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Abstract

Conventional land coverage prediction could not be used in wind engineering because it
led to inaccurate surface roughness. This paper presents a new deep neural network for land
coverage prediction that can distinguish low- and mid-rise buildings in the built environment, to
enhance the estimation of surface roughness necessary in wind engineering. For the dataset,
Landsat 8 satellite images were used. A patch-based convolutional neural network was employed
and improved. The network predicted the land coverage at the center of the patch. Two different
label schemes were used where the proposed network either achieved better accuracy than the
conventional model, or recognized additional building types while maintaining a similar level of
accuracy. The improvement of the proposed method will depend on the site characteristics. For
the sites tested in this paper, the error reduction in wind speed and pressure was up to about 55%.
In addition to more accurate wind speed and pressure, better identification of buildings will benefit
wind engineering research as different building types cause different downwind effects.
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1. Introduction
1.1. Land Coverage Prediction Using Neural Network

It has been decades since machine learning tools were applied to remote sensing problems.
The early approaches include maximum likelihood classifier [1] and clustering [2], followed by
more advanced techniques such as decision trees [3], random forests [3], neural networks [4], and
support vector machines [5].

More recently, convolutional neural networks (CNN) led to significant progress in image
classification. Due to the efficiency and effectiveness, CNN has also been applied to remote
sensing image classification [6-8]. In Romero et al. [7], CNN was applied to seven images acquired
with the Medium Resolution Imaging Spectrometer (MERIS) and achieved nearly 60% accuracy.
In Castelluccio et al. [6], a pretrained GooglLeLeNet was applied to UCMerced [9], which
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consisted of 2100 images; the CNN achieved 97% accuracy. As for pixel-based classification, a
patch-based CNN was proposed by Sharma et al. [8] and was applied to a test site from the Florida
Everglades area, resulting in 78% accuracy.

Typical CNN architectures consist of multiple layers of various types. Common types of
layers are convolutional layer, pooling layer, feedforward layer, and softmax layer. Convolutional
layers compute the convolution of the input image with kernels (also called filters). The kernels
shift over input features and provide translation invariant responses. Pooling layers function as
non-linear down-sampler and reduce the size of the input layer. There are non-linear functions to
implement pooling, where max pooling is the most common. Pooling reduces the number of
parameters to learn and provides some translation invariance. Feedforward layers are usually
implemented after convolutional and pooling layers. They summarize the information provided by
previous layers and support final decisions. The standard activation function for the output layer
is softmax. Softmax layers are often viewed as a particular type of layers; however, they do not
contain any training parameter.

1.2.  Wind Engineering Applications of Predicted Land Coverage

Upstream terrain has a significant effect on wind pressure on buildings. Rougher land
coverage will retard the wind more than smooth land, changing the wind loads. Wind tunnel testing
is a standard method to investigate the effect of upstream surface roughness on wind loads on
buildings [10, 11]. However, due to the difficulty of reproducing the complex real-world land
coverage, investigations on upstream terrain effects have been limited to simple cases such as
smooth to rough and rough to smooth roughness transitions [12-14].

In the real world, we are dealing with complex heterogeneous upstream terrain. The wind
loading on a building is likely to deviate further from the known wind loading due to the
complexity of the real-world land coverage. To address this issue, research is needed in two
separate areas. First, wind tunnel testing needs to be conducted for more complex terrains. Thanks
to the recent advance in wind tunnel testing techniques, researchers have begun to do so [10].
Second, research is needed to classify real-world land coverage with high accuracy, specifically
for wind engineering applications. This paper deals with this second area of research.

The machine-learning-based land cover prediction is a promising technique because it can
remove subjectivity in human interpretation. Such human interpretation was shown to be widely
variable. Researchers and engineers generally “resorted to qualitative terms such as ‘suburban
terrain’ or ‘open terrain with scattered obstructions’” [15], and therefore “the level of subjective
interpretation is high” [16].

