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Abstract— Convex programming with linear constraints
plays an important role in the operation of a humber of
everyday systems. However, absent any additional protec-
tions, revealing or acting on the solutions to such prob-
lems may reveal information about their constraints, which
can be sensitive. Therefore, in this paper, we introduce
a method to keep linear constraints private when solving
a convex program. First, we prove that this method is
differentially private and always generates a feasible opti-
mization problem (i.e., one whose solution exists). Then we
show that the solution to the privatized problem also satis-
fies the original, non-private constraints. Next, we bound
the expected loss in performance from privacy, which is
measured by comparing the cost with privacy to that with-
out privacy. Simulation results apply this framework to con-
strained policy synthesis in a Markov decision process, and
they show that a typical privacy implementation induces
only an approximately 9% loss in solution quality.

Index Terms— Differential Privacy, Optimization, Markov
Processes

[. INTRODUCTION

ONVEX optimization problems with linear constraints
appear in many applications, such as power grids [1],
transportation systems [2], and resource allocation prob-
lems [3]. The constraints in such problems can be sensitive,
e.g., the load flow in a power grid, the time to travel between
locations, and the costs of resources, which may reveal infor-
mation about individuals and/or trade secrets. The solutions
to these problems are necessary for these systems to operate;
however, simply computing and using these solutions may
reveal the sensitive constraints used to generate them.
Interest has therefore arisen in solving these problems
while both (i) preserving the privacy of constraints, and (ii)
ensuring that all constraints are still satisfied at a solution.
In this paper we address an open question posed in [4],
namely, protecting the privacy of constraints, specifically the
constraint coefficient matrix, while maintaining feasibility with
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respect to the original, non-private constraints. For linear
constraints Az < b, the work in [4] privatized b while ensuring
constraint satisfaction, and [4] identified the privatization of A
with guaranteed constraint satisfaction as an open problem.
That is the problem we solve.

To provide privacy to these constraints, we use differential
privacy. Differential privacy is a statistical notion of privacy
originally developed to protect entries in databases [5]. We
use it in this work partly because of its immunity to post-
processing [6], namely that arbitrary computations on private
data do not weaken differential privacy. Therefore, we first
privatize each constraint in the constraint coefficient matrix,
then solve the resulting optimization problem, which is simply
a form of post-processing private data. Thus, the solution
preserves the privacy of the constraints, as do any downstream
computations that use it.

Some common privacy mechanisms, e.g., the Gaussian and
Laplace mechanisms [6], add noise with unbounded support.
Here, such mechanisms can perturb constraints by arbitrarily
far amounts, which can cause a solution not to exist. Therefore,
we use the truncated Laplace mechanism [4], [7], which allows
us to privatize constraints such that they only become tighter.
We use this property to ensure that (i) a solution always exists
for a private problem, and (ii) the solution to the private
problem satisfies the constraints of the original, non-private
problem. Then, we bound the change in optimal cost due
to privacy, which directly relates privacy to performance. To
summarize, our contributions are:

e« We develop a differential privacy mechanism for the
coefficient matrix in linear constraints (Theorem [T)).

o We prove that privatized problems have solutions that
satisfy the constraints of their corresponding original,
non-private problems (Theorem [Z)).

« We bound the expected change in optimal cost due to
privatizing constraints (Theorem [3).

o We empirically validate the performance of this method
on constrained Markov decision processes (Section [V).

A. Related Work

There is a large literature on differential privacy in optimiza-
tion, specifically looking at privacy for objective functions [8]—
[13]. We differ from these approaches since privacy for the
objective function does not affect feasibility, and thus a new
approach must be developed to maintain feasibility under
privacy of constraints. Privacy for linear programming, a



special case of convex optimization with linear constraints,
was addressed in [4], [14], [15]. While [14], [15] both privatize
constraints, they allow for constraint violation, which may be
unacceptable, e.g., if constraints encode safety.

