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Abstract 

Conventional land coverage prediction could not be used in wind engineering because it 

led to inaccurate surface roughness. This paper presents a new deep neural network for land 

coverage prediction that can distinguish low- and mid-rise buildings in the built environment, to 

enhance the estimation of surface roughness necessary in wind engineering. For the dataset, 

Landsat 8 satellite images were used. A patch-based convolutional neural network was employed 

and improved. The network predicted the land coverage at the center of the patch. Two different 

label schemes were used where the proposed network either achieved better accuracy than the 

conventional model, or recognized additional building types while maintaining a similar level of 

accuracy. The improvement of the proposed method will depend on the site characteristics. For 

the sites tested in this paper, the error reduction in wind speed and pressure was up to about 55%. 

In addition to more accurate wind speed and pressure, better identification of buildings will benefit 

wind engineering research as different building types cause different downwind effects. 
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1. Introduction 

1.1. Land Coverage Prediction Using Neural Network 

It has been decades since machine learning tools were applied to remote sensing  problems. 

The early approaches include maximum likelihood classifier [1] and clustering [2], followed by 

more advanced techniques such as decision trees [3], random forests [3], neural networks [4],   and 

support vector machines [5].  

More recently, convolutional neural networks (CNN) led to  significant progress in image 

classification. Due to the efficiency and effectiveness, CNN has also been applied to remote 

sensing image classification [6-8]. In Romero et al. [7], CNN was applied to seven images acquired 

with the Medium Resolution Imaging Spectrometer (MERIS) and achieved nearly 60% accuracy. 

In Castelluccio et al. [6], a pretrained GoogLeLeNet was applied to UCMerced [9], which 
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consisted of 2100 images; the CNN achieved 97% accuracy. As for pixel-based classification, a 

patch-based CNN was proposed by Sharma et al. [8] and was applied to a test site from the Florida 

Everglades area, resulting in 78% accuracy.  

Typical CNN architectures consist of multiple layers of various types. Common types of 

layers are convolutional layer, pooling layer, feedforward layer, and softmax layer. Convolutional 

layers compute the convolution of the input image with kernels (also called filters). The kernels 

shift over input features and provide translation invariant responses. Pooling layers function as 

non-linear down-sampler and reduce the size of the input layer. There are non-linear functions to 

implement pooling, where max pooling is the most common. Pooling reduces the number of 

parameters to learn and provides some translation invariance. Feedforward layers are usually 

implemented after convolutional and pooling layers. They summarize the information provided by 

previous layers and support final decisions. The standard activation function for the output layer 

is softmax. Softmax layers are often viewed as a particular type of layers; however, they do not 

contain any training parameter. 

1.2. Wind Engineering Applications of Predicted Land Coverage 

Upstream terrain has a significant effect on wind pressure on buildings. Rougher land 

coverage will retard the wind more than smooth land, changing the wind loads. Wind tunnel testing 

is a standard method to investigate the effect of upstream surface roughness on wind loads on 

buildings [10, 11]. However, due to the difficulty of reproducing the complex real-world land 

coverage, investigations on upstream terrain effects have been limited to simple cases such as 

smooth to rough and rough to smooth roughness transitions [12-14]. 

In the real world, we are dealing with complex heterogeneous upstream terrain. The wind 

loading on a building is likely to deviate further from the known wind loading due to the 

complexity of the real-world land coverage. To address this issue, research is needed in two 

separate areas. First, wind tunnel testing needs to be conducted for more complex terrains. Thanks 

to the recent advance in wind tunnel testing techniques, researchers have begun to do so [10]. 

Second, research is needed to classify real-world land coverage with high accuracy, specifically 

for wind engineering applications. This paper deals with this second area of research.  

The machine-learning-based land cover prediction is a promising technique because it can 

remove subjectivity in human interpretation. Such human interpretation was shown to be widely 

variable. Researchers and engineers generally “resorted to qualitative terms such as ‘suburban 

terrain’ or ‘open terrain with scattered obstructions’” [15], and therefore “the level of subjective 

interpretation is high” [16]. 

