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Abstract Major disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause
disruptions in infrastructure systems such as power and water supply, wastewater management,
telecommunication, and transportation facilities. Disruptions in electricity infrastructure have
negative impacts on sectors throughout a region, including education, medical services, financial
services, and recreation. In this study, we introduced a novel approach to investigate the factors
that can be associated with longer restoration time of power service after a hurricane.
Considering restoration time as the dependent variable and using a comprehensive set of county-
level data, we estimated a generalized accelerated failure time (GAFT) model that accounts for
spatial dependence among observations for time to event data. The model fit improved by 12%
after considering the effects of spatial correlation in time to event data. Using the GAFT model
and Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric
power outages and restoration rates among different types of power companies—investor-owned
power companies, rural and municipal cooperatives; (2) the relationship between the duration of
power outage and power system variables; and (3) the relationship between the duration of
power outage and socioeconomic attributes. The findings of this study indicate that counties with
a higher percentage of customers served by investor-owned electric companies and lower median
household income faced power outage for a longer time. This study identified the key factors to
predict restoration time of hurricane-induced power outages, allowing disaster management
agencies to adopt strategies required for restoration process.

Keywords Generalized accelerated failure time model, Hurricanes, Investor-owned power
companies, Median income, Power outage, Restoration time

1. Introduction

Hurricanes have become more frequent and intense due to global climate change. Hurricane
induced damages have significantly increased because of high wind intensities when some major
hurricanes made landfalls in recent years (Grenier et al. 2020). For instance, Hurricane Irma
caused a damage of about USD 50 billion (Cangialosi et al. 2017) and significant disruptions in
infrastructure systems. After Hurricane Irma, more than 6.2 million customers lost power
including 850,000 customers from Orange, Seminole, Lake, and Osceola Counties in Florida

* Corresponding author

[This is the pre-print version of the article: Jamal, Tasnuba Binte and Hasan, S. (2023). A Generalized Accelerated
Failure Time Model to Predict Restoration Time from Power Outages. International Journal of Disaster Risk
Science, which has been published in final form at https://doi.org/10.1007/s13753-023-00529-3].



https://doi.org/10.1007/s13753-023-00529-3

(Gillespie et al. 2017). Similarly, 8.5 million customers lost power during Hurricane Sandy
(Alemazkoor et al. 2020). Sustained winds and excessive amount of precipitation/flooding
during hurricanes cause disruptions to infrastructure systems such as power outage, disruptions
in water supply and wastewater systems, telecommunication failures, and transportation system
disruptions. Local communities depend on these systems to a great extent and failures in such
infrastructure systems highly affect their daily activities.

Infrastructure systems have become highly interconnected and interdependent (Rinaldi et
al. 2001; Grafius et al. 2020). After Hurricane Sandy, damages in electricity stations significantly
affected the functions of transportation facilities (Haraguchi and Kim 2016). Power outages
hampered the restoration of subway services in New York City as trains could not run without
power restoration. Due to the interconnected and interdependent relationships among
infrastructure systems, the restoration process of a system is further delayed when other systems
are disrupted. As a result, infrastructure services are unavailable, impacting the quality of life of
the population served. Among all types of infrastructure disruptions, a disruption in the
electricity power infrastructure is the most significant one. Power outages have significant
negative impacts on a region across different sectors such as financial, business, education,
medical services, and recreation (Koks et al. 2019; Kuntke et al. 2022).

To enhance community resilience against an extreme event, faster restoration from power
outages is necessary for recovery efforts. For this reason, six steps are proposed for power
restoration process including restoration at power plants, at transmission lines, at substations, for
essential services, in large service areas, and at individual home (Edison Electric Institute 2019).
To date, most of the works in infrastructure disruption network analysis and modeling
frameworks have involved the first three steps (Ouyang and Wang 2015). However, a holistic
approach for the restoration process at the last two steps (restoration in large service areas and at
individual home) is essential to understand power disruption patterns and durations at regional
and household levels.

Previous studies have investigated the durations of power outages after hurricanes at a
regional level. Liu et al. (2007) applied an accelerated failure time (AFT) model to understand
restoration time of power outage. While this approach provides useful insights for time to event
data analysis, it ignores spatial clustering of restoration time for power outage. To mitigate this
problem, Mitsova et al. (2018) applied a spatial autoregressive (SAR) model to understand
restoration time of power outage at a county level. While this model considers the spatial
autocorrelation among observations, it does not provide useful insights for time to event data
analysis. The overall restoration time of power outages can be explained by a set of readily
accessible independent variables using a generalized accelerated failure time (GAFT) model that
allows both time to event data analysis and spatial autocorrelation (non-independence of the
observations) (Zhou et al. 2020).

In this study, we investigated the spatial extent and correlation of restoration time of
electricity disruptions across different counties after a hurricane by applying a spatial clustering
approach. We also developed a statistical model (the GAFT model) considering a range of
variables including hazard, the built environment, and sociodemographic characteristics to
identify the factors associated with longer restoration time for power outage at a county level
after a hurricane. If restoration time can be reliably predicted, households may plan for
alternatives of existing power services during disruptions. At the same time, when policymakers
and stakeholders better understand the factors associated with longer disruptions, they can
allocate resources to manage restoration processes, reduce restoration time, and mitigate the



negative impacts of longer restoration times from power outages. In areas that are likely to have
power outages for a long time, backup power plants and micro-grids can be installed (Kwasinski
2010; Mishra et al. 2020). Our study has the following contributions:

= We investigated the spatial distribution of restoration time of electricity disruption of a
region during a hurricane using a statistical clustering approach.