1.3. Knowledge Gap and Original Contribution

Despite the potential, wind engineers cannot yet employ machine-learning-based land
cover prediction. The reason is that the past studies were intended for earth science, and
accordingly, the land classification categories were primarily based on the differences in
permeability. While useful for some engineering problems such as flooding, these land cover
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categories alone cannot properly provide surface roughness. The error tends to be greater in
developed areas such as urban and suburban, where most buildings exist.

This paper presents a new CNN for land coverage prediction that can distinguish low- and
mid-rise buildings in the built environment. After presenting the training data, CNN, and its
performance, we will illustrate how the new CNN improves the wind loading estimation.

2. Data Preparation
2.1.  Site Selection

To train the network, we need to develop a dataset of sites that have various land coverages.
In the U.S., dollar loss due to the wind has been shown to be closely correlated with exposure to
hurricanes [17, 18]. Following the trajectory of major hurricanes in the past 20 years in the U.S.,
a total of 529 sites were selected proportional to a state’s exposure to hurricanes. The sites in each
state were manually selected such that different land coverages were present in the dataset. Table
1 shows the number of sites in each state. Table 2 shows the locations of sample sites.

Table 1: Selected states for the dataset and the number of sites in each state

State Nun}ber State Nun{ber State Nun}ber State Nun}ber
of sites of sites of sites of sites
Florida 50 Mississippi 20 Rhode Island 15 Indiana 10
Georgia 30 Maryland 20 West Virginia 10 Ohio 10
South Carolina 30 Delaware 20 Pennsylvania 10 Maine 10
North Carolina 30 New Jersey 20 Massachusetts 10 Vermont 10
Texas 30 Tennessee 15 New Hampshire 10 Oklahoma 10
Louisiana 25 Arkansas 15 Kentucky 10 Ne\y 5
Mexico
Virginia 25 New York 15 [llinois 10 Arizona 5
Alabama 20 Connecticut 15 Missouri 10 California 4

Table 2: Attributes of 5 different sample sites

Site ID  State City Latitude Longitude
(nearby)
1 Florida Miami 2541191  -80.4964
51 Georgia St Simons 31.15345  -81.3822
141 Texas Kingsville  27.50718  -97.8191

351 New York New York 4097849  -72.1267
529 California Santa Maria = 34.85759  -120.419

2.2.  Preparation of Input: Landsat 8 Data

The input to the network will be the satellite image. Landsat 8 [19] provides satellite images
of the earth’s surface with sufficient resolution to show different types of land cover such as
developed areas, scrubs, forests, water, etc. Landsat 8 land imagery consists of 9 spectral
bandwidths; however, we stacked bands 1 to 7 and band 9 in our network as these bands have the
same resolution. See Table 3. The image data from Landsat 8 was obtained from the USGS
website, and all images were from the 2016 version for consistency.
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Table 3: Landsat 8 operational land imager information

Bands Wavelength (um) Resolution (m)
Band 1: Coastal acrosol 0.43-0.45 30
Band 2: Blue 0.45-0.51 30
Band 3: Green 0.53-0.59 30
Band 4: Red 0.64-0.67 30
Band 5: Near Infrared 0.85-0.88 30
Band 6: SWIR 1 1.57-1.65 30
Band 7: SWIR 2 2.11-2.29 30
Band 9: Cirrus 1.36-1.38 30

Any image size could be used for the dataset as long as it was greater than the patch input
to the network. See Figure 1. This research was part of a larger project where wind tunnel testing
was needed. For convenience, the size of the image was determined as 3840 m x 3840 m so that a
terrain for wind tunnel testing could be selected for any direction, as shown in Figure 2.

