

²Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

³Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

⁴Smithsonian Tropical Research Institute, Balboa Ancón, Panama

Correspondence

Jordan B. Bemmels, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.

Email: jbemmels@uvic.ca

Present address

Jordan B. Bemmels, Department of Biology, University of Victoria, Victoria, BC, Canada.

Funding information

Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: CGSM-410253-2011; National Science Foundation, Grant/Award Number: DEB 1240869 and 1338694; University of Michigan

Associate Editor: Jennifer Powers

Handling Editor: Paul Fine

Abstract

The Andes are a major dispersal barrier for lowland rain forest plants and animals, yet hundreds of lowland tree species are distributed on both sides of the northern Andes, raising questions about how the Andes influenced their biogeographic histories and population genetic structure. To explore these questions, we generated standardized datasets of thousands of SNPs from paired populations of 49 tree species co-distributed in rain forest tree communities located in Panama and Amazonian Ecuador and calculated genetic diversity (π) and absolute genetic divergence (d_{XY}) within and between populations, respectively. We predicted (1) higher genetic diversity in the ancestral source region (east or west of the Andes) for each taxon and (2) correlation of genetic statistics with species attributes, including elevational range and life-history strategy. We found that genetic diversity was higher in putative ancestral source regions, possibly reflecting founder events during colonization. We found little support for a relationship between genetic divergence and species attributes except that species with higher elevational range limits exhibited higher d_{XY} , implying older divergence times. One possible explanation for this pattern is that dispersal through mountain passes declined in importance relative to dispersal via alternative lowland routes as the Andes experienced uplift. We found no difference in mean genetic diversity between populations in Central America and the Amazon. Overall, our results suggest that dispersal across the Andes has left enduring signatures in the genetic structure of widespread rain forest trees. We outline additional hypotheses to be tested with species-specific case studies.

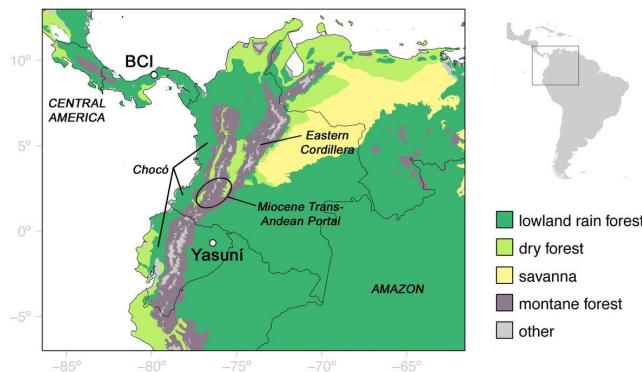
KEY WORDS

Andes, comparative biogeography, dispersal barrier, genetic diversity, neotropical rain forest trees, population genomics

1 | INTRODUCTION

Widely distributed species often share broad similarities in genetic structure across their geographic ranges, reflecting similar

demographic responses to climate change and landscape features (Avise, 2009; Hickerson et al., 2010). In lowland Neotropical rain forests, landscape features such as large rivers (Gascon et al., 2000; Naka & Brumfield, 2018; Nazareno et al., 2019), dry forest corridors


This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial-NoDerivs](https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Authors. *Biotropica* published by Wiley Periodicals LLC on behalf of Association for Tropical Biology and Conservation.

(Costa, 2003), and mountain ranges (Bemmels et al., 2018; Frost et al., 2022; Serrano et al., 2021) frequently structure species distributions and spatial patterns of genetic variation. Mountain ranges have long been hypothesized to represent especially strong dispersal barriers to lowland rain forest species due to the high degree of specialization to narrow, stable climatic niches exhibited by tropical taxa (Janzen, 1967). At phylogenetic scales, the Northern Andean Cordilleras are an important biogeographic barrier to rain forest trees (Frost et al., 2022; Winterton et al., 2014), birds (Cracraft & Prum, 1988), and other vertebrates (Ron, 2000), yet many lowland rain forest tree species are distributed on both sides of the Andes (Bemmels et al., 2018; Dick et al., 2005; Gentry, 1982) in both the Amazon Basin and Central America (here broadly defined to also include the Chocó or the Pacific coastal region of Colombia and Ecuador; Figure 1). Little is known about how such species dispersed across the Andes and whether dispersal has left similar patterns of population genetic structure across multiple taxa.

The strength of biogeographic barriers between the Amazon and Central America has likely varied greatly over time. The South and Central American landmasses were physically isolated by an oceanic seaway prior to the emergence of the Isthmus of Panama, which occurred in successive stages over the Late Miocene until final closure ca. 3 Ma (Bacon et al., 2015; Jaramillo, 2018; McGirr et al., 2021; Montes et al., 2015; O'Dea et al., 2016). Final closure sparked the dispersal of numerous animal lineages during the Great American Biotic Interchange (Simpson, 1980; Weir et al., 2009), yet many plant lineages dispersed between continents over water barriers before isthmus formation was complete (Bacon et al., 2015; Cody et al., 2010; Serrano et al., 2021).

While formation of the Isthmus of Panama continued to increase connectivity between South and Central America, simultaneous

FIGURE 1 Locations of sampling sites Yasuní (Amazon) and BCI (Central America), and the distribution of lowland rain forest (dark green) and other habitat types. The montane forests (purple) and other high-elevation habitats of the Andes, as well as surrounding dry forest (light green) and savanna (yellow), form a biogeographic barrier limiting the potential for dispersal and gene flow between Yasuní and BCI. Habitat types are based on Olson et al. (2001) with reclassification of dry forest following Dick and Pennington (2019). Montane forest is defined as moist forest ≥ 1000 m in elevation. The approximate location of the Miocene Trans-Andean Portal follows Sanín et al. (2022).

uplift of the Andes imposed new dispersal challenges. The northern Andes was one of the most recent regions of the Andes to experience uplift (Boschman, 2021; Hoorn et al., 2010), with rapid uplift beginning ca. 8 to 5 Ma (Pérez-Escobar et al., 2022). Today, the high elevations of the Eastern Cordillera of Colombia form a strong topographical barrier between the Amazon Basin and Central America (Figure 1), but such elevations likely did not exist in this region prior to 5 Ma (Boschman, 2021). The most rapid uplift of the Eastern Cordillera occurred ca. 6 to 2.7 Ma (Boschman, 2021; Gregory-Wodzicki, 2000). Despite large uncertainties, some estimates suggest it may have reached only 40% of its modern height by ca. 4 Ma (Gregory-Wodzicki, 2000) and increased in elevation by ≥ 1.4 km since the end of the Miocene (García-Delgado et al., 2021). Thus, absolute elevational barriers between opposite sides of the Andes were likely weaker throughout the Pliocene and early Pleistocene compared to today. Important gaps in the continuity of the Andean cordilleras may also have existed, including the Miocene Trans-Andean Portal (Figure 1; Montes et al., 2021). This lowland portal connected the incipient Chocó region with the Amazon Basin at $\sim 3^\circ$ N from ca. 13 Ma to at least 4 Ma, after which it was gradually filled in by increasing volcanism and tectonic uplift (Montes et al., 2021). The lack of Miocene continuity between cordilleras of the Colombian Andes also agrees with biological evidence, such as the delayed colonization of the Western and Central Cordilleras by montane *Ceroxylon* palms until the Pliocene–Pleistocene boundary (Sanín et al., 2022).

As the Eastern Cordillera experienced uplift and the Miocene Trans-Andean Portal closed, direct dispersal across mountain passes would likely have become increasingly difficult for lowland rain forest trees. Savannahs and other lowland dry regions have abutted the cordillera to the east and north (Figure 1; Olson et al., 2001) since the onset of the Pliocene (Jaramillo et al., 2010), further restricting dispersal around the Andes for wet forest adapted taxa. However, the network of gallery forests within these savannahs shares many species in common with continuous rain forest and expanded in size during periods of cooler and wetter climates (Behling & Hooghiemstra, 1998). These gallery forests could conceivably have provided an alternative lowland biogeographic connection between regions leading around rather than across the Andes, in particular for species tolerant of seasonally dry climates (Honorio Coronado et al., 2014). The narrow band of premontane forest surrounding the Andean foothills (Figure 1) may also have provided dispersal opportunities for some taxa.

The extent to which lowland rainforest plants were capable of dispersing across these ecologically diverse biogeographic barriers—and the genetic signatures of such dispersal—may have depended on species-specific attributes (Bemmels et al., 2018). Elevation range and drought tolerance could conceivably be associated with the ability to disperse directly across the Andes and through alternative lowland dry habitats, respectively, with the relative opportunities for dispersal by each route varying over time as landscapes geologically and climatically evolved. Furthermore, attributes such as dispersal mechanism, pollination mode, mating system, successional stage, and geographic range size have previously been demonstrated to influence

genetic structure of Neotropical plants (Ballesteros-Mejia et al., 2016; Hamrick et al., 1993; Hamrick & Murawski, 1990; Lowe et al., 2018). In particular, pioneer species of Neotropical trees tend to show reduced genetic diversity relative to later-successional species, likely due to increased genetic drift during the repeated colonization of new habitats following disturbance (Lowe et al., 2018). Species with smaller regional population sizes could also experience greater loss of diversity through genetic drift (Lowe et al., 2018), as could populations that have dispersed to a novel biogeographic region if population bottlenecks and founder effects occurred during dispersal (Slatkin & Excoffier, 2012).

