

# ECOGRAPHY

## SEASONAL MACRO-DEMOGRAPHY OF NORTH AMERICAN BIRD POPULATIONS REVEALED THROUGH CITIZEN SCIENCE MONITORING

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                 | <i>Ecography</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Manuscript ID            | ECOG-07349.R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Wiley - Manuscript type: | Research Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords:                | demography, eBird, productivity, recruitment, survival, population dynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Abstract:                | <p>Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic underpinnings remain poorly understood. A key question is whether spatial and annual variation in avian population dynamics is driven primarily by variation in breeding season recruitment or by variation in overwinter survival. We present a method using large-scale eBird citizen-science data to develop species-specific indices of net population change as proxies for survival and recruitment gain, based on twice-annual, rangewide snapshots of relative abundance in spring and fall. We demonstrate the use of these indices by examining spatially explicit annual variation in survival and recruitment gain in two well-surveyed nonmigratory North American species, Carolina Wren (<i>Thryothorus ludovicianus</i>) and Northern Cardinal (<i>Cardinalis cardinalis</i>). We show that, while interannual variation in both survival and recruitment gain is slight for Northern Cardinal, eBird abundance data reveal strong and geographically coherent signals of interannual variation in the overwinter survival of Carolina Wren. As predicted, variation in wintertime survival dominates overall interannual population fluctuations of wrens and is correlated with winter temperature and snowfall in the northeastern United States, but not the southern United States. This study demonstrates the potential of volunteer-collected big datasets like eBird for inferring variation in demographic rates and introduces a new complementary approach towards illuminating the macrodemography of North American birds at comprehensive continental extents.</p> |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

1 SEASONAL MACRO-DEMOGRAPHY OF NORTH AMERICAN BIRD POPULATIONS  
2 REVEALED THROUGH CITIZEN SCIENCE MONITORING

3

4 **Abstract**

5 Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic  
6 underpinnings remain poorly understood. A key question is whether spatial and annual variation  
7 in avian population dynamics is driven primarily by variation in breeding season recruitment or  
8 by variation in overwinter survival. We present a method using large-scale eBird citizen-science  
9 data to develop species-specific indices of net population change as proxies for survival and  
10 recruitment, based on twice-annual, rangewide snapshots of relative abundance in spring and  
11 fall. We demonstrate the use of these indices by examining spatially explicit annual variation in  
12 survival and recruitment in two well-surveyed nonmigratory North American species, Carolina  
13 Wren (*Thryothorus ludovicianus*) and Northern Cardinal (*Cardinalis cardinalis*). We show that,  
14 while interannual variation in both survival and recruitment is slight for Northern Cardinal, eBird  
15 abundance data reveal strong and geographically coherent signals of interannual variation in  
16 the overwinter survival of Carolina Wren. As predicted, variation in wintertime survival  
17 dominates overall interannual population fluctuations of wrens and is correlated with winter  
18 temperature and snowfall in the northeastern United States, but not the southern United States.  
19 This study demonstrates the potential of volunteer-collected big datasets like eBird for inferring  
20 variation in demographic rates and introduces a new complementary approach towards  
21 illuminating the macrodemography of North American birds at comprehensive continental  
22 extents.

23 **Key words:** demography, eBird, population dynamics, productivity, recruitment, survival, vital  
24 rates, weather

25 **Introduction**

26 Global loss of biodiversity is an alarming trend and escalating crisis (Ceballos et al. 2020,  
27 Cafaro et al. 2022, Habibullah et al. 2022, Finn et al. 2023). Despite diverse, interdisciplinary  
28 research efforts to understand biodiversity loss, the underlying demographic mechanisms  
29 behind species declines are poorly understood (Faaborg et al. 2010b, Knudsen et al. 2011).  
30 Whereas a multitude of environmental factors potentially impact populations (ranging from  
31 habitat degradation and climate change to invasive species, pollution, and pesticide use), a  
32 basic understanding of which specific environmental factors play a role, and which specific  
33 periods in the annual cycle drive population change, remains elusive for most species.  
34 Exemplifying the broad-scale biodiversity crisis, North America is estimated to support 3 billion  
35 fewer birds today than in 1970 (Rosenberg et al. 2019), a 29% decline in the continental  
36 avifauna. Species declines are observed across all ecoregions and biomes, suggesting that  
37 research conducted at a continental extent is needed to understand the underlying causes.  
38 Despite the scale of species declines, to date mostly micro-demographic field studies have been  
39 used to measure the underlying recruitment and mortality patterns of birds (e.g., see references  
40 therein: Tian and Hua 2023, Maresh Nelson et al. 2024). In addition, large-scale capture-  
41 recapture programs have been established to provide demographic information across larger  
42 areas through a huge effort in data collection, including the MAPS program (Monitoring Avian  
43 Population and Survivorship; Desante et al. 1995), MoSI (Monitoring Overwintering Survival;  
44 DeSante et al. 2005) and CES (Constant Effort Sites; Peach et al. 1996). Both local field studies  
45 and large-scale capture-recapture programs have important limitations, however, both  
46 taxonomically (limited number of species captured in sufficient numbers) and geographically  
47 (uneven distribution of field studies and banding stations). Finding broader-scale metrics of  
48 avian demography that complement existing programs and can leverage big data from citizen-

49 science monitoring efforts could therefore greatly increase our understanding of species decline  
50 and loss.

51 Compared to long-term population changes, within-year changes in population size in  
52 response to seasonal mortality and reproduction can be orders of magnitude larger. Identifying  
53 environmental factors impacting seasonal population changes can provide valuable insights into  
54 major limiting factors, and be a steppingstone towards identifying mechanisms relevant for long-  
55 term change. A major unanswered question, however, is whether limiting factors occur primarily  
56 during the breeding or non-breeding season, a dichotomy termed the Tap vs. Tub hypotheses  
57 (Sæther et al. 2004). Using the analogy of a bathtub, its water level (i.e. population size) is  
58 determined both by how much water flows in from the tap (i.e. recruitment) and how much water  
59 drains out of the tub (i.e. non-breeding mortality). According to the Tub hypothesis (Lack 1954),  
60 fluctuations in population size are closely tied to environmental conditions during the non-  
61 breeding season that determine the number of birds that survive this critical period. Many  
62 factors can affect non-breeding season mortality, which can depend on winter harshness  
63 directly, or be mediated through variation in food availability and associated density dependent  
64 competition (Newton 1998, Marra et al. 2015). In contrast, the Tap hypothesis (Sæther et al.  
65 2004) considers annual variation in population size to be determined by factors affecting  
66 breeding success and the number of new recruits that enter the population. These factors are  
67 equally diverse, including seasonal variation in weather (Dunn et al. 2010), food availability  
68 (Martin 1987), predation risk (Lima 2009), and phenological variability in the duration available  
69 for breeding (Halupka and Halupka 2017). Most bird populations are monitored during the  
70 breeding season only, hampering our ability to determine where and when population change is  
71 actually occurring. Existing evidence for either hypothesis is mixed (Balogh et al. 2011,  
72 Lamanna et al. 2012, Saracco et al. 2012, Brown et al. 2017, Hallworth et al. 2021), and large-  
73 scale studies of avian population change have revealed broad geographic patterns but also

74 substantial local variation (DeSante et al. 1999, Rosenberg et al. 2019, Morrison et al. 2022,  
75 Saracco et al. 2022, Fink et al. 2023). Because population trends and demographic  
76 mechanisms vary spatially, answering broad questions on the causes of population change  
77 likely requires a demographic approach that covers large spatial extents and is spatially explicit.  
78 Ideally such an approach should be generalizable to many species, without requiring an  
79 unrealistic additional burden in terms of data collection. Identifying large-scale drivers of  
80 population change, such as weather and climatic conditions, will also benefit from a macro-  
81 demographic approach capable of estimating demographic patterns across equally large spatial  
82 extents, by integrating over noisy local variation.

83 In this study, we present a novel approach for estimating avian demographic indices  
84 from semi-structured citizen science data that is based on repeated sampling of continent-scale  
85 relative abundance. Specifically, we explore the potential for leveraging big data from the large  
86 and rapidly growing eBird database (Sullivan et al. 2014), exploiting its extensive geographic,  
87 temporal, and taxonomic scope that is currently unrivaled by any other monitoring program (La  
88 Sorte and Somveille 2020). We apply our methodology to two nonmigratory North American  
89 species with well-known and contrasting demographic patterns: Carolina Wren (*Thryothorus*  
90 *ludovicianus*), which shows large annual population fluctuations (Ziolkowski et al. 2023) in  
91 response to harsh winter conditions (Brooks 1936, Root 1988, Sauer et al. 1996, Mehlman  
92 1997, La Sorte and Thompson 2007, Link and Sauer 2007), and Northern Cardinal (*Cardinalis*  
93 *cardinalis*) which is expected to be more winter-hardy due to its granivorous diet and urban  
94 adaptation (Evans et al. 2015). Both species have undergone northward range expansions  
95 (Beddall 1963). We explicitly test whether the new eBird-derived indices detect substantial  
96 interannual variation in overwinter survival related to harsh winters at more northerly latitudes  
97 (Tub dynamics) in the Carolina Wren but not in Northern Cardinal. In addition, we hypothesize  
98 that we would detect additional temperature-associated effects on recruitment in both Carolina

99 Wren and Northern Cardinal, and that the direction of these effects would vary latitudinally, with  
100 warm temperatures detrimental near warm range margins and beneficial near cool range  
101 margins (Socolar et al. 2017). While there are many other factors affecting survival and  
102 recruitment, we do not intend to explore all these factors and their relationship with demography  
103 exhaustively. Instead, we aim to present a proof of concept demonstrating that citizen-science  
104 data can provide information on the survival and recruitment of avian populations. Through  
105 revealing well-established patterns with our new macrodemographic indices, we lay the  
106 groundwork for exploring demography across hundreds of resident and potentially migratory  
107 species in North America, contributing new insights into species-specific limiting factors and  
108 potential causes of declines.

109

## 110 **Methods**

### 111 *General approach*

112 Our approach is based on tracking within-year population change through repeated sampling of  
113 relative abundance, as illustrated in Figure 1. We used data from eBird (Sullivan et al. 2014) to  
114 derive time series of avian abundance indices across eastern North America with uncertainty.  
115 We computed these indices over the cells of a hexagonal grid to obtain spring and fall  
116 “snapshots” of bird abundance, corresponding to weeks 13-16 (roughly the month of April) and  
117 weeks 40-43 (roughly the month of October) of the calendar year. These population snapshots  
118 allow us to define an index of recruitment as the logarithm of the ratio of the autumn population  
119 index over that of the preceding spring, and a survival index as the logarithm of the ratio of the  
120 spring index over that of the preceding autumn. Since our population indices are confounded by  
121 seasonal changes in detectability, they cannot be used to directly compare population sizes  
122 between spring and autumn. Therefore, we focus on the annual variation in indices for

123 recruitment and survival within a given cell. In assuming that this temporal variation is  
124 meaningful, we do not have to assume that detection probabilities are similar in April and  
125 October or across space. Instead, our key assumption is that the detectability difference  
126 between April and October shows up in our population snapshots as an unknown multiplicative  
127 factor that is potentially variable across space but constant through time. Under these  
128 assumptions, our demographic indices can provide a consistent index of high versus low  
129 survival or recruitment years even if it does not provide an absolute measure (Figure 1).  
130 Furthermore, given that annual population fluctuations are expected to be approximately log-  
131 normal, the relative importance of summer versus winter in governing interannual population  
132 fluctuations is directly related to the relative variances in the recruitment and survival indices,  
133 and this remains true despite that the detectability difference between seasons is unknown. We  
134 should note that these “macro”-demographic indices differ from traditional definitions of  
135 recruitment and survival used for example in mark-recapture studies. Our indices represent net  
136 gain and net loss in population size during pre-defined breeding and non-breeding periods,  
137 respectively. As such, the recruitment (gain) index captures both the effect of population  
138 increases due to reproduction and, as an index of net population change, also includes some  
139 co-occurring breeding season mortality. The survival (loss) index, on the other hand, captures  
140 the effect of non-breeding season mortality only, as no reproduction occurs during non-breeding  
141 periods. While seasonal redistribution through immigration and emigration may potentially affect  
142 our indices as well, their combined effect is likely small, given high site fidelity and small  
143 dispersal distances for most species compared to the spatial scale of our analysis (Haggerty  
144 and Morton 2020, Halkin et al. 2021).

145 To test our Tap and Tub hypotheses, we ask whether temporal variance in the survival  
146 index is larger or smaller than the variance in the recruitment index. The index with the larger  
147 variance will dominate the overall variance of the time series of the log absolute population size,

148 so this question amounts to asking whether interannual population fluctuations around the mean  
149 trend are more strongly controlled by events during May-September (Tap dynamics) or during  
150 November-March (Tub dynamics). Second, we test whether observed variation in recruitment  
151 and survival indices is correlated with weather conditions during the relevant period. Third, we  
152 ask whether the observed patterns are geographically coherent. When adjacent grid cells are  
153 analyzed independently but display geographical coherence in their results, we gain a measure  
154 of confidence that the patterns we observe are genuine and not affected by the unstructured  
155 sampling inherent in eBird data.

156

#### 157 *Geographic, temporal, and taxonomic scope*

158 We focused our analysis on the eastern United States and Canada (east of 110° W longitude  
159 and south of 50° N latitude) between the years 2006 and 2019. This region contains a high  
160 density of eBird checklists going back to the earliest years of our time series and represents a  
161 coherent biogeographic unit that contains well-defined populations of multiple resident bird  
162 species. We chose 2006 as our start year to maximize the length of our time series while  
163 avoiding extremely sparse and potentially unreliable data from earlier years. We chose 2019 as  
164 our end year to avoid potentially abrupt changes in the observation process associated with the  
165 Covid-19 pandemic (Hochachka et al. 2021).

166 We considered two species in our analysis: Carolina Wren and Northern Cardinal. These  
167 are widespread species that are commonly reported in eBird and are year-round residents  
168 within our study area (Haggerty and Morton 2020, Halkin et al. 2021). Year-round residency  
169 enabled us to derive regionally specific population snapshots from well-spaced times of year,  
170 and to assess the influence of weather on recruitment and survival without the complications of  
171 migration. Carolina Wren and Northern Cardinal also provide a useful contrast in that Carolina

172 Wren displays large annual population fluctuations and the Northern Cardinal does not based  
173 on data from the North American Breeding Bird Survey (Sauer and Link 2011).

174

175 *Bird occurrence and abundance data*

176 We subsetted the eBird data to retain only complete checklists (i.e., observers report all  
177 the species they detect and identify) submitted under stationary or traveling protocols of  
178 between 0 and 3 km distance, between 5 and 60 minutes duration, and with a checklist  
179 calibration index (CCI, a measure of observer efficiency; Johnston et al. 2018) of at least 0 (i.e.,  
180 above average).

181

182 *Recruitment and survival indices*

183 To explore spatial variation in population dynamics, we computed indices of recruitment and  
184 survival over the cells of an approximately equal-area hexagonal grid with a roughly 285 km  
185 spacing between cell centers (Figure S1) (Barnes et al. 2017). Inter-annual fluctuations in North  
186 American bird population sizes are approximately multiplicative (Kalyuzhny et al. 2014a), and  
187 are only weakly stabilized (Kalyuzhny et al. 2014b), such that populations fluctuate via  
188 multiplicative events that are roughly independent of the population size (in contrast, fluctuations  
189 in strongly stabilized populations tend to be positive when populations are small and negative  
190 when populations are large) (Lande et al. 2003). In this case it is natural to work on the  
191 logarithmic scale, where the multiplicative constant becomes an additive constant with no  
192 influence on variances or regression slopes. Gradual changes in detectability over multi-year  
193 timescales (e.g., due to changes in the eBird user base) are acceptable as long as they impact  
194 detection similarly in April and October and as long as they are sufficiently slow so that  
195 detection probabilities are always similar in consecutive Aprils and consecutive Octobers.

