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Abstract— Markov decision processes often seek to maximize
a reward function, but onlookers may infer reward functions by
observing agents, which can reveal sensitive information. There-
fore, in this paper we introduce and compare two methods for
privatizing reward functions in policy synthesis for multi-agent
Markov decision processes, which generalize Markov decision
processes. Reward functions are privatized using differential
privacy, a statistical framework for protecting sensitive data.
The methods we develop perturb (i) each agent’s individual
reward function or (ii) the joint reward function shared by all
agents. We prove that both of these methods are differentially
private and show approach (i) provides better performance.
We then develop an algorithm for the numerical computation
of the performance loss due to privacy on a case-by-case basis.
We also exactly compute the computational complexity of this
algorithm in terms of system parameters and show that it is
inherently tractable. Numerical simulations are performed on
waypoint guidance of an autonomous vehicle which shows that
privacy induces only negligible performance losses in practice.

I. INTRODUCTION

Many autonomous systems share sensitive information to
operate, such as teams of robots. As a result, there has
arisen interest in privatizing such information when it is
communicated. However, these protections can be difficult to
provide in systems in which agents are inherently observable,
such as in a traffic system in which agents are visible to
other vehicles [1] or a power system in which power usage
is visible to a utility company [2]. These systems do not
offer the opportunity to modify communications to protect
information precisely because agents are observed directly.
A fundamental challenge is that information about agents is
visible to observers, though we would still like to limit the
inferences that can be drawn from that information.

In this paper, we consider the problem of protecting the
reward function of a Markov decision process, even when its
states and actions can be observed. In particular, we model
individual agents as Markov Decision Processes (MDPs),
and we model collections of agents as Multi-Agent Markov
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Decision Processes (MMDPs). Given that an MDP is simply
an MMDP with a single agent, we focus on MMDPs. In
MMDPs, agents’ goal is to synthesize a reward-maximizing
policy. Accordingly, we develop a method for synthesizing
policies that preserve the privacy of the agents’ reward
function while still approximately maximizing it.

Since these agents can be observed, the actions they
take could reveal their reward function or some of its
properties, which may be sensitive information. For example,
quantitative methods can draw such inferences from agents’
trajectories both offline [3], [4] and online [5]. Additionally
onlookers may draw qualitative inferences from agents as
well, such as their goal state [6]. This past work shows
that harmful quantitative and qualitative inferences can be
drawn without needing to recover the entire reward function.
Therefore, we seek to protect agents’ reward functions from
both existing privacy attacks and those yet to be developed.

We use differential privacy to provide these protections.
Differential privacy is a statistical notion of privacy originally
used to protect entries of databases [7]. Differential privacy
has been used recently in control systems and filtering [8]—
[12], and to privatize objective functions in distributed opti-
mization [13]-[18]. The literature on distributed optimization
has already established that agents’ objective functions re-
quire privacy, and a key focus has been convex minimization
problems. In this paper, we consider agents maximizing
reward functions and hence are different from that work,
though the need to protect individual agents’ rewards is just
as essential as the protection of objectives in those works.

Differential privacy is appealing because of its strong
protections for data and its immunity to post-processing [19].
That is, the outputs of arbitrary computations on differen-
tially private data are still protected by differential privacy.
This property provides protections against observers that
make inferences about agents’ rewards, including through
techniques that do not exist yet. We therefore first pri-
vatize reward functions, then using dynamic programming
to synthesize a policy with the privatized reward function.
Since this dynamic programming stage is post-processing on
privatized reward functions, the resulting policy preserves the
privacy of the reward functions as well, as do observations
of an agent executing that policy and any downstream
inferences that rely on those observations.

Of course, we expect perturbations to reward functions
to affect performance. To assess the impact of privacy on
the agents’ performance we quantify the sub-optimality of
the policy synthesized with the privatized reward function.
In particular, it relates the total discounted reward (known



as the value function) with privacy to that without privacy.
We develop an algorithm to compute the cost of privacy,
and we compute the exact computational complexity of this
algorithm in terms of system parameters. These calculations
show the tractability of this algorithm.