Landsat 8 \

Patch Input to CNN

4

/Z Image in

dataset
%,

Figure 1: Relationship between the size of the image in the dataset, CNN input, and Landsat 8 (not to scale)

Figure 2: Selection of 1:100 scaled wind tunnel upstream fetch shown as colored rectangles (Google Earth image
was used for this illustration instead of the Landsat 8, in order to show the terrain features better)

We developed a Python code to extract and store the 530 sites. Figure 3 shows a sample
dataset. Since the size of the images is 3840 % 3840 m and the spatial resolution is 30 m, each
image has 128 x 128 pixels.


https://doi.org/10.1108/SASBE-01-2024-0014
https://doi.org/10.1108/SASBE-01-2024-0014

This file is the final accepted version of the manuscript published in https://doi.org/10.1108/SASBE-01-
2024-0014

B3

B6

NLCD

T u T T T
20 40 &0 80 100 120 0 80 100 120 80 120

Figure 3: An example of Landsat 8 projection for bandwidths 1 to 7 and 9, respectively (site coordinates: Lat =
25.448995, Lon = -80.444257) and corresponding NLCD image (bottom right image)

2.3.  Preparation of Output: Land Cover Labels

National Land Cover Database (NLCD) [20] is a Landsat-based dataset provided by USGS
that captures different types of land cover and labels them into 20 categories, as shown in Table 4.
The resolution of images in this dataset was 15 m. NLCD images were processed to obtain a land
cover label for each pixel in the input data. The original land cover labels of the NLCD were
consolidated in this research based on the surface roughness. For example, the NLCD classification
has three different labels for the forest. However, all of them have similar roughness in wind
engineering, and therefore only one label was used for them.

Table 4: NLCD-based land cover classification

NLCD Label Land Cover CNN Labels in this Zo range
Research
11 Open Water
12 Perennial Ice, Snow ) BRI
21 Developed, Open Spa'ce ) 0.3-0.7
22 Developed, Low Density
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23 Developed, Medium Density

24 Developed, High Density

31 Barren Land 3 0.001-0.005
41 Deciduous Forest

42 Evergreen Forest 4 1-2.3

43 Mixed Forest

51 Dwarf Scrub

52 Shrub Serub 5 0.0024-0.005
71 Grassland, Herbaceous

81 Cultivated Corps 6 0.005-0.01
72 Sedge, Herbaceous

73 Lichens

74 Moss 7 0.002-0.007
82 Pasture, Hay

90 Woody Wetlands

95 Emergent Herbaceous Wetland 8 0.001-0.003

As shown in Table 4, NLCD classifies developed areas based on density. In affecting the
wind, the surface of the building facing the wind has the greater effect — a tall building will retard
the wind greater than a low-rise building. In addition, other obstacles such as trees exist close to
the surface, whereas a tall building will immediately face the wind in general. In order to consider
the greater retardation effect by taller buildings, the built area was further divided into two different
labels as shown in Table 5.

Table 5: Improved land cover classification for developed areas

NLCD-Based Land Cover Improved Land Cover CNN Labels in this
Research
Developed, Open Space; Low Developed, Low-rise buildings 2
Density; Medium Density; High Developed, Mid-rise buildings 9
Density

In order to improve the NLCD classification of developed areas, we had to review all sites
using Google Earth and manually identify the mid-rise buildings. Buildings with 3 stories or fewer
were considered as low-rise building, whereas buildings with at least four stories or more were
considered as mid-rise buildings. Figure 4 shows an example of how the classification of a site
was improved by identifying a mid-rise building.
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Figure 4: (a) Aerial image of the site ID #37 with Lat =27.949945and Lon = -82.797666 with two mid-rise buildings outlined
with dashed red line rectangles, (b) Bandwidth 2 of Landsat 8 image for the same site, (c) Original NLCD image of the site, (d)
Improved classification considering the mid-rise building

2.4. Data Storage

The Landsat 8 images and land cover classification were stored in the list. Each list
corresponds to each pixel, i.e., a 30 m % 30 m land. The arrays of the list contained the site ID,
bandwidth number, and pixel X and Y coordinates. The second array of the list had the 8 different
bandwidths of Landsat 8 images and the land cover label. The first 8 entries of the second array
were the input to the CNN, whereas the last entry was the output of the CNN prediction of the land
coverage label.

3. Deep Convolutional Neural Network for Land Coverage Prediction
3.1. The Architecture of the Neural Network and Training Parameters

Patch-based inputs were used for the CNN. The optimal patch size depends on the remote
sensing imagery source. After training and testing the performance of different patch sizes, the
patch size in this research was determined as 15 x 15. Therefore, for each pixel where the CNN
was to predict the land coverage, 15 % 15 x 8 input patch was used where the 8 corrresponds to 8
different bandwidths of the satellite image.