= We developed generalized accelerated failure time (GAFT)—a statistical model—to
investigate the association between restoration time of power outage and a wide range of
variables including hazard, built environment factors, and sociodemographic
characteristics of the regions accounting for spatial dependence of observations. While
power outage has been studied from the perspective of time to event data analysis (Liu et
al. 2007) and considering the spatial dependence of observations (Mitsova et al. 2018),
we add a new dimension by developing the GAFT model that can account both for time
to event data and spatial dependence of observations.

2. Literature Review

Infrastructure systems are highly interconnected and interdependent and disruption in one system
significantly affects other systems (Rinaldi et al. 2001; Hasan and Foliente 2015; Grafius et al.
2020). In recent times, there has been an increased interest in studying the impact of power
outage on the performance of other infrastructure systems after extreme events and how to
enhance the resilience of such interdependent systems.

For instance, previous studies focused on power-water network disruptions for natural
hazards and suggested possible solutions to ensure a resilient power-water distribution system
after a hurricane (Almoghathawi et al. 2019; Najafi et al. 2019, 2020; Kong et al. 2021).
Disruptions in electricity and petroleum infrastructures had negative impacts on health care
services and public transportation systems in the New York metropolitan area after Hurricane
Sandy (Haraguchi and Kim 2016). Traffic congestion increased three to four times due to the
power outages after Hurricane Isaac (Miles and Jagielo 2014). Previous studies developed
models to assess the resilience of interdependent traffic-power systems and to determine the
parameters to quantify the resilience of transportation systems against hurricanes and other
natural hazards and disasters (Kocatepe et al. 2018; Ahmed and Dey 2020; Zou and Chen 2020).
Zou and Chen (2020) proposed strategies to improve the resilience of traffic-power systems
against a hurricane. Ouyang and Wang (2015) modeled for the resilience optimization of
interdependent infrastructures. The consequences of the interdependencies in infrastructure
failures starting from a given outage were analyzed by considering severity, duration, spatial
extent, and the number of people affected by a disruption (Mcdaniels et al. 2007). Kong et al.
(2021) calculated the infrastructure efficiency by removing different percentage of nodes in the
system for both power and water systems. Previous studies also investigated the societal, mental,
and economic impacts of power disruption (Dargin and Mostafavi 2020; Stock et al. 2021) along
with interdependency analysis among the infrastructure systems. Studies have explored recovery
strategies and efficiency (Ge et al. 2019; Loggins et al. 2019) as well.

Most of the above studies considered infrastructure disruptions at an infrastructure
facility level, analyzing how a disruption in an electric power plant affects a water treatment
plant or water distribution systems, or a gas station after a disaster. These studies focused on the
restoration at power plants, transmission lines, and substations. Also, these studies focused on
the impact of power outage. For example, previous research mainly focused on how and to what



extent other facilities are disrupted when an extreme event takes place causing power outages in
a region. Few studies investigated power service disruptions at a local (for example, county)
level and the time required for the restoration process. Restoration time from power outages
needs more attention along with impact analysis at a local scale.

Researchers have developed models to identify the contributing factors toward power
outage following a disaster. Liu et al. (2007) developed an accelerated failure time (AFT) model
for determining the time required for the restoration of power outage after an extreme hazard,
considering hurricane and snowstorm. Nateghi et al. (2011) compared different models such as
accelerated failure time model, Cox proportional hazard model, regression trees, Bayesian
additive regression trees (BART), and multivariate additive regression splines and found that
BART performs the best. Models based on various Geographic Information System databases
were developed to determine where outages are most likely to occur by Liu et al. (2005). Han et
al. (2009) considered hurricane characteristics, land cover, and power system data to analyze the
number of outages and spatial distribution of the power outages using negative binomial
generalized linear model for the Gulf Coast region of the United States. Quiring et al. (2011)
included soil characteristics and suggested that these variables can implicitly inform about the
likelihood of trees being uprooted. McRoberts et al. (2018) showed that the inclusion of
elevation, land cover, soil, precipitation, and vegetation characteristics improved the accuracy of
previously established statistical model by 17%. However, sociodemographic characteristics and
social vulnerability of population were not considered in these studies. Dargin and Mostafavi
(2020) considered sociodemographic factors of a community and identified which group of
people were affected mostly from well-being perspectives due to various infrastructure
disruptions after Hurricane Harvey. However, the spatial distribution of the recovery process for
a particular disruption, such as which group of people faced longer disruption, was not
considered.