196 With an eye towards scalability, we eschew the computationally costly machine-learning  
197 approaches commonly used to analyze eBird data at a fine landscape level, and instead derive  
198 our population indices based on average per-checklist counts with carefully propagated  
199 uncertainty. Modeling fine-scale habitat features was not considered a priority since our analysis  
200 is focused on macroscale patterns derived from seasonal changes in abundance within the  
201 same habitat regions. To support robust uncertainty quantification, we spatially subsampled  
202 each grid cell across a finer hexagonal grid with an 18 km spacing between cell centers (Figure  
203 S1). We refer to the spatio-temporal units comprising one cell of the fine grid and one four-week  
204 period during one year as *micro-cells*, and we refer to the units comprising one cell of the  
205 coarse grid and one four-week period during one year as *macro-cells*.

206

207 To compute population indices for the macro-cells, we first computed population indices  
208 for each micro-cell as the average per-checklist count of the focal species across all checklists  
209 meeting our criteria for inclusion. Let  $A_{s,y,c,x,k}$  be the  $k$ -th checklist of in total  $n_{s,y,c,x}$  checklists  
210 belonging to the  $x^{\text{th}}$  micro-cell,  $c^{\text{th}}$  macro-cell in year  $y$  and season  $s$ . Then, the population index  
211  $i_{s,y,c,x}$  for the  $x^{\text{th}}$  micro-cell in the  $c^{\text{th}}$  macro-cell in the year  $y$  and season  $s$  is given by:

212

$$213 i_{s,y,c,x} = \sum_k^{n_{s,y,c,x}} A_{s,y,c,x,k} / n_{s,y,c,x}$$

214 Some complete checklists in eBird report the presence of a species but not its count; for these  
215 checklists we imputed the mean of the remaining checklists in the micro-cell that reported  
216 positive counts of the focal species. We excluded micro-cells that contained no complete  
217 checklists and micro-cells that contained at least one complete checklist reporting presence-  
218 only but no complete count-based checklists reporting nonzero abundance.

219 We then take our population index for the macro-cell  $I_{s,y,c}$  to be the logarithm of the  
 220 mean index over the total of  $n_{s,y,c}$  constituent micro-cells:

221

222

$$I_{s,y,c} = \log \left( \sum_x^{n_{s,y,c}} i_{s,y,c,x} / n_{s,y,c} \right)$$

223 We quantified uncertainty in macro-cell level population indices  $I_{s,y,c}$  by applying the Bayesian  
 224 bootstrap (Rubin 1981) over the constituent micro-cells. That is, we generated posterior  
 225 samples  $I_{s,y,c}^b$  as:

226

227

$$I_{s,y,c}^b = \log \left( \sum_x^{n_{s,y,c}} i_{s,y,c,x} \cdot w_{b,x} / \sum_x^{n_{s,y,c}} w_{b,x} \right)$$

228 Where  $b$  indexes the bootstrap replicate and  $w_{b,x}$  represents the weight assigned to the  $x^{\text{th}}$   
 229 micro-cell in the  $b^{\text{th}}$  bootstrap replicate, sampled from a Dirichlet distribution.

230 We then calculated the demographic index for recruitment  $Y_{\text{recruitment},y,c}^b$  and survival  
 231  $Y_{\text{survival},y,c}^b$  indices by subtracting the spring population index from the subsequent fall index,  
 232 and the fall index from the next spring index, respectively:

233

$$Y_{\text{recruitment},y,c}^b = I_{\text{fall},y,c}^b - I_{\text{spring},y,c}^b$$

234

$$Y_{\text{survival},y,c}^b = I_{\text{spring},y+1,c}^b - I_{\text{fall},y,c}^b$$

235 Finally, we calculate a mean index  $Y_{t,y,c}$  and associated standard deviation  $\epsilon_{t,y,c}$  for each type of  
 236 demographic index  $t \in \{\text{recruitment, survival}\}$  by calculating the mean and standard deviation  
 237 across bootstrap replicates.

238 We fully propagated the posterior uncertainty by performing these subtractions sample-  
239 wise through the bootstrapped posteriors. This procedure occasionally produces infinite indices  
240 when no individuals are reported in an entire macro-cell ( $Y_{recruitment,y,c}^b$  and  $Y_{survival,y,c}^b$  can  
241 become  $\pm\infty$  when all micro-cell counts  $i_{s,y,c,x}$  in a macro-cell are zero due to the  
242 log-transform in  $I_{s,y,c}^b$ ; in this limit the bootstrap no longer accurately quantifies uncertainty).  
243 These infinite indices were rare and primarily occurred in the early years with lower sampling  
244 effort and at range boundaries where the species is less common. We removed infinite indices  
245 in all downstream analysis, as they are rare and universally reflect sampling variation that our  
246 bootstrapping does not capture. In regressions of recruitment and survival indices against  
247 weather variables, we simply removed years with infinite indices from analysis. In comparisons  
248 of the variance in survival versus the variance in recruitment, we excluded entire cells if they  
249 yielded infinite indices in any year.

250

251 *Comparison with the North American Breeding Bird Survey*

252 To validate the use of eBird for the study of population fluctuations, we used similar methods to  
253 create eBird-derived indices of annual June-to-June population change and compared these to  
254 indices derived from the North American Breeding Bird Survey (BBS). BBS data are sparse at  
255 the level of our macro-cells, and so for the purposes of this analysis we replaced the macro-cell  
256 in our method with larger bird conservation regions (BCRs), which are a common unit of  
257 aggregation in BBS analyses (Sauer et al. 2003). To ensure that our bootstrapping approach  
258 covered a reasonable spatial sample of each BCR, we required that data available for at least  
259 100 micro-cells to compute a population snapshot. To compute yearly population snapshots  
260 from the BBS, we fit separate generalized additive models for each BCR with random year  
261 effects and Poisson error for route-level counts, see supplementary information (SI) equations

262 9, 10. This approach is similar to that of Edwards and Smith (2020), except that we use fully  
263 independent models for each BCR. See SI for additional details of model fitting.

264 We then regressed June-to-June log-ratios from our BBS time series against those from  
265 our eBird time series via a mixed model incorporating the known measurement error in the  
266 predictor and the response, with a random intercept by BCR (SI equation 11, 12). We perform  
267 this analysis for Carolina Wren only, as the BBS analysis for Northern Cardinal did not show any  
268 interannual variation with sufficient confidence to support a validation based on correlations  
269 between time series.

270

#### 271 *Weather data*

272 We obtained weather data from Daymet (Thornton et al. 2022) via Google Earth Engine  
273 (Gorelick et al. 2017) and R package 'rgee' (Aybar et al. 2020), summarized as average values  
274 over the spatial macro-cells for which we derived recruitment and survival indices. We focused  
275 on three weather variables that we believed *a priori* might influence demography: the average  
276 daily high temperature during July and August, reflecting temperatures during the hottest part of  
277 the summer; the average daily high temperature during January and February, reflecting  
278 temperatures during the coldest part of the winter; and the average snowpack, measured in  
279 snow water equivalent, during December-March, reflecting winter weather that might impede  
280 foraging.

281

#### 282 *Analysis of variance and regression*

283 To obtain spatially explicit estimates of the factors governing the temporal dynamics of  
284 populations we used a regression-based approach applied to each macro-cell separately

285 followed by a model-based spatial smoothing of the regression results across cells. To  
286 determine whether events during the breeding period versus the non-breeding period exert  
287 stronger control on population dynamics, we fit independent cell-specific regressions to the  
288 distribution of survival and recruitment indices, with season (survival or recruitment) predicting  
289 both the mean and the logarithm of the variance (SI equation 1). The coefficient for the effect of  
290 season on the variance provides inference about whether the variance is higher overall for  
291 recruitment or survival, and therefore whether overall population fluctuations are primarily under  
292 the control of events during May-September or November-March.

293 To determine if weather conditions drive variation in recruitment or survival, we  
294 regressed the indices against mean daily high temperatures during July and August (recruitment  
295 indices), mean daily high temperatures during January and February (survival indices), and  
296 mean snow-water equivalent during January and February (survival indices). We fit these  
297 regressions independently for each cell. To propagate uncertainty in the demographic indices  
298 through the regressions we fit both a homoskedastic residual and an additional Gaussian error  
299 term whose variance we fixed to the bootstrapped standard error for the measurement (SI  
300 equation 3, 4). We fit the regression models only in cells where we retained at least five  
301 analyzable years. For the comparisons of variance, we additionally removed all cells where the  
302 estimated demographic index was infinite in any year, as ignoring these years could  
303 substantially bias variance estimates.

304 We then spatially smoothed the slope estimates from the regressions of demographic  
305 indices against weather variables using both a nonspatial residual and a cell-level spatial  
306 random effect with an intrinsic conditional autoregressive (ICAR) prior (Morris et al. 2019). We  
307 again propagated uncertainty by including an extra Gaussian error term whose variance we  
308 fixed to the posterior variance in the slope estimate (SI equation 5,6). We present both the  
309 conditional autoregressive (CAR) model and the independent cell-specific results. The CAR

310 model provides spatial smoothing over cells and distinguishes spatially coherent patterns from  
311 spatially idiosyncratic patterns that might merely reflect cell-specific noise. The independent cell-  
312 specific regressions serve to confirm that the patterns detected in the CAR models reflect  
313 genuine geographic coherence across multiple independently analyzed cells and not merely the  
314 spatially smoothed influence of single cells that take extreme values. Thus, the independent  
315 cell-specific regressions are effectively a robustness check against the possibility that the CAR  
316 model produces spurious patterns due to misspecification of an insufficiently heavy-tailed  
317 residual term.

318

319 *Latitudinal pattern*

320 The regression models described above suggested that Carolina Wren populations might be  
321 under the control of winter temperatures at high latitudes but not at low latitudes. To further  
322 investigate and quantify this pattern, we fit an additional CAR model to predict the slope of  
323 Carolina Wren survival regressed on temperature as a function of latitude. We again used a  
324 nonspatial Gaussian error term, an ICAR spatial term, and a known error term to propagate  
325 uncertainty, but we modified the model described above by additionally including a fixed effect  
326 of latitude (SI equations 6, 8).

327

328 *Model fitting*

329 We fit all regressions in the Stan C++ library for Bayesian modeling and inference (Stan  
330 Development Team 2023) using the R package `brms` (Bürkner 2017) under the default priors,  
331 which are generally weakly informative for intercepts and standard deviations and flat for  
332 coefficients. We assessed model convergence via lack of divergences and r-hat statistics less  
333 than 1.05. Divergences are a sensitive diagnostic unique to Hamiltonian Monte Carlo algorithms

334 for model fitting for certain forms of non-convergence that frequently manifest in hierarchical  
335 modeling situations (Betancourt 2017). We use a contemporary version of r-hat (split, folded,  
336 rank-normalized) with improved sensitivity for detecting non-convergence (Vehtari et al. 2021).  
337 We also performed posterior predictive checks for each model and visually assessed the model  
338 fit for representative subsets of individual macro-cells (not shown) and for aggregated models  
339 (SI Figure. S9). As summary checks, we verified for all macro-cells, whether close to 95% of the  
340 observations were within the 95% CI of the posterior model predictions, as expected for good  
341 model fit (SI Figure S10). We also checked normality assumptions through assessment of the  
342 excess kurtosis and skewness of our sampled macrodemographic indices (SI Figure. S11, S12)  
343 and the posterior distributions of the regression coefficients (SI Figure. S13, S14).

344

## 345 **Results**

346 After applying our stringent data filters, we obtained analyzable time series (series including at  
347 least five seasons) in 59 grid cells (macro-cells) for Carolina Wren survival, 60 grid cells for  
348 Carolina Wren recruitment, 66 grid cells for Northern Cardinal survival, and 68 grid cells for  
349 Northern Cardinal recruitment. Although the longest time-series were concentrated in the  
350 northeastern United States, where early eBird uptake was strongest (SI Figure S2), we were  
351 able to analyze time-series spanning latitudes from south Florida to southern Canada.

352 June-to-June population fluctuations at the level of bird conservation regions were  
353 strikingly consistent between our eBird-derived indices and BBS-derived indices, with a clearly  
354 positive slope statistically indistinguishable from one (Figure 2).

355 The comparison of recruitment and survival indices reveals higher variance in survival  
356 than recruitment for Carolina Wrens in the northern part of their range but not in the southern  
357 part (Figure 3a, SI Figure S3a). The sample variances were higher in winter across much of the

358 continent, with especially the northeastern US showing strong evidence for a significant  
359 difference. The geographical coherence in the results, which arises from independent cell-scale  
360 analyses without spatial smoothing, strongly suggests that results are not due to the semi-  
361 structured sampling in eBird but rather are due to a genuine signal of populations controlled  
362 primarily by wintertime dynamics in the northern part of the range. No such pattern was  
363 apparent for Northern Cardinal, consistent with the idea that this species is hardier and less  
364 sensitive to severe winters, and again suggesting that results for Carolina Wren are not artifacts  
365 of the sampling process (Figure 3b, SI Figure S3b). Cardinal populations are potentially under  
366 stronger control from breeding-season dynamics rather than wintertime dynamics in southern  
367 Texas (see below).

368 Weather conditions were strongly predictive of winter survival in Carolina Wren (SI  
369 Figure S4a, Figure S4c), which is substantially controlled by winter harshness as measured by  
370 temperature and snowfall, especially in the northeastern part of its range (Figure 4a, Figure 4c).  
371 Recruitment showed no robust relationship with summer temperatures (Figure 4e, Figure S4e).  
372 In contrast, although Northern Cardinals may have experienced similar patterns in survival  
373 (Figure 4b, Figure 4d), the degree of certainty was low (SI Figure S4b, Figure S4d). However,  
374 their recruitment was positively associated with summer temperatures in the Mississippi Valley  
375 and Texas (Figure 4f, SI Figure S4f).

376 The latitudinal ICAR models estimated a clear positive effect of latitude on the slope of  
377 the relationship between winter temperature and Carolina Wren survival of roughly 0.006 (95%  
378 credible interval -0.003 - 0.014) natural logarithms per degree Celsius per degree latitude  
379 (Figure 5). This slope means that a one-degree difference in winter temperatures that has no  
380 effect on Carolina Wren survival rates in the south would have roughly a six percent impact on  
381 survival rates (and therefore on populations) 1000 km to the north.

382

383 **Discussion**

384 This study presents a novel method for extracting information on seasonal demographic  
385 changes from large-scale citizen science data. We show how semi-structured bird counts  
386 collected by volunteers can be used to make inferences on processes of seasonal mortality and  
387 recruitment across the full range of two resident species. A feature of eBird that enables large-  
388 scale demographic analysis is that population abundances are sampled continuously throughout  
389 year. This allows us to estimate indices of seasonal change in observed bird counts throughout  
390 the season, as abundances change due to mortality and reproduction. We use annual time  
391 series of the post- to pre-breeding count change to sample the process of mortality, while the  
392 pre- to post-breeding change samples the combined process of recruitment and adult survival  
393 during the breeding period. By assigning annual population fluctuations to different parts of the  
394 annual cycle in this manner, we provide a way of characterizing population dynamics along the  
395 Tap-Tub dichotomy (Sæther et al. 2004).

396 Our results indicate that Carolina Wren population dynamics are primarily Tub-driven at  
397 the northern end of the range, as indicated by a higher interannual variance in the survival index  
398 as compared to the recruitment index (Figure 3a). In addition, warmer, less snowy winters are  
399 associated with higher survival (Figure 4a,c), which aligns with the known susceptibility of  
400 Carolina Wrens to harsh winters (Brooks 1936, Sauer et al. 1996, Mehlman 1997, Link and  
401 Sauer 2007). Northern Cardinal exhibits strikingly different patterns, with limited evidence for  
402 either Tap or Tub dynamics across most of the range (Figure 3b, tap-dynamics was detected in  
403 southern Texas only). Only weak associations of demographic indices with weather covariates  
404 were found for this species (Figure 4), though recruitment may be elevated when summers are

405 warm in the Mississippi Valley and Texas. These results support our hypothesis that winter  
406 harshness is a key factor in Carolina Wren but not for Northern Cardinal.