1.3. Knowledge Gap and Original Contribution 

Despite the potential, wind engineers cannot yet employ machine-learning-based land 

cover prediction. The reason is that the past studies were intended for earth science, and 

accordingly, the land classification categories were primarily based on the differences in 

permeability. While useful for some engineering problems such as flooding, these land cover 
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categories alone cannot properly provide surface roughness. The error tends to be greater in 

developed areas such as urban and suburban, where most buildings exist. 

This paper presents a new CNN for land coverage prediction that can distinguish low- and 

mid-rise buildings in the built environment. After presenting the training data, CNN, and its 

performance, we will illustrate how the new CNN improves the wind loading estimation. 

 

2. Data Preparation 

2.1. Site Selection  

To train the network, we need to develop a dataset of sites that have various land coverages. 

In the U.S., dollar loss due to the wind has been shown to be closely correlated with exposure to 

hurricanes [17, 18]. Following the trajectory of major hurricanes in the past 20 years in the U.S., 

a total of 529 sites were selected proportional to a state’s exposure to hurricanes. The sites in each 

state were manually selected such that different land coverages were present in the dataset. Table 

1 shows the number of sites in each state. Table 2 shows the locations of sample sites. 

Table 1: Selected states for the dataset and the number of sites in each state 

State 
Number 

of sites 
State 

Number 

of sites 
State 

Number 

of sites 
State 

Number 

of sites 

Florida 50 Mississippi 20 Rhode Island 15 Indiana 10 

Georgia 30 Maryland 20 West Virginia 10 Ohio 10 

South Carolina 30 Delaware 20 Pennsylvania 10 Maine 10 

North Carolina 30 New Jersey 20 Massachusetts 10 Vermont 10 

Texas 30 Tennessee 15 New Hampshire 10 Oklahoma 10 

Louisiana 25 Arkansas 15 Kentucky 10 
New 

Mexico 
5 

Virginia 25 New York 15 Illinois 10 Arizona 5 

Alabama 20 Connecticut 15 Missouri 10 California 4 

 

Table 2: Attributes of 5 different sample sites 

Site ID State 
City 

(nearby) 
Latitude Longitude 

1 Florida Miami 25.41191 -80.4964 

51 Georgia St Simons 31.15345 -81.3822 

141 Texas Kingsville 27.50718 -97.8191 

351 New York New York 40.97849 -72.1267 

529 California Santa Maria 34.85759 -120.419 

 

2.2. Preparation of Input: Landsat 8 Data  

The input to the network will be the satellite image. Landsat 8 [19] provides satellite images 

of the earth’s surface with sufficient resolution to show different types of land cover such as 

developed areas, scrubs, forests, water, etc. Landsat 8 land imagery consists of 9 spectral 

bandwidths; however, we stacked bands 1 to 7 and band 9 in our network as these bands have the 

same resolution. See Table 3. The image data from Landsat 8 was obtained from the USGS 

website, and all images were from the 2016 version for consistency.  
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Table 3: Landsat 8 operational land imager information 

Bands Wavelength (μm) Resolution (m) 

Band 1: Coastal aerosol 0.43-0.45  30 

Band 2: Blue 0.45-0.51 30 

Band 3: Green 0.53-0.59 30 

Band 4: Red 0.64-0.67 30 

Band 5: Near Infrared 0.85-0.88 30 

Band 6: SWIR 1 1.57-1.65 30 

Band 7: SWIR 2 2.11-2.29 30 

Band 9: Cirrus 1.36-1.38 30 

 

Any image size could be used for the dataset as long as it was greater than the patch input 

to the network. See Figure 1. This research was part of a larger project where wind tunnel testing 

was needed. For convenience, the size of the image was determined as 3840 m × 3840 m so that a 

terrain for wind tunnel testing could be selected for any direction, as shown in Figure 2. 

 
Figure 1: Relationship between the size of the image in the dataset, CNN input, and Landsat 8 (not to scale) 

 

 
Figure 2: Selection of 1:100 scaled wind tunnel upstream fetch shown as colored rectangles (Google Earth image 

was used for this illustration instead of the Landsat 8, in order to show the terrain features better) 

 

We developed a Python code to extract and store the 530 sites. Figure 3 shows a sample 

dataset. Since the size of the images is 3840 × 3840 m and the spatial resolution is 30 m, each 

image has 128 × 128 pixels. 