B. Notation

For N € N, we use [N] := {1,2,...,N}. We use ¢(B)
to be the set of probability distributions over a finite set B,
and | - | denotes the cardinality of a set. Tr (M) denotes the
trace of a square matrix M.

Il. BACKGROUND AND PROBLEM FORMULATION
A. Convex Optimization with Linear Constraints
We consider optimization problems of the form
maximize g(z)

Az < b,

(P)

subject to x>0,

where g : R™ — R is L-Lipschitz and concave, A €
R™*"™ is the “constraint coefficient matrix”, and b € R™ is
the “constraint vector”. We use .« to denote the set of all
possible A matrices.

Assumption 1. The set <7 is bounded and the bounds are
publicly available.

Assumption [I] is quite mild since the entries of A may
represent physical quantities that do not exceed certain bounds,
e.g., with voltages in a power grid. We consider the case in
which all constraints require privacy, though this approach can
be applied as-is to any subset of constraints.

Assumption 2. The feasible region {x € R" : Az < b} has
non-empty interior for all A € «7.

Remark 1. If Assumption [2| fails, then any perturbation to
the constraints can cause infeasibility, making such constraints
fundamentally incompatible with privacy.

It has been observed [4], [14], [15] that the public release
of the solution to Problem (P) may reveal the A matrix used
to generate it, and thus we apply differential privacy to A.

B. Differential Privacy

Overall, the goal of differential privacy is to make “similar”
pieces of data appear approximately indistinguishable. The
notion of “similar” is defined by an adjacency relation. Many
adjacency relations exist, and we present the one used in the
remainder of the paper; see [6] for additional background.

Definition 1 (Adjacency). For a constant £ > 0, two vec-
tors v,w € R™ are said to be adjacent if there exists an
index j € [n] such that (i) v; = w; for all « € [n]\{j} and
(i) |[v —w|; < k. If two vectors v and w are adjacent, we
write Adj, (v, w) = 1; otherwise we write Adj; (v, w) = 0.

To make adjacent pieces of data appear approximately
indistinguishable, we implement differential privacy, which is
done using a randomized map called a “mechanism”. In its
general form, differential privacy protects a sensitive piece of

data = by randomizing some function of it, say f(x). In this
work, the sensitive data we consider is the matrix A, and we
privatize the output of the identity map acting on A, which
privatizes A itself. This is known as “input perturbation”, and
next we define differential privacy for this approach.

Definition 2 (Differential Privacy; [6]). Fix a probability space
(Q,F,B). Let k > 0, 6 € [0,2), and € > 0 be given.
A mechanism .# : R™ x Q — R™ is (¢, ¢)-differentially
private if for all v,w € R™ that are adjacent in the sense of
Definition [1} we have P[.# (v) € T] < e°P[#/ (w) € T] + 6
for all Borel measurable sets 7' C R™.

The strength of privacy is set by ¢ and §, and smaller
values of both imply stronger privacy. The value of € quantifies
the leakage of sensitive information, and typical values for it
are 0.1 to 10 [16]. The value of § can be interpreted as the
probability that more information is leaked than e allows, and
typical values for ¢ range from O to 0.05 [17].

Lemma 1 (Immunity to Post-Processing; [6]). Let .Z : R™ x
Q — R™ be an (¢, d)-differentially private mechanism. Let h :
R™ — RP be an arbitrary mapping. Then the composition h o
A :R" — RP is (e, §)-differentially private.

In the context of convex programming with linear con-
straints, Lemma [I] implies that we can privatize the constraint
coefficient matrix A, and the solution to the privatized opti-
mization problem preserves the privacy of A.

C. Problem Statements

Consider Problem (P) . Computing =* depends on the sen-
sitive constraint coefficient matrix A, and simply computing
and using z* can reveal information about A. Therefore, we
aim to develop a framework for solving problems in the form
of Problem (P) that preserves the privacy of A while still
satisfying the constraints in Problem (P) . This will be done
by solving the following problems.