407 We find a remarkable correspondence between our findings and the outcomes of  
408 previous studies, which adds further support that our demographic inferences on Carolina Wren  
409 and Northern Cardinal populations are ecologically meaningful and robust. Previous studies,  
410 typically conducted at local scales, have consistently demonstrated the influential role of  
411 environmental factors, such as overwintering temperature (Brooks 1936, Root 1988, Mehlman  
412 1997, Latimer and Zuckerberg 2021), snow cover (Link and Sauer 2007), food availability (Job  
413 and Bednekoff 2011), in shaping Carolina Wren populations. These factors are crucial  
414 determinants of winter survival and, consequently, may even dictate the northern distribution  
415 range of Carolina Wrens (Huang et al. 2016). For instance, researchers using BBS and  
416 Christmas Bird Count (CBC) data have quantified a 1.1% decrease of abundance for every day  
417 with 4 cm of snow cover in the northern portion of this species winter range (Link and Sauer  
418 2007). This phenomenon may be closely tied to their foraging habits, which primarily occur near  
419 or at ground level (Haggerty et al. 2001). Conversely, Northern Cardinals exhibit comparatively  
420 less interannual variation in their demography (Ziolkowski et al. 2023), owing to their adaptability  
421 to urban forest environments (Evans et al. 2015), which offer more consistent food availability  
422 during winter months (Leston and Rodewald 2006), including supplemental feeding (Job and  
423 Bednekoff 2011). These corresponding findings suggest that our large-scale demographic  
424 information offers a valuable complementary insight, extending the geographic scope of these  
425 local studies.

426 Our analysis finds similar annual fluctuations in population abundances as those  
427 detected by the more structured and standardized survey of the BBS (Figure 2, SI Figure S8). It  
428 shows that our analysis framework has sufficient power to detect relatively modest demographic  
429 changes in population numbers within seasons and across years. It also indicates that our

430 stratified sampling design with bootstrap-based uncertainty quantification successfully  
431 accommodate the opportunistic nature of citizen science data collection, which inherently  
432 introduces spatial and temporal biases in observer effort (Dickinson et al. 2010, Johnston et al.  
433 2021, Fink et al. 2023, Johnston et al. 2023). Spatial biases may emerge due to observers'  
434 preferences for particular locations, such as protected areas (Boakes et al. 2010). An illustrative  
435 example of temporal bias can be observed in the alterations to data collection practices during  
436 the COVID-19 pandemic (Hochachka et al. 2021). Additionally, inclement weather conditions or  
437 poor air quality may constrain birder activity, resulting in fewer checklists on specific days in  
438 certain areas. We avoided these spatiotemporal biases by aggregating data into relatively large  
439 spatial and temporal sampling units (i.e., equal spaced hexagons), with its uncertainty  
440 estimates. Resulting demographic indices and their relationships with weather covariates are  
441 often similar to those of neighboring hexagons. This spatial consistency in demographic  
442 patterns along with spatiotemporal consistency observed in BBS validation provides further  
443 support that our approach is robust against spatiotemporal biases in sampling.

444 Importantly, detected seasonal changes in counts not only reflects the seasonal change  
445 in abundance of species, but also the seasonal change in their detectability. Birds' detectability  
446 declines during specific annual cycle events like nesting and molting and increases in spring  
447 when birds vocalize more frequently (Wilson and Bart 1985, Riegert 2022). A central  
448 assumption in our analysis is that this seasonal detectability change is consistent, meaning that  
449 the detectability difference between our population snapshots can be captured by an unknown  
450 multiplicative factor that is potentially variable across space, but approximately constant in  
451 successive years. Seasonal changes in count can then be interpreted as *relative* indices of  
452 demographic population changes that may be compared across years. However, we  
453 acknowledge that interannual variation in detectability may affect our estimation. Modeling  
454 detectability in eBird either implicitly via the inclusion of detection-related covariates (as in

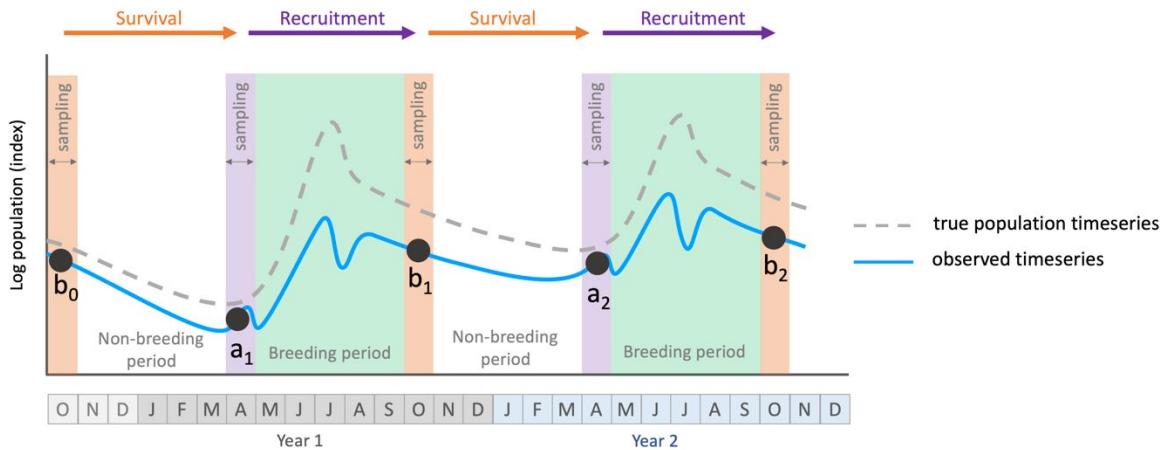
455 STEM models for eBird data; Fink et al. 2023) or explicitly via occupancy models (Hochachka et  
456 al. 2023) or N-mixture models (Goldstein and de Valpine 2022) present interesting avenues for  
457 further refinement of our approach.

458 Our macro-demographic approach has potential to expand ecologists' toolkit for  
459 obtaining information on demography and overcome several existing challenges. Traditional  
460 demographic studies tend to be time consuming and requires banding and resighting individuals  
461 in a mark-recapture setting. Detailed demographic studies exist only for a limited number of  
462 model species investigated in long-term population research. Extensive banding programs have  
463 been initiated to obtain demographic information across large spatial extents and for more  
464 species (e.g., MAPS and MoSi in the Americas (Desante et al. 1995, DeSante et al. 2005), and  
465 CES schemes in Europe (Peach et al. 1996)). These programs provide invaluable individual-  
466 based demographic metrics that remain unrivaled in their specificity and ability to distinguish  
467 groups by age and sex. However, they remain limited in their geographic coverage and the  
468 number of species that can be sampled in sufficient numbers (Faaborg et al. 2010b). A citizen-  
469 science based macro-demographic approach has great potential for complementing existing  
470 demographic information. Future work will need to explore how our macro-demographic  
471 approach can scale-up to include multiple species over large spatial-temporal extents using  
472 freely available and rapidly growing citizen science data. The resulting demographic indices,  
473 sampled across large spatial extents instead of at highly local banding sites, are suitable to  
474 detect large-scale demographic processes, such as those influenced by large-scale weather  
475 and climate, and may prove suitable to detect the influences of other large-scale causal drivers  
476 including anthropogenic impacts. Finally, our macro-demographic approach gives us more  
477 freedom to temporally subdivide the annual cycle into "snapshots" of interest, allowing us to  
478 isolate and study multiple transitions across the annual cycle.

479        The macro-demographic methodology introduced in this study opens exciting new  
480 opportunities in avian ecology research. Expanding this approach to encompass many other  
481 resident species, as well as migrants that breed or winter in data rich regions, holds significant  
482 potential for uncovering novel insights into population dynamics (Faaborg et al. 2010a, Sullivan  
483 et al. 2014, La Sorte et al. 2018). Although, we note that migration poses special challenges of  
484 compressed temporal windows for observing population changes pre- and post-breeding, as  
485 well as confounding annual variability in migration timing. Still, leveraging the large-scale spatial  
486 and temporal coverage of citizen science data allows for a comprehensive examination of  
487 annual fluctuations, shedding light on distinct patterns and ecological drivers. Furthermore, its  
488 adaptability offers the prospect of exploring finer resolutions within annual cycles, using multiple  
489 snapshots to achieve higher time resolution analyses. This opens avenues for researchers to  
490 dissect mortality and recruitment dynamics with greater precision, providing a more nuanced  
491 understanding of the temporal intricacies within a species' annual life cycle.

492        Our case study highlights the potential of citizen-science data in providing demographic  
493 information on recruitment, mortality, and its associations with weather and climate. Uncovering  
494 these underlying demographic processes will be critical for understanding the causes for  
495 demographic boom and bust years, and the mechanisms behind ongoing long-term population  
496 declines.

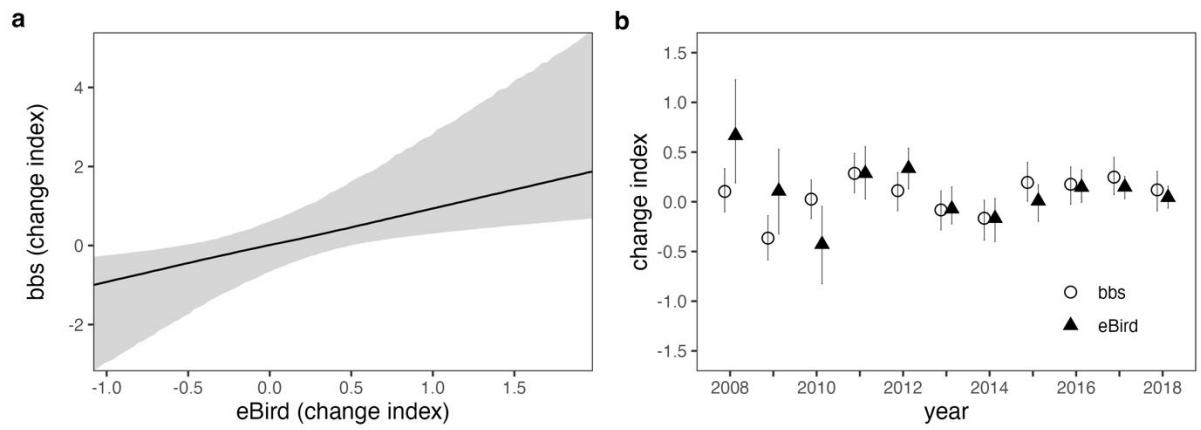
497



498

499 **Figure 1:** Conceptual overview of our approach for assessing population fluctuations using  
 500 eBird data. The grey dashed curve represents a hypothetical two-year time series of the  
 501 logarithm of a population's size, beginning in early fall. The blue curve represents the apparent  
 502 time series from eBird data, which confounds the population time series with detection effects  
 503 (e.g., higher detection in spring than fall). We snapshot the eBird time series in fall (circle 'b')  
 504 and spring (circle 'a'), and we treat the differences between successive snapshots as indices of  
 505 survival (i.e.,  $a_1 - b_0$ ) and recruitment (i.e.,  $b_1 - a_1$ ; on the log scale, differences correspond to  
 506 log-ratios). Because we are interested primarily in the year-to-year variability of these indices  
 507 and not in their raw values, we can neglect the differences between the apparent log-population  
 508 and the true log-population provided that these differences are consistent from spring to spring  
 509 and from fall to fall (a multiplicative detection term becomes an additive term on the log scale).  
 510 In this example, survival was higher in the second winter than in the first (i.e.,  $a_2 - b_1 > a_1 - b_0$ ),  
 511 and the eBird-derived population snapshots provide an unbiased estimate of the difference  
 512 between year-1 survival and year-2 survival.

513



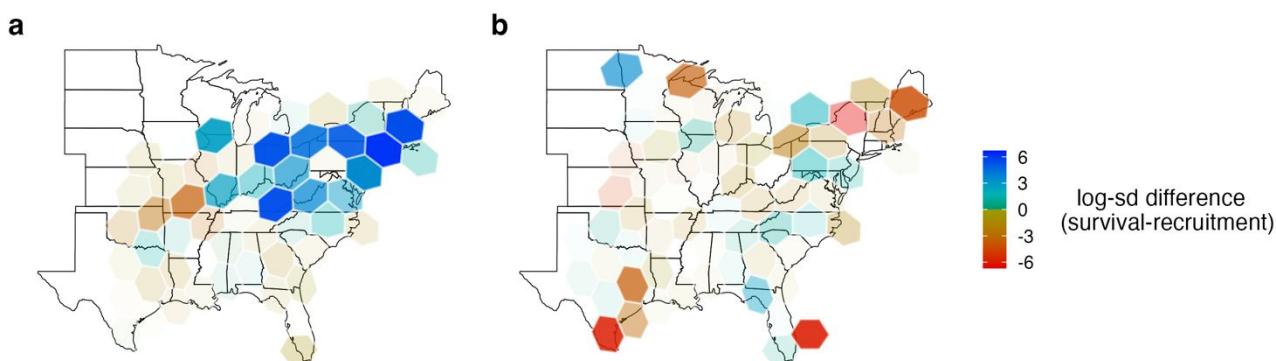
514

515 **Figure 2:** eBird derived indices for June-to-June population fluctuations at the level of bird  
516 conservation regions (BCRs) are predictive of fluctuations derived from the United States  
517 Breeding Bird Survey (BBS) for the same regions and years. **a)** The slope is estimated to be  
518 near unity (0.97, 95% CI 0.34–2.14). **b)** The match in fluctuations through time as visualized for  
519 one of the longest and best-aligned time series (BCR 28 includes the Appalachian Mountains  
520 from Alabama to southern New York). Data from years prior to 2008 did not meet the inclusion  
521 thresholds for eBird analysis.

522

523

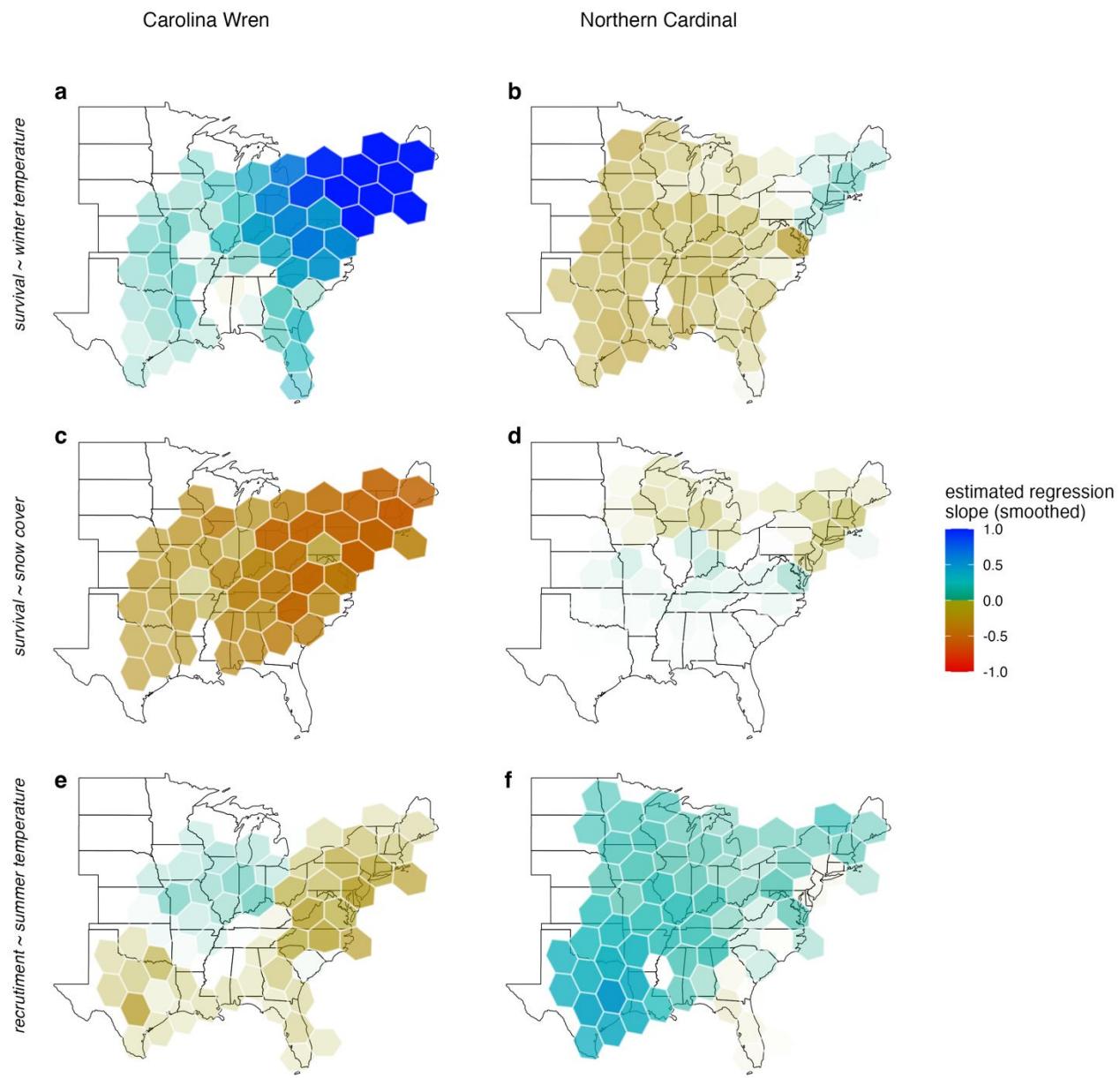
524



525

526 **Figure 3:** For Carolina Wren (a)--but not Northern Cardinal (b)--northern cells tend to show  
527 evidence for higher variance in survival, implying that in the north, annual population fluctuations  
528 are more strongly controlled by events during winter than by events during summer. The  
529 difference in (log) standard deviations estimated from independent cell-level models of survival  
530 and recruitment for Carolina Wren (a) and Northern Cardinal (b). The color scale gives the  
531 posterior mean effect size for the difference in the logarithm of the standard deviation; the  
532 opacity gives the posterior probability that the true effect is in the same direction as mean effect,  
533 scaled so that a probability of 0.5 is completely transparent and a probability of 1 is completely  
534 opaque. See SI Figure S3 for a color-based representation of these opacity values.

