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Abstract:

Avian population sizes fluctuate and change over vast spatial scales, but 
the mechanistic underpinnings remain poorly understood. A key question 
is whether spatial and annual variation in avian population dynamics is 
driven primarily by variation in breeding season recruitment or by 
variation in overwinter survival. We present a method using large-scale 
eBird citizen-science data to develop species-specific indices of net 
population change as proxies for survival and recruitment gain, based on 
twice-annual, rangewide snapshots of relative abundance in spring and 
fall. We demonstrate the use of these indices by examining spatially 
explicit annual variation in survival and recruitment gain in two well-
surveyed nonmigratory North American species, Carolina Wren 
(Thryothorus ludovicianus) and Northern Cardinal (Cardinalis cardinalis). 
We show that, while interannual variation in both survival and 
recruitment gain is slight for Northern Cardinal, eBird abundance data 
reveal strong and geographically coherent signals of interannual variation 
in the overwinter survival of Carolina Wren. As predicted, variation in 
wintertime survival dominates overall interannual population fluctuations 
of wrens and is correlated with winter temperature and snowfall in the 
northeastern United States, but not the southern United States. This 
study demonstrates the potential of volunteer-collected big datasets like 
eBird for inferring variation in demographic rates and introduces a new 
complementary approach towards illuminating the macrodemography of 
North American birds at comprehensive continental extents.
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4 Abstract

5 Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic 

6 underpinnings remain poorly understood. A key question is whether spatial and annual variation 

7 in avian population dynamics is driven primarily by variation in breeding season recruitment or 

8 by variation in overwinter survival. We present a method using large-scale eBird citizen-science 

9 data to develop species-specific indices of net population change as proxies for survival and 

10 recruitment, based on twice-annual, rangewide snapshots of relative abundance in spring and 

11 fall. We demonstrate the use of these indices by examining spatially explicit annual variation in 

12 survival and recruitment in two well-surveyed nonmigratory North American species, Carolina 

13 Wren (Thryothorus ludovicianus) and Northern Cardinal (Cardinalis cardinalis). We show that, 

14 while interannual variation in both survival and recruitment is slight for Northern Cardinal, eBird 

15 abundance data reveal strong and geographically coherent signals of interannual variation in 

16 the overwinter survival of Carolina Wren. As predicted, variation in wintertime survival 

17 dominates overall interannual population fluctuations of wrens and is correlated with winter 

18 temperature and snowfall in the northeastern United States, but not the southern United States. 

19 This study demonstrates the potential of volunteer-collected big datasets like eBird for inferring 

20 variation in demographic rates and introduces a new complementary approach towards 

21 illuminating the macrodemography of North American birds at comprehensive continental 

22 extents.

23 Key words: demography, eBird, population dynamics, productivity, recruitment, survival, vital 

24 rates, weather
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25 Introduction

26 Global loss of biodiversity is an alarming trend and escalating crisis (Ceballos et al. 2020, 

27 Cafaro et al. 2022, Habibullah et al. 2022, Finn et al. 2023). Despite diverse, interdisciplinary 

28 research efforts to understand biodiversity loss, the underlying demographic mechanisms 

29 behind species declines are poorly understood (Faaborg et al. 2010b, Knudsen et al. 2011). 

30 Whereas a multitude of environmental factors potentially impact populations (ranging from 

31 habitat degradation and climate change to invasive species, pollution, and pesticide use), a 

32 basic understanding of which specific environmental factors play a role, and which specific 

33 periods in the annual cycle drive population change, remains elusive for most species. 

34 Exemplifying the broad-scale biodiversity crisis, North America is estimated to support 3 billion 

35 fewer birds today than in 1970 (Rosenberg et al. 2019), a 29% decline in the continental 

36 avifauna. Species declines are observed across all ecoregions and biomes, suggesting that 

37 research conducted at a continental extent is needed to understand the underlying causes. 

38 Despite the scale of species declines, to date mostly micro-demographic field studies have been 

39 used to measure the underlying recruitment and mortality patterns of birds (e.g., see references 

40 therein: Tian and Hua 2023, Maresh Nelson et al. 2024). In addition, large-scale capture-

41 recapture programs have been established to provide demographic information across larger 

42 areas through a huge effort in data collection, including the MAPS program (Monitoring Avian 

43 Population and Survivorship; Desante et al. 1995), MoSI (Monitoring Overwintering Survival; 

44 DeSante et al. 2005) and CES (Constant Effort Sites; Peach et al. 1996). Both local field studies 

45 and large-scale capture-recapture programs have important limitations, however, both 

46 taxonomically (limited number of species captured in sufficient numbers) and geographically 

47 (uneven distribution of field studies and banding stations). Finding broader-scale metrics of 

48 avian demography that complement existing programs and can leverage big data from citizen-
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49 science monitoring efforts could therefore greatly increase our understanding of species decline 

50 and loss. 