Problem 1. Develop a privacy mechanism to privatize the
constraint coefficient matrix.

Problem 2. Prove that the privacy mechanism produces
constraints such that the solution to the privately generated
optimization problem also satisfies the constraints of the
original, non-private problem.

Problem 3. Bound the average change in the cost between
the non-private solution and the privatized solution.

[1l. PRIVATE LINEAR CONSTRAINTS

In this section, we solve Problems [T] and [2] Specifically,
we (i) detail our approach to implementing privacy for the A
matrix, (ii) prove that is it (e, 0)-differentially private, and
(iii) show that solutions computed with private constraints
also satisfy the corresponding non-private constraints. Entries
of A that equal zero may represent that there is physically no
relationship between a decision variable and a constraint. For
example, in a Markov decision process that models a traffic
system, a zero transition probability may indicate that one
street does not connect to another, which is publicly known.
Thus, we will only privatize the non-zero entries of A.



A. Implementing Differential Privacy

For a given A matrix, we use a) to denote the vector of
non-zero entries in row ¢, and we use a?)j to denote the jth
entry in that vector. To implement privacy we will compute
d?’j = a?,j + 8; + 2,5, where z; ; is privacy noise; we add s;
to tighten the constraints.

We will add bounded noise to ensure that z; ; only tightens
the constraints when privatizing A; if the constraints are only
tightened, then privacy can only shrink the feasible region,
and thus satisfaction of the privatized constraints implies
satisfaction of the original, non-private constraints. We do this
with the truncated Laplace mechanism.

Lemma 2 (Truncated Laplace Mechanism; [4], [7]). Lete > 0
and § € (0, %] be given, and fix the adjacency relation
from Definition [I| The Truncated Laplace Mechanism takes
sensitive data z € R™ as input and outputs private data z €
R™, where z; € S and z ~ Lp(0,S) for all i € [m)].
Here, Lr(0,S) is the truncated Laplace distribution with
density f(z;) = 4 exp (—=£|z), where S := [—s,s] and
the values of s and —s are bounds on the support of the
private outputs. We set Z; = P(z; < |s|). Then the truncated
Laplace mechanism is (e, d)-differentially private if o > %

ands:%log(@nLl).

We apply this mechanism to each row of a constraint
coefficient matrix A, which provides row-wise privacy. This
approach in fact provides privacy to the entire A matrix.

Lemma 3 (Parallel Composition; [18]). Consider
a database D  partitioned into  disjoint  sub-
sets D1,Ds,..., Dy, and suppose that there are privacy
mechanisms Ay, Mo, ..., My, where MA; is (€,0)-

differentially private for all ¢ € [N]. Then the release of
the queries #1(D1), #2(D3),..., #n(Dy) provides D
with (e, §)-differential privacy.

We consider A and partition it into its rows, then priva-
tize each row individually. Lemma [3] ensures that doing so
provides (e, §)-differential privacy to the A matrix as a whole.

Along with privacy, we must also enforce feasibility. In
order to guarantee that the privately obtained solution Z* is
feasible with respect to the non-private problem, it is clear
that the two problems must have at least one feasible point in
common. We state this formally in the following assumption.

Assumption 3 (Perturbed Feasibility). The set S =

Nace {1z 1 Az < b} is not empty.

In words, Assumption [3] says that there exists at least
one point that satisfies the constraints produced by every
realization of the constraint coefficient matrix A. With As-
sumption [3, we post-process d; ; = af ; + s; + z; ; to obtain
a;; = min{ag;,sup,, a?}j}, and we do so for each (i,7)
such that a; ; is non-zero. The output of these computations
is the private constraint coefficient matrix, denoted A.

Remark 2. Taking the minimum in Ez?,j ensures that each

entry in A appears in some matrix in /. The supremum is
finite since & is bounded and does not depend on sensitive
information according to Assumption [I]

With this, we solve the optimization problem

maximize g¢(z)
@ N (DP-P)
Az <b,

subject to x> 0.