To summarize, we make the following contributions:

e We develop two differential privacy mechanisms for
reward functions in MMDPs. (Theorems [I] and

« We provide an analytical bound on the accuracy of
privatized reward functions and use that bound to trade-
off privacy and accuracy. (Theorem [3))

e We provide an algorithm to compute the trade-off
between privacy and performance, then quantify its
computational complexity. (Theorem

o We validate the impact of privacy upon performance in
simulation.

Related Work

Privacy has previously been considered for Markov deci-
sion processes, both in planning [20]-[22] and reinforcement
learning [23], [24]. Privacy has also been considered for
Markov chains [25] and for general symbolic systems [26].
The closest work to ours is in [20] and [27]. In [20], privacy
is applied to transition probabilities, while we apply it to
reward functions. In [27], the authors use differential privacy
to protect rewards that are learned. We differ since we
consider planning problems with a known reward.

This paper is organized as follows: Section [[I] provides
background and problem statements, and Section [[II| presents
two methods for privatizing reward functions. Then, Sec-
tion [[V]formalizes accuracy-privacy trade-offs, and Section[V]
presents a method of computing the cost of privacy. Sec-
tion [V provides simulations, and Section concludes.

Notation

For N € N, we use [N] to denote {1,2,...,N}, we
use A(B) to be the set of probability distributions over a
finite set B, and we use | - | for the cardinality of a set. We
also use [-] as the ceiling function. We use 7 both as the
usual constant and as a policy for an MDP since both uses
are standard. The meaning will be clear from context.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section reviews Markov decision processes and dif-
ferential privacy, then provides formal problem statements.

A. Markov Decision Processes

Consider a collection of N agents indexed over i € [N].
We model agent ¢ as a Markov decision process.

Definition 1 (Markov Decision Process). Agent i’s Markov
Decision Process (MDP) is the tuple M® = (S¢, A%, r¢, TY),
where S and A’ are agent i’s finite sets of local states and
actions, respectively. Additionally, let S = S! x --- x SV
be the joint state space of all agents. Then 7 : S x A* = R
is agent i’s reward function, and 7 : 8¢ x A" — A(S?) is
agent ¢’s transition probability function. %

With 7% : 8t x A* — A(S?), we see that T'(s*,a’) €
A(S?) is a probability distribution over the possible next
states when taking action a’ € A’ in state s € S'. We
abuse notation and let 7%(s%,a’,y*) be the probability of
transitioning from state s’ to state y* € S’ when agent i
takes action a’ € A*. We now model the collection of agents
as a Multi-Agent Markov Decision Process (MMDP).

Definition 2 (Multi-Agent Markov Decision Process [28]).
A Multi-Agent Markov Decision Process (MMDP) is the
tuple M = (S, A, r,7,T), where S = S! x --- x SN
is the joint state space, A = A! x -+ x AN is the joint
action space, (s, a) = & > ielN] (s, a’) is the joint reward
function value for joint state s = (s,...,s"V) € S and
joint action a = (a',...,a") € A, the constant v € (0, 1]
is the discount factor, and 7 : § x A — A(S) is the
joint transition probability distribution. That is, 7 (s, a,y) =
1Y, Ti(s',a’,y") denotes the probability of transitioning
from joint state s to joint state y = (y',...,y"V) € S given
joint action a, for all s, y € S and a € A. O

Given a joint action a; € A, agent ¢ takes the lo-
cal action ailj(i) € A, where we use I;(i) to de-
note the index of agent ¢’s local action corresponding to
joint action j. That is, for some action a; € A we

have a; = (a}j(l),ai(z),...,ag(N)). For r(sj,ar) =

+ 2 ieN] ri(s;, a?k(i)) we define the mapping J such that

r(sj,an) = J({r" (s, af, ;) tievy)- (D

A joint policy S — A, represented as m =

(t,...,7), where 7’ : S — A’ is agent i’s policy for

all ¢ € [N], is a set of policies which commands agent 4 to

take action 7(s) in joint state s. The control objective for

an MMDP M = (S, A, r,~,T) then is: given a joint reward
function r, develop a joint policy that solves

max Va(s) = Hl;%XIE [ Z yir(se, 7T(5f)):| , (2)
t=0
where we call V,; the “value function”.