We chose a ratio of 9:1 for the training and validation data. As a result, 7.3 million and 0.8
million samples were obtained for the training and validation data, based on the 530 sites, their
size and the patch size of 15 x 15.

The CNN architecture is based on the patch-based CNN proposed in Sharma et al. [8]. The
main differences and improvements are that our CNN has a batch normalization layer, dropout
mechanism, modified kernel size, and layer width hyperparameters. In our patched-based CNN,
pooling has not been adopted because of limited improvement of the performance for the small
patch size used in this research.
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The proposed CNN consists of eight layers, as shown in Figure 5. A batch normalization
was used for the first layer. Batch normalization standardizes input data more effectively than other
conventional standardization methods. The batch normalization layer transformed the input to
maintain the mean and standard deviation output close to 0 and 1, respectively. Thus, the mean
and variance initializers were set to 0 and 1, correspondingly, with the momentum of 0.99. After
the batch normalization, five convolutional layers were added. A fixed kernel size of 3x3 and stride
value of 1 were used for all convolutional layers. The dropout rate was 0.1. The L1 regularization
was used in each convolutional layer. The first four convolutional layers had 64 filters, and the last
convolutional layer had 32 filters. Note that a significantly larger number of filters were used than
the patch-based CNN in Sharma et al. [8]. The number of filters was adapted to our dataset, which
covers a wider range of locations with a more diverse land cover. The feedforward layer had a
width of 3200. The final output layer was softmax, a commonly used standard for classification
tasks. The loss function for the proposed model was cross-entropy. The training was conducted
using ADAM optimizer [21] with a learning rate of 0.0003.
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Figure 5: Convolutional Neural Network architecture used in this research

3.2.  Accuracy of the Base Model

The input to the network was always the 15 x 15 x § patch from the Landsat 8. Two
different label types were used for the output. The network trained with the first label type is
discussed in this section, termed as the “base model.” The CNN was trained using the NLCD-
based dataset shown in Table 4, for 20 epochs (120000 steps). Instead of the original NLCD labels
shown in the first column, surface roughness-based labels in the third column were used. Figure 6
shows the change of loss (left) and the classification accuracy (right) on the training data. The
initial loss value at step 1000 was around 0.75 and it stabilized around 0.13 after 120000 steps.
The classification accuracy for the training set achieved 95% at the end of training.
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While the patch-based CNN developed by Sharma et al. [8] was able to achieve a validation
accuracy of 78%, our model improved the validation accuracy to 90%. Figure 7 shows the
confusion matrix of model prediction on the validation set.
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Figure 6: Training loss (left) and accuracy (right) of the network

1 Open Water [§AR<E) 1.0% 4.0%

2 Developed 2.0% 1.0% | 1.0%

3 Barren Land 21.0% 2.0% | 3.0%

4 Forest| 1.0% | 15.8% 2.0% | 5.0%

5 Scrub 18.0% 3.0% | 3.0%

True class

6 Grassland | 2.0% | 15.8% 7.9%

7 Pasture 10.9% 3.0% | 1.0%

8 Wetland | 3.0% | 8.1% 6.1%
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Figure 7: Confusion matrix on validation set

As an illustration of CNN prediction, we selected a location (site ID = 521, site coordinates:
Lat = 34.923829, Lon = -110.137571) in Holbrock, AZ, and displayed the classification outputs
of the model together with the target labels as shown in Figure 8.
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Figure 8: Sample CNN prediction for site ID #521: from the validation set

3.3. Comparison with other known algorithms

Here, we compared the accuracy of the base model with random forest and support vector machine
algorithms. The random forest algorithm was trained with 100 estimators (trees) and maximum
depth of 10. The input dataset was the same as previous section. At the end of training, the accuracy
of random forest algorithm on the validation set was 62.0 %. The increase in the number of
estimator did not change the accuracy considerably. The accuracy was 62.1 % with 200 esyimator.
The linear support vector machine with maximum iteration of 200 with regularization parameter
of 1 (C=1) achieved 61.9 % accuracy on the validation set with the same input dataset. Compared
with the proposed model with 95% accuracy, both random forest and support vector machine
algorithms did not achived a good accuracy.