51 Compared to long-term population changes, within-year changes in population size in 

52 response to seasonal mortality and reproduction can be orders of magnitude larger. Identifying 

53 environmental factors impacting seasonal population changes can provide valuable insights into 

54 major limiting factors, and be a steppingstone towards identifying mechanisms relevant for long-

55 term change. A major unanswered question, however, is whether limiting factors occur primarily 

56 during the breeding or non-breeding season, a dichotomy termed the Tap vs. Tub hypotheses 

57 (Sæther et al. 2004). Using the analogy of a bathtub, its water level (i.e. population size) is 

58 determined both by how much water flows in from the tap (i.e. recruitment) and how much water 

59 drains out of the tub (i.e. non-breeding mortality). According to the Tub hypothesis (Lack 1954), 

60 fluctuations in population size are closely tied to environmental conditions during the non-

61 breeding season that determine the number of birds that survive this critical period. Many 

62 factors can affect non-breeding season mortality, which can depend on winter harshness 

63 directly, or be mediated through variation in food availability and associated density dependent 

64 competition (Newton 1998, Marra et al. 2015). In contrast, the Tap hypothesis (Sæther et al. 

65 2004) considers annual variation in population size to be determined by factors affecting 

66 breeding success and the number of new recruits that enter the population. These factors are 

67 equally diverse, including seasonal variation in weather (Dunn et al. 2010), food availability 

68 (Martin 1987), predation risk (Lima 2009), and phenological variability in the duration available 

69 for breeding (Halupka and Halupka 2017). Most bird populations are monitored during the 

70 breeding season only, hampering our ability to determine where and when population change is 

71 actually occurring. Existing evidence for either hypothesis is mixed (Balogh et al. 2011, 

72 Lamanna et al. 2012, Saracco et al. 2012, Brown et al. 2017, Hallworth et al. 2021), and large-

73 scale studies of avian population change have revealed broad geographic patterns but also 
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74 substantial local variation (DeSante et al. 1999, Rosenberg et al. 2019, Morrison et al. 2022, 

75 Saracco et al. 2022, Fink et al. 2023). Because population trends and demographic 

76 mechanisms vary spatially, answering broad questions on the causes of population change 

77 likely requires a demographic approach that covers large spatial extents and is spatially explicit. 

78 Ideally such an approach should be generalizable to many species, without requiring an 

79 unrealistic additional burden in terms of data collection. Identifying large-scale drivers of 

80 population change, such as weather and climatic conditions, will also benefit from a macro-

81 demographic approach capable of estimating demographic patterns across equally large spatial 

82 extents, by integrating over noisy local variation. 

83 In this study, we present a novel approach for estimating avian demographic indices 

84 from semi-structured citizen science data that is based on repeated sampling of continent-scale 

85 relative abundance. Specifically, we explore the potential for leveraging big data from the large 

86 and rapidly growing eBird database (Sullivan et al. 2014), exploiting its extensive geographic, 

87 temporal, and taxonomic scope that is currently unrivaled by any other monitoring program (La 

88 Sorte and Somveille 2020). We apply our methodology to two nonmigratory North American 

89 species with well-known and contrasting demographic patterns: Carolina Wren (Thryothorus 

90 ludovicianus), which shows large annual population fluctuations (Ziolkowski et al. 2023) in 

91 response to harsh winter conditions (Brooks 1936, Root 1988, Sauer et al. 1996, Mehlman 

92 1997, La Sorte and Thompson 2007, Link and Sauer 2007), and Northern Cardinal (Cardinalis 

93 cardinalis) which is expected to be more winter-hardy due to its granivorous diet and urban 

94 adaptation (Evans et al. 2015). Both species have undergone northward range expansions 

95 (Beddall 1963). We explicitly test whether the new eBird-derived indices detect substantial 

96 interannual variation in overwinter survival related to harsh winters at more northerly latitudes 

97 (Tub dynamics) in the Carolina Wren but not in Northern Cardinal. In addition, we hypothesize 

98 that we would detect additional temperature-associated effects on recruitment in both Carolina 
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99 Wren and Northern Cardinal, and that the direction of these effects would vary latitudinally, with 

100 warm temperatures detrimental near warm range margins and beneficial near cool range 

101 margins (Socolar et al. 2017). While there are many other factors affecting survival and 

102 recruitment, we do not intend to explore all these factors and their relationship with demography 

103 exhaustively. Instead, we aim to present a proof of concept demonstrating that citizen-science 

104 data can provide information on the survival and recruitment of avian populations. Through 

105 revealing well-established patterns with our new macrodemographic indices, we lay the 

106 groundwork for exploring demography across hundreds of resident and potentially migratory 

107 species in North America, contributing new insights into species-specific limiting factors and 

108 potential causes of declines.

109

110 Methods

111 General approach

112 Our approach is based on tracking within-year population change through repeated sampling of 

113 relative abundance, as illustrated in Figure 1. We used data from eBird (Sullivan et al. 2014) to 

114 derive time series of avian abundance indices across eastern North America with uncertainty. 