Often, it is necessary to evaluate how well a non-optimal
policy performs on a given MMDP. Accordingly, we state
the following proposition that the Bellman operator is a
contraction mapping, which we will use in Section [V] to
evaluate any policy on a given MMDP.

Proposition 1 (Policy Evaluation [29]). Fix an MMDP
M = (8 Ar~T). Let V(s') be the value func-
tion at state s, and let m be a joint policy. Define
the Bellman operator £ : R" — R" as LV =
> acam(s) (r(s,a) + 3,577 (s,a,8)V(s')) . Then L is
a ~y-contraction mapping with respect to the co-norm. That
is, [|LVi — LVl < v ||Vi — Vsl for all Vi, Vs € R™

Solving an MMDP is P-Complete and is done efficiently
via dynamic programming [29], which we use in this paper.
B. Differential Privacy

We now describe the application of differential privacy to
vector-valued data and this will be applied to agents’ rewards



represented as vectors. The goal of differential privacy is to
make “similar” pieces of data appear approximately indistin-
guishable. The notion of “similar” is defined by an adjacency
relation. Many adjacency relations exist, and we present the
one used this paper; see [19] for additional background.

Definition 3 (Adjacency). Fix an adjacency parameter b > 0
and two vectors v,w € R". Then v and w are adjacent if
the following conditions hold: (i) There exists some j € [n]
such that v; # w; and v, = wy, for all k € [n] \ {;j} and
(i) [Jv — w|1 < b, where ||-||; denotes vector 1-norm. We
use Adj,(v,w) =1 to say v and w are adjacent. O

Differential privacy is enforced by a randomized map
called a “mechanism.” For a function f : R™ — R™, a
mechanism .# approximates f(x) for all inputs x according
to the following definition.

Definition 4 (Differential Privacy [19]). Fix a probability
space (€2, F,P). Letb > 0, € > 0, and § € [0, §) be given. A
mechanism .7 : R™ x 2 — R™ is (e, §)-differentially private
if for all z,2/ € R™ adjacent in the sense of Definition
and for all measurable sets S C R™, we have P[.Z (z) €
S] < ePlA#(z') € S]+6. O

In Definition ] the strength of privacy is controlled by
the privacy parameters ¢ and §. In general, smaller values
of ¢ and 0 imply stronger privacy guarantees. Here, €
can be interpreted as quantifying the leakage of sensitive
information and § can be interpreted as the probability that
differential privacy leaks more information than allowed
by e. Typical values of € and ¢ are 0.1 to 3 [30] and 0
to 0.05 [31], respectively. Differential privacy is calibrated
using the “sensitivity” of the function being privatized.

Definition 5 (Sensitivity). Fix an adjacency parameter b > 0.
The {¢o-sensitivity of a function f : R® — R™ is Aqf =
Supz,m':Adjb(m,m’)zl ||f(.17) - f(x,)“Q . O

A larger sensitivity implies that higher variance noise is
needed to mask differences in adjacent data when generating
private outputs. We next define the Gaussian mechanism for
enforcing differential privacy.

Lemma 1 (Gaussian Mechanism; [7]). Let b > 0, € > 0,
and 0 € [0,1/2) be given, and fix the adjacency relation
from Definition 3] The Gaussian mechanism takes sensitive
data f(x) € R™ as an input and outputs G(z) = f(x) + z,
where 2z ~ N(0,0%1). It is (e, §)-differentially private if o >
221 45(e, 5), where k(e,d) = (Q(9) Q- 1(6)2 + 2¢),

with Q(y) = 5= f;o e~ db.

In this work, we sometimes consider the identity query
f(x) = x, which has Ay f = b, where b is from Deﬁnition

Lemma 2 (Immunity to Post-Processing; [19]). Let .# :
R™ x Q — R™ be an (¢, §)-differentially private mechanism.
Let h : R™ — RP be an arbitrary mapping. Then the
composition ho.Z : R™ — RP is (e, §)-differentially private.

This lemma implies that we can first privatize rewards
and then compute a decision policy from those privatized

rewards, and the execution of that policy also keeps the
rewards differentially private because it is post-processing.