Socioeconomic and sociodemographic characteristics of the affected regions were
considered in previous research. Mitsova et al. (2019) considered characteristics such as age,
gender, race, housing tenure, education, and income to identify whether households are
recovered or not from power outages after Hurricane Irma. They found that while distributing
federal financial assistance, low-income households and minority groups were given less
priority. Duffey (2019) used a wide variety of extreme events, such as hurricanes, wildfires,
heavy snowstorms, and devastating cyclones, to calculate recovery times and probabilities of
failure to restore. He found that wildfires and hurricanes may have different causes, but the non-
restoration probability patterns they produce are identical: a straightforward exponential decline.
Lee et al. (2019) studied the disparity in getting social supports (for example, instrumental,
emotional, informational, and outside contact support) considering respondents’
sociodemographic characteristics such as education, age, and religion. The results imply that
older and less educated people faced constraints in post-disaster support. Previous studies also
found that regions served by rural municipalities faced longer disruption for electricity disruption
after Hurricane Maria and Irma (Mitsova et al. 2018; O. Roman et al. 2019). Using satellite
nighttime lights data for Hurricane Maria, O. Roman et al. (2019) found that within the same
urban area, poor residents possess higher risk of power loss and longer disruption time. To
determine the relationship between physical and socioeconomic characteristics and the power
recovery effort, Azad and Ghandehari (2021) developed a Quasi-Poisson regression model and
found that major challenges to the repair work were poor road infrastructure and economically
depressed communities. These studies considered sociodemographic information of the



households and regions while analyzing the effects of electricity disruption and time required for
recovery operation for power outage. However, these studies did not focus on the distribution of
restoration time to get back the power over regions.

In addition, other considerations such as meteorological, housing characteristics, and so
on are equally important to perceive the dynamics of restoration process for the disaster response
community. Watson et al. (2022) developed a machine learning model for predicting the effects
of extreme weather events on electrical distribution grids. They found substantial diversity in the
meteorological factors that drive the predictions for the most severe events, suggesting that
weather hazards are more complex than they are often treated in empirical analyses of their
impacts. Wanik et al. (2018) simulated Hurricane Sandy like scenarios in the future to determine
the severity of tree-caused outages in Connecticut, with each showing increased winds and
higher rain accumulation over the study area as a result of large-scale thermodynamic changes in
the atmosphere and track modifications in 2100. Using an ensemble of Weather Research and
Forecasting simulations coupled with three machine learning-based outage prediction models,
they found that future Sandy will lead to a 42%—-64% rise in outages. Mukherjee et al. (2018)
characterized the key factors of severe weather-induced power outages and found that power
outage risk is a function of the type of natural hazard, and investments in operations/maintenance
activities (for example, tree-trimming, replacing old equipment, and so on). These studies found
weather impacts on power grids and density of power outages with simulations and machine
learning algorithms.

Previous studies used various statistical modeling approaches for estimating power
service restoration time. Mitsova et al. (2018) developed a spatial autoregressive (SAR) model at
a county level for Hurricane Irma to determine the attributes associated with restoration time
from power outages. However, like the AFT model, the SAR model does not provide useful
insights for time to event data analysis. We used the GAFT model for two reasons: (1) as our
dependent variable is restoration time, we considered this to be a time to event data analysis; (2)
as our dependent variable is likely to have a spatial dependency, the GAFT model can be used
for modeling both spatial and non-spatial data. Similarly, using a spatial autoregressive model,
Ulak et al. (2018) included wind speed, infrastructure and transportation, demographic, and
socioeconomic characteristics to predict the number of power outages in the city of Tallahassee
of Florida for Hurricane Hermine. Rachunok and Nateghi (2020) considered the spatial
distribution of disruptions by demonstrating the network-performance of the power distribution
grid’s sensitivity to spatial characteristics. However, we should give more emphasis on
restoration time rather than outage density. If many customers face power outage after a
hurricane but they get back their power services within a short period, it may not hamper much
to their business, social, and other daily activities. Besides the SAR model, a random forest
model was used to predict hurricane-induced power outage durations (Nateghi et al. 2014) and
outages (Guikema et al. 2014), which does not provide useful insights for time to event data
analysis and spatial clustering of restoration time.

In summary, the following observations can be made. First, two types of dependent
variables have been considered in the existing literature: the number of outages and duration of
outages. Second, duration of outages was examined at different geographical levels ranging from
grid sizes to county subdivisions and county levels. Lastly, different types of factors such as
meteorological, physical, and sociodemographic attributes were considered to explain the outage
durations by developing different machine learning and statistical models. No models have been
developed, however, that account for time as a dependent variable and spatial autocorrelation.



This article claims a methodological contribution for modeling power outage restoration time by
considering spatial dependence and time to event aspects present in the data. This can provide
more accurate and reliable predictions of restoration time with significant implications on
policymaking related to infrastructure planning and management. More specifically, the
following research questions need to be answered: (1) can we implement a statistical model that
can account both for time to event data and spatial dependence of the data to predict restoration
time from hurricane-induced power outages from a set of common key factors that are publicly
available? and (2) can we explain the spatial distribution of restoration time of electricity
disruption due to a hurricane using a statistical clustering approach? As such, the objectives of
this study were to understand the spatial clustering patterns of the restoration time of power
outages due to a hurricane and to determine the factors associated with prolonged restoration
time considering a wide range of variables including hazard, the built environment, and
sociodemographic characteristics.

3. Data Collection and Processing

We considered three types of factors: hazard characteristics, built environment characteristics,
and sociodemographic factors that might be associated with longer restoration times of power
outages during a hurricane.