3.4.  Accuracy of the Refined Model

The network trained with the second label type is discussed in this section, termed as the
“refined model.” The second label type changed the developed area labels from Table 4 to Table
5. The CNN was trained for 20 epochs (120000 steps). The trend in loss and accuracy were similar
to the base model shown in Figure 6. While the base model was able to achieve the validation
accuracy of 90%, the refined model had the validation accuracy of 80% due to the increased
difficulty with additional labels.

The refined model improves prediction of labels in developed areas, and therefore, will
have a major impact on the estimation of wind speed and pressure. Instead of just showing the
CNN prediction of labels alone, the prediction along with the impact on the wind speed and
pressure will be discussed in the next section.

4. Improvement in Wind Speed and Pressure Estimation
4.1. Relevant Theory

10
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This section will discuss the improvement in wind speed and pressure estimation, due to
the improved land cover classification by the proposed method. The earth’s surface slows the wind
and creates turbulence. The resulting mean wind speed near surface can be described by the log

law:
U, z
=3 () M
where 1, is the mean wind speed at height z, u, is the friction velocity, k is the von Karman
constant, and z; is the roughness length. The pressure at a point Q of the building can be obtained
from the following:

1
P(Q) = 5PV2Cr(Q) @

where p is the air density, and C, is the pressure coefficient at this point. Further details have been
removed for the brevity of the discussion. Finally, the effective roughness length (zy,) for the
given terrain will be computed using the Taylor’s method [22]:

Inzp, = (Inz) + a,{{(In z5)?) — ((In z¢))*} (3)

where (-) denotes an area-weighted logarithmic average, z, is the roughness length of each grid
cell, and a; is the coefficent that depends on the Rossby number [22].

4.2. Testing Cases

To quanitfy the improvement by the proposed method, three testing sites were selected, as
shown in Figure 9. The sites were selected so that they cover three distinctive effective roughness
lengths. According to the ASCE 7, the typical surface roughness of Exposures D, C, and B are
zy = 0.005, 0.02, and 0.3 m, respectively [23]. To select sites similar to z, = 0.005 and 0.02, the
sites that had the closest effective z, were chosen from the training set. On the other hand, due to
the small number of sites that had mid-rise buildings, the site for z, = 0.3 was chosen manually.
The effective z, for the three testing sites were 0.0029, 0.0224, and 0.536 m, respectively. The z,
calculation used the median value for each category shown in Table 4.

(a) 3 (b) W 7 (c) A :
Figure 9: Three testing sites to quantify the improvement in wind speed and pressure: (a) effective zo = 0.0029

m, (b) effective zg = 0.0224 m, (c) effective zo = 0.536 m (Google Earth image was used for this illustration instead
of the Landsat 8, in order to show the terrain features better)
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The size of the testing sites was determined as 300 m by 300 m based on past studies that
the peak wind loads were dominated by a short distance upwind terrain up to 300-400 m [16, 24,
25]. The size corresponds to 10 x 10 pixels. In the examples below, the wind speed and pressure
improvement will be computed for the standard height of z = 10 m.

4.3. Improvement Compared to the Conventional Land Cover Prediction

The conventional land cover prediction utilizes the original NLCD labels (Table 4, column
1), with a validation accuracy of 78% [8]). The proposed method, the Base Model, had a validation
accuracy of 90%, thanks to the improvements made in this study as well as the consolidation of
labels with similar surface roughness.

The following approach was used to quantify the improvement in wind speed and pressure
estimation. The testing site had 10 x 10 = 100 pixels, with each pixel representing a certain land
cover. To quantify the effect of the classification error in the conventional approach, 100 — 78 =
22%, or 22 pixels, were randomly selected and assigned with a random misclassification. Next,
the effective surface roughness was calculated using Equation (3), followed by the estimation of
wind speed and pressure using Equations (1) and (2). The error compared to the correct
classification was computed. The simulation was repeated 10,000 times. The Base Model was
tested similarly but using 100 — 90 = 10% random misclassification.