C. Problem Statements

Consider the policy synthesis problem in (Z). Comput-
ing 7* depends on the sensitive reward function 7 for
all ¢ € [N]. An adversary observing agents execute 7* may
attempt to infer 7 itself or its properties. Therefore, we seek
a framework for multi-agent policy synthesis that preserves
the privacy of r* while still performing well. This will be
done by solving the following problems.

Problem 1. Develop privacy mechanisms to privatize indi-
vidual agents’ reward functions in MMDPs.

Problem 2. Develop bounds on the accuracy of privatized
rewards that will be used to trade off privacy and accuracy.

Problem 3. Determine the computational complexity of
evaluating the loss in utility from using a policy generated
on the privatized rewards.

III. PRIVATE POLICY SYNTHESIS

In this section, we solve Problem 1. First, we illustrate how
we represent reward functions to apply differential privacy.
Then, we present two mechanisms for applying privacy to
our representation of reward functions. Let n; = |S?| and
m; = |A’| be the numbers of local states and local actions,
respectively, for agent <. The joint state and action spaces
then have n = Hie[N] n; states and m = Hie[]\r] m,; actions.

A. Privacy Setup

To use Lemma [I] to enforce differential privacy, we first
express the reward function as a vector. We represent the
mapping r* as a vector R® € R"i, where the entries
correspond to 7% being evaluated on all inputs. We define R’
as the vector with entries (s, a’) for all s € S and a* € A°.

We use the following convention for representing

R'. Denote the joint states by si,S9,...,s, and de-
note the local actions by aj,as,...,a;,.. Then we set
RZ:[T’(sl,a’l),...,rz(sl,afm),r’(s%azl)7...,r’(s_n,aini)]T,

where Rj— denotes the j*" entry of the vector R’. This can
be repeated to represent the joint reward R € R™". Using
Definition [3] we say two reward functions belonging to agent
i, denoted R* and ]A%Z, are adjacent if they differ in one entry,
with their absolute difference bounded above by b.

We note that the solution to Problem 1 is not unique, and
we consider two means of enforcing privacy. The two setups
we consider differ in where privacy is implemented in them.
First, we apply the Gaussian mechanism to agent ¢’s list
of rewards, R, referred to as “input perturbation”. In input
perturbation, the aggregator receives privatized rewards, de-
noted R’ from agent ¢ for all i € [N], and the aggregator uses
those to generate a policy 7* for the MMDP. In the second
setup, we instead apply the Gaussian mechanism to the list
of joint rewards, R, referred to as “output perturbation”. In
output perturbation, the aggregator receives sensitive rewards
r* from agent 4 for all i € [N], computes the vector of joint



Algorithm 1: Private Policy Synthesis via Input
Perturbation

Algorithm 2: Private Policy Synthesis via Output
Perturbation

Inputs: {r'}ic(n), S, A, 7, T, 6, 0, b, N;
Outputs: Privacy preserving policies {7 };c(n);
Agents set 0 = ~k(€,0);

for all i € [N] m pamllel do
Agent 7 generates its private reward function with

the Gaussian mechanism, R = R' + wt;
Agent 7 sends R’ to the aggregator;

end
Aggregator generates joint reward:

7(sj,ar) = Zze 7(s,a") Vj € [n], Vk € [m];
Aggregator generates optlmal joint policy,

7* = argmax, F [Z;’io V7 (¢, m(s¢))];
Aggregator sends 7** to agent 4 for all i € [N]

rewards R, and applies privacy to it to generate R. Then it
uses R to generate a policy 7* for the MMDP [19].

B. Input Perturbation

In the case of input perturbation each agent privatizes
the identity map of its own reward. Formally, for all 7 &
[N] agent ’s reward vector is privatized by taking R =
R! + w', where w® ~ N(0,021) for all i € [N]. Then, we
use 7(s;, a) = J({F'(sj, af, ;) }iepn)) where J is from (T)
for all j € [n] and k € [mﬁ to compute 7, which is the
private form of the joint reward r from Definition [2| The
private reward 7 is then used in place of r to synthesize the
agents’ joint policy. After privatization, policy synthesis is
post-processing of differentially private data, which implies
that the policy also keeps each agent’s reward function differ-
entially private due to Lemma [2| Algorithm (1| presents this
method of determining policies from private agent reward
functions using input perturbation.