3.1 Restoration Time

We collected the data for the restoration time of power outages during Hurricane Irma from
Florida Today' for each county of Florida. The plots in Florida Today were drawn using the data
from the Florida Division of Emergency Management (FDEM). We used the duration between
the time when 20% customers or more of a particular county first lost their electricity services
and the time when 20% customers or less were yet to restore their power services (Fig. 1). In
other words, duration from when 20% of customers lost their power to the time by which 80% of
customers in a county had their power restored. We chose 80% of customers’ restoration time
from a sensitivity analysis.

1 data.floridatoday.com/storm-power-outages/
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Fig. 1 Power outage for Broward County after Hurricane Irma and considered restoration time in
this study

While each customer’s power may be restored at different times, companies typically
make broad announcements that provide a single approximate restoration time for each county or
region (Liu et al. 2007). Liu et al. (2007) estimated restoration times as the time by which an
arbitrary Z% (say 90%) of the customers of the county will have their power restored. They
collected power outage data from a utility company, allowing them to obtain such a threshold
directly from power companies. Since we did not collect datasets from power companies, it was
not possible for us to know the company-specific threshold (Z%) values. In this study, we chose
a threshold Z% to quantify restoration time based on a sensitivity analysis. For sensitivity
analysis, we chose three different values of the threshold, Z = 80%, 85%, and 90%. We did not
use a threshold of the time by which Z > 90% of the customers in a county will have their power
restored because of model generalizability. A choice of Z > 90% may overestimate the
restoration time. We ran the GAFT model for the three values of Z%, and selected the threshold
based on average log pseudo marginal likelihood (LPML). The average LPML values were
found to be -1.276, -1.279, and -1.517 for 80%, 85%, and 90% of customers restoration time,
respectively. We used average LPML instead of total LPML to compare the models
(Iraganaboina and Eluru 2021) because the number of observations changes with the selection of
the threshold. The total LPML value is likely to decrease with the increase in the number of
observations. So, a higher value of total LPML can result from a smaller number of observations
in the model rather than indicating good model performance. The average LPML value is higher
for the model with 80% selected as a threshold to calculate the restoration time. Thus, we chose a
threshold of Z% = 80% to quantify the restoration time.

Although Florida consists of 67 counties, we considered 58 counties in this study. We did
not consider nine counties because either there was no power outage (that is, no customer lost
power, as in counties such as Escambia, Holmes, Oskaloosa, Santa Rosa, and Walton) or the
percentage of customers that lost power was less than 20%. Thus, for these counties, the
restoration time would be zero. Also, we were interested in estimating power outage due to
hurricane impacts. From the wind speed values, it was evident that those counties also had very



low (close to zero) sustained wind speed, indicating that hurricane did not impact these counties.
In most of the counties (19 counties), it took 3 days to restore the power service for at least 80%
of their customers (Fig. 2).
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Fig. 2 Histogram for restoration times of in Florida after Hurricane Irma

3.2 Hazard Characteristics
Under hazard characteristics we considered four types of covariates: maximum sustained wind
speed, the percentage of power outage in each county, the percentage of census tracts prone to
flash flood in each county, and the percentage of census tracts prone to sea level rise in each
county. The wind speed for Hurricane Irma was estimated from the HAZUS-MH wind model
(Vickery et al. 2000; Vickery et al. 2006). This model creates the wind speed profile
probabilistically due to a hurricane event. Using this model, we obtained maximum sustained
wind speed at census tract level based on their distance to the center of the hurricane. For a given
county, the highest wind speed among all census tracts was considered as the maximum
sustained wind speed for that county.

We considered the maximum percentage of customers faced power outage from 9to 28
September 2017. We collected this information from the Florida Division of Emergency
Management.

3.3 Built Environment Characteristics

For built environment characteristics, we considered the percentage of customers served by
investor-owned company, and power system variables. According to the Florida Public Service
Commission (FPSC), there are three types of electric service providers in Florida: investor-
owned electric utilities, rural electric cooperatives, and municipal electric utilities. Investor-
owned electric utilities include Florida Power and Light Company, Duke Energy, Tampa Electric
Company, Gulf Power Company, and Florida Public Utilities cooperation. Florida also has 34
municipally owned electric utilities and 18 rural electric cooperatives. Investor-owned electric
companies are private companies not associated with any government agency. We considered the
percentage of customers served by investor-owned electric utilities in each county. We added
this variable for two purposes: (1) to understand how these companies responded during the
restoration process and (2) if there is any discrepancy in restoration across various electric
companies. We collected the number of total customers under each type of electric companies



along with total number of customers for each county from FPSC,? publicly available in their
database.

We also considered the number of substations, power plants, and total length of overhead
line in each county. They provide a measure of the extent of power system. We collected power
system data from U.S. Energy Information Administration, EIA.3

3.4 Sociodemographic Characteristics

For sociodemographic characteristics, we included the median income of the households, and the
percentage of non-White American population in each county from the 2013-2017 American
Community Survey (ACS) 5-Year Data Profile.* We standardized median income before adding
to the model.

The descriptive statistics of the data are given in Table 1. To understand the presence of
correlations among the predictors, Pearson’s correlation was calculated (Fig. 3). Correlation
values among the number of power plants, the number of substations, and total length of
overhead power lines are high (0.72 and 0.77) (Raithel 2008). For the number of substations and
total length of overhead lines, variance inflation factors were 8.1 and 11.8, respectively,
indicating the presence of multicollinearity issue. So, we considered only the number of power
plants among these three variables to simplify the statistical model. The multicollinearity
condition number with our considered six variables was 8.189 (which was below 30), indicating
that collinearity should not be an issue.