Algorithm [I] provides a unified overview of our approach.

Algorithm 1: Privately Solving Convex Problems with
Linear Constraints

Inputs: Problem (P), ¢, 4, k;

Outputs: Privacy-preserving solution &*;

Set o = &
€

3
4 for all i € [m] do
5
6

[ ST

Count the non-zero entries in row %, namely n?;
Compute the support for the truncated Laplace

0] €
mechanism, i.e., s; = flog (@ + 1);

for all j € [n] do

0 _ o 0 0 1.
8 Set @) ; = min {af ; + s; + z; ;, sup ad i}
9 end
10 end
11 Form A by replacing each non-zero entry a’ ;in A
S1 =0 . '
with a; i

12 Solve Problem (via any algorithm) to find z*

B. Characterizing Privacy

Next we prove that Algorithm [T| preserves the privacy of A.
To do so, we show how Lemma E] can be extended using
Lemma [3] to develop a new privacy mechanism that generates
a random matrix in which each entry is a truncated Laplace
random variable.

Theorem 1 (Solution to Problem [I). Fix an adjacency pa-
rameter k > 0, let privacy parameters € > 0 and § € |0, %)
be given, and let Assumptions hold. Then Algorithm
keeps A (e, 0)-differentially private with respect to the adja-

cency relation in Definition [I]
Proof. See Appendix O

Theorem [I] allows us to privatize each constraint individ-
ually, and the resulting constraint coefficient matrix A will
be (e, d)-differentially private. Solving Problem then
preserves the privacy of A, and the solution Z* can be released
and acted on without harming privacy.

Theorem 2 (Solution to Problem [2). Fix an adjacency pa-
rameter k > 0, let privacy parameters ¢ > 0 and 0 €
[0, %) be given, and let Assumptions hold. Fix a constant
vector b. Then the Problem produces a solution that
also satisfies the constraints in Problem (P).

Proof. See Appendix [B] O

Theorem [2| guarantees that after privacy is implemented, the
resulting problem is feasible. Since Algorithm 1 only tightens
the constraints, this implies that a privatized solution Z* always
exists and is in the feasible set of the original, non-private
problem. Previous works that sought to provide privacy to
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the A matrix, namely [14], [15], cannot guarantee constraint
satisfaction. Thus, Theorem [2| sets Algorithm |I| apart as the
only approach to the authors’ knowledge that can guarantee
feasibility under privacy for the A matrix.

IV. SOLUTION ACCURACY

In this section, we solve Problem [3] To do so, we compute
an upper bound on the change in cost between the nominally
generated solution and the privately generated solution. This
bound depends on (i) the Lipschitz constant of the objective
function, (ii) the largest feasible solution of the original, non-
private constraint coefficient matrix, (iii) the largest possible
constraint coefficients allowable from .7, and (iv) the “close-
ness” of the private and non-private feasible regions.

For (i), we state this as an assumption below.

Assumption 4. The objective function g : R™ — R is L-
Lipschitz with respect to the £o-norm on R™.

For (ii), we define

A = [sup ai jlic(m].jeln) @
4

as the matrix where each entry is its largest value in the set
of all constraint coefficient matrices 7. For (iii), we define

F(A) = {z €R": Az < b} 3)

as the feasible region of the original, non-private constraints
given a choice of A. Then we define

Z € arg max ||z||2, 4)
z€F(A)
which is an element in the feasible region of the original, non-
private constraints which yields the largest 2-norm.
For (iv), the “closeness” of sets of linear inequalities have
a bounded difference in their feasible regions.