Theorem 1 (Solution to Problem [I). Given privacy param-
eters € > 0, 6 € [0,0.5), and adjacency parameter b >
0, the mapping from {r" }zEN to {m*"};c(n) defined by
Algorithm I keeps each 1" (e, 5) -differentially private with
respect to the adjacency relation in Definition 3]

Proof. See authors’ technical report in [32]. O
Using Algorithm [I] each agent enforces the privacy of

its own reward function before sending it to the aggregator.
Performing input perturbation this way enforces differen-
tial privacy on a per-agent basis, which is referred to as
“local differential privacy” [33]. The main advantage of
input perturbation is that the aggregator does not need
to be trusted since it is only sent privatized information.
Another advantage is that agents may select differing levels
of privacy. However, to provide a fair comparison with output
perturbation, we consider each agent using the same ¢ and 4.

C. Output Perturbation

In output perturbation, for all ¢ € [N] agent ¢ sends its
sensitive (non-private) vector of rewards, R?, to the aggrega-
tor. Then the aggregator uses these rewards to form the joint
reward R. For privacy, noise is added to the joint reward

Inputs: {r'}ic(n), S, A, 7, T, 6, 0, b, N;
Outputs: Privacy-preserving policies {7 }ic[n1s
for all i € [N] in parallel do

| Agent i sends reward 7 to the aggregator
end
Aggregator generates joint reward function:

r(sj ak) = § Lien 7 (8:0°) Vi € [n], VK € [m];
Aggregator sets 0 = 5y k(€, 0) 13
Aggregator generates private reward function with

the Gaussian mechanism, R=R+ w;
Aggregator generates optimal joint policy,

7 = argmax, E [y 72 7' (s, m(s1))]s
Aggregator sends 7** to agent 4 for all ¢ € [N];

vector, namely R = R+w, where w ~ N (0,02I). Similar to
the input perturbation setup, computing the joint policy using
the privatized R is differentially private because computation
of the policy is post-processing of private data. Algorithm
presents this method of computing policies when reward
functions are privatized using output perturbation.

Theorem 2 (Alternative Solution to Problem[I)). Fix privacy
parameters ¢ > 0, 6 € [0,0.5), and adjacency param-
eter b > 0. Set p = max;e[y) Hg 1m4 The mapping

Sfrom J({r" }te N]) to {m* e deﬁned by Algorithm E
keeps each 1" (e, d)-differentially private with respect to the
adjacency relation in Definition
Proof. See authors’ technical report in [32]. O
Unlike input perturbation, output perturbation requires that
agents trust the aggregator with their sensitive information.
Additionally, all agents will have the same level of privacy.
Contrary to some other privacy literature, we attain sig-
nificantly better performance using input perturbation over
output perturbation. For output perturbation, the standard
deviation o used to calibrate the noise added for privacy
essentially grows exponentially with the number of agents,
which can be seen in the term g in Theorem [2| This is
because we consider the joint state s in evaluating (s, a®)
and each joint state-local action pair will appear many times
in AyJ. For input perturbation, since the joint reward is
computed from privatized rewards, the standard deviation
of privacy noise does not depend on the number of agents.
Given the essentially exponential dependency on agent num-
ber in output perturbation, we focus on input perturbation
going forward unless stated otherwise.

IV. ACCURACY ANALYSIS

In this section, we solve Problem [2| Specifically, we ana-
lyze the accuracy of the reward functions that are privatized
using input perturbation. To do so, we compute an upper
bound on the expected maximum absolute error between
the sensitive, non-private joint reward r and the privatized
reward 7. Then we use this bound to develop guidelines for
calibrating privacy to obey a bound on allowable error.



Theorem 3 (Solution to Problem [2). Fix privacy param-
eters € > 0, 6 € [0,0.5), adjacency parameter b > 0,
and MMDP M = (S, A,r,v,T) with N agents, n joint
states, and m joint actions. Let 7 be defined as in Algo-
rithm Then E [maxy, ; [#(sk, a;) — r(sk, a;)|] < S2k(e, 6)
where C = \/2/(Nw) + /(1 —2/7) (nm — 1)/N.