115 We computed these indices over the cells of a hexagonal grid to obtain spring and fall 

116 “snapshots” of bird abundance, corresponding to weeks 13-16 (roughly the month of April) and 

117 weeks 40-43 (roughly the month of October) of the calendar year. These population snapshots 

118 allow us to define an index of recruitment as the logarithm of the ratio of the autumn population 

119 index over that of the preceding spring, and a survival index as the logarithm of the ratio of the 

120 spring index over that of the preceding autumn. Since our population indices are confounded by 

121 seasonal changes in detectability, they cannot be used to directly compare population sizes 

122 between spring and autumn. Therefore, we focus on the annual variation in indices for 
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123 recruitment and survival within a given cell. In assuming that this temporal variation is 

124 meaningful, we do not have to assume that detection probabilities are similar in April and 

125 October or across space. Instead, our key assumption is that the detectability difference 

126 between April and October shows up in our population snapshots as an unknown multiplicative 

127 factor that is potentially variable across space but constant through time. Under these 

128 assumptions, our demographic indices can provide a consistent index of high versus low 

129 survival or recruitment years even if it does not provide an absolute measure (Figure 1). 

130 Furthermore, given that annual population fluctuations are expected to be approximately log-

131 normal, the relative importance of summer versus winter in governing interannual population 

132 fluctuations is directly related to the relative variances in the recruitment and survival indices, 

133 and this remains true despite that the detectability difference between seasons is unknown. We 

134 should note that these “macro”-demographic indices differ from traditional definitions of 

135 recruitment and survival used for example in mark-recapture studies. Our indices represent net 

136 gain and net loss in population size during pre-defined breeding and non-breeding periods, 

137 respectively. As such, the recruitment (gain) index captures both the effect of population 

138 increases due to reproduction and, as an index of net population change, also includes some 

139 co-occurring breeding season mortality. The survival (loss) index, on the other hand, captures 

140 the effect of non-breeding season mortality only, as no reproduction occurs during non-breeding 

141 periods. While seasonal redistribution through immigration and emigration may potentially affect 

142 our indices as well, their combined effect is likely small, given high site fidelity and small 

143 dispersal distances for most species compared to the spatial scale of our analysis (Haggerty 

144 and Morton 2020, Halkin et al. 2021). 

145 To test our Tap and Tub hypotheses, we ask whether temporal variance in the survival 

146 index is larger or smaller than the variance in the recruitment index. The index with the larger 

147 variance will dominate the overall variance of the time series of the log absolute population size, 
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148 so this question amounts to asking whether interannual population fluctuations around the mean 

149 trend are more strongly controlled by events during May-September (Tap dynamics) or during 

150 November-March (Tub dynamics). Second, we test whether observed variation in recruitment 

151 and survival indices is correlated with weather conditions during the relevant period. Third, we 

152 ask whether the observed patterns are geographically coherent. When adjacent grid cells are 

153 analyzed independently but display geographical coherence in their results, we gain a measure 

154 of confidence that the patterns we observe are genuine and not affected by the unstructured 

155 sampling inherent in eBird data.

156

157 Geographic, temporal, and taxonomic scope

158 We focused our analysis on the eastern United States and Canada (east of 110° W longitude 

159 and south of 50° N latitude) between the years 2006 and 2019. This region contains a high 

160 density of eBird checklists going back to the earliest years of our time series and represents a 

161 coherent biogeographic unit that contains well-defined populations of multiple resident bird 

162 species. We chose 2006 as our start year to maximize the length of our time series while 

163 avoiding extremely sparse and potentially unreliable data from earlier years. We chose 2019 as 

164 our end year to avoid potentially abrupt changes in the observation process associated with the 

165 Covid-19 pandemic (Hochachka et al. 2021). 

166 We considered two species in our analysis: Carolina Wren and Northern Cardinal. These 

167 are widespread species that are commonly reported in eBird and are year-round residents 

168 within our study area (Haggerty and Morton 2020, Halkin et al. 2021). Year-round residency 

169 enabled us to derive regionally specific population snapshots from well-spaced times of year, 

170 and to assess the influence of weather on recruitment and survival without the complications of 

171 migration. Carolina Wren and Northern Cardinal also provide a useful contrast in that Carolina 
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172 Wren displays large annual population fluctuations and the Northern Cardinal does not based 

173 on data from the North American Breeding Bird Survey (Sauer and Link 2011).

174

175 Bird occurrence and abundance data 

176 We subsetted the eBird data to retain only complete checklists (i.e., observers report all 

177 the species they detect and identify) submitted under stationary or traveling protocols of 

178 between 0 and 3 km distance, between 5 and 60 minutes duration, and with a checklist 

179 calibration index (CCI, a measure of observer efficiency; Johnston et al. 2018) of at least 0 (i.e., 

180 above average).