Given the complex geological history of northwest South America, we expect that widespread rain forest tree species from this region will have experienced a diversity of biogeographic histories. Indeed, the timing of cross-Andean dispersals has likely varied greatly, with some species having dispersed as early as the Late Miocene (Dick et al., 2003, 2013). Given the potential for millions of years of separation between Amazonian and Central American populations, some widespread taxa may represent independently evolving lineages yet to be described as separate species (Damasco et al., 2021), but in other cases widespread species could still represent a single gene pool (Brito et al., 2023). As Neotropical rain forest trees have been genetically understudied relative to their temperate counterparts (Tinoco et al., 2015), it remains an open question whether dispersal between biogeographic regions has left predictable signatures in genetic structure of contemporary populations, and whether the impact of dispersal on genetic structure has been affected by species-specific traits.

To explore these questions, we generated standardized datasets of thousands of single nucleotide polymorphisms (SNPs) for 49 tree species (Table 1) co-distributed on both sides of the Andes. For each species, we sampled two to four individuals per population from two populations (one Amazonian and one Central American; Figure 1). We designed our sampling scheme in light of recent theoretical and empirical findings related to minimum sample sizes for population genomics (see Section 2: Methods) and confirmed the suitability of our sample size for the present study with sensitivity analyses. We then calculated genetic diversity (π) within populations and genetic divergence (d_{XY}) between populations for each species and tested for correlations between these genetic estimates and species attributes. We also interpreted our results in the context of the putative biogeographic origins of each species (i.e., North or South American), which we inferred based on a literature review entirely independent of our genetic data. We used these datasets to explore three different types of questions:

1. Are species-specific attributes correlated with cross-Andean genetic divergence, and if so, what do patterns suggest about cross-Andean dispersal? In particular, we propose that correlations between ecological niche traits and genetic divergence could suggest changes in the relative importance of ecologically diverse dispersal routes over time.
2. Are species attributes correlated with genetic diversity? We predict that species with pioneer life histories may exhibit low

genetic diversity due to their high susceptibility to repeated loss of genetic diversity in small colonizing populations (Lowe et al., 2018).

3. How do genetic diversity levels differ between populations in the western Amazon and Central America? We predict that genetic diversity may be higher in the biogeographic region in which a species putatively originated and lower in the region to which it dispersed, due to a loss of genetic variation associated with population bottlenecks during dispersal.

2 | METHODS

2.1 | DNA collection and SNP genotyping

For each of 49 tree species (Table 1), we sampled two to four individuals per population from Forest Global Earth Observatory (ForestGEO) plots on Barro Colorado Island (BCI), Panama and in Yasuní National Park, Ecuador, representing a Central American and a Western Amazonian population, respectively (Figure 1; see also the Data S1). The 49 study species represent more than half of the 85 species that co-occur at Yasuní and BCI. We were unable to obtain sufficient tissue or high-quality DNA extractions for the remaining taxa. We extracted DNA from silica-dried leaf tissue using Machery-Nagel Nucleospin Plant II kits with SDS reagents and prepared double-digest Restriction-Associated DNA (ddRAD) libraries from a modified protocol based on that of Peterson et al. (2012), with restriction enzymes *EcoRI* and *MseI* and fragment lengths of 375–475 bp. This ddRAD protocol has previously been described in full (Bemmels & Dick, 2018) and a summary is provided in Appendix S1. In total, we prepared eight pooled libraries of 72 to 96 samples each for sequencing (50-bp, single-end reads) on an Illumina HiSeq machine at The Hospital for Sick Children (Toronto). For samples that resulted in <800,000 sequenced reads, DNA was re-extracted and re-sequenced.

We demultiplexed samples and generated SNP datasets using *Stacks* v.1.46 (Catchen et al., 2011, 2013). We demultiplexed reads using the *process_radtags* script in *Stacks* and obtained trimmed reads of 36 bp after removing barcodes and the *EcoRI* cut site. We then called SNPs using the *denovo_map.pl* pipeline in *Stacks* for each species individually, retaining only individuals sequenced at $\geq 70\%$ of loci and loci sequenced in all individuals to a minimum depth of 10x. We used standardized parameter values in *Stacks* for all species to ensure that variation in the SNP-discovery procedure would not introduce bias among species. Further details are provided in the Data S1.

2.2 | Population genetic statistics

We calculated absolute genetic divergence (d_{XY}) between populations (Delmore et al., 2018; Nei, 1987) and nucleotide diversity (π) within populations (Nei, 1987; Nei & Li, 1979) using the *R* package

TABLE 1 Species included in the study, sample sizes for Yasuní (n_{Yas}) and BCI (n_{BCI}), and population genetic parameters (d_{XY} , genetic divergence between sites; π , nucleotide diversity).

Species	Family	n_{Yas}	n_{BCI}	d_{XY}	π_{Yas}	π_{BCI}
<i>Andira inermis</i>	Fabaceae	4	4	0.0082	0.0056	0.0048
<i>Apeiba membranacea</i>	Malvaceae	4	3	0.0079	0.0061	0.0057
<i>Apeiba tibourbou</i>	Malvaceae	3	3	0.0070	0.0035	0.0044
<i>Astronium graveolens</i>	Anacardiaceae	3	4	0.0143	0.0055	0.0045
<i>Casearia aculeata</i>	Salicaceae	3	4	0.0173	0.0025	0.0074
<i>Casearia arborea</i>	Salicaceae	2	3	0.0339	0.0041	0.0056
<i>Casearia sylvestris</i>	Salicaceae	2	2	0.0059	0.0043	0.0051
<i>Ceiba pentandra</i>	Malvaceae	3	4	0.0109	0.0043	0.0053
<i>Celtis schippii</i>	Cannabaceae	3	3	0.0062	0.0026	0.0045
<i>Cinnamomum triplinerve</i>	Lauraceae	3	3	0.0127	0.0043	0.0077
<i>Cupania cinerea</i>	Sapindaceae	4	2	0.0104	0.0051	0.0030
<i>Dendropanax arboreus</i>	Araliaceae	2	3	0.0184	0.0061	0.0103
<i>Diospyros artanthifolia</i>	Ebenaceae	3	4	0.0087	0.0056	0.0027
<i>Erythroxylum macrophyllum</i>	Erythroxylaceae	2	4	0.0079	0.0055	0.0031
<i>Ficus maxima</i>	Moraceae	2	3	0.0091	0.0035	0.0030
<i>Guarea grandifolia</i>	Meliaceae	4	3	0.0144	0.0059	0.0068
<i>Hasseltia floribunda</i>	Salicaceae	3	3	0.0061	0.0043	0.0024
<i>Inga marginata</i>	Fabaceae	2	3	0.0142	0.0065	0.0052
<i>Inga nobilis</i>	Fabaceae	3	4	0.0089	0.0069	0.0045
<i>Inga punctata</i>	Fabaceae	4	2	0.0105	0.0070	0.0066
<i>Inga ruiziana</i>	Fabaceae	2	4	0.0116	0.0062	0.0041
<i>Inga sapindoides</i>	Fabaceae	3	4	0.0153	0.0056	0.0053
<i>Inga spectabilis</i>	Fabaceae	3	2	0.0097	0.0073	0.0052
<i>Inga thibaudiana</i>	Fabaceae	3	3	0.0075	0.0067	0.0055
<i>Inga umbellifera</i>	Fabaceae	3	2	0.0134	0.0091	0.0062
<i>Jacaranda copaia</i>	Bignoniaceae	3	3	0.0093	0.0035	0.0031
<i>Lacistema aggregatum</i>	Lacistemataceae	2	3	0.0115	0.0041	0.0068
<i>Laetia procera</i>	Salicaceae	3	3	0.0067	0.0021	0.0014
<i>Margaritaria nobilis</i>	Phyllanthaceae	3	2	0.0081	0.0040	0.0047
<i>Miconia elata</i>	Melastomataceae	2	4	0.0069	0.0053	0.0041
<i>Nectandra lineata</i>	Lauraceae	3	4	0.0142	0.0069	0.0033
<i>Ocotea oblonga</i>	Lauraceae	2	4	0.0127	0.0057	0.0034
<i>Palicourea guianensis</i>	Rubiaceae	3	3	0.0098	0.0052	0.0026
<i>Perebea xanthochyma</i>	Moraceae	4	3	0.0205	0.0038	0.0027
<i>Piper aequale</i>	Piperaceae	3	2	0.0084	0.0034	0.0030
<i>Piper arboreum</i>	Piperaceae	3	3	0.0135	0.0087	0.0045
<i>Piper reticulatum</i>	Piperaceae	2	3	0.0124	0.0031	0.0028
<i>Platymiscium pinnatum</i>	Fabaceae	2	4	0.0181	0.0047	0.0051
<i>Posoqueria latifolia</i>	Rubiaceae	3	3	0.0188	0.0043	0.0053
<i>Poulsenia armata</i>	Moraceae	3	3	0.0133	0.0040	0.0027
<i>Pourouma bicolor</i>	Urticaceae	4	3	0.0093	0.0054	0.0027
<i>Pouteria reticulata</i>	Sapotaceae	4	3	0.0174	0.0041	0.0034
<i>Pterocarpus rohrii</i>	Fabaceae	3	3	0.0173	0.0076	0.0059
<i>Sterculia apetala</i>	Malvaceae	3	3	0.0087	0.0053	0.0018