Proof. See authors’ technical report in [32]. O

Corollary 1. Fix § € [0,0.5) and let the conditions
from Theorem [B] hold. A sufficient condition to achieve
E [maxy j [F(sk,a;) — r(sk,a;)|] < A is given by € >

25222 n Cbg:( ) where C' = \/iﬁ+ (17 %) w
Proof. See authors’ technical report in [32]. ]

Theorem [3] shows that the accuracy of private rewards de-
pends on the size of the MMDP nm, the number of agents N,
and the privacy parameters ¢, ¢, and b. The v/nm — 1 term
indicates that while the error grows with the number of
agents, the error does not grow exponentially. Corollary
provides a trade-off that allows users to tune € to balance
privacy and accuracy.

V. COST OF PRIVACY

In this section, we solve ProblemE} To do so, we compare
(1) an optimal policy generated on the original, non-private
reward functions, denoted 7*, and (ii) an optimal policy
generated on the privatized reward functions, denoted 7*
Beginning at some state sy € S, the function Vi-(sp)
encodes the performance of the MMDP given the optimal
policy and Vz-(sg) encodes the performance of the MMDP
given the policy generated on private rewards. We analyze the
performance loss due to privacy using the “cost of privacy”
metric introduced in [20], namely |Vz=(sg) — Va=(s0)|. We
must compute V.« (so) and Vi« () to do so, and these terms
do not have a closed form in general.

Proposition[I] provides a method for empirically evaluating
the value function for a policy on a given MMDP by repeat-
edly applying the Bellman operator. We can then compute
the cost of privacy numerically for any problem using an
off-the-shelf policy-evaluation algorithm. Next, we state a
theorem on the number of operations required to compute
the cost of privacy in this way.

Theorem 4 (Solution to Problem [3). Fix privacy param-
eters € > 0 and § € [0,1/2). Let 7 be the output
of Algorithm (I} Given an MMDP M = (S, A,r,v,T),
the number of computations required to compute the
cost of privacy |Vz«(so) — Va=(s0)| to within 1 of
the exact value is is nm(K1 + K3), where, K, =

Mo () /log(1)], Ko = [log( i)/ log(1)], and

Riypax = max, o |7(8,a)|, Ryax = max, 4 |7(s,a)|.

Proof. See authors’ technical report in [32]. O

Theorem ] shows that the computational complexity of
computing the cost of privacy grows bilinearly with number
of joint states and joint actions, indicating that this method is
tractable for computing the cost of privacy. If 7* is generated
using value iteration, the user already has V« and does not
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Fig. 1: Simulation results for Example (a) high-speed vehi-
cle trajectories given varying privacy levels from Example [I]
When privacy is weaker, e.g., at ¢ = 10, the trajectory of
the vehicle is a close match to the nominal trajectory, while
when privacy is stronger, there are larger deviations from
the nominal trajectory. (b) average control effort for 600
private policies generated with € € [0.1,10]. As the strength
of privacy decreases (and e increases), the change in control
effort decreases. The optimal policy induces the least amount
of turning in the vehicle, which requires less control effort,
but private policies may require sharp turns to reach the
target, inducing more control effort as a result.

Crossrange [m)] «10*

need to compute it again for the cost of privacy, which would
reduce the complexity of computing the cost of privacy.

VI. NUMERICAL SIMULATIONS

In this section, we consider a large MDP with a single
agent to assess how differential privacy changes a state
trajectory over time.

Example 1 (Waypoint Guidance). To highlight the applica-
bility to a single agent, consider a high-speed vehicle using
waypoints to navigate towards a target. We consider an MDP
with a 20 x 20 set of waypoints as the states with the
actions A = {north, south,east,west,arrived}.
We consider a 3 degree-of-freedom vehicle model, with
waypoints that exist in the plane of the initial condition. The
initial position of the vehicle is the first waypoint and the
initial state of the MDP. The action for that state yields a
new waypoint for the vehicle to navigate towards. Once the
vehicle is closer to the new waypoint than the original, we
say the new waypoint is now the current state of the vehicle,
and the policy again commands the vehicle to navigate to
a new waypoint. This continues until the vehicle is less
than 80 km from the target, at which point the vehicle
is considered to have “arrived” at its target. As a result,
within 80 km it is commanded to navigate directly to the
target (as opposed to another waypoint) without privacy.