2 psc.state.fl.us/Home/HurricaneReport
3 eia.gov/maps/layer_info-m.php

4census.gov/acs/www/data/data-tables-and-tools/data-profiles/2017/
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Fig. 3 Pearson’s correlations between variables
Table 1 Descriptive statistics of continuous variables
Variable Mean Std. Min Median Max
Dependent o 3.83 1.93 1 3 9
Restoration time (Days)
Variable
Hazard Maximum sustained wind speed 60.90 27.83 0 64 114
Characteristics (mph)
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% of customers who faced power 77.09 17.28 39 78.50 100

outage

% of customers served by 55.03 33.90 0 53 100

investor-owned power company
Built Environment

Number of power plants 3.87 4.37 0 2 25
Characteristics
Number of substations 38.82 42.15 2 23.50 218
Length of overhead line (km) 1,065.62 | 736.96 144.52 833.43 2,937.25
Sociodemographic % of non-White population 33.22 15.70 11.40 28.50 86.30
Characteristics Median income (USD) 46,242 9,029 31,816 45,424 73,640

4. Methodological Approach

The methodological approach in this study has two main parts. First, we determined the spatial
distribution of the restoration time based on the disruption of electricity services. Second, we
adopted a statistical modeling approach to determine the factors associated with restoration time
from power outages.

4.1 Spatial Distribution for Restoration Time of Power Outage

To identify if there is a clustering pattern between restoration times of electricity disruption in
the affected areas, we used global Moran’s I (Eq. 1) (Ord and Getis 1995), which is typically
used to estimate spatial autocorrelation. Moran’s I was used by Jackson et al. (2021) to
understand the spatial trends in county-level COVID-19 cases and fatalities in the United States
during the first year of the pandemic.

_ N %i2wi;X — X)X —X) ()
XX wij XX — X)?

I

where, w;; is the spatial weight, having a value of 1 if county i has a shared boundary with

another county j or having a value of 0 if otherwise; X; is the restoration time; and X is the
average restoration time of all counties considered in the analysis.

Global Moran’s I does not tell anything about the places where the patterns are located.
The concept of a local indicator of spatial association was suggested to remedy this situation
(Anselin 1995). We applied local Moran’s I (Eq. 2) to understand where the clustering patterns

are located.
I = ZiZWiij (2)
j

where z; is the deviation from the mean and the summation over j such that only neighboring
values are included. In addition to local Moran’s I, we plotted a choropleth map to visualize the
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spatial distribution of restoration times. We used ESDA and PySAL packages in Python 3.9 to
calculate the global and local Moran’s I.

4.2 Statistical Modeling Approach

To determine the effects of the factors (described in Sect. 3) on restoration times from power
outages, we developed a generalized accelerated failure time model (GAFT). To account for the
spatial dependence, a random effect (frailty) is introduced into the linear predictor of survival
model (a survival model is a statistical approach used to analyze the time until an event of
interest occurs). Both georeferenced (that is, latitude and longitude are recorded) and areal
referenced (that is, county of residence recorded) spatial data are handled via random effects
(frailties) (Zhou et al. 2020). The GAFT model is given by the following equations (Zhou et al.
2020).

Sxi; () = Soz; (e_Xi?ﬁ_vi t) 3)

Or equivalently,

yij = log(t”) = X;Z;E'i‘ v; + Eij (4)

where X; ; 18 the matrix of covariates with an intercept term, X lT] means the transpose matrix of

Xijs £ is the vector of corresponding coefficients, t; ; 1s the time, €;; is a heteroscedastic error
term independent of v;, and Sy (t) is the baseline survival function. In the GAFT model, S, (t)
may depend on certain covariates, z;;, where z;; is a subset of X;;; in this study, we

considered z;; = X;;. In the AFT model, S, (t) is assumed to be a static parametric survival
function, free of covariates. That is, the resulting survival curves are not allowed to vary for
different covariates. In practical application, this assumption does not always seem to be true
(Hensher and Mannering 1994). In the generalized AFT model, S,(t) is allowed to flexibly vary
with covariates, which has increased the flexibility of the model. Finally, v; is an unobserved
frailty term associated with a county; i indicates the index of an observation (that is, county) and
Jj indicates the index of a predictor variable.

We estimated this model in R using the spBayesSurv package and the frailty GAFT
function. The detailed description of this package and model can be found in Zhou et al. (2020)
and Hsu et al. (2015). As this is a Bayesian modeling approach, it requires to set the prior
distributions of the parameters based on domain knowledge. However, this prior knowledge is
usually not available (Ulak et al. 2018). In this study, we set most of the prior information
according to the default values of frailty GAFT function under spBayesSurv package in R due to
the unavailability of the prior information about the actual parameter distributions and validated
it using the trace plots obtained from the model.