535



536

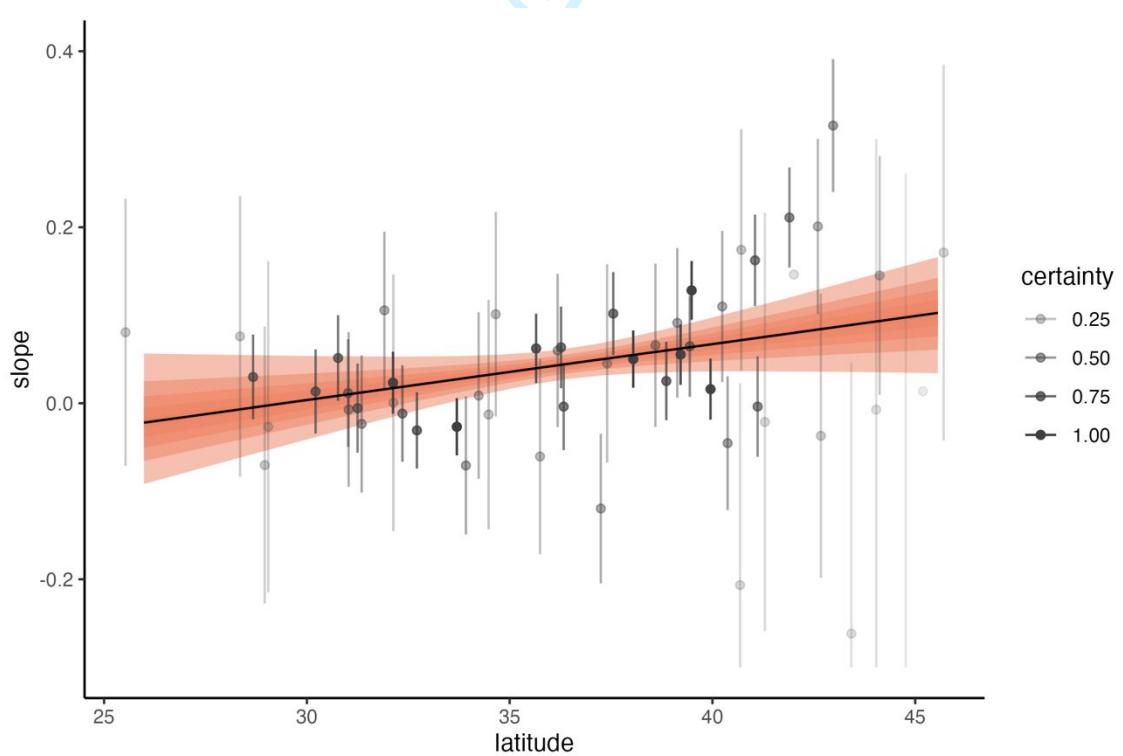
537 **Figure 4:** Survival and recruitment relationships to winter and summer weather in Carolina  
 538 Wren and Northern Cardinal. Carolina Wren survival is higher in warmer winters (a) and lower in  
 539 snowier winters (c) in the northeast, whereas recruitment shows no statistically robust  
 540 relationship to summer temperatures (e). Northern Cardinal shows potentially similar patterns in  
 541 survival, but with low certainty (b, d), while their recruitment is potentially higher when summer

542 temperatures were warm in the Mississippi Valley and Texas. The color scale gives the  
543 posterior mean effect size for the true (smoothed) cell-specific slope for a regression of the  
544 demographic index against weather conditions; the opacity gives the posterior probability that  
545 the true effect is in the same direction as mean effect, scaled linearly so that a probability of 0.5  
546 is completely transparent and a probability of 1 is completely opaque. See SI Figure S4 for a  
547 color-based representation of the opacity values, and SI Figures S6 and S7 for unsmoothed  
548 versions.

549

550

551



552

553 **Figure 5:** Posterior expectations for the slope of the relationship between winter temperature  
554 and survival (natural logarithms per degree C) of Carolina Wren as a function of latitude, based

555 on a conditional autoregressive model. The median expectation is given in black; colored bands  
556 delimit credible intervals in steps of 10%, with the widest band giving the 90% credible interval.  
557 Points and vertical lines give the posterior mean +/- 1 standard deviation for the cell-specific  
558 slopes. Opacity of data points is scaled as the uncertainty of the least uncertain point divided by  
559 the uncertainty of the focal point. See SI Figure S5 for an equivalent analysis of Northern  
560 Cardinal.

561

562

563

564

565

For Review Only

566

## References

567 Aybar, C., Q. Wu, L. Bautista, R. Yali, and A. Barja. 2020. rgee: An R package for interacting  
568 with Google Earth Engine. *Journal of Open Source Software* **5**:2272.

569 Balogh, A. L., T. B. Ryder, and P. P. Marra. 2011. Population demography of Gray Catbirds in  
570 the suburban matrix: sources, sinks and domestic cats. *Journal of Ornithology* **152**:717-  
571 726.

572 Barnes, R., K. Sahr, G. Evenden, A. Johnson, and F. Warmerdam. 2017. dggridR: discrete  
573 global grids for R. R package version 0.1 **12**:963.

574 Beddall, B. G. 1963. Range expansion of the cardinal and other birds in the northeastern states.  
575 *The Wilson Bulletin* **75**:140-158.

576 Betancourt, M. 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint  
577 arXiv:1701.02434.

578 Boakes, E. H., P. J. K. McGowan, R. A. Fuller, D. Chang-qing, N. E. Clark, K. O'Connor, and G.  
579 Mace. 2010. Distorted Views of Biodiversity: Spatial and Temporal Bias in Species  
580 Occurrence Data. *PLOS Biology* **8**:e1000385.

581 Brooks, M. 1936. Winter killing of Carolina wrens. *The Auk* **53**:449-449.

582 Brown, D. J., C. A. Ribic, D. M. Donner, M. D. Nelson, C. I. Bocetti, and C. M. Deloria-Sheffield.  
583 2017. Using a full annual cycle model to evaluate long-term population viability of the  
584 conservation-reliant Kirtland's warbler after successful recovery. *Journal of Applied  
585 Ecology* **54**:439-449.

586 Bürkner, P.-C. 2017. brms: An R package for Bayesian multilevel models using Stan. *Journal of  
587 statistical software* **80**:1-28.

588 Cafaro, P., P. Hansson, and F. Götmark. 2022. Overpopulation is a major cause of biodiversity  
589 loss and smaller human populations are necessary to preserve what is left. *Biological  
590 Conservation* **272**:109646.

591 Ceballos, G., P. R. Ehrlich, and P. H. Raven. 2020. Vertebrates on the brink as indicators of  
592 biological annihilation and the sixth mass extinction. *Proceedings of the National  
593 Academy of Sciences* **117**:13596-13602.

594 Desante, D. F., K. M. Burton, J. F. Saracco, and B. L. Walker. 1995. Productivity indices and  
595 survival rate estimates from MAPS, a continent-wide programme of constant-effort mist-  
596 netting in North America. *Journal of Applied Statistics* **22**:935-948.

597 DeSante, D. F., D. R. O'Grady, and P. Pyle. 1999. Measures of productivity and survival derived  
598 from standardized mist-netting are consistent with observed population changes. *Bird  
599 Study* **46**:S178-S188.

600 DeSante, D. F., T. S. Sillett, R. B. Siegel, J. F. Saracco, C. A. Romo de Vivar Alvarez, S.  
601 Morales, A. Cerezo, D. R. Kaschube, M. Grossleit, and B. Milá. 2005. MoSI (Monitoreo  
602 de Sobrevivencia Invernal): assessing habitat-specific overwintering survival of  
603 Neotropical migratory landbirds. USDA Forest Service General Technical Report.

604 Dickinson, J. L., B. Zuckerberg, and D. N. Bonter. 2010. Citizen Science as an Ecological  
605 Research Tool: Challenges and Benefits. *Annual Review of Ecology, Evolution, and  
606 Systematics* **41**:149-172.

607 Dunn, P. O., D. W. Winkler, A. Møller, W. Fiedler, and P. Berthold. 2010. Effects of climate  
608 change on timing of breeding and reproductive success in birds. *Effects of climate  
609 change on birds* **11**:17.

610 Edwards, B. P. M., and A. C. Smith. 2020. bbsBayes: An R Package for Hierarchical Bayesian  
611 Analysis of North American Breeding Bird Survey Data.  
612 bioRxiv:2020.2005.2027.118901.

613 Evans, B. S., T. B. Ryder, R. Reitsma, A. H. Hurlbert, and P. P. Marra. 2015. Characterizing  
614 avian survival along a rural-to-urban land use gradient. *Ecology* **96**:1631-1640.

615 Faaborg, J., R. T. Holmes, A. D. Anders, K. L. Bildstein, K. M. Dugger, S. A. Gauthreaux Jr., P.  
616 Heglund, K. A. Hobson, A. E. Jahn, D. H. Johnson, S. C. Latta, D. J. Levey, P. P. Marra,  
617 C. L. Merkord, E. Nol, S. I. Rothstein, T. W. Sherry, T. S. Sillett, F. R. Thompson III, and  
618 N. Warnock. 2010a. Recent advances in understanding migration systems of New World  
619 land birds. *Ecological Monographs* **80**:3-48.

620 Faaborg, J., R. T. Holmes, A. D. Anders, K. L. Bildstein, K. M. Dugger, S. A. Gauthreaux Jr., P.  
621 Heglund, K. A. Hobson, A. E. Jahn, D. H. Johnson, S. C. Latta, D. J. Levey, P. P. Marra,  
622 C. L. Merkord, E. Nol, S. I. Rothstein, T. W. Sherry, T. S. Sillett, F. R. Thompson III, and  
623 N. Warnock. 2010b. Conserving migratory land birds in the New World: Do we know  
624 enough? *Ecological Applications* **20**:398-418.

625 Fink, D., A. Johnston, M. Strimas-Mackey, T. Auer, W. M. Hochachka, S. Ligocki, L.  
626 Oldham Jaromczyk, O. Robinson, C. Wood, S. Kelling, and A. D. Rodewald. 2023. A  
627 Double machine learning trend model for citizen science data. *Methods in Ecology and  
628 Evolution* **14**:2435-2448.

629 Finn, C., F. Grattarola, and D. Pincheira-Donoso. 2023. More losers than winners: investigating  
630 Anthropocene defaunation through the diversity of population trends. *Biological Reviews*  
631 **98**:1732-1748.

632 Goldstein, B. R., and P. de Valpine. 2022. Comparing N-mixture models and GLMMs for relative  
633 abundance estimation in a citizen science dataset. *Scientific Reports* **12**:12276.

634 Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google  
635 Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sensing of  
636 Environment* **202**:18-27.

637 Habibullah, M. S., B. H. Din, S.-H. Tan, and H. Zahid. 2022. Impact of climate change on  
638 biodiversity loss: global evidence. *Environmental Science and Pollution Research*  
639 **29**:1073-1086.

640 Haggerty, T. M., and E. S. Morton. 2020. Carolina Wren (*Thryothorus ludovicianus*), version 1.0.  
641 In *Birds of the World* (A. F. Poole, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA.  
642 <https://doi.org/10.2173/bow.carwre.01>.

643 Haggerty, T. M., E. S. Morton, and R. C. Fleischer. 2001. Genetic monogamy in Carolina wrens  
644 (*Thryothorus ludovicianus*). *The Auk* **118**:215-219.

645 Halkin, S. L., D. P. Shustack, M. S. DeVries, J. M. Jawor, and S. U. Linville. 2021. Northern  
646 Cardinal (*Cardinalis cardinalis*), version 2.0. In *Birds of the World* (P. G. Rodewald and  
647 B. K. Keeney, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA.  
648 <https://doi.org/10.2173/bow.norcar.02>.

649 Hallworth, M. T., E. Bayne, E. McKinnon, O. Love, J. A. Tremblay, B. Drolet, J. Ibarzabal, S.  
650 Van Wilgenburg, and P. P. Marra. 2021. Habitat loss on the breeding grounds is a major  
651 contributor to population declines in a long-distance migratory songbird. *Proceedings of  
652 the Royal Society B: Biological Sciences* **288**:20203164.

653 Halupka, L., and K. Halupka. 2017. The effect of climate change on the duration of avian  
654 breeding seasons: a meta-analysis. *Proceedings of the Royal Society B: Biological  
655 Sciences* **284**:20171710.

656 Hochachka, W. M., H. Alonso, C. Gutiérrez-Expósito, E. Miller, and A. Johnston. 2021. Regional  
657 variation in the impacts of the COVID-19 pandemic on the quantity and quality of data  
658 collected by the project eBird. *Biological Conservation* **254**:108974.

659 Hochachka, W. M., V. Ruiz-Gutierrez, and A. Johnston. 2023. Considerations for fitting  
660 occupancy models to data from eBird and similar volunteer-collected data. *Ornithology*  
661 **140**.

662 Huang, Q., J. R. Sauer, A. Swatantran, and R. Dubayah. 2016. A centroid model of species  
663 distribution with applications to the Carolina wren *Thryothorus ludovicianus* and house  
664 finch *Haemorhous mexicanus* in the United States. *Ecography* **39**:54-66.

665 Job, J., and P. A. Bednekoff. 2011. Wrens on the edge: feeders predict Carolina wren  
666 Thryothorus ludovicianus abundance at the northern edge of their range. *Journal of*  
667 *Avian Biology* **42**:16-21.

668 Johnston, A., D. Fink, W. M. Hochachka, and S. Kelling. 2018. Estimates of observer expertise  
669 improve species distributions from citizen science data. *Methods in Ecology and*  
670 *Evolution* **9**:88-97.