TABLE 1 (Continued)

Species	Family	n_{Yas}	n_{BCI}	d_{XY}	π_{Yas}	π_{BCI}
<i>Trema micrantha</i>	Cannabaceae	3	2	0.0095	0.0010	0.0050
<i>Trichilia pallida</i>	Meliaceae	3	3	0.0165	0.0082	0.0018
<i>Turpinia occidentalis</i>	Staphyleaceae	3	3	0.0151	0.0027	0.0059
<i>Urera baccifera</i>	Urticaceae	3	4	0.0101	0.0061	0.0008
<i>Vismia baccifera</i>	Hypericaceae	3	3	0.0211	0.0021	0.0016
Mean		2.92	3.12	0.0122	0.0050	0.0043
Standard deviation		0.64	0.67	0.0052	0.0018	0.0019

“PopGenome” v.2.7.5 (Pfeifer et al., 2014). We calculated d_{XY} instead of the commonly employed statistic F_{ST} (relative genetic differentiation) because d_{XY} does not depend on within-population genetic diversity (Burri, 2017), and because we expect recent gene flow between Amazonian and Central American populations to be minimal, such that the populations could largely be treated as independently diverging lineages. In the absence of gene flow, d_{XY} is directly related to the time since divergence: d_{XY} equals genetic diversity in the common ancestor at the time of lineage splitting, and then increases linearly over time proportional to mutation rate (Burri, 2017; Delmore et al., 2018). Both d_{XY} and π were corrected relative to the total number of sequenced sites across all RAD loci, including invariant loci.

2.3 | Species attributes and biogeographic origins

We gathered datasets describing both inherent life-history traits and species' emergent ecological niche and distributional characteristics, which we collectively refer to hereafter as species attributes. We compiled life-history traits from datasets curated by S. Joseph Wright (Smithsonian Tropical Research Institute) for BCI species. Life-history traits included dispersal mode (animal or wind), maximum diameter at breast height (hereafter, “maximum diameter”), wood density, and leaf mass per area (LMA). The latter three traits are associated with successional stage in tropical trees: pioneer species tend to grow quickly (low wood density), invest fewer resources in their leaves (low LMA), and have long dispersal distances (large maximum diameter, which is a proxy for maximum height) (Swaine & Whitmore, 1988; Thomson et al., 2011; Wright et al., 2010). Methods for deriving these traits have previously been described (Bemmels et al., 2018).

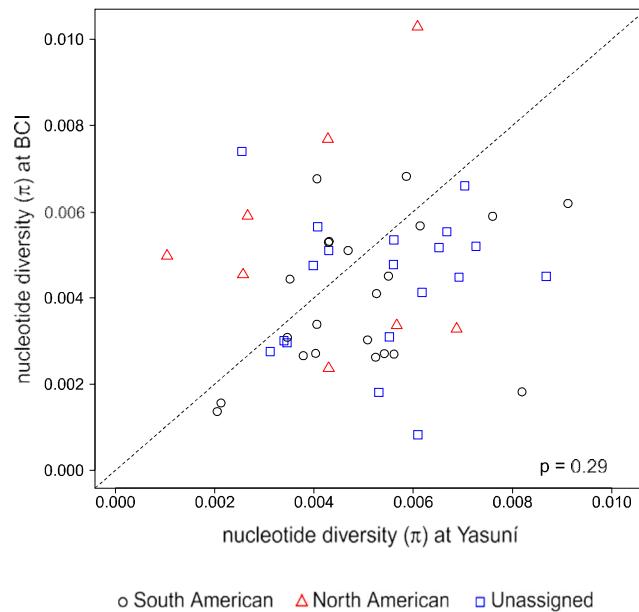
We also calculated relative abundance, elevational range, and drought tolerance from filtered datasets of occurrence records obtained from the Global Biodiversity Information Facility (GBIF; www.gbif.org). Relative abundance was defined as the total number of filtered occurrence records. E elevational range and drought tolerance here reflect the ability to occur in areas of high elevation and low mean annual precipitation (MAP) and were calculated as the 90th percentile of elevation and 10th percentile of MAP of occurrence records, respectively, following Bemmels et al. (2018). Finally, we estimated range size (km^2) from cropped species distribution models

(SDMs) constructed from the filtered occurrence-record datasets, using Maxent v.3.4.0 (Phillips et al., 2004, 2006, 2017). Further details are provided in Figure S1 and the Data S1. Despite our filtering of occurrence records to minimize potential biases and errors, many retained records may still be incorrect given the high rate of taxonomic misidentification inherent in Neotropical herbarium records, even for well-studied genera (Baker et al., 2017). The use of 90th percentile cutoffs in calculating elevational range and drought tolerance and 95% inclusion criteria in cropping SDMs (Appendix S1) ensures that calculated species attribute values are not driven by the most extreme data points (which may be more likely to represent misidentifications), yet would likely only partly mitigate potential biases caused by high taxonomic error overall.

We also inferred the putative biogeographic origins of each species based on a review of published literature, supplemented in some cases with our own inferences based on the geographic distributions of species within the same genus or sub-generic clade. We assigned species to lineages having putative biogeographic origins in either North America (including Central America) or South America or left biogeographic origins unassigned if evidence was inconclusive. Biogeographic origins were then used to classify each species as either being putatively native to a given region for each site (i.e., species from South American lineages at Yasuní and from North American lineages at BCI), a putative immigrant, or else with immigrant status unassigned. Further details are provided in Appendix S1, and evidence to support our classifications for each species is provided in Appendix S1.

2.4 | Data analyses

We performed principal component (PC) analysis of species attributes using the R package “PCAmix” v. 3.1 (Chavent et al., 2017), with varimax rotation based on the first four PC axes. We included all species attributes in calculation of PC axes except for putative biogeographic origin, because biogeographic origin is a conceptually different type of attribute reflecting deep evolutionary history, rather than describing inherent or emergent ecological characteristics. Excluding biogeographic origin from the PC analysis allowed us to evaluate its effects separately from those of ecological attributes.


We performed multivariate phylogenetic regressions that estimated the effects of species attributes on population genetic statistics (d_{XY} and π). We obtained a published phylogeny of 282 BCI tree species based on three DNA barcode regions (Kress et al., 2009; Pearse et al., 2013). We pruned this phylogeny to our 49 study species (Figure S2) and used it to control for statistical non-independence among species due to shared phylogenetic history. We modeled d_{XY} (\log_{10} -transformed to better approximate a normal distribution) using phylogenetic linear models implemented with the *phylolm()* function in the *R* package "phylolm" v.2.5 (Ho & Ané, 2014). Phylogenetic signal was estimated as the maximum likelihood transformation of Pagel's λ (Pagel, 1999), with statistical significance of λ assessed using a likelihood-ratio test to compare the phylogenetic model to an alternative non-phylogenetic linear regression model.

To incorporate random effects necessary to account for the two measures of π per species (one measure per site), we modeled π using phylogenetic linear mixed models with the *communityPGLMM()* function in the *R* package "pez" v. 1.2-0 (Pearse et al., 2015). Species identity was modeled as a phylogenetically controlled random effect where covariance among species was scaled relative to phylogenetic distance. We did not include site as a random effect, because preliminary tests showed that including site provided a poorer model fit (assessed using Akaike Information Criterion and R^2 values). We recoded the putative biogeographic origins of each species at each site as binary variables indicating whether the species was a putative immigrant, putatively native, or had unassigned immigrant status. The final model for π therefore included putative immigrant status and the four PCs of species attributes as fixed effects, and species as a phylogenetic random effect.

To estimate the amount of variation explained overall and by each model parameter, we calculated total R^2_{pred} and partial R^2_{pred} of each parameter using the *R* package "rr2" v. 0.1.2 (Ives, 2018). For our models of π , we used the calculation of R^2_{pred} for *communityPGLMM* objects that is equivalent to the calculation for *phylolm* objects, using supplemental source code distributed with the "rr2" package in the *r2_pred.R* file.