The Bayesian specification for prior distribution of the model used in this study is given
below (Hsu et al. 2015; Zhou et al. 2020):
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For the coefficients (f), a normally distributed prior is considered. For the frailty terms,
in the GAFT model, a conditional auto-regressive (CAR) prior is chosen for areal data
(indicating that the spatial data are included based over a geographic area) and a GRF prior is
chosen for georeferenced data (indicating that the data are included based on coordinates). We
chose CAR prior to model the frailty as this study is county-level analysis. Since we included
spatial data at a county level, we can assume it as areal referenced data instead of georeferenced
data. For areal data, the intrinsic conditional auto-regressive (ICAR) prior smooths neighboring
geographic-unit frailties v = (vy, ... eo. ov.., V)T Details on ICAR (72) prior (Eq. 6) is given by
the set of conditional distributions in Eq. 9. Adjacency matrix, E = [e;;] of m X m dimension for
the m regions is used to calculate the frailties, v;. In Eq. 9, e;; is 1 if counties i and j share a
common boundary, 0 otherwise and e;; = 0. While calculating v for a region i, the other regions
under consideration are j. e;, = XL, e;;, is the number of neighbors for region i (Zhou et al.
2017, 2020).

eijV; i) P m )

V; |{U]}]¢1~N(

€i+ €it+

In GAFT, for spatial analysis, the error term (€;;) is not independent. For this reason, a
heteroscedastic error term is introduced over a probability measure G,, defined on R for every
z € X and a linear dependent tailfree processes (LDTFP) prior is considered for G,. An LDTFP
centered at a normal distribution ¢, is focused with mean 0 and variance ¢ 2, that is, E(G,) =
N(0,0?) for every z € X (details are described in Jara and Hanson (2011) and Zhou et al.
(2017)).

Since the posterior distribution for coefficients of the covariates are unknown, we ran
Markov chain Monte Carlo (MCMC) simulation. For MCMC simulation, we ran 4 chains, where
16,000 scans were thinned after a burn-in period of 30,000 based upon examination of trace plots
for model parameters (Fig. 6). A trace plot is a diagnostic tool for assessing the mixing of a
chain. It shows the iteration number against the value of the draw of the parameter at each
iteration. It also shows whether a chain gets stuck in certain areas of the parameter space,
indicating bad mixing.

13



5. Results
This section first presents the spatial distribution of power outage restoration time. Second, it
presents the result from the statistical model.

5.1 Result for Spatial Distribution

We mapped the restoration time with associated county over Florida (Fig. 4). Figure 4 shows
that the southern parts of Florida (Monroe, Lee, Collier, Charlotte, Broward, Miami-Dade, Palm-
Beach, and Hendry Counties) needed priority during restoration process after Hurricane Irma. In
addition, it shows that counties in the middle of Florida (Seminole, Orange, St. Johns, Putnam,
and Marion) and some in the North (Hamilton, Suwannee, and Lafayette) faced moderate (4—7
days) duration of disruption and needed attention for fast recovery.
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Fig. 4 Restoration time in Florida after Hurricane Irma along with the hurricane path (in blue
color)

The obtained global Moran’s I value is 0.58 (p-value = 0.001), indicating the presence of
spatial autocorrelation. Figure 5 shows locations of the clustering patterns for the restoration
time from power outages. The global Moran’s I test within the entire study area shows
significant (p < 0.05) spatial autocorrelation for our target attribute.
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Fig. 5 Local Moran’s I plot for restoration time of power outage

Local Moran’s I plot (Fig. 5) shows the clusters of longer restoration time (hot spots) and
the clusters of short restoration time. The local Moran’s I test shows considerable spatial
clustering for 17 counties (local clusters are significant, p < 0.05). The grey areas in Fig. S are
the locations where no significant spatial patterns were found; the red areas are the counties
where people had longer restoration time living closely to other counties with longer restoration
time. The low with low (L-L) are all the blue areas, those are locations where people had shorter
restoration time living closely to other counties with shorter time of restoration process. For
Hurricane Irma in Florida, we could not find any HL or LH clustering pattern.

5.2 Result from Statistical Analysis
For statistical analysis, we considered spatial models because of the obtained global Moran’s I
statistics found in Sect. 5.1. A high Moran’s I value of 0.58 (p-value = 0.001) clearly indicates
the presence of spatial correlations among observations. As such, a non-spatial model assuming
independent and identically distributed (IID) observations, ignoring spatial correlations, will not
be appropriate. Spatial survival analysis is used to analyze clustered time to event data when the
clustering issue arises from geographical regions (Banerjee 2016).

Table 2 presents the results of the generalized accelerated failure time (GAFT) model.
Two separate models were fitted with and without considering spatial correlation. The proposed
GAFT model with CAR frailties has the larger log-pseudo marginal likelihood (LPML) (-74)
compared to the non-frailty GAFT model (-83), indicating that considering spatial correlation
improves the model fit by 12%.