671 Johnston, A., W. M. Hochachka, M. E. Strimas-Mackey, V. Ruiz Gutierrez, O. J. Robinson, E. T.  
672 Miller, T. Auer, S. T. Kelling, and D. Fink. 2021. Analytical guidelines to increase the  
673 value of community science data: An example using eBird data to estimate species  
674 distributions. *Diversity and Distributions* **27**:1265-1277.

675 Johnston, A., E. Matechou, and E. B. Dennis. 2023. Outstanding challenges and future  
676 directions for biodiversity monitoring using citizen science data. *Methods in Ecology and*  
677 *Evolution* **14**:103-116.

678 Kalyuzhny, M., Y. Schreiber, R. Chocron, C. H. Flather, R. Kadmon, D. A. Kessler, and N. M.  
679 Shnerb. 2014a. Temporal fluctuation scaling in populations and communities. *Ecology*  
680 **95**:1701-1709.

681 Kalyuzhny, M., E. Seri, R. Chocron, C. H. Flather, R. Kadmon, and N. M. Shnerb. 2014b. Niche  
682 versus neutrality: a dynamical analysis. *The American Naturalist* **184**:439-446.

683 Knudsen, E., A. Lindén, C. Both, N. Jonzén, F. Pulido, N. Saino, W. J. Sutherland, L. A. Bach,  
684 T. Coppack, T. Ergon, P. Gienapp, J. A. Gill, O. Gordo, A. Hedenstrom, E. Lehikoinen,  
685 P. P. Marra, A. P. Møller, A. L. K. Nilsson, G. Péron, E. Ranta, D. Rubolini, T. H. Sparks,  
686 F. Spina, C. E. Studds, S. A. Sæther, P. Tryjanowski, and N. C. Stenseth. 2011.  
687 Challenging claims in the study of migratory birds and climate change. *Biological*  
688 *Reviews* **86**:928-946.

689 La Sorte, F. A., C. A. Lepczyk, J. L. Burnett, A. H. Hurlbert, M. W. Tingley, and B. Zuckerberg.  
690 2018. Opportunities and challenges for big data ornithology. *The Condor* **120**:414-426.

691 La Sorte, F. A., and M. Somveille. 2020. Survey completeness of a global citizen-science  
692 database of bird occurrence. *Ecography* **43**:34-43.

693 La Sorte, F. A., and F. R. Thompson. 2007. Poleward shifts in winter ranges of North American  
694 birds. *Ecology* **88**:1803-1812.

695 Lack, D. 1954. The natural regulation of animal numbers. Clarendon. Oxford.

696 Lamanna, J. A., T. L. George, J. F. Saracco, M. P. Nott, and D. F. DeSante. 2012. El Niño—  
697 Southern Oscillation Influences Annual Survival of a Migratory Songbird at a Regional  
698 Scale. *The Auk* **129**:734-743.

699 Lande, R., S. Engen, and B.-E. Saether. 2003. Stochastic population dynamics in ecology and  
700 conservation. Oxford University Press, USA.

701 Latimer, C. E., and B. Zuckerberg. 2021. Habitat loss and thermal tolerances influence the  
702 sensitivity of resident bird populations to winter weather at regional scales. *Journal of*  
703 *Animal Ecology* **90**:317-329.

704 Leston, L. F. V., and A. D. Rodewald. 2006. Are urban forests ecological traps for understory  
705 birds? An examination using Northern cardinals. *Biological Conservation* **131**:566-574.

706 Lima, S. L. 2009. Predators and the breeding bird: behavioral and reproductive flexibility under  
707 the risk of predation. *Biological Reviews* **84**:485-513.

708 Link, W. A., and J. R. Sauer. 2007. Seasonal components of avian population change: joint  
709 analysis of two large-scale monitoring programs. *Ecology* **88**:49-55.

710 Maresh Nelson, S. B., C. A. Ribic, N. D. Niemuth, J. Bernath-Plaisted, and B. Zuckerberg. 2024.  
711 Sensitivity of North American grassland birds to weather and climate variability.  
712 *Conservation Biology* **38**:e14143.

713 Marra, P. P., C. E. Studds, S. Wilson, T. S. Sillett, T. W. Sherry, and R. T. Holmes. 2015. Non-  
714 breeding season habitat quality mediates the strength of density-dependence for a  
715 migratory bird. *Proceedings of the Royal Society B: Biological Sciences* **282**:20150624.

716 Martin, T. E. 1987. Food as a limit on breeding birds: a life-history perspective. *Annual review of*  
717 *ecology and systematics* **18**:453-487.

718 Mehlman, D. W. 1997. Change in avian abundance across the geographic range in response to  
719 environmental change. *Ecological Applications* **7**:614-624.

720 Morris, M., K. Wheeler-Martin, D. Simpson, S. J. Mooney, A. Gelman, and C. DiMaggio. 2019.  
721 Bayesian hierarchical spatial models: Implementing the Besag York Mollié model in stan.  
722 *Spatial and Spatio-temporal Epidemiology* **31**:100301.

723 Morrison, C. A., S. J. Butler, J. A. Clark, J. Arizaga, O. Baltà, J. Cepák, A. L. Nebot, M. Piha, K.  
724 Thorup, T. Wenninger, R. A. Robinson, and J. A. Gill. 2022. Demographic variation in  
725 space and time: implications for conservation targeting. *Royal Society Open Science*  
726 **9**:211671.

727 Newton, I. 1998. *Population limitation in birds*. Academic press.

728 Peach, W., S. Buckland, and S. Baillie. 1996. The use of constant effort mist-netting to measure  
729 between-year changes in the abundance and productivity of common passerines. *Bird*  
730 *Study* **43**:142-156.

731 Riegert, J. 2022. Detectability of birds under different sampling efforts and during the breeding  
732 season: a case study from Central Europe. *Journal of Vertebrate Biology*  
733 **71**:22027.22021-22012.

734 Root, T. 1988. Energy Constraints on Avian Distributions and Abundances. *Ecology* **69**:330-  
735 339.

736 Rosenberg, K. V., A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C.  
737 Stanton, A. Panjabi, L. Helft, M. Parr, and P. P. Marra. 2019. Decline of the North  
738 American avifauna. *Science* **366**:120-124.

739 Rubin, D. B. 1981. The bayesian bootstrap. *The annals of statistics*:130-134.

740 Sæther, B.-E., W. J. Sutherland, and S. Engen. 2004. Climate Influences on Avian Population  
741 Dynamics. Pages 185-209 *Advances in Ecological Research*. Academic Press.

742 Saracco, J. F., R. L. Cormier, D. L. Humple, S. Stock, R. Taylor, and R. B. Siegel. 2022.  
743 Demographic responses to climate-driven variation in habitat quality across the annual  
744 cycle of a migratory bird species. *Ecology and Evolution* **12**:e8934.

745 Saracco, J. F., J. A. Royle, D. F. DeSante, and B. Gardner. 2012. Spatial modeling of survival  
746 and residency and application to the Monitoring Avian Productivity and Survivorship  
747 program. *Journal of Ornithology* **152**:469-476.

748 Sauer, J. R., J. E. Fallon, and R. Johnson. 2003. Use of North American Breeding Bird Survey  
749 data to estimate population change for bird conservation regions. *The Journal of wildlife*  
750 *management*:372-389.

751 Sauer, J. R., and W. A. Link. 2011. Analysis of the North American Breeding Bird Survey Using  
752 Hierarchical Models. *The Auk* **128**:87-98.

753 Sauer, J. R., G. W. Pendleton, and B. G. Peterjohn. 1996. Evaluating Causes of Population  
754 Change in North American Insectivorous Songbirds. *Conservation Biology* **10**:465-478.

755 Socolar, J. B., P. N. Epanchin, S. R. Beissinger, and M. W. Tingley. 2017. Phenological shifts  
756 conserve thermal niches in North American birds and reshape expectations for climate-  
757 driven range shifts. *Proceedings of the National Academy of Sciences* **114**:12976-  
758 12981.

759 Stan Development Team. 2023. Stan Modeling Language Users Guide and Reference Manual.

760 Sullivan, B. L., J. L. Aycrigg, J. H. Barry, R. E. Bonney, N. Bruns, C. B. Cooper, T. Damoulas, A.  
761 A. Dhondt, T. Dietterich, A. Farnsworth, D. Fink, J. W. Fitzpatrick, T. Fredericks, J.  
762 Gerbracht, C. Gomes, W. M. Hochachka, M. J. Iliff, C. Lagoze, F. A. La Sorte, M.

763 Merrifield, W. Morris, T. B. Phillips, M. Reynolds, A. D. Rodewald, K. V. Rosenberg, N.  
764 M. Trautmann, A. Wiggins, D. W. Winkler, W.-K. Wong, C. L. Wood, J. Yu, and S.  
765 Kelling. 2014. The eBird enterprise: An integrated approach to development and  
766 application of citizen science. *Biological Conservation* **169**:31-40.

767 Thornton, M. M., R. Shrestha, P. E. Y. Wei, Thornton, S-C. Kao, and B. E. Wilson. 2022.  
768 Daymet: Daily Surface Weather Data on a 1-km Grid for North America.

769 Tian, Y., and F. Hua. 2023. Abundance versus vital rates: The extent and predictors of  
770 inconsistent conclusions on avian population responses to forest loss and degradation.  
771 *Biological Conservation* **288**:110353.

772 Vehtari, A., A. Gelman, D. Simpson, B. Carpenter, and P.-C. Bürkner. 2021. Rank-  
773 normalization, folding, and localization: An improved R^ for assessing convergence of  
774 MCMC (with discussion). *Bayesian analysis* **16**:667-718.

775 Wilson, D. M., and J. Bart. 1985. Reliability of singing bird surveys: effects of song phenology  
776 during the breeding season. *The Condor* **87**:69-73.

777 Ziolkowski, D. J., M. Lutmerding, W. B. English, V. I. Aponte, and M.-A. R. Hudson. 2023. North  
778 American Breeding Bird Survey Dataset 1966 - 2022: U.S. Geological Survey data  
779 release.

780

Supplementary information for:  
 Seasonal macro-demography of North American  
 bird populations revealed through citizen science  
 monitoring

September 27, 2024

## 1 Model Structures and Equations

Throughout we will index the type of demographic index as  $t \in \{\text{recruitment, survival}\}$ , year as  $y$  and hexagon macrocell as  $c$ . We indicate the dependence of each variable to type of demographic index  $t$ , year  $y$  and macrocell  $c$  by index subscripts. In addition to the mathematical description of our models, we also include a brief description of the canonical model formula as used in the R-package BRMS (1). For a full description of the model implementation we refer to the full supplemental R code included with this publication.

### 1.1 Mean and variance by season

In each cell  $c$  and for each type of demographic index  $d$ , we approximated the bootstrapped posteriors for the fluctuation indices as Normal, and we modeled the demographic indices as

$$\begin{aligned} Y_{t,y,c} &\sim \text{Normal}(z_{t,y,c}, \epsilon_{t,y,c}) \\ z_{t,y,c} &\sim \text{Normal}(\mu_{t,c}, \sigma_{t,c}) \\ \mu_{t,c} &= \alpha_c + \beta_c \times \tau_t \\ \log \sigma_{t,c} &= \gamma_c + \kappa_c \times \tau_t \end{aligned} \tag{1}$$

where  $z_{d,y,c}$  is the true index, which yields our noisy estimate  $Y_{t,y,c}$  with known standard deviation  $\epsilon_{t,c,y}$ ,  $\alpha$  is the intercept,  $\beta$  is the effect of type of demographic index (notated as factor  $\tau$ ),  $\gamma$  is the log-scale intercept for the standard deviation, and  $\kappa$  is the log-scale effect of  $\tau$  on the standard deviation.

#### 1.1.1 R code implementation in BRMS

In BRMS we model each cell  $c$  separately, using formula

$$Y_{t,y,c} \mid \text{resp\_se}(\epsilon_{t,y,c}, \text{sigma} = \text{TRUE}) \sim \tau_t, \text{sigma} \sim \tau_t \tag{2}$$

`resp_se()` specifies the known measurement error of the response. Input data consists of rows values  $(Y_{t,y,c}, \epsilon_{t,y,c}, \tau_t)$  that span all years  $y$  and indices  $t$ . Figure 3 of the main document shows estimates for  $\kappa_c$

## 1.2 Weather predictors of recruitment and survival

In each cell  $c$ , we fit three regressions (survival index against mean maximum winter temperature, survival index against 'snow water equivalent', and recruitment against mean maximum summer temperature). Each of these regression had a form

$$\begin{aligned} Y_{t,y,c} &\sim \text{Normal}(y_{t,y,c}, \epsilon_{t,y,c}) \\ y_{t,y,c} &\sim \text{Normal}(\mu_{t,y,c}, \sigma_{t,c}) \\ \mu_{t,y,c} &= \alpha_{t,c} + \beta_{t,c} \times w_{t,y,c} \end{aligned} \quad (3)$$

where  $y_{t,y,c}$  is the true index, which yields our noisy measurement  $Y_{t,y,c}$  with known standard deviation  $\epsilon_{t,y,c}$ ,  $\alpha_{t,c}$  is the intercept,  $\beta_{t,c}$  is the effect of weather (notated  $w$ ), and  $\sigma_{t,c}$  is the residual standard deviation.

### 1.2.1 R code implementation in BRMS

In BRMS we model each cell  $c$  separately, using formula

$$Y_{t,y,c} \mid \text{resp\_se}(\epsilon_{t,y,c}, \text{sigma} = \text{TRUE}) \sim w \quad (4)$$

and input data consisting of rows values  $(Y_{t,y,c}, \epsilon_{t,y,c}, w_{t,y,c})$  that span all years  $y$ . In each of the three models, we include only data for one index  $t$  for the relevant period, i.e. recruitment or survival. Figure S6 shows estimates for the posterior mean of  $\beta_{t,c}$

## 1.3 Spatially smoothed weather relationships

For each of our three weather variables, we approximated our posterior estimates of the regression slopes  $\beta_{t,c}$  as Normal and smoothed these estimates across cells using regressions of the form

$$\begin{aligned} \beta_{t,c} &\sim \text{Normal}(b_{t,c}, \epsilon_{t,c}) \\ b_{t,c} &\sim \text{Normal}(\mu_{t,c}, \sigma) \\ \mu_{t,c} &= \alpha + \phi_{t,c} \end{aligned} \quad (5)$$

where  $b_{t,c}$  is the true slope in a cell, which yields our noisy estimate  $\beta_{t,c}$  with known standard deviation  $\epsilon_{t,c}$  (obtained from the posterior mean and standard deviation from the earlier model fit in Eq. 3),  $\alpha$  is an intercept,  $\phi$  is a spatial random effect of cell with an intrinsic conditional autoregressive (ICAR) prior, and  $\sigma$  is the residual standard deviation, or in other words the standard deviation of a non-spatial random effect of cell.

In models that additionally contain an effect of latitude  $L$ , that effect  $(\beta \times L_c)$  is added to  $\mu_{t,c}$ , as in

$$\mu_{t,c} = \alpha + \phi_{t,c} + \beta \times L_c \quad (6)$$

### 1.3.1 R code implementation in BRMS

In BRMS we model all cells  $c$  together, using formula

$$\beta_{t,c} \mid \text{resp\_se}(\epsilon_{t,c}, \text{sigma} = \text{TRUE}) \sim \text{car}(M, \text{gr} = \text{cell}, \text{type} = \text{"icar"}) \quad (7)$$

with  $M$  the adjacency matrix of locations

In models that additionally contain an effect of latitude  $L$ , we used model formula

$$\beta_{t,c} \mid \text{resp\_se}(\epsilon_{t,c}, \text{sigma} = \text{TRUE}) \sim L_c + \text{car}(M, \text{gr} = \text{cell}, \text{type} = \text{"icar"}) \quad (8)$$

Input data consists of rows of values for each cell  $(\beta_{t,c}, \epsilon_{t,c}, L_c)$ , with  $\beta_{t,c}$  the slope of the weather regression and associated standard deviation  $\epsilon_{t,c}$  and  $L_c$  the centroid latitude of the hexagon cell, and the adjacency matrix  $M$ .