2.5 | Sensitivity to small sample size

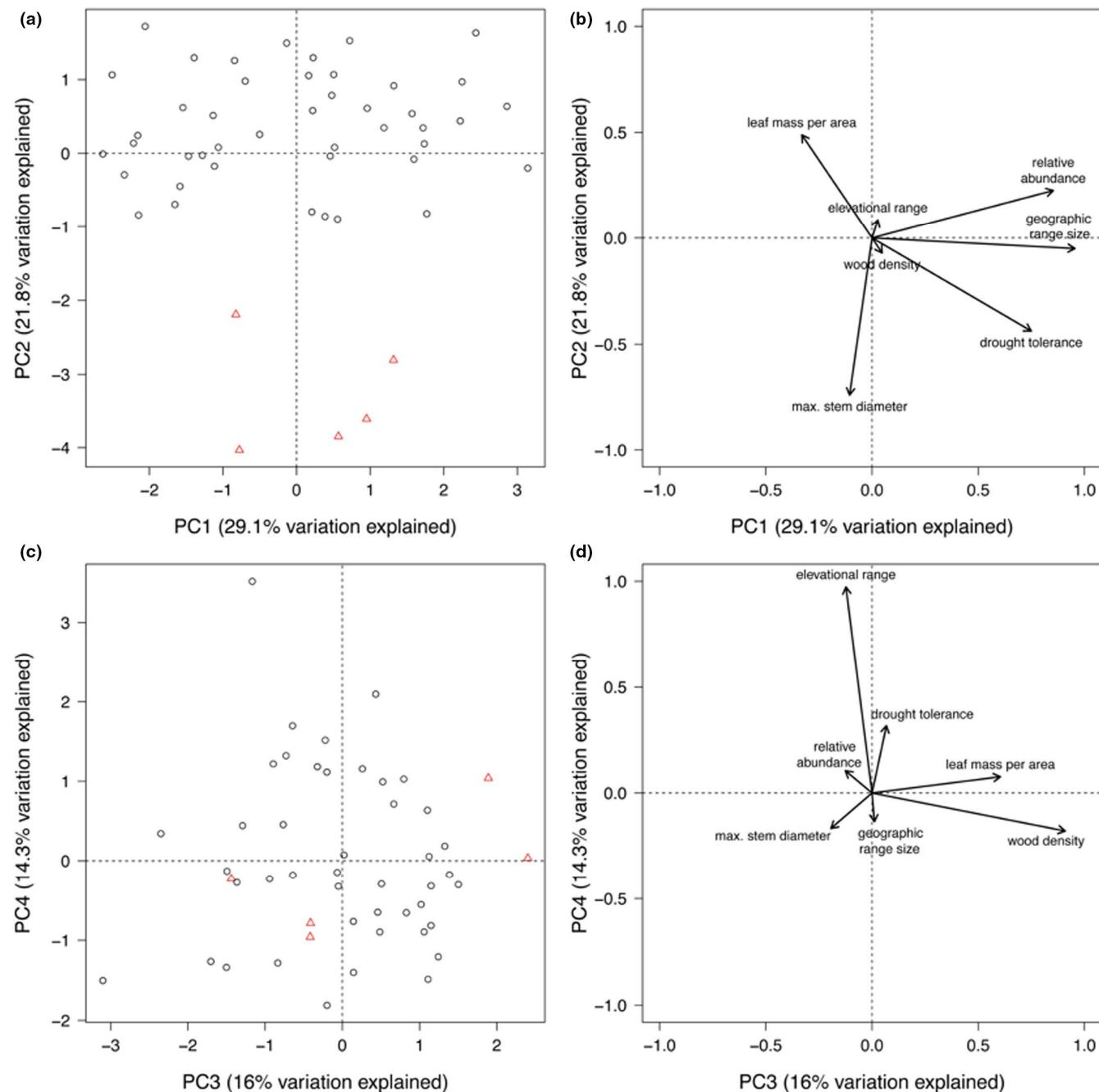
Our sampling approach was motivated by the practical difficulty of collecting leaves from tall and sometimes locally uncommon rain forest trees and by recent theoretical and empirical work showing that very small sample sizes—even as low as two individuals per population—are adequate for accurate estimation of certain population genetic statistics from genome-scale datasets (Jeffries et al., 2016; Li et al., 2020; Nazareno et al., 2017; Qu et al., 2020; Willing et al., 2012). However, to test whether our sampling scheme could have biased our results, we conducted two sensitivity analyses. Firstly, we recalculated d_{XY} and π for each species using all possible combinations of $n = 2$ individuals (representing our lowest within-population sample size). Secondly, we recalculated our regression

FIGURE 2 Mean nucleotide diversity (π) of each species at Yasuní and BCI, based on resampled SNP datasets of two individuals per population. Colors and symbols reflect the putative biogeographic origin of each species' lineage based on independent literature. The dashed line represents a 1:1 relationship. The p -value corresponds to a linear regression of π at BCI versus π at Yasuní.

models 1000 times while resampling two randomly selected individuals per population across all 49 species simultaneously. These procedures were designed to test whether random sampling of a small number of individuals could have influenced our estimates of genetic statistics and the conclusions of our regression results, respectively. Details of sensitivity analyses and a rationale to justify the sampling scheme are provided in the Data S1.

3 | RESULTS

3.1 | Data processing and genetic statistics


We sequenced an average of 2.25×10^6 reads per individual (Table S1) from a mean of 6.0 individuals per species (Table 1), obtaining final datasets (Bemmels et al., 2024) with a mean of 3327 RAD loci and 2784 SNPs per species, with SNPs sequenced to a mean depth of $99.6 \times$ per individual (Table S1). Mean d_{XY} measured 0.0122 across species. Mean nucleotide diversity (π) did not differ between sites (Yasuní: 5.00×10^{-3} ; BCI: 4.35×10^{-3} ; two-sided t -test, $p = .077$) and there was no significant linear relationship between π at BCI and at Yasuní ($p = .29$; Figure 2). As expected, d_{XY} was higher than mean π in all species, but for some species d_{XY} was only slightly higher than π while for other species d_{XY} was much higher (Figure S3). The mean value of d_{XY} minus mean π was 0.0076 (range = 0.0012–0.0291), indicating that on average 0.76% novel sequence divergence has accumulated since the time of population splitting, assuming that mean

π in extant populations is approximately equal to π in the common ancestor (Burri, 2017).

3.2 | Principal coordinates of species attributes

The first four rotated principal component (PC) axes cumulatively explained 81.3% of the variance in species attributes (Figure 3). The first PC axis (PC1) primarily reflected geographic distribution

and ecological amplitude. Species scoring highly on PC1 tended to have large geographic ranges (see also Figure S4), high relative abundance, and high drought tolerance. The second PC axis distinguished wind-dispersed trees with large maximum diameter (low values of PC2) from smaller, animal-dispersed species (high values of PC2). The third PC axis primarily reflected resource-investment strategies, as species with high values of PC3 had high wood density and high leaf mass per area. High values of PC4 primarily identified species with a broad elevational range.

FIGURE 3 Principal component (PC) analyses of ecological traits. Panels (a) and (c) depict scores for individual species along the first four rotated PC axes separated by levels of dispersal mode (black circles: animal dispersal; red triangles: wind dispersal). Panels (b) and (d) depict the loadings of the continuous traits along each rotated PC axis.

3.3 | Predictors of genetic structure

Classifications based on our independent literature review resulted in 22 species from lineages with putative South American biogeographic origins, 8 species from North American lineages, and 19 species for which putative origins could not be assigned (Appendix S1 and Dataset S1). PC4 (elevational range) was positively associated with d_{XY} ($p=.020$, partial $R^2_{\text{pred}}=.123$) in our multivariate phylogenetic regressions (Table 2), whereas other species attributes and biogeographic origin were unrelated to d_{XY} . In contrast, all species attributes were unrelated to population genetic diversity (π ; Table 3), but inferred immigrant status was a significant predictor of π , with putative immigrants having lower π than native (non-immigrant) species ($p=.015$, partial $R^2_{\text{pred}}=.064$). The phylogenetic random effect of species identity was marginally non-significant in explaining variation in π ($p=.076$; Table 3), yet had a non-negligible partial R^2_{pred} (.065; Table 3). The total variation in d_{XY} and π explained by our analyses was modest (d_{XY} : total $R^2_{\text{pred}}=.192$; π : total $R^2_{\text{pred}}=.142$; Tables 2 and 3).

3.4 | Sensitivity analyses

In agreement with theoretical predictions, our sensitivity analyses revealed little evidence that the small number of individuals sampled per population was likely to have biased our results. Estimates of d_{XY} varied negligibly due to random resampling of $n = 2$ individuals (Figure S5a), while estimates of π showed modest variation for a few particular species (Figure S5b,c), but this variation was not large enough to have altered the conclusions of our regression models. Full details are available in Appendix S1.

4 | DISCUSSION

Our results suggest several ways in which biogeographic dispersal between opposite sides of the Andes may have impacted genetic structure of widespread lowland rain forest tree species. Cross-Andean genetic divergence varied substantially among species, suggesting high interspecific variation in the timing of dispersal or rates of subsequent gene flow. Genetic divergence was higher (implying more ancient dispersal) in species with higher elevational range limits, which may suggest that the relative importance of high-elevation dispersal over mountain passes has declined toward the present as the Andes experienced uplift. Genetic diversity was higher in species putatively native to a given biogeographic region than in putative immigrants, suggesting that the process of dispersal led to population bottlenecks and a loss of genetic variation. Overall, our exploratory approach has provided a snapshot of genetic structure from only two geographic sites but nonetheless revealed statistically significant biogeographic patterns applicable across dozens of taxa. We suggest several hypotheses to be further tested with taxon-specific case studies.