Bayes factors is a Bayesian alternative to classical hypothesis testing. The Bayes factors
for testing all the covariates’ effects on baseline survival were found to be greater than 100,
indicating that the baseline survival function (Eq. 3) under the AFT model depends on these
variables, and thus the GAFT model should be considered (Zhou et al. 2020). The mean posterior
inference of conditional CAR frailty variable was found to be 0.212, representing the amount of
spatial variation across counties. The trace plots of the regression coefficients (Fig. 6) have even
and stationary pattern, indicating that MCMC simulations converged (Zhou et al. 2020).
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Fig. 6 Trace plots of regression coefficients

Standard deviations of the maximum sustained wind speed, the percentage of customers
served by investor-owned power companies, the percentage of customers faced power outages,
the number of power plants, and median income are small compared to the mean (Table 2).
Moreover, 90% high posterior density interval of the regression coefficients do not contain zero,
indicating that these variables have significant influence on restoration time.
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Table 2 Posterior inference of regression coefficients

Model with Conditional Auto- Model without CAR Frailties
Regressive (CAR) Frailties
Variable Mean (Std. dev) 90% HPD Mean (Std. dev) 90% HPD
Intercept -0.746 (0.347) ** [-1.323,-0.192] | -0.759 (0.224) ** | [-1.121,-0.389]

Maximum sustained
0.013 (0.003) ** [0.007, 0.019] 0.011 (0.0016) ** [0.009, 0.014]
wind speed

% of customers faced
0.0117 (0.0029) ** [0.007,0.017] 0.012 (0.0029) ** [0.007,0.017]
power outage

% of customers
served by investor- 0.0062 (0.002) ** [0.003, 0.009] 0.006 (0.0012) ** [0.004,0.007]

owned company

Number of power
-0.0134 (0.008) * | [-0.027, -0.0002] | -0.023 (0.009) ** [-0.041, -0.008]
plants
Median income -0.064 (0.047) [-0.14, 0.013] -0.062 (0.042) * [-0.12, -0.0009]

% of non-White

-0.001 (0.003) [-0.006, 0.004] 0.003 (0.002) [-0.001, 0.007]

population

Log pseudo marginal
likelihood

* Significant at the 90% highest posterior density (HPD) interval.

** Significant at the 95% HPD interval.

90% HPD is reported, variables with ** were also significant at 95% HPD.

74 -83

Among hazard characteristics, maximum sustained wind speed and the percentage of
customers faced power outages were found to be significant and positively associated with
power service restoration time. A positive association means that an increase in a predictor
variable will increase restoration time and a negative association indicates the opposite. The
exponentiated coefficient of maximum sustained wind speed (e®°13 = 1.013) is the factor by
which the mean restoration time increases by 1.3% with one mph increase in maximum sustained
wind speed. One percent increase in % of customers without power (e%°117 = 1.0117) increases
the mean restoration time by 1.17%. Among built environment characteristics, percentage of
customers served by investor-owned power companies and the number of power plants were
found to be significant. Among sociodemographic variables, median income was found to be
statistically significant in the model without CAR frailties. After adding counties as frailties, the
model accounted for spatial autocorrelation, reducing the apparent significance of median
income and number of power plants.

Since Hurricane Irma’s data were used to fit the GAFT model, we generated survival
curves for counties affected by Hurricane Michael to ensure that the model is not overfitting. The
model captured restoration time with minimal deviation for seven counties present in our study
area. Among those seven counties, Fig. 7 shows Leon and Franklin Counties’ survival curves
(median with 95% confidence interval) predicted by the model. Survival curves of all seven
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counties indicated that Jefferson, Leon, Wakulla, Franklin, Gadsden, Liberty, and Gulf Counties
had median restoration times of about 2, 4, 5, 6, 10, 12, and 12 days, respectively and these
counties had actual restoration times of 2, 4, 4, 6, 11, 12, and 13 days, respectively.

——  Leon
Franklin
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08

Survival

04

02

0.0

0 2 4 6 8

Time (Day)
Fig. 7 Survival curves for Hurricane Michael

6. Discussion

In this study, we examined how hazard, built environment, and socioeconomic characteristics of
a region are associated with restoration time of power outages due to a hurricane. Our results
indicate that counties with higher wind speed had longer restoration times. It is likely that high
wind speed during Hurricane Irma caused greater damages to the electric infrastructure systems,
causing a longer restoration time. The positive coefficient for the percentage of customers faced
power outage indicates that for regions where higher percentage of customers were out of
electricity, it took longer time for the maintenance teams to restore power service in such places.

The percentage of customers of a county served by an investor-owned utility company is
also positively associated with restoration time. It indicates that counties with a higher
percentage of customers served by investor-owned electric companies faced longer restoration
time, adjusting for other covariates and county of residence. This may have happened because
the regions where most of the households are served by investor-owned utility companies also
faced higher wind speed, and had a large number of customers with power outages. As a result, it
took long time for the investor-owned power companies to restore electricity disruption.

The number of power plants is negatively associated with restoration time, adjusting for
other covariates and county of residence. That is, counties with more power plants were able to
restore their power services fast. A greater number of power plants indicates a more extensive
and better power system of a region. In other words, these areas are prioritized to get more
systems up and running, resulting in a shorter restoration time of power outages. Utility
companies might have prioritized restoration in regions with large number of power plants since
component-based restoration strategies prioritize critical components in the following order:
power plants, substations, transmissions, and distributions (Esmalian et al. 2022). Moreover, we
found that it took a longer time for investor-owned power companies to restore electricity
disruption, perhaps because of a high number of outages present in the regions served by
investor-owned companies. Hence, instead of a component-based restoration strategy, an outage-
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based restoration strategy can be prioritized, focusing the regions with a greater number of
customers without power. Population and vulnerability-based restoration strategies were found to
be better than a component based strategy in the agent-based simulation by Esmalian et al.
(2022).