## 1.4 Models for BBS counts

We modeled Breeding Bird Survey (BBS) counts within each BCR via

$$\begin{aligned} C_y &\sim \text{Poisson}(p_y) \\ \log(p_y) &= \eta_y + \nu + s(y) \\ \eta &\sim \text{Normal}(0, \sigma) \\ \nu &\sim \text{Normal}(0, \theta) \end{aligned} \quad (9)$$

where  $p_y$  is the true count, which yields our noisy estimates  $C_y$  of observed counts,  $y$  is the year associated with the count,  $\eta$  is a random effect of year with standard deviation  $\sigma$ ,  $\nu$  is an observation-level random effect with standard deviation  $\theta$ , and  $s()$  is a spline constructed by R package `mgcv` and cast in its random effects form for fitting via Stan (2).

### 1.4.1 R code implementation in BRMS

In summary, in BRMS we model the observed counts  $C_y$  using formula:

$$C_y \sim s(y) + (1 \mid i) + (1 \mid y) \quad (10)$$

where  $i$  is indexing the count observations.

### 1.4.2 Details of model fitting for BBS timeseries

For some Bird Conservation Regions (BCRs), numerically simulated trajectories in Hamiltonian Monte Carlo sampling tended to display divergences, which we reduced by increasing the target acceptance rate to induce smaller step sizes when numerically solving for the Hamiltonian trajectories (3). Nevertheless, divergences persisted in very low numbers in 5 of the 16 BCRs, with no more than two divergent transitions out of the 4,000 post-warmup transitions obtained for each BCR. Any resulting biases in the posterior (which would pass completely undetected using traditional MCMC fitting engines) are unlikely to seriously impact downstream analysis.

## 1.5 Comparison of BBS and eBird

We defined log-scale population fluctuations  $B$  as the log-scale differences in population index between year  $y$  and year  $y+1$  for each BCR, as in

$$B_i = \log(C_{y+1} - C_y) \quad (11)$$

with  $C_y$  defined as in Eq. 9 for each BCR of the BBS, and  $i$  indexing unique year-BCR combinations. From the posterior samples we obtain an estimate for both the mean of  $B_i$  and the associated standard deviation  $\epsilon_i^b$ .

For eBird we use an index  $E_i$  and known standard deviation  $\epsilon_i^e$  that is equivalent to  $Y_{t,y,c}$  and  $\epsilon_{t,y,c}$  in Eq. 1, but in this case estimated for a BCR instead of an macro-cell  $c$  and using a log-ratio between two spring seasons of two consecutive years, instead of a log-ratio between two consecutive spring and fall seasons.

We approximated the posteriors for these annual log-scale population fluctuations as Normal for both BBS and eBird, and we treated the posterior means as noisy measurements of the unknown true values. We then regressed the BBS values against the eBird values as follows:

$$\begin{aligned} B_i &\sim \text{Normal}(b_i, \epsilon_i^b) \\ b_i &\sim \text{Normal}(\mu_i, \sigma) \\ \mu_i &= \alpha + \beta \times e_i + \eta_i \\ e_i &\sim \text{Normal}(t, u) \\ E_i &\sim \text{Normal}(e_i, \epsilon_i^e) \\ \eta_i &\sim \text{Normal}(0, \theta) \end{aligned} \quad (12)$$

Here,  $b_i$  is the true BBS fluctuation, which yields our noisy measurement  $B_i$  with known standard deviation  $\epsilon_i^b$ ;  $e_i$  is the true eBird fluctuation, which yields our noisy measurement  $E_i$  with known standard deviation  $\epsilon_i^e$ ;  $t$  and  $u$  are the mean and standard deviation (estimated during model fitting) of a regularizing hierarchical prior on the true eBird fluctuations.  $\mu_i$  is the estimate of the true BBS fluctuation, which is regressed against the eBird fluctuation  $e_i$  with  $\alpha$  and  $\beta$  the regression intercept and slope, respectively;  $\eta$  is a random intercept for BCR with standard deviation  $\theta$ ;

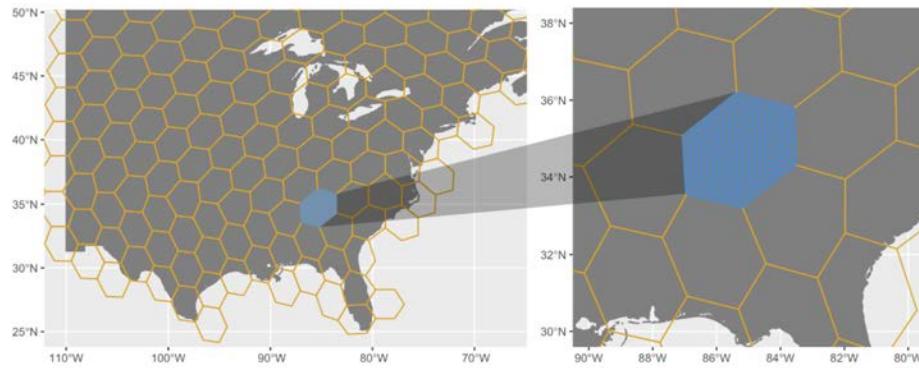
### 1.5.1 R code implementation in BRMS

In summary, in BRMS we model the observed year-to-year fluctuations  $B_i$  using formula:

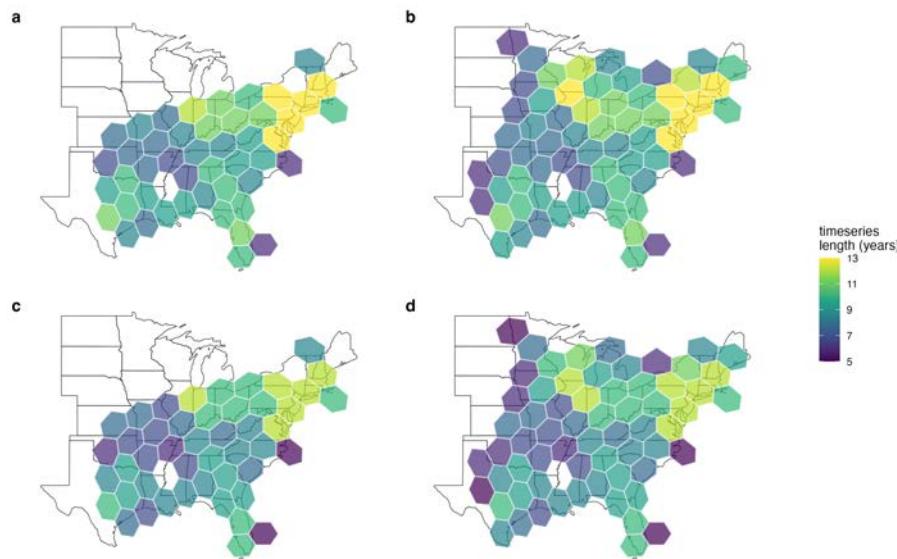
$$B_i \mid \text{resp\_se}(\epsilon_i^b, \text{sigma} = \text{TRUE}) \sim \text{me}(E_i, \epsilon_i^e) + (1 + \text{me}(E_i, \epsilon_i^e) \mid \text{BCR}) \quad (13)$$

where `me()` specifies a predictor with measurement error, and `resp_se()` specifies known measurement error of the response.

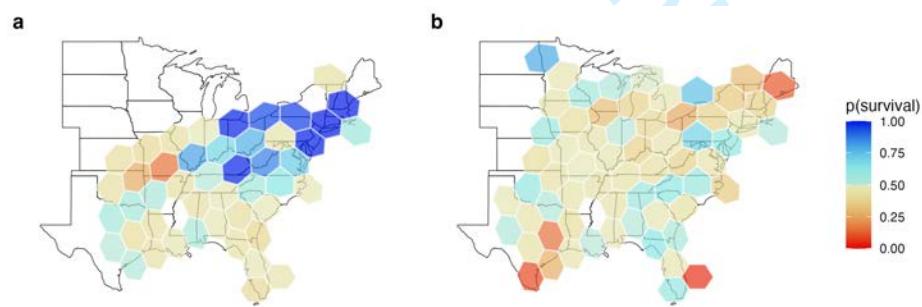
## 2 Supplementary figures



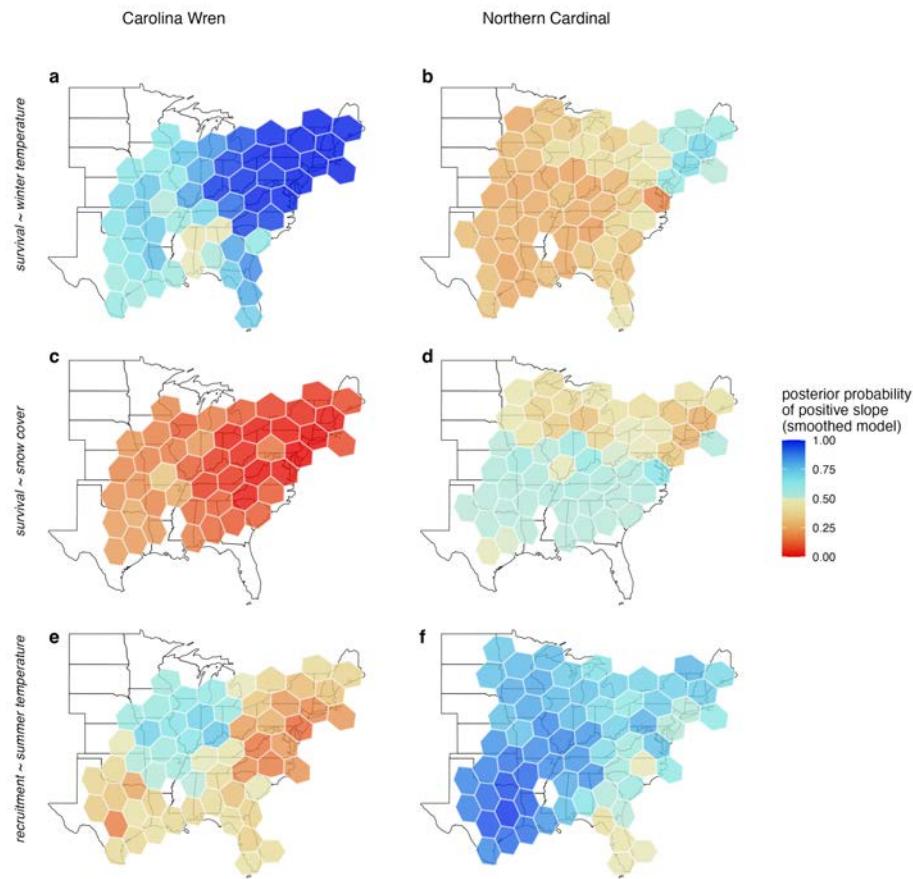
**Figure S1:** Indices of spring and fall bird populations and winter and summer weather conditions are derived on a hexagonal grid with roughly 285 km spacing between cell centers (left). Within each large hexagon, we construct a fine hexagonal grid with roughly 18 km spacing between cell centers (right). We compute our population index over each of these small cells, and we evaluate the uncertainty in index for the large parent cell by applying the Bayesian bootstrap over the small-cell indices.



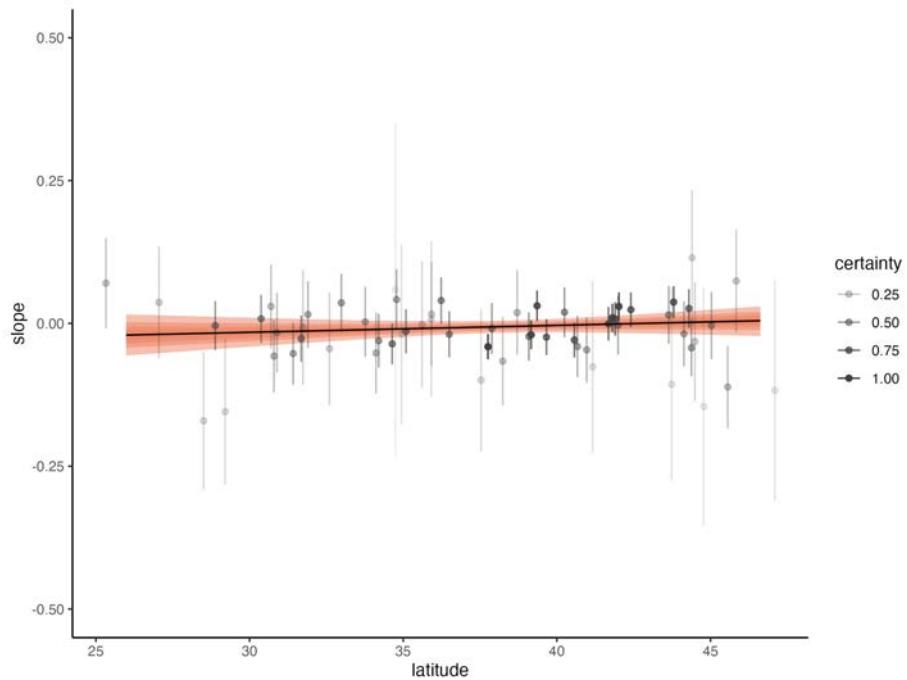
**Figure S2:** Lengths of timeseries analyzed for recruitment (a, b) and survival (c, d) of Carolina Wren (a, c) and Northern Cardinal (b, d).



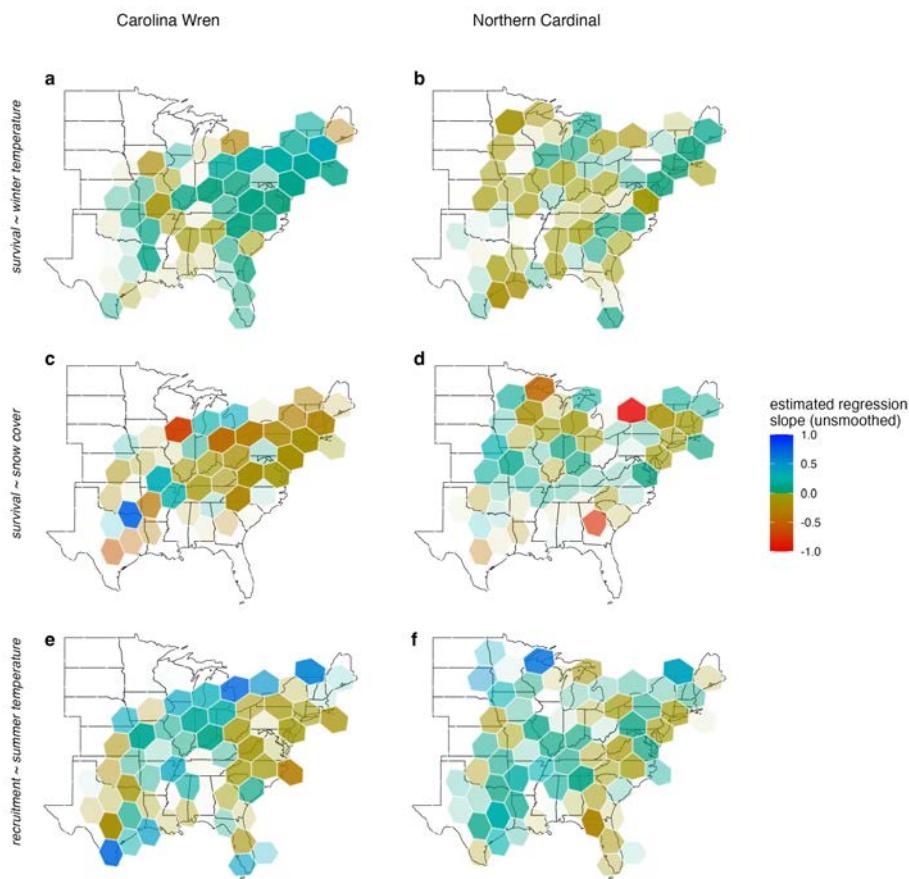
**Figure S3:** Posterior probabilities that the variance in survival is higher than the variance in recruitment for Carolina Wren (a) and Northern Cardinal (b).