Lemma 4 (Perturbation Bound; [19]). Given Ax < b
with A € R™*™ and b € R™, consider F'(A) from (3. For
a matrix A € R™*" and vector b € R™, let # be such that
Az < b. Then there exists an = € F(A) such that ||z — z|, <
Hao(A)[|[(A4 = D)z = (0 b))
tion onto the non-negative orthant of R™,
Hoffman constant of A, i.e.,

, where [-]T is the projec-
and Hj 5(A) is the

1
max )
7€7(A) min {||ATv[|2 : v € R, o], = 1}

Hyo(A) =

where (i) J(A) = {J C [m] : o (R") + R = RIVI} is the
set of all J such that the set-valued mapping x — A Jx+RL;]|
is surjective, (ii) A; is the matrix formed by deleting all rows
of A whose indices are not in J, and (iii) we define </;(R"™) =
{z €R": Ajz < by}, where by is formed by deleting entries
of b whose indices are not in J.

Next, we bound the expected change in cost.

Theorem 3 (Solution to Problem [3). Fix an adjacency pa-
rameter k > 0, fix privacy parameters ¢ > 0 and ¢ € [0, %),
and let Assumptions hold. Let x* solve Problem (P)
and T* solve Problem (DP-P). Then E[|g(z*) — g(Z%)|] <
L||z||y Hao(A), where & is from (1), Hz2(A) is from
Lemmald} A is from @), and T is from (@).

Proof. See Appendix [C] O

Remark 3. In the range of ¢ values where a;; + 2s; <
sup, a;; for all ¢ and j, increasing the strength of privacy
(i.e., decreasing ¢) will lead to a larger sub-optimality gap,
indicated by increasing &. As privacy strengthens further, we
eventually reach the worse-case scenario where A = A, where
we see £ take on its maximum value, and we see no change
in sub-optimality for increasing privacy’s strength beyond that
point. In terms of scalability, the bound on the sub-optimality
gap grows with O(n3/2,/m), implying that our algorithm will
still perform well at scale.

Theorem [3| presents a tradeoff between the suboptimality
gap and level of privacy (i.e., ¢ and J). Users may utilize
such a tradeoff to design their privacy parameters based on
the worst-case loss in optimality.

Remark 4. The concavity of g guarantees the uniqueness of
the optimal cost, which allows for the computation of the
suboptimality bound. Our method keeps constraints private
regardless of the concavity of the cost function, however we
leave analysis of sub-optimality under non-concavity as an
avenue for future work.

V. APPLICATION TO POLICY SYNTHESIS

This section applies our developments to constrained
Markov decision processes, which we define next.

Definition 3 (Constrained Markov Decision Process; [20]).
A Constrained Markov Decision Process (CMDP) is the
tuple M = (S, A,r,T,u,f, fo), where S and A are the
finite sets of states and actions, respectively, and |S| =
and |A| = ¢. Then, 7 : § x A — R is the reward function,
T :8x A — ¢(S) is the transition probability function,
i € ¢(s) is a probability distribution over the initial states,
fi + § x A = [0, fmaxs] for i € [N] are immediate costs,
and E D727 f(st)] < fo. fo € RY are constraints.

We let T (s,,y) denote the probability of transitioning
from state s to state y when taking action o. We consider
CMDPs in which the constraint function f is linear. Then the
constraints can be written as AX — f, < 0, where A € RPN
where p, ¢, and fj are from Definition [3|and X is the decision
variable in policy synthesis, described next.



Solving an MDP, i.e., computing the optimal policy, or list
of commands to take in each state, can be done with the linear
program [21]

maximize ZZ r(s, @)z, (s, @)
T

seSacA
st zp(s,) >0, flax(s,0)<fo VseS§S, acA,

wa(s’, o/)—'yz Zxﬂ(s,a)T(s,a,s'):u(s’) Vs’ eS.
a’eA s€SacA
The optimal policy 7* can be calculated from the opti-
mum {27,(5,0)}yes,0ea Via (0 | 5) =
Such a policy admits a value function v, which is defined
as vr(so) = E[Y;o¢7'r(st,m(s¢))], and is easily com-
putable [21]. Constraints that may be encoded by A include
enforcing a probability of reaching a goal state and safety,
i.e., setting a maximum amount of visits to a set of hazardous
states, with hazard values assigned to each state.