The optimal policy gives the optimal set of waypoints
given an initial starting state. We implemented differential
privacy for the reward function of this MDP using Algo-
rithm [I] Note that since there is only one agent, the outputs
of Algorithm [I] and Algorithm [2] are identical.

Trajectories generated using various e values are presented
in the crossrange-downrange plane in Figure [Tal We simu-
lated 600 privatized policies for each € € [0.1, 10]. While on
average we recover the nominal trajectory as epsilon grows,



note that individual trajectories are random draws, and here
the reward privatized with € = 1 yielded a more off-nominal
trajectory than the one with ¢ = 0.1.

Treating the trajectory generated from the sensitive policy
as the nominal trajectory, we assess the performance of
the trajectories using the change in the cumulative accel-
eration commands, which we refer to as ‘“control effort”
and denote by Ac, between the trajectories generated using
the sensitive, non-private policy and the privatized policy.
That is, Ac = fotf ||lu||3dt — fotf ||l@||3dt, where u is the
commanded acceleration of the vehicle operating with a
policy developed on the non-private rewards, and « is defined
analogously for the vehicle operating with a policy developed
on the private rewards. Here ¢y is the flight duration of the
vehicle when using a policy generated on sensitive, non-
private reward r and Z; is the flight duration of the vehicle
when using a policy generated on privatized rewards 7. Note
that under privacy, trajectories may differ in length, which
means that comparing the accelerations at each time step may
not yield a meaningful comparison. As a result, we compare
the total commanded accelerations over the entire trajectory,
shown in Figure [Tb] On average, with stronger privacy (i.e.,
smaller ¢), the policy commands the vehicle to off-nominal
trajectory waypoints requiring larger overall control efforts.
We see Ac steadily declines up to ¢ = 2, indicating that there
is minimal performance gain by decreasing the strength of
privacy any further, which implies that ¢ = 2 effectively
trades off privacy and performance in this case.

VII. CONCLUSION

We have developed two methods for protecting reward
functions in MMDPs from observers by using differential
privacy, and we identified input perturbation as the more
tractable method. We also examined the accuracy versus
privacy trade-off and the computational complexity of com-
puting the performance loss due to privacy, and showed the
success of these methods in simulation. Future work will
be focused on developing guidelines for designing reward
functions that are amenable to privacy.

REFERENCES

[1] D. J. Glancy, “Privacy in autonomous vehicles,” Santa Clara L. Rev.,
vol. 52, p. 1171, 2012.

[2] Z. Guan, G. Si, X. Zhang, L. Wu, N. Guizani, X. Du, and Y. Ma,
“Privacy-preserving and efficient aggregation based on blockchain for
power grid communications in smart communities,” /IEEE Communi-
cations Magazine, vol. 56, no. 7, pp. 82-88, 2018.

[31 A. Y. Ng, S. Russell er al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[4] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433-1438.

[5] T. Zhi-Xuan, J. Mann, T. Silver, J. Tenenbaum, and V. Mansinghka,
“Online bayesian goal inference for boundedly rational planning
agents,” Advances in neural information processing systems, vol. 33,
pp. 19238-19250, 2020.

[6] M. Ramirez and H. Geffner, “Goal recognition over pomdps: Inferring
the intention of a pomdp agent,” in IJCAI. 1JCAI/AAAI, 2011, pp.
2009-2014.

[7]1 C. Dwork, “Differential privacy,” Automata, languages and program-
ming, pp. 1-12, 2006.

[8]
[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341-354, 2013.
J. Cortés, G. E. Dullerud, S. Han, J. Le Ny, S. Mitra, and G. J. Pappas,
“Differential privacy in control and network systems,” in 55th IEEE
Conference on Decision and Control (CDC), 2016, pp. 4252-4272.
S. Han and G. J. Pappas, “Privacy in control and dynamical systems,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 1,
pp. 309-332, 2018.