4.1 | Interspecific variation in divergence

Cross-Andean genetic divergence (d_{XY}) varied substantially among taxa (range: 0.0059–0.0339) and was only slightly higher than within-population genetic diversity (π) in some species but much higher in others (Table 1; Figure S3). These results qualitatively suggest that some taxa have experienced relatively recent genetic connectivity between Central America and the western Amazon ($d_{XY} \approx \pi$), while others may have been independently evolving for a long time ($d_{XY} \gg \pi$), perhaps many millions of years (Dick et al., 2013). Future case studies should estimate timing of population divergence and rates of gene flow between opposite sides of the Andes, which may require increased sample sizes and coalescent modeling approaches (Excoffier et al., 2013; Hickerson & Meyer, 2008). High d_{XY} for some species also suggests candidate taxa that may consist of cryptic species (or subspecies) and may benefit from more detailed taxonomic study. In particular, the 3.39% divergence between *Casearia arborea* (Salicaceae) populations is much higher than observed for other species. Recent phylogenies of *Casearia* have suggested that two recognized species (*C. grandiflora* and *C. manausensis*) may be nested within *C. arborea* (de Mestier et al., 2022, 2023). This pattern could represent lack of phylogenetic resolution, but may also suggest that *C. arborea* is a paraphyletic taxon potentially consisting of multiple lineages in need of improved taxonomic delimitation (de Mestier et al., 2023). *Vismia baccifera* (Hypericaceae) and *Perebea xanthochyma* (Moraceae) also have d_{XY} values above 2% and may be strong candidates for taxonomic re-investigation.

4.2 | Species attributes and genetic divergence

We hypothesized that species with different ecological niche breadths may show differences in cross-Andean genetic divergence (d_{XY}), which could reflect changes over time in the relative importance of ecologically divergent dispersal routes across the Andes. The positive relationship between PC4 (which primarily reflects elevational range; Figure 3) and genetic divergence (d_{XY} ; Table 2) suggests that species with higher upper elevational limits tend to have higher d_{XY} and thus older divergence times. This enrichment of higher-elevation species among those with older divergence timing could suggest that higher-elevation dispersal routes were more commonly utilized in the distant past and permitted ancient dispersal of a substantial number of species with high upper-elevational range limits. These routes could have included mountain passes such as the Miocene Trans-Andean Portal prior to its final closure (Montes et al., 2021) or direct dispersal across the uplifting Eastern Cordillera. Ancient dispersal across low mountains is a plausible scenario for many of our study species. Occurrence records for 27 of the 49 species extend into lower montane forest (at least 10% of records ≥ 1000 m, Dataset S1; see also Figure S4), and an ancient cross-Andean divergence timing is supported by previous estimates in which 7 out of 12 studied species had a divergence time dating to the Miocene (Dick et al., 2013). One alternative

TABLE 2 Phylogenetic linear regression testing the effect of principal components (PCs) of species attributes and inferred biogeographic origin on absolute genetic divergence (d_{XY} ; \log_{10} -transformed) between Yasuní and BCI.

Parameter	$\log_{10}(d_{XY})$ (total $R^2_{\text{pred}} = .192$)				
	Estimate	Standard error	t-value	p	Partial R^2_{pred}
λ	2.60×10^{-9}			1.000	<.001
Intercept	-1.897	0.037	-51.404	$<2 \times 10^{-16}***$	
PC1	0.008	0.016	0.514	.610	.006
PC2	-0.025	0.018	-1.382	.174	.043
PC3	0.006	0.021	0.307	.760	.002
PC4	0.061	0.025	2.423	.020*	.123
Inferred biogeographic origin ^a					
North American	-0.130	0.079	-1.637	.109	.020
Unassigned	-0.069	0.056	-1.238	.223	

Note: λ is a measure of phylogenetic signal in the relationship, and the p-value for λ is derived from a likelihood-ratio test comparing models with and without phylogenetic signal.

^aReference level: South American; a single partial R^2_{pred} value is reported for the effects of all inferred biogeographic origins combined.

*, $p < .05$; **, $p < .01$; ***, $p < .001$.

TABLE 3 PGLMM regression predicting nucleotide diversity (π) from principal components (PCs) of species attributes and from putative immigrant status, with species included as a phylogenetically controlled random effect.

Nucleotide diversity (π) (total $R^2 = .142$)					
Random effects	Variance	Standard deviation		p	Partial R^2_{pred}
Species	1.99×10^{-7}	4.47×10^{-4}		.076	.065
Residual variance	2.63×10^{-6}	1.62×10^{-3}			
Fixed effects	Estimate	Standard error	Z-score	p	Partial R^2_{pred}
Intercept	4.86×10^{-3}	5.23×10^{-4}	9.286	$<2e-16***$	
PC1	6.50×10^{-5}	1.38×10^{-4}	0.470	.638	.004
PC2	-4.64×10^{-5}	1.56×10^{-4}	-0.298	.765	<.001
PC3	9.86×10^{-5}	1.65×10^{-4}	0.597	.550	.001
PC4	2.92×10^{-4}	1.87×10^{-4}	1.557	.119	.034
Inferred immigrant status ^a					
Immigrant	-1.02×10^{-3}	4.19×10^{-4}	-2.438	.015*	.064
Unassigned	-5.64×10^{-4}	4.76×10^{-4}	-1.187	.235	

Note: Estimates of π from both Yasuní and BCI are included in this model. The p-value for the phylogenetic random effect of species is derived from a likelihood-ratio test comparing models with and without this random effect.

^aReference level: Non-immigrant; a single partial R^2_{pred} value is reported for the effects of all inferred immigrant statuses combined.

*, $p < .05$; **, $p < .01$; ***, $p < .001$.

explanation for the positive association between PC4 and d_{XY} is that older species may have had more time to adapt to a wider variety of habitats and expand their ecological niches, including into higher elevations. However, if increased species age tends to result in adaptation to more diverse environments per se, we would have expected an association between d_{XY} and PC1 (loading highly with range size, abundance, and drought tolerance; Figure 3), which we did not observe.

In contrast to results for elevational range, no association was found between d_{XY} and drought tolerance. Drought tolerance loaded strongly on PC1 and to a lesser extent on PC2 (Figure 3b), but

neither of these PCs were associated with d_{XY} (Table 2). These results could imply that there has not been a strong trend over time in the relative importance of dispersal around the northernmost Andes through lowland dry habitats. Dry habitats have dominated landscapes to the east and north of the Colombian Andes since the end of the Miocene (Jaramillo et al., 2010) and likely presented a barrier throughout much of the timeframe relevant to dispersal of extant species. However, we consider it likely that some dispersal events could have occurred via dry habitats, as drought tolerance has previously been linked to an increased capacity for biogeographic dispersal between the Amazon and Central America (Bemmels et al., 2018).

Although we examined correlations between d_{XY} and ecological niche breadth, we caution that our data are unable to provide insights into exact dispersal timing or dispersal routes utilized by any species. Future case studies of individual taxa should expand phylogeographic sampling to include multiple populations across each biogeographic region—including along all portions of the Colombian cordilleras (Serrano et al., 2021)—in order to determine which populations from opposite sides of the Andes are most closely genetically related and to infer dispersal routes. Statistical and model-based methods of inferring expansion origins (He et al., 2017; Peter & Slatkin, 2013) could also be used to estimate the geographic coordinates where immigrant species first arrived in a biogeographic region and thus infer dispersal routes.

4.3 | Dispersal-associated founder effects

We predicted that immigrant species would show lower genetic diversity than native species at a given site, due to the increased genetic drift and loss of genetic diversity (i.e., founder effects; Slatkin & Excoffier, 2012) experienced during dispersal. This prediction was supported by our results, in which inferred immigrant status (based on independent literature) was a significant predictor of genetic diversity, with putative immigrants having lower genetic diversity than putatively native species (Table 3). It is particularly remarkable that signatures of intercontinental migration can still be detected in patterns of genetic diversity, given that previous research (Dick et al., 2013)—corroborated by the high d_{XY} values observed in this study for some species (Table 1)—suggests ancient divergence times between some populations. The substantial amount of time that immigrant populations have presumably had to recover from a loss of genetic diversity during founder events would be expected to weaken the relationship between inferred immigrant status and population genetic diversity. Instead, our results suggest that the time to recover genetic diversity following bottlenecks is quite long. Alternatively, other factors such as lower effective population size or fewer closely related species with which to hybridize in a new biogeographic region (Caron et al., 2019; Larson et al., 2021) could result in a lower equilibrium level of genetic diversity in immigrant populations.

Mean genetic diversity did not significantly differ between the two sites we sampled (Figure 2). We expected that mean genetic diversity would have been higher in the western Amazon than in Central America because the Amazon represents a larger habitat area intersected by fewer biogeographic barriers than Central America, which could facilitate greater genetic connectivity with a wider regional gene pool; because the western Amazon was more climatically stable during Pleistocene glacial cycles and could have been less susceptible to repeated population bottlenecks (Baker et al., 2020; Dick & Pennington, 2019); and because most lowland Neotropical rain forest trees are believed to have South American rather than North American origins (Antonelli et al., 2018;

Gentry, 1982). Nonetheless, the difference in mean π between sites was in the expected direction and only marginally non-significant (Yasuni: 5.00×10^{-3} ; BCI: 4.35×10^{-3} ; $p = .077$), suggesting that future studies may benefit from further investigation of broad-scale differences in genetic diversity between biogeographic regions, preferably from a larger number of sample sites.