Remark 5. In [22], the authors privatize 7(s,a), which is
equivalent to privatizing the objective function in the linear
programming approach described above. As noted in Section|[
such an approach need not be concerned with feasibility,
and therefore the approach in [22] is insufficient to preserve
the privacy of constraints and ensure feasibility.

This type of safety extends the example in [23] by allow-
ing states to have varying ‘“hazard” factors, which are the
immediate costs for each state-action pair. Let Sy C S be
the set of hazardous states, and let f(s;) = BsI{s: € Su},
where I is an indicator function, which encodes that the
agent incurs a penalty of 3, for occupying state s. We then
have the constraint that E Y.~ 7" 8, f(s¢)|s0, 7] < fo. or,
equivalently, f(z-(s,a)) = Bs,yI{zx(s,a) € Sy} < fo.
This takes the form AX — fy < 0, where A is a row vector
with
Bs,y if x(st,a) € S

a; = .
0 otherwise

These are the constraints that we will privatize. We will
also empirically evaluate the “cost of privacy” using the metric
in [22], [24], namely the percent decrease in the value function,
equal to ((vr+(S0) — v+ (50))/vx* (s0)) x 100%.

We apply Algorithm [I] to a CMDP representing the system
in Figure [T| and we privatize the hazard values of each haz-
ardous state. We set 3; = 1 for all i € Sy, and we define &7
so that sup_, a; ; = 3. The cost of privacy for e € [0.01, 5]
and § € {107%,1072,1073} averaged over 100 samples is
shown in Figure With strong privacy, i.e., € = 2, § = 1072,
we see a 18.35% reduction in performance, while with more
typical privacy levels, i.e., ¢ = 3, § = 1072, we see only
a 9.45% reduction in performance, indicating that our method
can simultaneously provide both desirable privacy protections
and desirable levels of performance.

VI. CONCLUSION

We presented a differentially private method for keeping lin-
ear constraints private while ensuring that constraints are never
violated in convex optimization. Future work will address the

fefe

0

Fig. 1. Grid in which the agent starts at the blue state, its goal is the
green state, and hazardous states are red.

g 150% - —5=10"
2 — = 1072
E 100% - 6 — 1073
S 50% -

8

O 0% -

0 1 2 3 4 5
Privacy Strength, €

Fig. 2. Cost of privacy for the example shown in Figure[f]for a range of
values of e implemented with Algorithmat various values of 4.

privatization of general convex, nonlinear, and stochastic con-
straints while ensuring their satisfaction as well. Additionally,
future work will also consider simultaneous privatization of A
and b, as well as the cost term c.
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APPENDIX
A. Proof of Theorem[d]

From Lemma 2| computing @) ; = af ; + s; + z; j is (€, 6)-
differentially private if z;; ~ Lr(%,S;), where S; =

[—si, 8] and s; = flog (@ + 1) . Additionally, com-
puting @) ; = min{a; ;,sup,, af ;} is merely post-processing
of differentially private data, and thus by Lemma [I] it main-
tains (e, §)-differential privacy. Repeating this for each i €
[m], each vector of non-zero constraint coefficients is (e, d)-
differentially private, and from Lemma E[, replacing the non-
zero elements in A with a; ; to form A is (e, §)- dlfferentlally
private. From Lemma [I} it then follows that Z* is (e, d)-
differentially private by virtue of being post-processing of the
differentially private quantity A.

B. Proof of Theorem[43

By definition, the constraint matrix A is component-wise
less than or equal to the matrix A in which A4; ; = sup,, a;
for all ¢ € [n] and j € [m]. Since x > 0 and the vector b
is fixed, we have that the set {z : Azx < b} is contained
in {z: Ax < b} due to the fact that a; ;j < sup,, a; ;, and as
a result, we know that {z : Az < b} D {z: Az < b}.