Landsat 8 

Image in 

dataset 

Patch Input to CNN 
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B1 

 

B2 

 

B3 

 

B4 

 

B5 

 

B6 

 

B7 

 

B9 

 

NLCD 

Figure 3: An example of Landsat 8 projection for bandwidths 1 to 7 and 9, respectively (site coordinates: Lat = 

25.448995, Lon = -80.444257) and corresponding NLCD image (bottom right image) 

 

2.3. Preparation of Output: Land Cover Labels 

National Land Cover Database (NLCD) [20] is a Landsat-based dataset provided by USGS 

that captures different types of land cover and labels them into 20 categories, as shown in Table 4. 

The resolution of images in this dataset was 15 m. NLCD images were processed to obtain a land 

cover label for each pixel in the input data. The original land cover labels of the NLCD were 

consolidated in this research based on the surface roughness. For example, the NLCD classification 

has three different labels for the forest. However, all of them have similar roughness in wind 

engineering, and therefore only one label was used for them.  

Table 4: NLCD-based land cover classification 

NLCD Label Land Cover 
CNN Labels in this 

Research 
z0 range 

11 Open Water 
1 0.0001-0.0005 

12 Perennial Ice, Snow 

21 Developed, Open Space 
2 0.3-0.7 

22 Developed, Low Density 
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23 Developed, Medium Density 

24 Developed, High Density 

31 Barren Land 3 0.001-0.005 

41 Deciduous Forest 

4 1-2.3 42 Evergreen Forest 

43 Mixed Forest 

51 Dwarf Scrub 
5 0.0024-0.005 

52 Shrub Scrub 

71 Grassland, Herbaceous 
6 0.005-0.01 

81 Cultivated Corps 

72 Sedge, Herbaceous 

7 0.002-0.007 
73 Lichens 

74 Moss 

82 Pasture, Hay 

90 Woody Wetlands 
8 0.001-0.003 

95 Emergent Herbaceous Wetland 

 

As shown in Table 4, NLCD classifies developed areas based on density. In affecting the 

wind, the surface of the building facing the wind has the greater effect — a tall building will retard 

the wind greater than a low-rise building. In addition, other obstacles such as trees exist close to 

the surface, whereas a tall building will immediately face the wind in general. In order to consider 

the greater retardation effect by taller buildings, the built area was further divided into two different 

labels as shown in Table 5. 

Table 5: Improved land cover classification for developed areas 

NLCD-Based Land Cover Improved Land Cover CNN Labels in this 

Research 

Developed, Open Space; Low 

Density; Medium Density; High 

Density 

Developed, Low-rise buildings 2 

Developed, Mid-rise buildings 
9 

 

In order to improve the NLCD classification of developed areas, we had to review all sites 

using Google Earth and manually identify the mid-rise buildings. Buildings with 3 stories or fewer 

were considered as low-rise building, whereas buildings with at least four stories or more were 

considered as mid-rise buildings. Figure 4 shows an example of how the classification of a site 

was improved by identifying a mid-rise building. 

(a) 

        

(b) 
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(c) 

 

(d) 

 

Figure 4: (a) Aerial image of the site ID #37 with Lat = 27.949945and Lon = -82.797666 with two mid-rise buildings outlined 

with dashed red line rectangles, (b) Bandwidth 2 of Landsat 8 image for the same site, (c) Original NLCD image of the site, (d) 

Improved classification considering the mid-rise building  

 

2.4. Data Storage 

The Landsat 8 images and land cover classification were stored in the list. Each list 

corresponds to each pixel, i.e., a 30 m × 30 m land. The arrays of the list contained the site ID, 

bandwidth number, and pixel X and Y coordinates. The second array of the list had the 8 different 

bandwidths of Landsat 8 images and the land cover label. The first 8 entries of the second array 

were the input to the CNN, whereas the last entry was the output of the CNN prediction of the land 

coverage label. 

 

3. Deep Convolutional Neural Network for Land Coverage Prediction 

3.1. The Architecture of the Neural Network and Training Parameters 

Patch-based inputs were used for the CNN. The optimal patch size depends on the remote 

sensing imagery source. After training and testing the performance of different patch sizes, the 

patch size in this research was determined as 15 × 15. Therefore, for each pixel where the CNN 

was to predict the land coverage, 15 × 15 × 8 input patch was used where the 8 corrresponds to 8 

different bandwidths of the satellite image. 