4.4 | Lack of influence of life-history traits

In contrast to previous studies that have detected a correlation between genetic diversity or genetic structure and traits such as dispersal mechanism, pollination mode, mating system, successional stage, and geographic range size in Neotropical plants (Ballesteros-Mejia et al., 2016; Hamrick et al., 1993; Hamrick & Murawski, 1990; Lowe et al., 2018), we found no correlation between any PCs loading heavily with life-history traits (PC1-PC3) and either genetic divergence or diversity (Tables 2 and 3). Early-successional life history has previously been associated with low genetic diversity in Neotropical trees (Lowe et al., 2018) and other plant life forms (Ballesteros-Mejia et al., 2016), likely because populations of early-successional plants are susceptible to frequent loss of genetic diversity during founder effects when repeatedly colonizing new habitats (Lowe et al., 2018). We would therefore have expected a positive relationship between genetic diversity and PC3, because low values of PC3 are associated with low resource investment in leaf and wood tissues (Figure 3d) suggesting rapid growth and an early-successional life history (Swaine & Whitmore, 1988; Wright et al., 2010), but no such correlation was detected (Table 3). Additionally, a positive relationship between geographic range size and genetic diversity has previously been reported in Neotropical trees (Lowe et al., 2018), yet we found no relationship between PC1 (highly loading with geographic range size; Figure 3b) and genetic diversity (Table 3).

The lack of a significant relationship between life-history traits and genetic structure might imply that while relevant to local-scale genetic structure, life-history traits have little influence on genetic structure at the continental scale. However, we caution against this interpretation due to the limited trait variation among the species included in the present study. Widespread Neotropical rain forest species have previously been shown to be enriched in certain ecological characteristics relative to spatially restricted species (Bemmels et al., 2018), suggesting that some ecological strategies are likely to be overrepresented among our study species. All of our study species have broad geographic ranges (Figure S4) and a demonstrated ability to disperse over great distances and colonize new habitats. Species with a broader diversity of traits could not be included in the present study because our study was by definition limited to widespread species. Future research that includes rare, endemic, and ecologically specialized species may yet uncover a strong influence of species traits on broad-scale genetic structure that was not detected here.

4.5 | Future directions

Our results suggest that cross-Andean dispersal has left a lasting legacy in the population genetic structure of widespread Neotropical rain forest trees co-distributed in the western Amazon and Central America. However, we did not investigate the precise biogeographic history of any particular species, and caution that further studies are needed to validate our interpretations, including phylogeographic studies with detailed sampling around the northern Andes and across different subregions of the Amazon. Such studies are rare but will become increasingly feasible as sequencing costs continue to drop and as ongoing resolution to decades-long civil conflict improves access to the Colombian lowlands for phylogeographic sampling (Serrano et al., 2021). The broad patterns we detect provide hypotheses that should be further tested using in-depth species-specific genomic studies that explicitly infer species' biogeographic origins, timing and routes of dispersal, geographic sources of population expansion, and range-wide patterns of genetic diversity.

AUTHOR CONTRIBUTIONS

Jordan B. Bemmels: formal analysis; investigation; visualization; writing—original draft preparation. **Álvaro Pérez:** resources. **Renato Valencia:** conceptualization; writing—review and editing. **Christopher W. Dick:** conceptualization; funding acquisition; supervision; writing—review and editing.

ACKNOWLEDGMENTS

We thank N. Wei for assistance with fieldwork in Panama and O.M. Vargas for guidance with figure preparation. Funding was provided by the National Science Foundation (DEB 1240869 and FESD Type I 1338694 to CWD), and the University of Michigan Department of Ecology and Evolutionary Biology and Rackham Graduate School. Graduate-student support was provided to JBB by the Natural Sciences and Engineering Research Council of Canada (Postgraduate Scholarship M; CGSM-410253-2011) and the National Science Foundation (Graduate Research Fellowship Program). We are grateful to fieldworkers who have assisted in characterizing the taxonomic complexity of the Yasuní Forest Plot, in particular G. Villa, P. Alvia, M. Bass, and R. Foster. Pontificia Universidad Católica del Ecuador has supported the Yasuní Forest Plot since it was established in 1995. Botanical collections and voucher specimens from Yasuní were made possible with collecting permits granted by the Ecuadorian Ministry of Environment (MAE).

CONFLICT OF INTEREST STATEMENT

The corresponding author confirms on behalf of all authors that there have been no involvements that might raise the question of bias in the work reported or in the conclusions, implications, or opinions stated.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in the Dryad Digital Repository: doi:[10.5061/dryad.qv9s4mwnd](https://doi.org/10.5061/dryad.qv9s4mwnd) (Bemmels et al., 2024).

ORCID

Jordan B. Bemmels <https://orcid.org/0000-0001-9996-6996>

Renato Valencia <https://orcid.org/0000-0001-9770-6568>

Christopher W. Dick <https://orcid.org/0000-0001-8745-9137>

REFERENCES

Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of neotropical biodiversity. *Proceedings of the National Academy of Sciences of the United States of America*, 115(23), 6034–6039. <https://doi.org/10.1073/pnas.1713819115>

Avise, J. C. (2009). Phylogeography: Retrospect and prospect. *Journal of Biogeography*, 36(1), 3–15. <https://doi.org/10.1111/j.1365-2699.2008.02032.x>

Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the isthmus of Panama. *Proceedings of the National Academy of Sciences of the United States of America*, 112(19), 6110–6115. <https://doi.org/10.1073/pnas.1509107112>

Baker, P. A., Fritz, S. C., Battisti, D. S., Dick, C. W., Vargas, O. M., Asner, G. P., Martin, R. E., Wheatley, A., & Prates, I. (2020). Beyond refugia: New insights on quaternary climate variation and the evolution of biotic diversity in tropical South America. In V. Rull & A. C. Carnaval (Eds.), *Neotropical diversification: Patterns and processes* (pp. 51–70). Springer. https://doi.org/10.1007/978-3-030-31167-4_3

Baker, T. R., Pennington, R. T., Dexter, K. G., Fine, P. V. A., Fortune-Hopkins, H., Honorio, E. N., Huamantupa-Chuquimaco, I., Klitgård, B. B., Lewis, G. P., De Lima, H. C., Ashton, P., Baraloto, C., Davies, S., Donoghue, M. J., Kaye, M., Kress, W. J., Lehmann, C. E. R., Monteagudo, A., Phillips, O. L., & Vasquez, R. (2017). Maximising synergy among tropical plant systematists, ecologists, and evolutionary biologists. *Trends in Ecology & Evolution*, 32, 258–267. <https://doi.org/10.1016/j.tree.2017.01.007>

Ballesteros-Mejía, L., Lima, N. E., Lima-Ribeiro, M. S., & Collevatti, R. G. (2016). Pollination mode and mating system explain patterns in genetic differentiation in neotropical plants. *PLoS One*, 11(7), e0158660. <https://doi.org/10.1371/journal.pone.0158660>

Behling, H., & Hooghiemstra, H. (1998). Late quaternary palaeoecology and palaeoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 139(3–4), 251–267. [https://doi.org/10.1016/S0031-0182\(97\)00139-9](https://doi.org/10.1016/S0031-0182(97)00139-9)

Bemmels, J. B., & Dick, C. W. (2018). Genomic evidence of a widespread southern distribution during the last glacial maximum for two eastern north American hickory species. *Journal of Biogeography*, 45, 1739–1750. <https://doi.org/10.1111/jbi.13358>

Bemmels, J. B., Pérez, Á., Valencia, R., & Dick, C. W. (2024). Data from “Patterns in the genetic structure of 49 lowland rain forest tree species co-distributed on opposite sides of the northern Andes.”. <https://doi.org/10.5061/dryad.qv9s4mwnd>. Dryad Digital Repository.

Bemmels, J. B., Wright, S. J., Garwood, N. C., Queenborough, S. A., Valencia, R., & Dick, C. W. (2018). Filter-dispersal assembly of lowland neotropical rainforests across the Andes. *Ecography*, 41, 1–13. <https://doi.org/10.1111/ecog.03473>

Boschman, L. M. (2021). Andean mountain building since the late cretaceous: A paleoelevation reconstruction. *Earth-Science Reviews*, 220, 103640. <https://doi.org/10.1016/j.earscirev.2021.103640>

Brito, W. R. O., Dambros, C. S., Cardoso, D., Scudeller, V. V., & Zartman, C. E. (2023). Divergent patterns of intraspecific trait variation among floral and vegetative characters in the hyperdominant dioecious neotropical tree *Virola sebifera* (Myristicaceae). *Botanical Journal of the Linnean Society*, 202, 1–16. <https://doi.org/10.1093/botlinnean/boac069>

Burri, R. (2017). Interpreting differentiation landscapes in the light of long-term linked selection. *Evolution Letters*, 1(3), 118–131. <https://doi.org/10.1002/evl3.14>

Caron, H., Molino, J. F., Sabatier, D., Léger, P., Chaumeil, P., Scotti-Saintagne, C., Frigério, J. M., Scotti, I., Franc, A., & Petit, R. J. (2019). Chloroplast DNA variation in a hyperdiverse tropical tree community. *Ecology and Evolution*, 9(8), 4897–4905. <https://doi.org/10.1002/ece3.5096>

Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and genotyping loci de novo from short-read sequences. *G3: Genes, Genomes, Genetics*, 1(3), 171–182. <https://doi.org/10.1534/g3.111.000240>

Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. *Molecular Ecology*, 22(11), 3124–3140. <https://doi.org/10.1111/mec.12354>