181

182 Recruitment and survival indices

183 To explore spatial variation in population dynamics, we computed indices of recruitment and 

184 survival over the cells of an approximately equal-area hexagonal grid with a roughly 285 km 

185 spacing between cell centers (Figure S1) (Barnes et al. 2017). Inter-annual fluctuations in North 

186 American bird population sizes are approximately multiplicative (Kalyuzhny et al. 2014a), and 

187 are only weakly stabilized (Kalyuzhny et al. 2014b), such that populations fluctuate via 

188 multiplicative events that are roughly independent of the population size (in contrast, fluctuations 

189 in strongly stabilized populations tend to be positive when populations are small and negative 

190 when populations are large) (Lande et al. 2003). In this case it is natural to work on the 

191 logarithmic scale, where the multiplicative constant becomes an additive constant with no 

192 influence on variances or regression slopes. Gradual changes in detectability over multi-year 

193 timescales (e.g., due to changes in the eBird user base) are acceptable as long as they impact 

194 detection similarly in April and October and as long as they are sufficiently slow so that 

195 detection probabilities are always similar in consecutive Aprils and consecutive Octobers. 
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196 With an eye towards scalability, we eschew the computationally costly machine-learning 

197 approaches commonly used to analyze eBird data at a fine landscape level, and instead derive 

198 our population indices based on average per-checklist counts with carefully propagated 

199 uncertainty. Modeling fine-scale habitat features was not considered a priority since our analysis 

200 is focused on macroscale patterns derived from seasonal changes in abundance within the 

201 same habitat regions. To support robust uncertainty quantification, we spatially subsampled 

202 each grid cell across a finer hexagonal grid with an 18 km spacing between cell centers (Figure 

203 S1). We refer to the spatio-temporal units comprising one cell of the fine grid and one four-week 

204 period during one year as micro-cells, and we refer to the units comprising one cell of the 

205 coarse grid and one four-week period during one year as macro-cells. 

206

207 To compute population indices for the macro-cells, we first computed population indices 

208 for each micro-cell as the average per-checklist count of the focal species across all checklists 

209 meeting our criteria for inclusion. Let 𝐴𝑠,𝑦,𝑐,𝑥,𝑘 be the k-th checklist of in total 𝑛𝑠,𝑦,𝑐, 𝑥 checklists 

210 belonging to the xth micro-cell, cth macro-cell in year y and season s. Then, the population index 

211 𝑖𝑠,𝑦,𝑐,𝑥 for the xth micro-cell in the cth macro-cell in the year y and season s is given by:

212

213 𝑖𝑠,𝑦,𝑐,𝑥 =

𝑛𝑠,𝑦,𝑐,𝑥

𝑘
𝐴𝑠,𝑦,𝑐,𝑥,𝑘/𝑛𝑠,𝑦,𝑐,𝑥

214 Some complete checklists in eBird report the presence of a species but not its count; for these 

215 checklists we imputed the mean of the remaining checklists in the micro-cell that reported 

216 positive counts of the focal species. We excluded micro-cells that contained no complete 

217 checklists and micro-cells that contained at least one complete checklist reporting presence-

218 only but no complete count-based checklists reporting nonzero abundance.

Page 51 of 96 Ecography



For Review Only

10

219 We then take our population index for the macro-cell 𝐼𝑠,𝑦,𝑐 to be the logarithm of the 

220 mean index over the total of 𝑛𝑠,𝑦,𝑐 constituent micro-cells:

221  

222 𝐼𝑠,𝑦,𝑐 = log 

𝑛𝑠,𝑦,𝑐

𝑥
𝑖𝑠,𝑦,𝑐,𝑥 /𝑛𝑠,𝑦,𝑐

223 We quantified uncertainty in macro-cell level population indices Is,y,c by applying the Bayesian 

224 bootstrap (Rubin 1981) over the constituent micro-cells. That is, we generated posterior 

225 samples 𝐼𝑏𝑠,𝑦,𝑐 as: 

226

227 𝐼𝑏𝑠,𝑦,𝑐 =  log

𝑛𝑠,𝑦,𝑐

𝑥
𝑖𝑠,𝑦,𝑐,𝑥 ⋅ 𝑤𝑏,𝑥/

𝑛𝑠,𝑦,𝑐

𝑥
𝑤𝑏,𝑥

228 Where b indexes the bootstrap replicate and wb,x represents the weight assigned to the xth 

229 micro-cell in the bth bootstrap replicate, sampled from a Dirichlet distribution.

230 We then calculated the demographic index for recruitment 𝑌𝑏𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡,𝑦,𝑐 and survival

231  𝑌𝑏𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙, 𝑦,𝑐 indices by subtracting the spring population index from the subsequent fall index, 

232 and the fall index from the next spring index, respectively:

233 𝑌𝑏𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡,𝑦,𝑐 = 𝐼𝑏𝑓𝑎𝑙𝑙,𝑦,𝑐 ― 𝐼𝑏𝑠𝑝𝑟𝑖𝑛𝑔,𝑦,𝑐

234  𝑌𝑏𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙,𝑦,𝑐 = 𝐼𝑏𝑠𝑝𝑟𝑖𝑛𝑔, 𝑦+1,𝑐 ― 𝐼𝑏𝑓𝑎𝑙𝑙,𝑦,𝑐