We chose a ratio of 9:1 for the training and validation data. As a result, 7.3 million and 0.8 

million samples were obtained for the training and validation data, based on the 530 sites, their 

size and the patch size of 15 × 15. 

The CNN architecture is based on the patch-based CNN proposed in Sharma et al. [8]. The 

main differences and improvements are that our CNN has a batch normalization layer, dropout 

mechanism, modified kernel size, and layer width hyperparameters. In our patched-based CNN, 

pooling has not been adopted because of limited improvement of the performance for the small 

patch size used in this research. 
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The proposed CNN consists of eight layers, as shown in Figure 5. A batch normalization 

was used for the first layer. Batch normalization standardizes input data more effectively than other 

conventional standardization methods. The batch normalization layer transformed the input to 

maintain the mean and standard deviation output close to 0 and 1, respectively. Thus, the mean 

and variance initializers were set to 0 and 1, correspondingly, with the momentum of 0.99. After 

the batch normalization, five convolutional layers were added. A fixed kernel size of 3×3 and stride 

value of 1 were used for all convolutional layers. The dropout rate was 0.1. The L1 regularization 

was used in each convolutional layer. The first four convolutional layers had 64 filters, and the last 

convolutional layer had 32 filters. Note that a significantly larger number of filters were used than 

the patch-based CNN in Sharma et al. [8]. The number of filters was adapted to our dataset, which 

covers a wider range of locations with a more diverse land cover. The feedforward layer had a 

width of 3200. The final output layer was softmax, a commonly used standard for classification 

tasks. The loss function for the proposed model was cross-entropy. The training was conducted 

using ADAM optimizer [21] with a learning rate of 0.0003.  

 
Figure 5: Convolutional Neural Network architecture used in this research 

 

3.2. Accuracy of the Base Model  

The input to the network was always the 15 × 15 × 8 patch from the Landsat 8. Two 

different label types were used for the output. The network trained with the first label type is 

discussed in this section, termed as the “base model.” The CNN was trained using the NLCD-

based dataset shown in Table 4, for 20 epochs (120000 steps). Instead of the original NLCD labels 

shown in the first column, surface roughness-based labels in the third column were used. Figure 6 

shows the change of loss (left) and the classification accuracy (right) on the training data. The 

initial loss value at step 1000 was around 0.75 and it stabilized around 0.13 after 120000 steps. 

The classification accuracy for the training set achieved 95% at the end of training.  
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While the patch-based CNN developed by Sharma et al. [8] was able to achieve a validation 

accuracy of 78%, our model improved the validation accuracy to 90%. Figure 7 shows the 

confusion matrix of model prediction on the validation set. 

  

Figure 6: Training loss (left) and accuracy (right) of the network 

 

 
Figure 7: Confusion matrix on validation set 

 

As an illustration of CNN prediction, we selected a location (site ID = 521, site coordinates: 

Lat = 34.923829, Lon = -110.137571) in Holbrock, AZ, and displayed the classification outputs 

of the model together with the target labels as shown in Figure 8. 
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Figure 8: Sample CNN prediction for site ID #521: from the validation set 

 

3.3. Comparison with other known algorithms 

Here, we compared the accuracy of the base model with random forest and support vector  machine 

algorithms. The random forest algorithm was trained with 100 estimators (trees) and maximum 

depth of 10. The input dataset was the same as previous section. At the end of training, the accuracy 

of random forest algorithm on the validation set was 62.0 %.  The increase in the number of 

estimator did not change the accuracy considerably. The accuracy was 62.1 % with 200 esyimator. 

The linear support vector machine with maximum iteration of 200 with regularization parameter 

of 1 (C = 1) achieved 61.9 % accuracy on the validation set with the same input dataset. Compared 

with the proposed model with 95% accuracy, both random forest and support vector machine 

algorithms did not achived a good accuracy. 