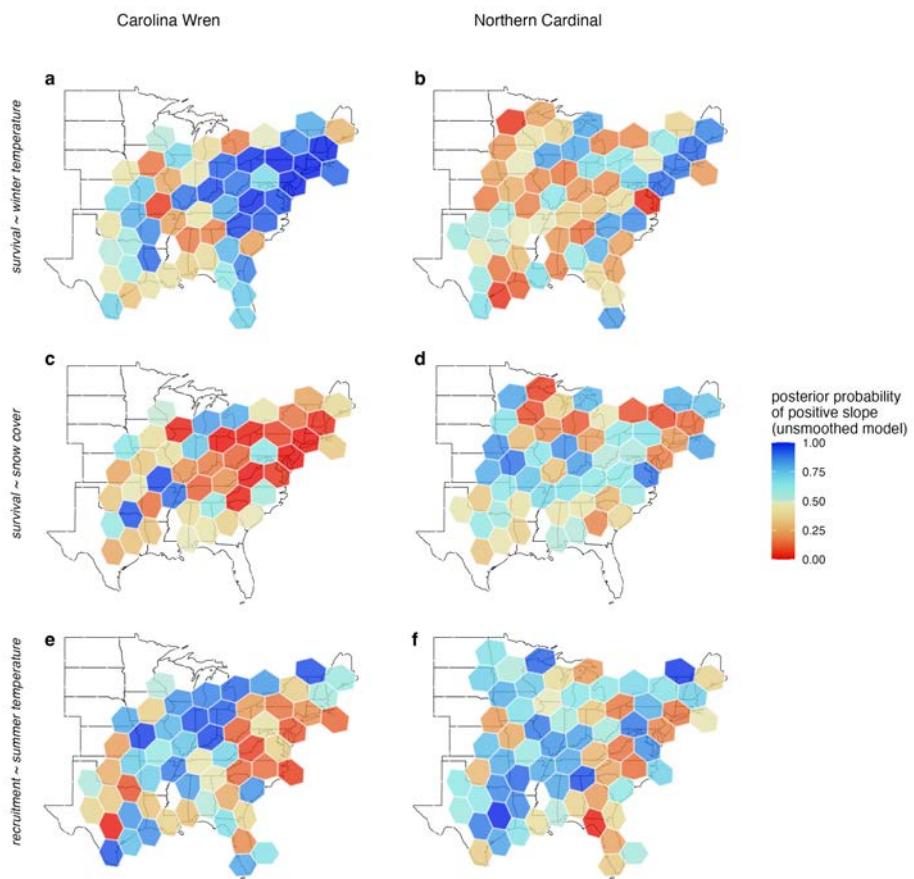
**Figure S4:** Posterior probabilities of positive slopes in regressions of timeseries against weather variables, smoothed via exact sparse conditional autoregressive models. Results are shown for the effects of winter temperatures on survival (a, b), winter snow cover on survival (c, d), and summer temperatures on recruitment (e, f), with Carolina Wren in the left column and Northern Cardinal in the right.



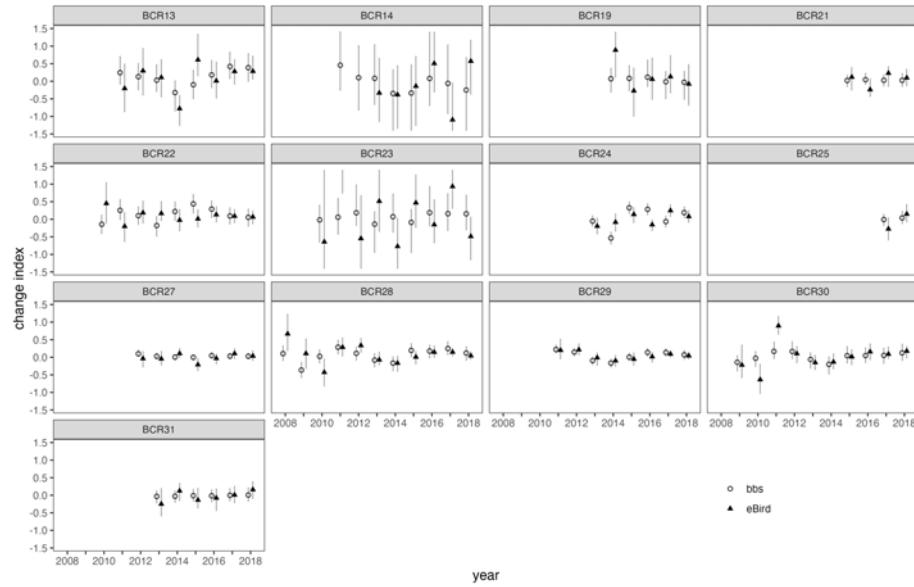
**Figure S5:** Posterior expectations for the slope of the relationship between winter temperature and survival (natural logarithms per degree C) of Northern Cardinal as a function of latitude, based on a conditional autoregressive model. The median expectation is given in black; colored bands delimit credible intervals in steps of 10%, with the widest band giving the 90% credible interval. Points and vertical lines give the posterior mean  $\pm$  1 standard deviation for the cell-specific slopes. Opacity of data points is scaled as the uncertainty of the least uncertain point divided by the uncertainty of the focal point.



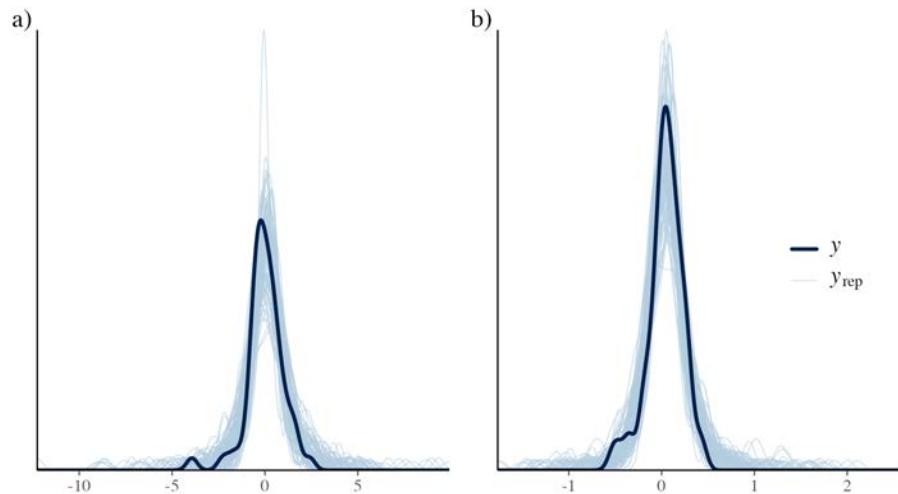
**Figure S6:** An equivalent of figure 4, but showing the unsmoothed cell-level posteriors.



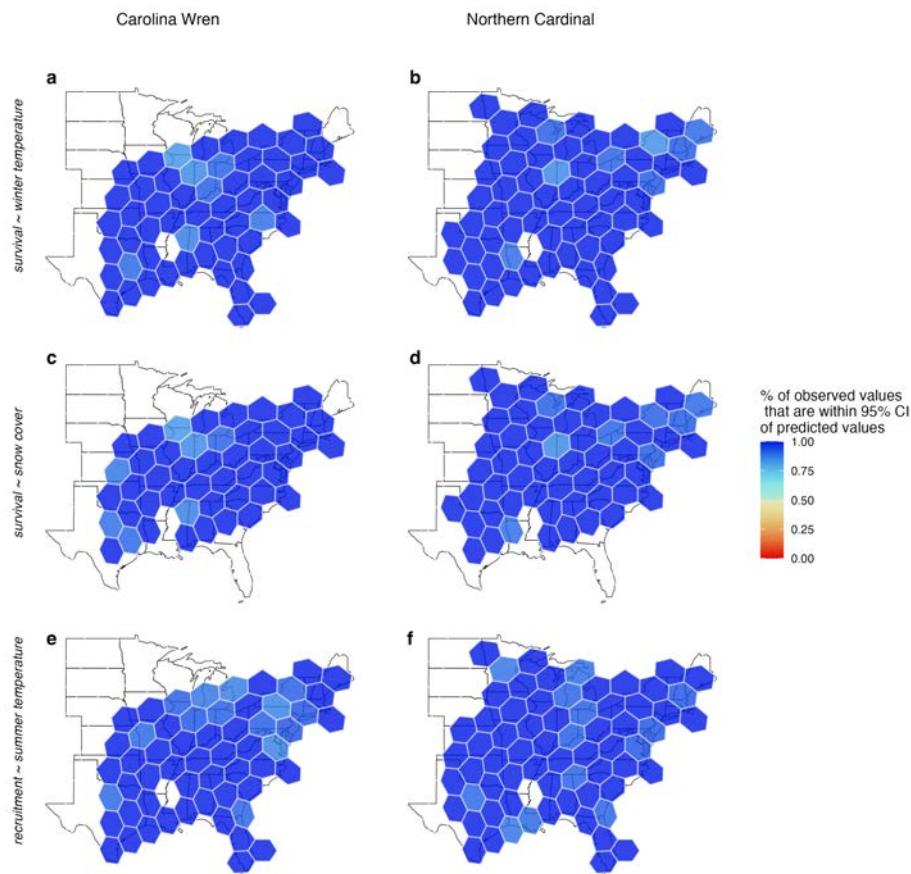
**Figure S7:** An equivalent of figure S4, showing the posterior probability of effect directionality.



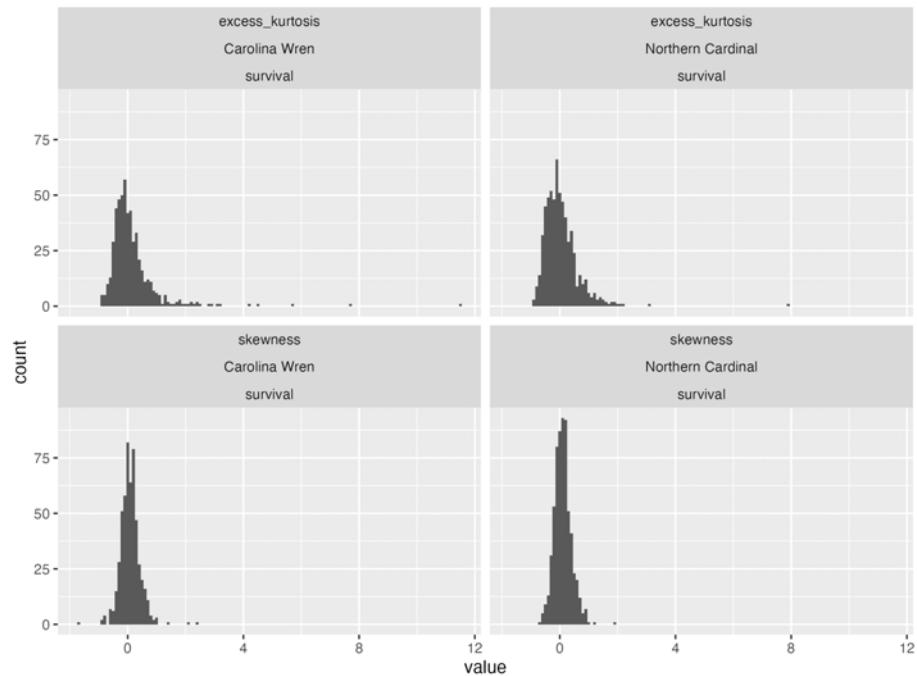
**Figure S8:** eBird and BBS derived indices for June-to-June population fluctuations at the level of bird conservation regions (BCRs). Data from years prior to 2008 did not meet the inclusion thresholds for eBird analysis.



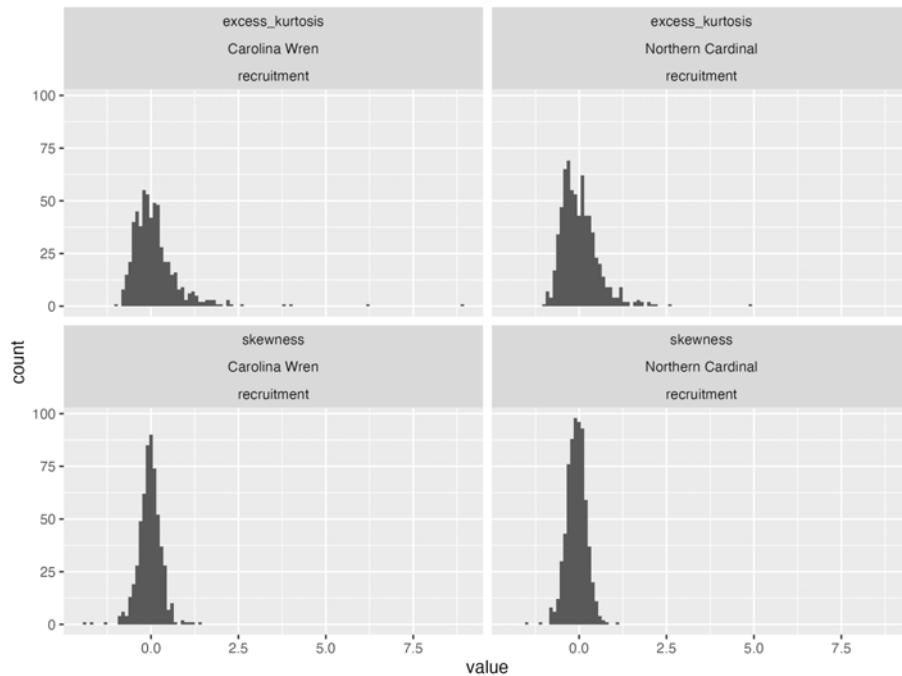
**Figure S9:** The examples of Posterior Predictive Check (PPC) for the latitudinal weather regression model (panel-a; regression model underlying Figure 5) and BBS validation model (panel-b; regression model underlying Figure 2a). The PPCs compare the empirical distribution of the data  $y$  to the distributions of simulated/replicated data  $y_{rep}$  from the posterior predictive distribution.



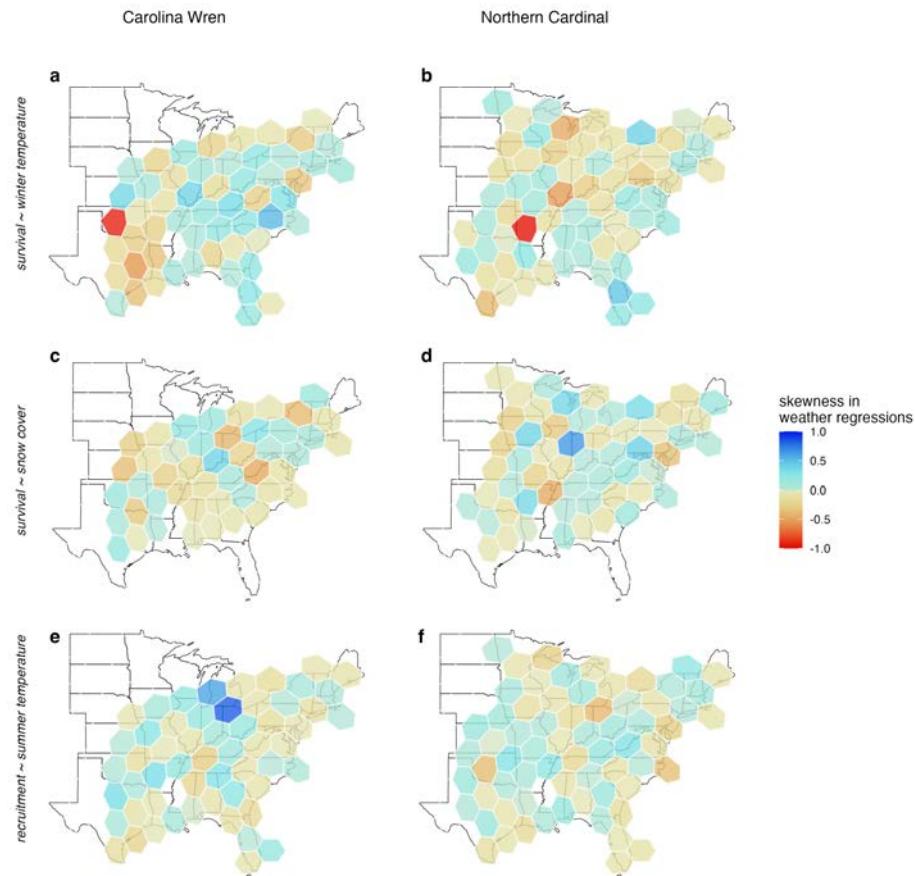
**Figure S10:** Posterior Predictive Checks of weather regression models. The color scale indicates the percentage of observed values that are within 95% credible interval of predicted values from posterior distribution estimated from independent cell-level weather regressions.