235 Finally, we calculate a mean index 𝑌𝑡,𝑦,𝑐 and associated standard deviation 𝜖𝑡,𝑦,𝑐 for each type of 

236 demographic index t  {recruitment, survival} by calculating the mean and standard deviation 

237 across bootstrap replicates.
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238 We fully propagated the posterior uncertainty by performing these subtractions sample-

239 wise through the bootstrapped posteriors. This procedure occasionally produces infinite indices 

240 when no individuals are reported in an entire macro-cell (𝑌𝑏𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡,𝑦,𝑐 and  𝑌𝑏𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙,𝑦,𝑐 can 

241 become become ±infinity when all micro-cell counts 𝑖𝑠,𝑦,𝑐,𝑥 in a macro-cell are zero due to the 

242 log-transform in 𝐼𝑏𝑠,𝑦,𝑐; in this limit the bootstrap no longer accurately quantifies uncertainty). 

243 These infinite indices were rare and primarily occurred in the early years with lower sampling 

244 effort and at range boundaries where the species is less common. We removed infinite indices 

245 in all downstream analysis, as they are rare and universally reflect sampling variation that our 

246 bootstrapping does not capture. In regressions of recruitment and survival indices against 

247 weather variables, we simply removed years with infinite indices from analysis. In comparisons 

248 of the variance in survival versus the variance in recruitment, we excluded entire cells if they 

249 yielded infinite indices in any year.

250

251 Comparison with the North American Breeding Bird Survey

252 To validate the use of eBird for the study of population fluctuations, we used similar methods to 

253 create eBird-derived indices of annual June-to-June population change and compared these to 

254 indices derived from the North American Breeding Bird Survey (BBS). BBS data are sparse at 

255 the level of our macro-cells, and so for the purposes of this analysis we replaced the macro-cell 

256 in our method with larger bird conservation regions (BCRs), which are a common unit of 

257 aggregation in BBS analyses (Sauer et al. 2003). To ensure that our bootstrapping approach 

258 covered a reasonable spatial sample of each BCR, we required that data available for at least 

259 100 micro-cells to compute a population snapshot. To compute yearly population snapshots 

260 from the BBS, we fit separate generalized additive models for each BCR with random year 

261 effects and Poisson error for route-level counts, see supplementary information (SI) equations 
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262 9, 10. This approach is similar to that of Edwards and Smith (2020), except that we use fully 

263 independent models for each BCR. See SI for additional details of model fitting. 

264 We then regressed June-to-June log-ratios from our BBS time series against those from 

265 our eBird time series via a mixed model incorporating the known measurement error in the 

266 predictor and the response, with a random intercept by BCR (SI equation 11, 12). We perform 

267 this analysis for Carolina Wren only, as the BBS analysis for Northern Cardinal did not show any 

268 interannual variation with sufficient confidence to support a validation based on correlations 

269 between time series.

270

271 Weather data

272 We obtained weather data from Daymet (Thornton et al. 2022) via Google Earth Engine 

273 (Gorelick et al. 2017) and R package ‘rgee’ (Aybar et al. 2020), summarized as average values 

274 over the spatial macro-cells for which we derived recruitment and survival indices. We focused 

275 on three weather variables that we believed a priori might influence demography: the average 

276 daily high temperature during July and August, reflecting temperatures during the hottest part of 

277 the summer; the average daily high temperature during January and February, reflecting 

278 temperatures during the coldest part of the winter; and the average snowpack, measured in 

279 snow water equivalent, during December-March, reflecting winter weather that might impede 

280 foraging.

281

282 Analysis of variance and regression

283 To obtain spatially explicit estimates of the factors governing the temporal dynamics of 

284 populations we used a regression-based approach applied to each macro-cell separately 
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285 followed by a model-based spatial smoothing of the regression results across cells. To 

286 determine whether events during the breeding period versus the non-breeding period exert 

287 stronger control on population dynamics, we fit independent cell-specific regressions to the 

288 distribution of survival and recruitment indices, with season (survival or recruitment) predicting 

289 both the mean and the logarithm of the variance (SI equation 1). The coefficient for the effect of 

290 season on the variance provides inference about whether the variance is higher overall for 

291 recruitment or survival, and therefore whether overall population fluctuations are primarily under 

292 the control of events during May-September or November-March.

293 To determine if weather conditions drive variation in recruitment or survival, we 

294 regressed the indices against mean daily high temperatures during July and August (recruitment 

295 indices), mean daily high temperatures during January and February (survival indices), and 

296 mean snow-water equivalent during January and February (survival indices). We fit these 

297 regressions independently for each cell. To propagate uncertainty in the demographic indices 

298 through the regressions we fit both a homoskedastic residual and an additional Gaussian error 

299 term whose variance we fixed to the bootstrapped standard error for the measurement (SI 

300 equation 3, 4). We fit the regression models only in cells where we retained at least five 

301 analyzable years. For the comparisons of variance, we additionally removed all cells where the 

302 estimated demographic index was infinite in any year, as ignoring these years could 

303 substantially bias variance estimates.