3.4. Accuracy of the Refined Model  

The network trained with the second label type is discussed in this section, termed as the 

“refined model.” The second label type changed the developed area labels from Table 4 to Table 

5. The CNN was trained for 20 epochs (120000 steps). The trend in loss and accuracy were similar 

to the base model shown in Figure 6. While the base model was able to achieve the validation 

accuracy of 90%, the refined model had the validation accuracy of 80% due to the increased 

difficulty with additional labels. 

The refined model improves prediction of labels in developed areas, and therefore, will 

have a major impact on the estimation of wind speed and pressure. Instead of just showing the 

CNN prediction of labels alone, the prediction along with the impact on the wind speed and 

pressure will be discussed in the next section. 

 

4. Improvement in Wind Speed and Pressure Estimation 

4.1. Relevant Theory 
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This section will discuss the improvement in wind speed and pressure estimation, due to 

the improved land cover classification by the proposed method. The earth’s surface slows the wind 

and creates turbulence. The resulting mean wind speed near surface can be described by the log 

law: 

 𝑉𝑧 =
𝑢∗
𝜅
ln (

𝑧

𝑧0
) (1) 

where 𝑉𝑧  is the mean wind speed at height 𝑧, 𝑢∗  is the friction velocity, 𝜅 is the von Karman 

constant, and 𝑧0 is the roughness length. The pressure at a point 𝑄 of the building can be obtained 

from the following: 

 
𝑝(𝑄) =

1

2
𝜌𝑉𝑧

2𝐶𝑝(𝑄) (2) 

where 𝜌 is the air density, and 𝐶𝑝 is the pressure coefficient at this point. Further details have been 

removed for the brevity of the discussion. Finally, the effective roughness length (𝑧0𝑒) for the 

given terrain will be computed using the Taylor’s method [22]: 

 ln 𝑧0𝑒 = 〈ln 𝑧0〉 + 𝑎1{〈(ln 𝑧0)
2〉 − (〈ln 𝑧0〉)

2} (3) 

where 〈∙〉 denotes an area-weighted logarithmic average, 𝑧0 is the roughness length of each grid 

cell, and 𝑎1 is the coefficent that depends on the Rossby number [22]. 

4.2. Testing Cases 

To quanitfy the improvement by the proposed method, three testing sites were selected, as 

shown in Figure 9. The sites were selected so that they cover three distinctive effective roughness 

lengths. According to the ASCE 7, the typical surface roughness of Exposures D, C, and B are 

𝑧0 = 0.005, 0.02, and 0.3 m, respectively [23]. To select sites similar to 𝑧0 = 0.005 and 0.02, the 

sites that had the closest effective 𝑧0 were chosen from the training set. On the other hand, due to 

the small number of sites that had mid-rise buildings, the site for 𝑧0 = 0.3 was chosen manually. 

The effective 𝑧0 for the three testing sites were 0.0029, 0.0224, and 0.536 m, respectively. The 𝑧0 

calculation used the median value for each category shown in Table 4. 

(a)  (b)  (c)   
Figure 9: Three testing sites to quantify the improvement in wind speed and pressure: (a) effective z0 = 0.0029 

m, (b) effective z0 = 0.0224 m, (c) effective z0 = 0.536 m (Google Earth image was used for this illustration instead 

of the Landsat 8, in order to show the terrain features better) 
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 The size of the testing sites was determined as 300 m by 300 m based on past studies that 

the peak wind loads were dominated by a short distance upwind terrain up to 300-400 m [16, 24, 

25]. The size corresponds to 10 × 10 pixels. In the examples below, the wind speed and pressure 

improvement will be computed for the standard height of 𝑧 = 10 m. 

4.3. Improvement Compared to the Conventional Land Cover Prediction 

The conventional land cover prediction utilizes the original NLCD labels (Table 4, column 

1), with a validation accuracy of 78% [8]). The proposed method, the Base Model, had a validation 

accuracy of 90%, thanks to the improvements made in this study as well as the consolidation of 

labels with similar surface roughness. 

The following approach was used to quantify the improvement in wind speed and pressure 

estimation. The testing site had 10 × 10 = 100 pixels, with each pixel representing a certain land 

cover. To quantify the effect of the classification error in the conventional approach, 100 – 78 = 

22%, or 22 pixels, were randomly selected and assigned with a random misclassification. Next, 

the effective surface roughness was calculated using Equation (3), followed by the estimation of 

wind speed and pressure using Equations (1) and (2). The error compared to the correct 

classification was computed. The simulation was repeated 10,000 times. The Base Model was 

tested similarly but using 100 – 90 = 10% random misclassification.  