Chavent, M., Kuentz-Simonet, V., Labenne, A., & Saracco, J. (2017). *Multivariate analysis of mixed data: The R package PCAmixdata*. arXiv Preprint, arXiv:1411.4911v4. <https://doi.org/10.48550/arXiv.1411.4911>

Cody, S., Richardson, J. E., Rull, V., Ellis, C., & Pennington, R. T. (2010). The great American biotic interchange revisited. *Ecography*, 33(2), 326–332. <https://doi.org/10.1111/j.1600-0587.2010.06327.x>

Costa, L. P. (2003). The historical bridge between the Amazon and the Atlantic Forest of Brazil: A study of molecular phyogeography with small mammals. *Journal of Biogeography*, 30(1), 71–86. <https://doi.org/10.1046/j.1365-2699.2003.00792.x>

Cracraft, J., & Prum, R. O. (1988). Patterns and processes of diversification: Speciation and historical congruence in some neotropical birds. *Evolution*, 42(3), 603–620. <https://doi.org/10.1111/j.1558-5646.1988.tb04164.x>

Damasco, G., Baraloto, C., Vicentini, A., Daly, D. C., Baldwin, B. G., & Fine, P. V. A. (2021). Revisiting the hyperdominance of neotropical tree species under a taxonomic, functional and evolutionary perspective. *Scientific Reports*, 11, 9585. <https://doi.org/10.1038/s41598-021-88417-y>

de Mestier, A., Brokamp, G., Celis, M., Falcón-Hidalgo, B., Gutiérrez, J., & Borsch, T. (2022). Character evolution and biogeography of *Casearia* (Salicaceae): Evidence for the south American origin of a pantropical genus and for multiple migrations to the Caribbean islands. *Taxon*, 71(2), 321–347. <https://doi.org/10.1002/tax.12656>

de Mestier, A., Lücking, R., Gutierrez, J., Brokamp, G., Celis, M., & Borsch, T. (2023). Nested singletons in molecular trees: Utility of adding morphological and geographical data from digitized herbarium specimens to test taxon concepts at species level in the case of *Casearia* (Salicaceae). *Ecology and Evolution*, 13(1), 1–20. <https://doi.org/10.1002/ece3.9736>

Delmore, K. E., Lugo Ramos, J. S., Van Doren, B. M., Lundberg, M., Bensch, S., Irwin, D. E., & Liedvogel, M. (2018). Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. *Evolution Letters*, 2(2), 76–87. <https://doi.org/10.1002/evl3.46>

Dick, C. W., Abdul-Salim, K., & Bermingham, E. (2003). Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. *The American Naturalist*, 162, 691–703. <https://doi.org/10.1086/379795>

Dick, C. W., Condit, R., & Bermingham, E. (2005). Biogeographic history and the high beta-diversity of Panamanian rainforest trees in Panama. In R. S. Harmon (Ed.), *The Río Chagres, Panama: A multidisciplinary profile of a tropical watershed* (pp. 259–269). Springer.

Dick, C. W., Lewis, S. L., Maslin, M., & Bermingham, E. (2013). Neogene origins and implied warmth tolerance of Amazon tree species. *Ecology and Evolution*, 3(1), 162–169. <https://doi.org/10.1002/ece3.441>

Dick, C. W., & Pennington, R. T. (2019). History and geography of neotropical tree diversity. *Annual Review of Ecology, Evolution, and Systematics*, 50, 12.1–12.23. <https://doi.org/10.1146/annurev-ecolsys-110617-062314>

Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. *PLoS Genetics*, 9(10), e1003905. <https://doi.org/10.1371/journal.pgen.1003905>

Frost, L., Santamaría-Aguilar, D. A., Singletary, D., & Lagomarsino, L. P. (2022). Neotropical niche evolution of *Otoba* trees in the context of global biogeography of the nutmeg family. *Journal of Biogeography*, 49, 156–170. <https://doi.org/10.1111/jbi.14290>

García-Delgado, H., Villamizar-Escalante, N., Bermúdez, M. A., Bernet, M., & Velandia, F. (2021). Climate or tectonics? What controls the spatial-temporal variations in erosion rates across the eastern cordillera of Colombia? *Global and Planetary Change*, 203, 103541. <https://doi.org/10.1016/j.gloplacha.2022.103793>

Gascon, C., Malcolm, J. R., Patton, J. L., da Silva, M. N. F., Bogart, J. P., Lougheed, S. C., Peres, C. A., Neckel-Oliveira, S., & Boag, P. T. (2000). Riverine barriers and the geographic distribution of Amazonian species. *Proceedings of the National Academy of Sciences of the United States of America*, 97(25), 13672–13677. <https://doi.org/10.1073/pnas.230136397>

Gentry, A. H. (1982). Neotropical floristic diversity: Phytogeographical connections between central and South America, Pleistocene fluctuations, or an accident of the Andean orogeny? *Annals of the Missouri Botanical Garden*, 69(3), 557–593. <https://doi.org/10.3417/2007065>

Gregory-Wodzicki, K. M. (2000). Uplift history of the central and northern Andes: A review. *Geological Society of America Bulletin*, 112(7), 1091–1105. [https://doi.org/10.1130/0016-7606\(2000\)112<1091:uhotca>2.0.co;2](https://doi.org/10.1130/0016-7606(2000)112<1091:uhotca>2.0.co;2)

Hamrick, J. L., & Murawski, D. A. (1990). The breeding structure of tropical tree populations. *Plant Species Biology*, 5, 157–165. <https://doi.org/10.1111/j.1442-1984.1990.tb00200.x>

Hamrick, J. L., Murawski, D. A., & Nason, J. D. (1993). The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. *Vegetatio*, 107(108), 281–297. <https://doi.org/10.1007/BF00052230>

He, Q., Prado, J. R., & Knowles, L. L. (2017). Inferring the geographic origin of a range expansion: Latitudinal and longitudinal coordinates inferred from genomic data in an ABC framework with the program X-ORIGIN. *Molecular Ecology*, 26, 6908–6920. <https://doi.org/10.1111/mec.14380>

Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F., & Yoder, A. D. (2010). Phylogeography's past, present, and future: 10 years after Avise, 2000. *Molecular Phylogenetics and Evolution*, 54(1), 291–301. <https://doi.org/10.1016/j.ympev.2009.09.016>

Hickerson, M. J., & Meyer, C. P. (2008). Testing comparative phyogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach. *BMC Evolutionary Biology*, 8(1), 1–18. <https://doi.org/10.1186/1471-2148-8-322>

Ho, L., & Ané, C. (2014). A linear-time algorithm for gaussian and non-gaussian trait evolution models. *Systematic Biology*, 63(3), 397–408. <https://doi.org/10.1093/sysbio/syu005>

Honorio Coronado, E. N., Dexter, K. G., Poelchau, M. F., Hollingsworth, P. M., Phillips, O. L., & Pennington, R. T. (2014). *Ficus insipida* subsp. *insipida* (Moraceae) reveals the role of ecology in the phylogeography of widespread neotropical rain forest tree species. *Journal of Biogeography*, 41(9), 1697–1709. <https://doi.org/10.1111/jbi.12326>

Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. *Science*, 330(6006), 927–931. <https://doi.org/10.1126/science.1194585>

Ives, A. R. (2018). R2s for correlated data: Phylogenetic models, LMMs, and GLMMs. *Systematic Biology*, 68(2), 234–251. <https://doi.org/10.1093/sysbio/syy060>

Janzen, D. H. (1967). Why mountain passes are higher in the tropics. *The American Naturalist*, 101(919), 233–249. <https://doi.org/10.1086/282487>

Jaramillo, C., Hoorn, C., Silva, S. A. F., Leite, F., Herrera, F., Quiroz, L., Dino, R., & Antonioli, L. (2010). The origin of the modern Amazon rainforest: Implications of the palynological and paleobotanical record. In C. Hoorn & F. P. Wesselingh (Eds.), *Amazonia, landscape and species evolution: A look into the past* (pp. 317–334). Blackwell.

Jaramillo, C. (2018). Evolution of the isthmus of Panama: Biological, paleoceanographic and paleoclimatological implications. In A. Carina Hoorn, A. Perrigo, & A. Antonelli (Eds.), *Mountains, climate and biodiversity* (pp. 323–338). Wiley Blackwell.