304 We then spatially smoothed the slope estimates from the regressions of demographic 

305 indices against weather variables using both a nonspatial residual and a cell-level spatial 

306 random effect with an intrinsic conditional autoregressive (ICAR) prior (Morris et al. 2019) . We 

307 again propagated uncertainty by including an extra Gaussian error term whose variance we 

308 fixed to the posterior variance in the slope estimate (SI equation 5,6). We present both the 

309 conditional autoregressive (CAR) model and the independent cell-specific results. The CAR 

Page 55 of 96 Ecography



For Review Only

14

310 model provides spatial smoothing over cells and distinguishes spatially coherent patterns from 

311 spatially idiosyncratic patterns that might merely reflect cell-specific noise. The independent cell-

312 specific regressions serve to confirm that the patterns detected in the CAR models reflect 

313 genuine geographic coherence across multiple independently analyzed cells and not merely the 

314 spatially smoothed influence of single cells that take extreme values. Thus, the independent 

315 cell-specific regressions are effectively a robustness check against the possibility that the CAR 

316 model produces spurious patterns due to misspecification of an insufficiently heavy-tailed 

317 residual term.

318

319 Latitudinal pattern

320 The regression models described above suggested that Carolina Wren populations might be 

321 under the control of winter temperatures at high latitudes but not at low latitudes. To further 

322 investigate and quantify this pattern, we fit an additional CAR model to predict the slope of 

323 Carolina Wren survival regressed on temperature as a function of latitude. We again used a 

324 nonspatial Gaussian error term, an ICAR spatial term, and a known error term to propagate 

325 uncertainty, but we modified the model described above by additionally including a fixed effect 

326 of latitude (SI equations 6, 8).

327

328 Model fitting

329 We fit all regressions in the Stan C++ library for Bayesian modeling and inference (Stan 

330 Development Team 2023) using the R package brms (Bürkner 2017) under the default priors, 

331 which are generally weakly informative for intercepts and standard deviations and flat for 

332 coefficients. We assessed model convergence via lack of divergences and r-hat statistics less 

333 than 1.05. Divergences are a sensitive diagnostic unique to Hamiltonian Monte Carlo algorithms 
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334 for model fitting for certain forms of non-convergence that frequently manifest in hierarchical 

335 modeling situations (Betancourt 2017). We use a contemporary version of r-hat (split, folded, 

336 rank-normalized) with improved sensitivity for detecting non-convergence (Vehtari et al. 2021).  

337 We also performed posterior predictive checks for each model and visually assessed the model 

338 fit for representative subsets of individual macro-cells (not shown) and for aggregated models 

339 (SI Figure. S9). As summary checks, we verified for all macro-cells, whether close to 95% of the 

340 observations were within the 95% CI of the posterior model predictions, as expected for good 

341 model fit (SI Figure S10). We also checked normality assumptions through assessment of the 

342 excess kurtosis and skewness of our sampled macrodemographic indices (SI Figure. S11, S12) 

343 and the posterior distributions of the regression coefficients (SI Figure. S13, S14).

344

345 Results

346 After applying our stringent data filters, we obtained analyzable time series (series including at 

347 least five seasons) in 59 grid cells (macro-cells) for Carolina Wren survival, 60 grid cells for 

348 Carolina Wren recruitment, 66 grid cells for Northern Cardinal survival, and 68 grid cells for 

349 Northern Cardinal recruitment. Although the longest time-series were concentrated in the 

350 northeastern United States, where early eBird uptake was strongest (SI Figure S2), we were 

351 able to analyze time-series spanning latitudes from south Florida to southern Canada.

352 June-to-June population fluctuations at the level of bird conservation regions were 

353 strikingly consistent between our eBird-derived indices and BBS-derived indices, with a clearly 

354 positive slope statistically indistinguishable from one (Figure 2).

355 The comparison of recruitment and survival indices reveals higher variance in survival 

356 than recruitment for Carolina Wrens in the northern part of their range but not in the southern 

357 part (Figure 3a, SI Figure S3a). The sample variances were higher in winter across much of the 
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358 continent, with especially the northeastern US showing strong evidence for a significant 

359 difference. The geographical coherence in the results, which arises from independent cell-scale 

360 analyses without spatial smoothing, strongly suggests that results are not due to the semi-

361 structured sampling in eBird but rather are due to a genuine signal of populations controlled 

362 primarily by wintertime dynamics in the northern part of the range. No such pattern was 

363 apparent for Northern Cardinal, consistent with the idea that this species is hardier and less 

364 sensitive to severe winters, and again suggesting that results for Carolina Wren are not artifacts 

365 of the sampling process (Figure 3b, SI Figure S3b). Cardinal populations are potentially under 

366 stronger control from breeding-season dynamics rather than wintertime dynamics in southern 

367 Texas (see below). 

368 Weather conditions were strongly predictive of winter survival in Carolina Wren (SI 

369 Figure S4a, Figure S4c), which is substantially controlled by winter harshness as measured by 

370 temperature and snowfall, especially in the northeastern part of its range (Figure 4a, Figure 4c). 