Figure 10 and Figure 11 show the improvement in wind speed and pressure estimation 

when the proposed method was used. For z0 = 0.0029 site, the proposed method decreased the error 

mean from –6.1% to –2.9% (53.3% reduction) for velocity, and from –11.8% to –5.6% (52.7% 

reduction) for pressure. The standard deviation also had a 27.0% reduction for velocity and a 

24.6% reduction for pressure. For z0 = 0.0224 m site, the error mean changed from +0.75% to 

+0.33% (56.2% reduction) for velocity, and from +1.65% to +0.73% (55.9% reduction) for 

pressure. The standard deviation error reduction was 30.4% for velocity and 30.9% for pressure. 

For the sites tested, the percentage reduction in error was comparable for both sites, but z0 

= 0.0029 m site error reduction was more significant in terms of magnitude. The error reduction 

magnitude will depend on the distribution of land coverage — See Table 4, z0 range for various 

land coverages. 

(a)     (b)  
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Figure 10. Improvement by the proposed method in estimating (a) wind speed and (b) pressure, effective z0 = 

0.0029 m 

 

(a)     (b)  

Figure 11. Improvement by the proposed method in estimating (a) wind speed and (b) pressure, effective z0 = 

0.0224 m 

 

4.4. Improvement Between the Base Model and the Refined Model 

Next, we discuss the improvement between the Base Model and the Refined Model. The 

testing was conducted for the z0 = 0.536 m case because the refinement would be most distinctive 

in a relatively high roughness site. In comparing the Base Model and the Refined Model, unlike 

the previous section where the comparison was made with other researchers’ work, the actual CNN 

prediction could be used. 

Figure 12 compares the true labels, prediction by the Base Model, and prediction by the 

Refined Model. The z0 is equal to 0.506 m for the prediction by the Base model and 0.513 m for 

the prediction by the Refined model. Although the contribution to the effective z0 is small, since 

the wind flow and pressure will be significantly affected by immediate upwind terrain and 

surrounding buildings [26-27], our prediction can help identify such cases. 

(a)  (b)   (c)  

Figure 12. Comparison of the CNN prediction of a site with buildings: (a) target labels showing low- and mid-

rise buildings, (b) Base Model prediction, (c) Refined Model prediction 
Blue = low-rise building, Yellow = mid-rise building, Green = grassland 

5. Conclusions 
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Machine-learning-based land cover prediction methods have not been used by wind 

engineers because the available methods were intended for earth science. Such methods could not 

properly provide surface roughness. This paper presents a new deep neural network for land 

coverage prediction that can distinguish low- and mid-rise buildings in the built environment, to 

enhance the estimation of surface roughness necessary in wind engineering. 

To train and test the network, Landsat 8 satellite images were used. The 8 bandwidths that 

had 30 m resolution were used. A patch-based CNN was employed and improved. The patch size 

was 15 × 15 × 8. The CNN predicted the land coverage at the center of the 15 × 15 pixels. First, 

the conventional NLCD-based labels were improved for wind engineering applications. Next, 

additional categories were added along with manual data preparation to improve the prediction of 

different buildings. 

Compared to the validation accuracy of 78% in a previous study [8], the proposed method 

achieved the validation accuracy of 90% thanks to the improvements made in this study as well as 

the consolidation of labels with similar surface roughness. When additional building categories 

were added, the validation decreased to 80%, which is comparable to the previous study but is now 

able to predict different building types. 

After developing the CNN, we quantified the improvement in estimating the wind speed 

and pressure. The improvement of the proposed method will depend on the site characteristics. For 

the sites tested in this paper, the error reduction in wind speed and pressure was up to about 55%. 

In addition to more accurate wind speed and pressure, better identification of buildings will benefit 

wind engineering research as different building types cause different downwind effects. An 

example application would be automated recognition of areas that have a certain distance from the 

target building type to identify downwind areas affected by high winds. 
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