Figure 10 and Figure 11 show the improvement in wind speed and pressure estimation
when the proposed method was used. For zp = 0.0029 site, the proposed method decreased the error
mean from —6.1% to —2.9% (53.3% reduction) for velocity, and from —11.8% to —5.6% (52.7%
reduction) for pressure. The standard deviation also had a 27.0% reduction for velocity and a
24.6% reduction for pressure. For zo = 0.0224 m site, the error mean changed from +0.75% to
+0.33% (56.2% reduction) for velocity, and from +1.65% to +0.73% (55.9% reduction) for
pressure. The standard deviation error reduction was 30.4% for velocity and 30.9% for pressure.

For the sites tested, the percentage reduction in error was comparable for both sites, but zo
= 0.0029 m site error reduction was more significant in terms of magnitude. The error reduction
magnitude will depend on the distribution of land coverage — See Table 4, zo range for various
land coverages.
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Figure 10. Improvement by the proposed method in estimating (a) wind speed and (b) pressure, effective z0 =

0.0029 m
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Figure 11. Improvement by the proposed method in estimating (a) wind speed and (b) pressure, effective zo =
0.0224 m

4.4. Improvement Between the Base Model and the Refined Model

Next, we discuss the improvement between the Base Model and the Refined Model. The
testing was conducted for the zp = 0.536 m case because the refinement would be most distinctive
in a relatively high roughness site. In comparing the Base Model and the Refined Model, unlike
the previous section where the comparison was made with other researchers’ work, the actual CNN
prediction could be used.

Figure 12 compares the true labels, prediction by the Base Model, and prediction by the
Refined Model. The zy is equal to 0.506 m for the prediction by the Base model and 0.513 m for
the prediction by the Refined model. Although the contribution to the effective zy is small, since
the wind flow and pressure will be significantly affected by immediate upwind terrain and
surrounding buildings [26-27], our prediction can help identify such cases.

o

o 0

2

2 2

(a) 0 2 4 3 8 (b) 0 2 4 6 8 ( C) 0 2 4 3 8

Figure 12. Comparison of the CNN prediction of a site with buildings: (a) target labels showing low- and mid-
rise buildings, (b) Base Model prediction, (c¢) Refined Model prediction
Blue = low-rise building, Yellow = mid-rise building, Green = grassland

5. Conclusions
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Machine-learning-based land cover prediction methods have not been used by wind
engineers because the available methods were intended for earth science. Such methods could not
properly provide surface roughness. This paper presents a new deep neural network for land
coverage prediction that can distinguish low- and mid-rise buildings in the built environment, to
enhance the estimation of surface roughness necessary in wind engineering.

To train and test the network, Landsat 8 satellite images were used. The 8 bandwidths that
had 30 m resolution were used. A patch-based CNN was employed and improved. The patch size
was 15 x 15 x 8. The CNN predicted the land coverage at the center of the 15 x 15 pixels. First,
the conventional NLCD-based labels were improved for wind engineering applications. Next,
additional categories were added along with manual data preparation to improve the prediction of
different buildings.

Compared to the validation accuracy of 78% in a previous study [8], the proposed method
achieved the validation accuracy of 90% thanks to the improvements made in this study as well as
the consolidation of labels with similar surface roughness. When additional building categories
were added, the validation decreased to 80%, which is comparable to the previous study but is now
able to predict different building types.

After developing the CNN, we quantified the improvement in estimating the wind speed
and pressure. The improvement of the proposed method will depend on the site characteristics. For
the sites tested in this paper, the error reduction in wind speed and pressure was up to about 55%.
In addition to more accurate wind speed and pressure, better identification of buildings will benefit
wind engineering research as different building types cause different downwind effects. An
example application would be automated recognition of areas that have a certain distance from the
target building type to identify downwind areas affected by high winds.
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