371 Recruitment showed no robust relationship with summer temperatures (Figure 4e, Figure S4e). 

372 In contrast, although Northern Cardinals may have experienced similar patterns in survival 

373 (Figure 4b, Figure 4d), the degree of certainty was low (SI Figure S4b, Figure S4d). However, 

374 their recruitment was positively associated with summer temperatures in the Mississippi Valley 

375 and Texas (Figure 4f, SI Figure S4f). 

376 The latitudinal ICAR models estimated a clear positive effect of latitude on the slope of 

377 the relationship between winter temperature and Carolina Wren survival of roughly 0.006 (95% 

378 credible interval -0.003 - 0.014) natural logarithms per degree Celsius per degree latitude 

379 (Figure 5). This slope means that a one-degree difference in winter temperatures that has no 

380 effect on Carolina Wren survival rates in the south would have roughly a six percent impact on 

381 survival rates (and therefore on populations) 1000 km to the north.
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382

383 Discussion

384 This study presents a novel method for extracting information on seasonal demographic 

385 changes from large-scale citizen science data. We show how semi-structured bird counts 

386 collected by volunteers can be used to make inferences on processes of seasonal mortality and 

387 recruitment across the full range of two resident species. A feature of eBird that enables large-

388 scale demographic analysis is that population abundances are sampled continuously throughout 

389 year. This allows us to estimate indices of seasonal change in observed bird counts throughout 

390 the season, as abundances change due to mortality and reproduction. We use annual time 

391 series of the post- to pre-breeding count change to sample the process of mortality, while the 

392 pre- to post-breeding change samples the combined process of recruitment and adult survival 

393 during the breeding period.  By assigning annual population fluctuations to different parts of the 

394 annual cycle in this manner, we provide a way of characterizing population dynamics along the 

395 Tap-Tub dichotomy (Sæther et al. 2004).

396 Our results indicate that Carolina Wren population dynamics are primarily Tub-driven at 

397 the northern end of the range, as indicated by a higher interannual variance in the survival index 

398 as compared to the recruitment index (Figure 3a). In addition, warmer, less snowy winters are 

399 associated with higher survival (Figure 4a,c), which aligns with the known susceptibility of 

400 Carolina Wrens to harsh winters (Brooks 1936, Sauer et al. 1996, Mehlman 1997, Link and 

401 Sauer 2007). Northern Cardinal exhibits strikingly different patterns, with limited evidence for 

402 either Tap or Tub dynamics across most of the range (Figure 3b, tap-dynamics was detected in 

403 southern Texas only). Only weak associations of demographic indices with weather covariates 

404 were found for this species (Figure 4), though recruitment may be elevated when summers are 
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405 warm in the Mississippi Valley and Texas. These results support our hypothesis that winter 

406 harshness is a key factor in Carolina Wren but not for Northern Cardinal. 

407 We find a remarkable correspondence between our findings and the outcomes of 

408 previous studies, which adds further support that our demographic inferences on Carolina Wren 

409 and Northern Cardinal populations are ecologically meaningful and robust. Previous studies, 

410 typically conducted at local scales, have consistently demonstrated the influential role of 

411 environmental factors, such as overwintering temperature (Brooks 1936, Root 1988, Mehlman 

412 1997, Latimer and Zuckerberg 2021), snow cover (Link and Sauer 2007), food availability (Job 

413 and Bednekoff 2011), in shaping Carolina Wren populations. These factors are crucial 

414 determinants of winter survival and, consequently, may even dictate the northern distribution 

415 range of Carolina Wrens (Huang et al. 2016). For instance, researchers using BBS and 

416 Christmas Bird Count (CBC) data have quantified a 1.1% decrease of abundance for every day 

417 with 4 cm of snow cover in the northern portion of this species winter range (Link and Sauer 

418 2007). This phenomenon may be closely tied to their foraging habits, which primarily occur near 

419 or at ground level (Haggerty et al. 2001). Conversely, Northern Cardinals exhibit comparatively 

420 less interannual variation in their demography (Ziolkowski et al. 2023), owing to their adaptability 

421 to urban forest environments (Evans et al. 2015), which offer more consistent food availability 

422 during winter months (Leston and Rodewald 2006), including supplemental feeding (Job and 

423 Bednekoff 2011). These corresponding findings suggest that our large-scale demographic 

424 information offers a valuable complementary insight, extending the geographic scope of these 

425 local studies.

426 Our analysis finds similar annual fluctuations in population abundances as those 

427 detected by the more structured and standardized survey of the BBS (Figure 2,SI Figure S8). It 

428 shows that our analysis framework has sufficient power to detect relatively modest demographic 

429 changes in population numbers within seasons and across years. It also indicates that our 
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430 stratified sampling design with bootstrap-based uncertainty quantification successfully 

431 accommodate the opportunistic nature of citizen science data collection, which inherently 

432 introduces spatial and temporal biases in observer effort (Dickinson et al. 2010, Johnston et al. 