Figure 8 highlights counties with significant factors of longer power service restoration
time using county-level data. For example, maximum sustained wind speeds in southwest
counties of Florida (Monroe, Collier, Lee, Hendry, and Highlands) were greater than southeast
counties (Miami-Dade, Broward, Palm Beach, Martin, and St. Lucie) and northwest counties
(Taylor, Jefferson, Leon, Wakulla, Gadsden, Gadsden, Liberty, and Franklin). As a result,
southwest counties on average (8 days) had longer time of power outage, southeast counties
faced on average 4.5 days, and northwest counties on average 1.75 days of power disruption.
Counties where 75% or more customers were served by investor-owned power companies on
average faced 4.75 days of electricity disruption. Collier and Highlands Counties faced 9 days of
power disruption where about 87% of the customers were served by investor-owned power
companies. In such counties, the mean percentage of customers who faced power disruption was
also higher (79%). In Collier and Highlands, about 97% customers lost power services due to
Hurricane Irma. Counties with 4 or more number of power plants (Polk, Leon, Hillsborough,
Alachua, Orange, and Osceola) on average faced 3.5 days of power disruption.

Previous studies on Hurricanes Irma (Mitsova et al. 2018) and Hurricanes Bonnie,
Isabell, Dennis, and Floyd (Liu et al. 2007) showed that maximum sustained wind speed is
positively associated with power service restoration time. The number of power plants is
important to predict thunderstorm-induced power outages (Kabir et al. 2019). Mitsova et al.
(2018) found longer disruption for municipal owned power companies and rural cooperatives.
Besides, they found the percentage of Hispanic population to be significant, which contradict
with our results. One possible reason for these discrepancies could be that Mitsova et al. (2018)
considered wind speed information as a dichotomous variable, which cannot account for the
differences of wind speeds across counties. Thus, the effect of wind speed on restoration times is
captured by other variables (for example, % of customers served by different power companies
and % of Hispanic population). On the contrary, we have considered actual maximum sustained
wind speed for each county. It is often assumed that poor, minority communities are less
prioritized, reflecting inequality in power service restoration activities. Previous studies also
found disparities in experienced hardship due to power outages in Puerto Rico and Texas during
Hurricane Maria and Harvey (Coleman et al. 2020; Azad and Ghandehari 2021). Consistent with
these studies, we found disparity issue with respect to median income for power restoration time
in Florida during Hurricane Irma. This necessitates accelerated recovery activities and better
infrastructure systems in low-income communities to make them resilient to hurricane impacts.

Based on the significant factors (for example, maximum sustained wind speed, % of
customers faced power outage, % of customers served by investor-owned power companies, and
the number of power plants) obtained from the GAFT model with CAR frailties, areas likely to
face a longer disruption time after a hurricane can be identified. For most of the counties, these
four variables could capture the possible critical regions for restoration process of power outages
(Fig. 8).
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Fig. 8 Counties in Florida mapped by significant variables for power service restoration time (the
color bar represents the factors and dots represent the restoration time in days)

6. Conclusion

In this study, spatial distribution of restoration time was investigated at a county level to identify
less resilient location for electricity disruption. We presented a generalized accelerated failure
time (GAFT) model to determine the factors that have impacts on electricity infrastructure
systems. Considering spatial correlation in time to event data analysis has improved the model fit
by 12% compared to the model without considering spatial correlation. The proposed model
holds potential for the analysis of power service restoration time due to extreme events as it can
consider spatial clustering particularly for time as a dependent variable. The findings of this
study suggest that counties with a higher percentage of customers served by investor-owned
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electric companies, smaller number of power plants, and lower median household income faced
power outage for a longer time. Hence, recovery strategies based on number of outages and
vulnerability (in terms of median income) may improve power outage recovery time.

The described approaches and finding of the study can aid policymakers and emergency
management officials in understanding factors that should be given importance during the
restoration process after a hurricane. This study will also allow them to identify which critical
counties or regions need attention for restoration process and can ensure rapid restoration and
minimize losses in the affected regions. In general, electricity companies have the knowledge
about power system variables (for example, the number of power plants, substations, and total
length of overhead lines) and number of outages but do not have much knowledge about disaster
conditions. Therefore, if utility companies can work with emergency managers to understand the
relationship between disaster condition and electricity disruption, they could take necessary steps
that would account for disaster conditions. Such efforts can improve electrical grid resilience
during extreme events and lead to improved recovery outcomes.

Most previous studies (Liu et al. 2007; Kabir et al. 2019) were based on proprietary data
from utility companies. This does not allow reproducibility of the research and prevents
implementation in actual crisis management. All the factors included in this study were collected
from publicly available data. For example, projected hurricane path or wind speed information
can be obtained from the National Weather Service (NWS) and National Hurricane Center
(NHC) when planning for power restoration before a hurricane strikes. Similarly, socioeconomic
characteristics of a community are available in ACS. Thus, the variables used in this study can be
easily collected and used before the occurrence of a hurricane to predict restoration time. Such
predictions will help policymakers and emergency management officials to accelerate the overall
restoration process from power outages.

Our analysis has several limitations, which include: this study is a county-level analysis
for power service restoration time. However, county is not the finest geographic unit. In the
future, focus can be given at smaller level of geographic units (for example, county subdivision,
zip code, or census tracts) based on data availability. These limitations can be overcome if
relevant agencies such as utility companies share outage data at a higher resolution.
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