Jeffries, D. L., Copp, G. H., Handley, L. L., Olsén, K. H., Sayer, C. D., & Häneling, B. (2016). Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the crucian carp, *Carassius carassius*, L. *Molecular Ecology*, 25, 2997–3018. <https://doi.org/10.1111/mec.13613>

Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & Bermingham, E. (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. *Proceedings of the National Academy of Sciences of the United States of America*, 106(44), 18621–18626. <https://doi.org/10.1073/pnas.0909820106>

Larson, D. A., Vargas, O. M., Vicentini, A., & Dick, C. W. (2021). Admixture may be extensive among hyperdominant Amazon rainforest tree species. *New Phytologist*, 232(6), 2520–2534. <https://doi.org/10.1111/nph.17675>

Li, H., Qu, W., Obrycki, J. J., Meng, L., Zhou, X., Chu, D., & Li, B. (2020). Optimizing sample size for population genomic study in a global invasive lady beetle, *Harmonia axyridis*. *Insects*, 11, 290. <https://doi.org/10.3390/insects11050290>

Lowe, A. J., Breed, M. F., Caron, H., Colpaert, N., Dick, C., Finegan, B., Gardner, M., Gheysen, G., Gribel, R., Harris, J. B. C., Kremer, A., Lemes, M. R., Margis, R., Navarro, C. M., Salgueiro, F., Villalobos-Barrantes, H. M., & Cavers, S. (2018). Standardized genetic diversity-life history correlates for improved genetic resource management of neotropical trees. *Diversity and Distributions*, 1–12, 730–741. <https://doi.org/10.1111/ddi.12716>

McGirr, R., Seton, M., & Williams, S. (2021). Kinematic and geodynamic evolution of the isthmus of Panama region: Implications for central American seaway closure. *Bulletin of the Geological Society of America*, 133(3–4), 867–884. <https://doi.org/10.1130/B35595.1>

Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the central American seaway. *Science*, 348(6231), 226–229. <https://doi.org/10.1126/science.aaa2815>

Montes, C., Silva, C. A., Bayona, G. A., Villamil, R., Stiles, E., Rodriguez-Corcho, A. F., Beltran-Triviño, A., Lamus, F., Muñoz-Granados, M. D., Pérez-Angel, L. C., Hoyos, N., Gomez, S., Galeano, J. J., Romero, E., Baquero, M., Cardenas-Roz, A. L., & von Quadt, A. (2021). A middle to late Miocene trans-Andean portal: Geologic record in the Tatacoa Desert. *Frontiers in Earth Science*, 8, 587022. <https://doi.org/10.3389/feart.2020.587022>

Naka, L. N., & Brumfield, R. T. (2018). The dual role of Amazonian rivers in the generation and maintenance of avian diversity. *Science Advances*, 4(8), eaar8575. <https://doi.org/10.1126/sciadv.aar8575>

Nazareno, A. G., Bemmels, J. B., Dick, C. W., & Lohmann, L. G. (2017). Minimum sample sizes for population genomics: An empirical study from an Amazonian plant species. *Molecular Ecology Resources*, 17(6), 1136–1147. <https://doi.org/10.1111/1755-0998.12654>

Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2019). Tangled banks: A landscape genomic evaluation of Wallace's riverine barrier hypothesis for three Amazon plant species. *Molecular Ecology*, 28, 980–997. <https://doi.org/10.1111/mec.14948>

Nei, M. (1987). *Molecular evolutionary genetics*. Columbia University Press.

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. *Proceedings of the National Academy of Sciences of the United States of America*, 76(10), 5269–5273. <https://doi.org/10.1073/pnas.76.10.5269>

O'Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M. P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., ... Jackson, J. B. C. (2016). Formation of the isthmus of Panama. *Science Advances*, 2(8), e1600883. <https://doi.org/10.1126/sciadv.1600883>

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettenberg, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. *Bioscience*, 51(11), 933–938. [https://doi.org/10.1641/0006-3568\(2001\)051\[0933:TEOTWA\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2)

Pagel, M. (1999). Inferring the historical patterns of biological evolution. *Nature*, 401(6756), 877–884. <https://doi.org/10.1038/44766>

Pearse, W. D., Cadotte, M. W., Cavender-Bares, J., Ives, A. R., Tucker, C. M., Walker, S. C., & Helmus, M. R. (2015). Pez: Phylogenetics for the environmental sciences. *Bioinformatics*, 31(17), 2888–2890. <https://doi.org/10.1093/bioinformatics/btv277>

Pearse, W. D., Jones, A. F., & Purvis, A. (2013). Barro Colorado Island's phylogenetic assemblage structure across fine spatial scales and among clades of different ages. *Ecology*, 94(12), 2861–2872. <https://doi.org/10.1890/12-1676.1>

Pérez-Escobar, O. A., Zizka, A., Bermúdez, M. A., Meseguer, A. S., Condamine, F. L., Hoorn, C., Hooghiemstra, H., Pu, Y., Bogarín, D., Boschman, L. M., Pennington, R. T., Antonelli, A., & Chomicki, G. (2022). The Andes through time: Evolution and distribution of Andean floras. *Trends in Plant Science*, 27(4), 364–378. <https://doi.org/10.1016/j.tplants.2021.09.010>

Peter, B. M., & Slatkin, M. (2013). Detecting range expansions from genetic data. *Evolution*, 67(11), 3274–3289. <https://doi.org/10.1111/evo.12202>

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. *PLoS One*, 7(5), e37135. <https://doi.org/10.1371/journal.pone.0037135>

Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. J. (2014). PopGenome: An efficient swiss army knife for population genomic analyses in R. *Molecular Biology and Evolution*, 31(7), 1929–1936. <https://doi.org/10.1093/molbev/msu136>

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of maxent. *Ecography*, 40(7), 887–893. <https://doi.org/10.1111/ecog.03049>

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190(3–4), 231–259. <https://doi.org/10.1016/j.ecolmodel.2005.03.026>

Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). *A maximum entropy approach to species distribution modeling*. Proceedings of the Twenty-First International Conference on Machine Learning, 2004, 655–662. <https://doi.org/10.1145/1015330.1015412>

Qu, W. M., Liang, N., Wu, Z. K., Zhao, Y. G., & Chu, D. (2020). Minimum sample sizes for invasion genomics: Empirical investigation in an invasive whitefly. *Ecology and Evolution*, 10(1), 38–49. <https://doi.org/10.1002/ece3.5677>

Ron, S. R. (2000). Biogeographic area relationships of lowland neotropical rainforest based on raw distributions of vertebrate groups.

Biological Journal of the Linnean Society, 71(3), 379–402. <https://doi.org/10.1006/bjol.2000.0446>

Sanín, M. J., Cardona, A., Valencia-Montoya, W. A., Jiménez, M. F. T., Carvalho-Madrigal, S., Gómez, A. C., Bacon, C. D., Tangarife, T. R., Jaramillo, J. S., Zapata, S., Valencia, V., Valencia, J. W. A., Vargas, V., & Paris, M. (2022). Volcanic events coincide with plant dispersal across the northern Andes. *Global and Planetary Change*, 210, 103757. <https://doi.org/10.1016/j.gloplacha.2022.103757>

Serrano, J., Richardson, J. E., Milne, R. I., Mondragon, G. A., Hawkins, J. A., Bartish, I. V., Gonzalez, M., Chave, J., Madriñán, S., Cárdenas, D., Sanchez, S. D., Cortés-B, R., & Pennington, R. T. (2021). Andean orogeny and the diversification of lowland neotropical rain forest trees: A case study in Sapotaceae. *Global and Planetary Change*, 201, 103481. <https://doi.org/10.1016/j.gloplacha.2021.103481>

Simpson, G. G. (1980). *Splendid isolation: The curious history of south American mammals*. Yale University Press.

Slatkin, M., & Excoffier, L. (2012). Serial founder effects during range expansion: A spatial analog of genetic drift. *Genetics*, 191(1), 171–181. <https://doi.org/10.1534/genetics.112.139022>

Swaine, M. D., & Whitmore, T. C. (1988). On the definition of ecological species groups in tropical rain forests. *Vegetatio*, 75(1–2), 81–86. <https://doi.org/10.1007/BF00044629>

Thomson, F. J., Moles, A. T., Auld, T. D., & Kingsford, R. T. (2011). Seed dispersal distance is more strongly correlated with plant height than with seed mass. *Journal of Ecology*, 99(6), 1299–1307. <https://doi.org/10.1111/j.1365-2745.2011.01867.x>

Tinoco, C. F., Lima, N. E., Lima-Ribeiro, M. S., & Collevatti, R. G. (2015). Research and partnerships in studies on population genetics of neotropical plants: A scientometric evaluation. *Biochemical Systematics and Ecology*, 61, 357–365. <https://doi.org/10.1016/j.bse.2015.07.002>

Weir, J. T., Bermingham, E., & Schlüter, D. (2009). The great American biotic interchange in birds. *Proceedings of the National Academy of Sciences of the United States of America*, 106(51), 21737–21742. <https://doi.org/10.1073/pnas.0903811106>

Willing, E. M., Dreyer, C., & van Oosterhout, C. (2012). Estimates of genetic differentiation measured by F_{ST} do not necessarily require large sample sizes when using many SNP markers. *PLoS One*, 7(8), e42649. <https://doi.org/10.1371/journal.pone.0042649>

Winterton, C., Richardson, J. E., Hollingsworth, M., Clark, A., Zamora, N., & Pennington, R. T. (2014). Historical biogeography of the neotropical legume genus *Dussia*: The Andes, the Panama isthmus and the Chocó. In *Paleobotany and biogeography: A festschrift for Alan Graham in his 80th year* (pp. 389–404). Missouri Botanical Garden Press.

Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth-mortality trade-off in tropical trees. *Ecology*, 91(12), 3664–3674. <https://doi.org/10.1890/09-2335.1>

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Bemmels, J. B., Pérez, Á., Valencia, R., & Dick, C. W. (2024). Patterns in the genetic structure of 49 lowland rain forest tree species co-distributed on opposite sides of the northern Andes. *Biotropica*, 56, e13303. <https://doi.org/10.1111/btp.13303>