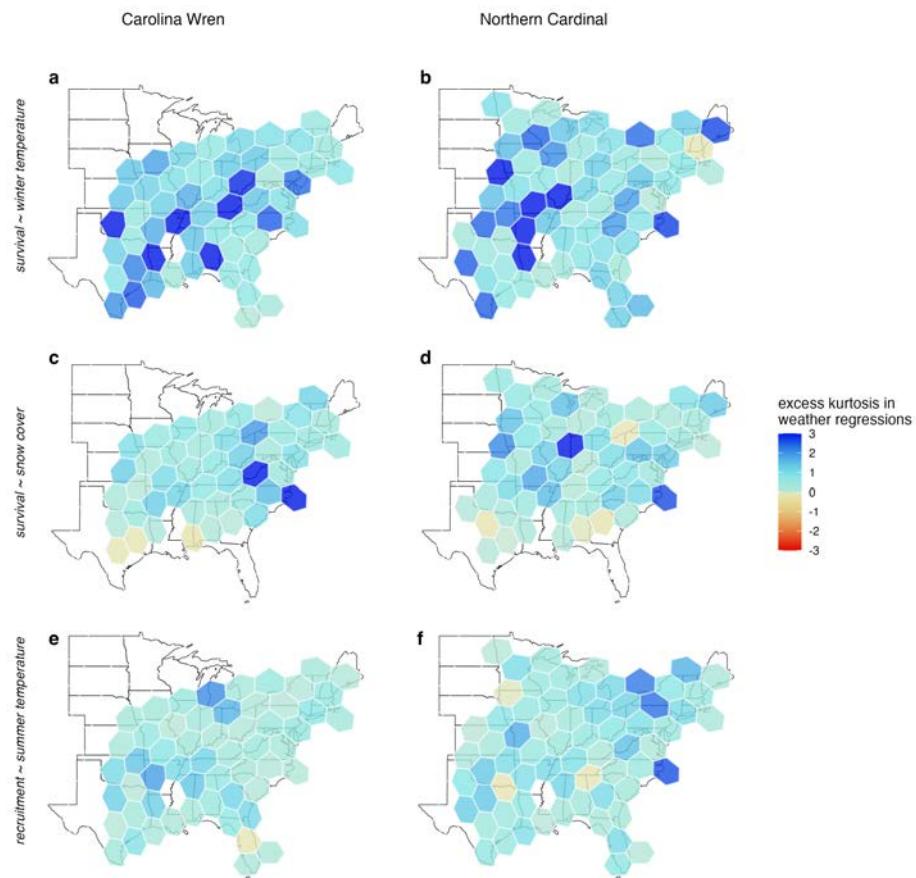
**Figure S11:** Histograms of the excess kurtosis (top) and skewness (bottom) of survival indices calculated for the bootstrap samples for each year - macro-cell combination. Values centered near zero confirm of the adequacy of normal approximations in our regression models.



**Figure S12:** Histogram of the excess kurtosis (top) and skewness (bottom) of recruitment indices calculated for the bootstrap samples for each year - macro-cell combination. Values centered near zero confirm of the adequacy of normal approximations in our regression models.



**Figure S13:** Skewness of the posterior distribution for the regression slope estimated in regressions between demographic indices and weather variables. Skewness was close to zero for most macro-cells, consistent with our normality assumptions.



**Figure S14:** Excess kurtosis of the posterior distribution for the regression slope estimated in regressions between demographic indices and weather variables. Excess kurtosis was close to zero for most macro-cells, consistent with our normality assumptions.

## References

- (1) Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. *Journal of Statistical Software* 80, 1–28.
- (2) Stan Development Team Stan Modeling Language Users Guide and Reference Manual, version 2.34, 2023.
- (3) Betancourt, M. A Conceptual Introduction to Hamiltonian Monte Carlo, 2018.

For Review Only

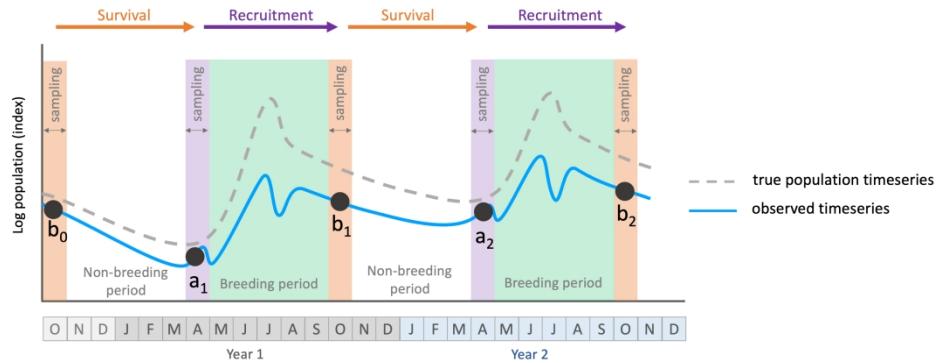


Figure 1: Conceptual overview of our approach for assessing population fluctuations using eBird data. The grey dashed curve represents a hypothetical two-year timeseries of the logarithm of a population's size, beginning in early fall. The blue curve represents the apparent timeseries from eBird data, which confounds the population timeseries with detection effects (e.g., higher detection in spring than fall). We snapshot the eBird timeseries in fall (circle 'b') and spring (circle 'a' and 'c'), and we treat the differences between successive snapshots as indices of survival (i.e.,  $a_1 - b_0$ ) and recruitment (i.e.,  $b_1 - a_1$ ; on the log scale, differences correspond to log-ratios). Because we are interested primarily in the year-to-year variability of these indices and not in their raw values, we can neglect the differences between the apparent log-population and the true log-population provided that these differences are consistent from spring to spring and from fall to fall (a multiplicative detection term becomes an additive term on the log scale). In this example, survival was higher in the second winter than in the first (i.e.,  $a_2 - b_1 > a_1 - b_0$ ), and the eBird-derived population snapshots provide an unbiased estimate of the difference between year-1 survival and year-2 survival.

419x190mm (242 x 242 DPI)

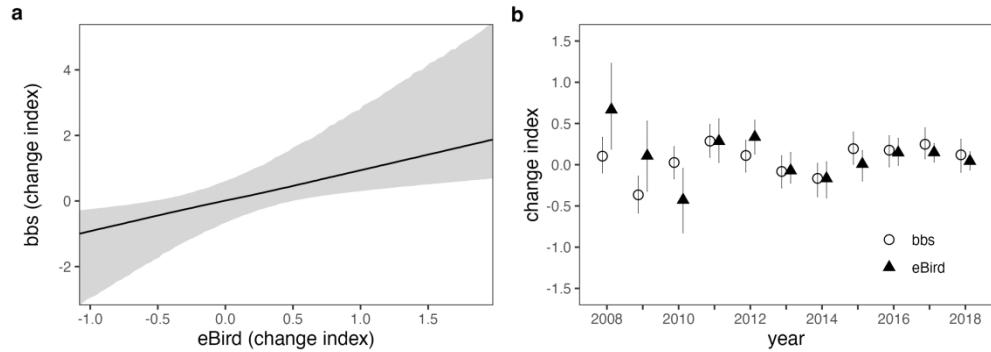
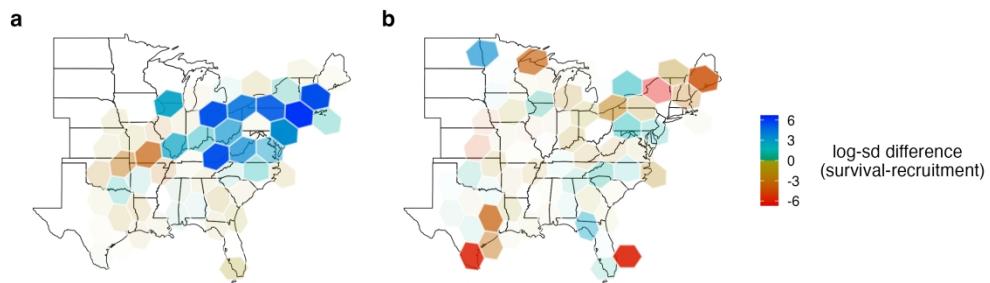


Figure 2: eBird derived indices for June-to-June population fluctuations at the level of bird conservation regions (BCRs) are predictive of fluctuations derived from the United States Breeding Bird Survey (BBS) for the same regions and years. a) The slope is estimated to be near unity (0.97, 95% CI 0.34–2.14). b) The match in fluctuations through time as visualized for one of the longest and best-aligned timeseries (BCR 28 includes the Appalachian Mountains from Alabama to southern New York). Data from years prior to 2008 did not meet the inclusion thresholds for eBird analysis.

559x203mm (118 x 118 DPI)



559x177mm (118 x 118 DPI)

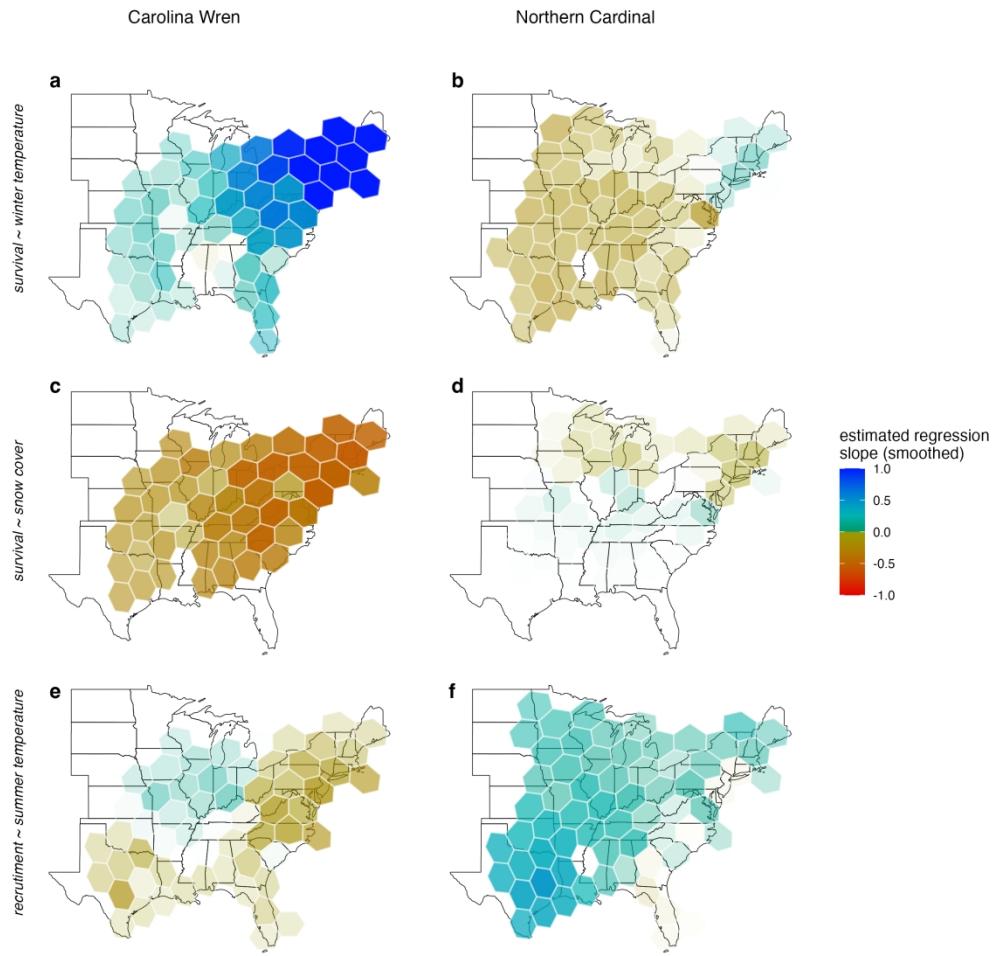


Figure 4: Survival and recruitment relationships to winter and summer weather in Carolina Wren and Northern Cardinal. Carolina Wren survival is higher in warmer winters (a) and lower in snowier winters (c) in the northeast, whereas recruitment shows no statistically robust relationship to summer temperatures (e).

Northern Cardinal shows potentially similar patterns in survival, but with low certainty (b, d), while their recruitment is potentially higher when summer temperatures were warm in the Mississippi Valley and Texas.

The color scale gives the posterior mean effect size for the true (smoothed) cell-specific slope for a regression of the demographic index against weather conditions; the opacity gives the posterior probability that the true effect is in the same direction as mean effect, scaled linearly so that a probability of 0.5 is completely transparent and a probability of 1 is completely opaque. See figure S4 for a color-based representation of the opacity values, and figures S6 and S7 for unsmoothed versions.

610x635mm (118 x 118 DPI)

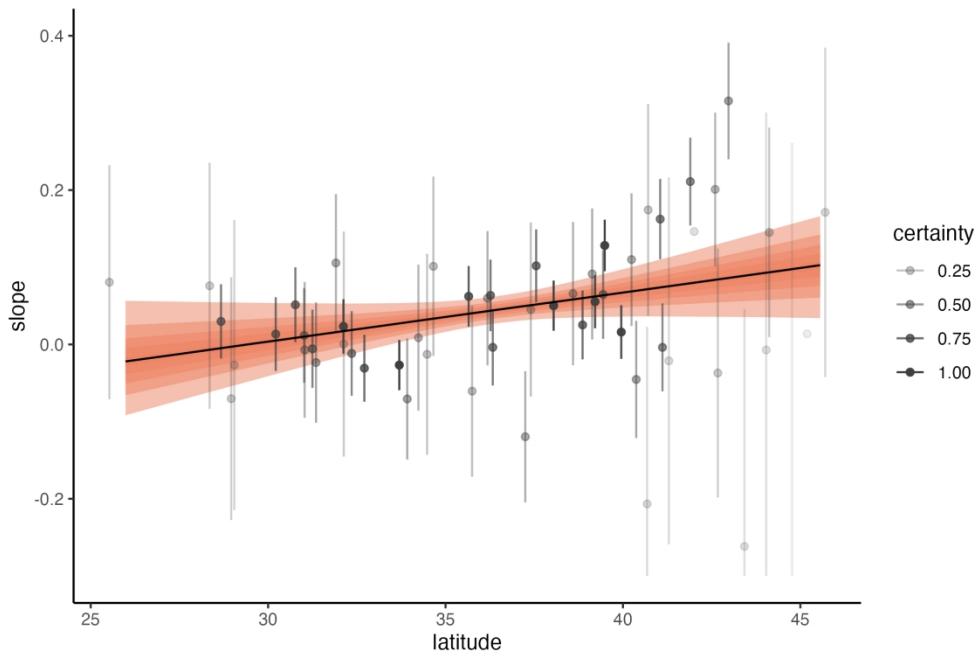


Figure 5: Posterior expectations for the slope of the relationship between winter temperature and survival (natural logarithms per degree C) of Carolina Wren as a function of latitude, based on a conditional autoregressive model. The median expectation is given in black; colored bands delimit credible intervals in steps of 10%, with the widest band giving the 90% credible interval. Points and vertical lines give the posterior mean  $\pm 1$  standard deviation for the cell-specific slopes. Opacity of data points is scaled as the uncertainty of the least uncertain point divided by the uncertainty of the focal point. See figure S5 for an equivalent analysis of Northern Cardinal.

457x305mm (118 x 118 DPI)