We will now show that the sets [\, {7 : Az < b}
and {z : Az < b} are equal. For any = in the first set,
we know that a; - x < b; for all A € /. By definition of
the supremum, it follows then that sup(a; - ) < b;, and
therefore Az < b. As a result, if = € (), {z : Az < b},
then z € {z : Az < b}. We now show that the reverse is

true. If Az < b, then Az < b for all A € &/ by definition
of the supremum. Thus, if 2 € {z : Az < b}, then we also
have = € (. {2 : Az < b}.

Since we have {z : Az < b} D {z : Az < b} and {x :
Az < b} = MNyex{r + Az < b}, we know that {z
Az < b} D Nyemizr + Az < b}. From Assumption
the set ()4 {7 : Az < b} is non-empty, and therefore the
set {z : Az < b} is non-empty and thus is yields a feasible
optimization problem.

C. Proof of Theorem[3
The Lipschitz property of g from Assumption [4] gives

E [lg(a") — g(3"
Noting that b remains constant between the feasible re-
gions {z : Az < b} and {z : Ax < b}, we apply Lemma E|
and the linearity of the expectation to obtain to obtain

) < LE[||lz* — &7[]]. (5)

Efle” —3"]y] < Haa(AE (A= A*[|, 7],] . ©6)

Since Z is in a subset of the feasible space in the non-private
problem, the largest possible & is bounded by the largest
feasible z € F(A), where F(A) is from (3)). We denote this as
Z € arg maXIGF(A ||z||2- Then in (6) we may write the bound

B [[14 = A7 ] < E[JiA - A7) ] ol Next we
bound |[[A — AJ*| - First, we define Z = A — A and, using
the non-expansive property of the projection onto the non-
negative orthant, we obtain

E[[[[A— A" o] Izll, < ENZI] )2, - (7

Using the definition of the Frobenius norm and Jensen’s
inequality, we use the preceding inequality to find the bound
Hyo(A) 2], E(|Z]l] < Haa(A) 2], /Tt (E[ZTZ]). Now
we compute the diagonal entries of E [ZTZ]. We break Z
down into two cases: the case where there exists an ¢ and j
such that a; ; + 2s; > sup,, a; j, and the case where a; ; +
2s; < sup, a;,; for all 7 and j. Starting with the case a; ; +
2s; < sup, a; ; for all ¢ and j, we have

(ZTZ)l,l =(s1+ma)(si+ma)+
+ -+ (Sm + nm,l)(srn + 77m 1)
+ 85+ 289ma1 F 5 o+ Sh

(s2+12,1)(s2+12,1)
:s%+2517711+77%1
+ 23771771’71 1+ nm 1

Each 7/ has mean 0 and second moment 2 (& )2. Thus,
E[(ZTZ)11] = 2n? (k) + Z s2. This pattern holds for
each diagonal entry, so we have IE (ZTZ);;] = 2n? (5)2 +

0]
S 7, s2. The trace is then the sum of these diagonal en-
tries, and because ZTZ € R™*™, there are m diagonal

entries, and thus we may write the equality /Tr (E [ZTZ]) =
\/22"21 (2m (k/e)*n 2+ nfs?), where s, is the support of the
truncated Laplace mechamsm for constraint i. In the event
that the_re exists an ¢ and j such that a; ; + 2s; > sup,, a; j,
define A = [sup,; a; jlie(m),je[n), that is, the matrix such that
every entry in A takes the maximum possible value allowed
by the set 7. In this case, Z;; < (A — A),;, and we have
Hyo(A) |2, Tr E[ZTZ]) < Hao(A)||2], [ A~ A,




Defining ¢ in (1), we substitute & into to find
Hoo(A) |2, E[|| Z]| ] < H2,2(A)||Z||5 &, which we substi-
tute into (3) to obtain the result.
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