K. Yazdani, A. Jones, K. Leahy, and M. Hale, “Differentially private
1q control,” IEEE Transactions on Automatic Control, 2022.

C. Hawkins and M. Hale, “Differentially private formation control,” in
2020 59th IEEE Conference on Decision and Control (CDC). 1EEE,
2020, pp. 6260-6265.

Y. Wang, M. Hale, M. Egerstedt, and G. E. Dullerud, “Differentially
private objective functions in distributed cloud-based optimization,” in
2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 3688-3694.

Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 16th International Conference on
Distributed Computing and Networking, 2015, pp. 1-10.

S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50-64, 2016.

E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private
distributed convex optimization via objective perturbation,” in 2016
American control conference (ACC). 1EEE, 2016, pp. 2061-2066.
R. Dobbe, Y. Pu, J. Zhu, K. Ramchandran, and C. Tomlin, “Cus-
tomized local differential privacy for multi-agent distributed optimiza-
tion,” arXiv preprint arXiv:1806.06035, 2018.

Y.-W. Lv, G.-H. Yang, and C.-X. Shi, “Differentially private distributed
optimization for multi-agent systems via the augmented lagrangian
algorithm,” Information Sciences, vol. 538, pp. 39-53, 2020.

C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 34, pp. 211-407, 2014.

P. Gohari, M. Hale, and U. Topcu, “Privacy-preserving policy synthesis
in markov decision processes,” in 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE, 2020, pp. 6266-6271.

B. Chen, C. Hawkins, M. O. Karabag, C. Neary, M. Hale, and
U. Topcu, “Differential privacy in cooperative multiagent planning,”
in Uncertainty in Artificial Intelligence. PMLR, 2023, pp. 347-357.
P. Venkitasubramaniam, “Privacy in stochastic control: A markov
decision process perspective,” in 51st Annual Allerton Conference on
Communication, Control, and Computing, 2013, pp. 381-388.

X. Zhou, “Differentially private reinforcement learning with linear
function approximation,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 6, no. 1, pp. 1-27, 2022.

P. Ma, Z. Wang, L. Zhang, R. Wang, X. Zou, and T. Yang, “Differ-
entially private reinforcement learning,” in International Conference
on Information and Communications Security. — Springer, 2019, pp.
668-683.

B. Fallin, C. Hawkins, B. Chen, P. Gohari, A. Benvenuti, U. Topcu, and
M. Hale, “Differential privacy for stochastic matrices using the matrix
dirichlet mechanism,” in 2023 62nd IEEE Conference on Decision and
Control (CDC). 1EEE, 2023, pp. 5067-5072.

B. Chen, K. Leahy, A. Jones, and M. Hale, “Differential privacy for
symbolic systems with application to markov chains,” Automatica, vol.
152, p. 110908, 2023.

D. Ye, T. Zhu, W. Zhou, and S. Y. Philip, “Differentially private
malicious agent avoidance in multiagent advising learning,” IEEE
transactions on cybernetics, vol. 50, no. 10, pp. 4214-4227, 2019.
C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes,” in TARK, vol. 96. Citeseer, 1996, pp. 195-210.

M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C.
Pierce, and A. Roth, “Differential privacy: An economic method for
choosing epsilon,” in 2014 IEEE 27th Computer Security Foundations
Symposium. 1EEE, 2014, pp. 398—410.

C. Hawkins, B. Chen, K. Yazdani, and M. Hale, “Node and edge dif-
ferential privacy for graph laplacian spectra: Mechanisms and scaling
laws,” IEEE Transactions on Network Science and Engineering, 2023.
A. Benvenuti, C. Hawkins, B. Fallin, B. Chen, B. Bialy, M. Dennis,
and M. Hale, “Differentially private reward functions for markov
decision process,” arXiv preprint arXiv:2309.12476, 2023.



[33] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. 1EEE, 2013, pp. 429-438.



	Introduction
	Preliminaries and Problem Formulation
	Markov Decision Processes
	Differential Privacy
	Problem Statements

	Private Policy Synthesis
	Privacy Setup
	Input Perturbation
	Output Perturbation

	Accuracy Analysis
	Cost of Privacy
	Numerical Simulations
	Conclusion
	References