433 2021, Fink et al. 2023, Johnston et al. 2023). Spatial biases may emerge due to observers' 

434 preferences for particular locations, such as protected areas (Boakes et al. 2010). An illustrative 

435 example of temporal bias can be observed in the alterations to data collection practices during 

436 the COVID-19 pandemic (Hochachka et al. 2021). Additionally, inclement weather conditions or 

437 poor air quality may constrain birder activity, resulting in fewer checklists on specific days in 

438 certain areas. We avoided these spatiotemporal biases by aggregating data into relatively large 

439 spatial and temporal sampling units (i.e., equal spaced hexagons), with its uncertainty 

440 estimates. Resulting demographic indices and their relationships with weather covariates are 

441 often similar to those of neighboring hexagons. This spatial consistency in demographic 

442 patterns along with spatiotemporal consistency observed in BBS validation provides further 

443 support that our approach is robust against spatiotemporal biases in sampling.

444 Importantly, detected seasonal changes in counts not only reflects the seasonal change 

445 in abundance of species, but also the seasonal change in their detectability. Birds’ detectability 

446 declines during specific annual cycle events like nesting and molting and increases in spring 

447 when birds vocalize more frequently (Wilson and Bart 1985, Riegert 2022). A central 

448 assumption in our analysis is that this seasonal detectability change is consistent, meaning that 

449 the detectability difference between our population snapshots can be captured by an unknown 

450 multiplicative factor that is potentially variable across space, but approximately constant in 

451 successive years. Seasonal changes in count can then be interpreted as relative indices of 

452 demographic population changes that may be compared across years. However, we 

453 acknowledge that interannual variation in detectability may affect our estimation. Modeling 

454 detectability in eBird either implicitly via the inclusion of detection-related covariates (as in 
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455 STEM models for eBird data; Fink et al. 2023) or explicitly via occupancy models (Hochachka et 

456 al. 2023) or N-mixture models (Goldstein and de Valpine 2022) present interesting avenues for 

457 further refinement of our approach.  

458 Our macro-demographic approach has potential to expand ecologists’ toolkit for 

459 obtaining information on demography and overcome several existing challenges. Traditional 

460 demographic studies tend to be time consuming and requires banding and resighting individuals 

461 in a mark-recapture setting. Detailed demographic studies exist only for a limited number of 

462 model species investigated in long-term population research. Extensive banding programs have 

463 been initiated to obtain demographic information across large spatial extents and for more 

464 species (e.g., MAPS and MoSi in the Americas (Desante et al. 1995, DeSante et al. 2005), and 

465 CES schemes in Europe (Peach et al. 1996)). These programs provide invaluable individual-

466 based demographic metrics that remain unrivaled in their specificity and ability to distinguish 

467 groups by age and sex. However, they remain limited in their geographic coverage and the 

468 number of species that can be sampled in sufficient numbers (Faaborg et al. 2010b). A citizen-

469 science based macro-demographic approach has great potential for complementing existing 

470 demographic information. Future work will need to explore how our macro-demographic 

471 approach can scale-up to include multiple species over large spatial-temporal extents using 

472 freely available and rapidly growing citizen science data. The resulting demographic indices, 

473 sampled across large spatial extents instead of at highly local banding sites, are suitable to 

474 detect large-scale demographic processes, such as those influenced by large-scale weather 

475 and climate, and may prove suitable to detect the influences of other large-scale causal drivers 

476 including anthropogenic impacts. Finally, our macro-demographic approach gives us more 

477 freedom to temporally subdivide the annual cycle into “snapshots” of interest, allowing us to 

478 isolate and study multiple transitions across the annual cycle. 
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479 The macro-demographic methodology introduced in this study opens exciting new 

480 opportunities in avian ecology research. Expanding this approach to encompass many other 

481 resident species, as well as migrants that breed or winter in data rich regions, holds significant 

482 potential for uncovering novel insights into population dynamics (Faaborg et al. 2010a, Sullivan 

483 et al. 2014, La Sorte et al. 2018). Although, we note that migration poses special challenges of 

484 compressed temporal windows for observing population changes pre- and post-breeding, as 

485 well as confounding annual variability in migration timing. Still, leveraging the large-scale spatial 

486 and temporal coverage of citizen science data allows for a comprehensive examination of 

487 annual fluctuations, shedding light on distinct patterns and ecological drivers. Furthermore, its 

488 adaptability offers the prospect of exploring finer resolutions within annual cycles, using multiple 

489 snapshots to achieve higher time resolution analyses. This opens avenues for researchers to 

490 dissect mortality and recruitment dynamics with greater precision, providing a more nuanced 

491 understanding of the temporal intricacies within a species' annual life cycle.

492 Our case study highlights the potential of citizen-science data in providing demographic 

493 information on recruitment, mortality, and its associations with weather and climate. Uncovering 

494 these underlying demographic processes will be critical for understanding the causes for 

495 demographic boom and bust years, and the mechanisms behind ongoing long-term population 

496 declines.

497
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498

499 Figure 1: Conceptual overview of our approach for assessing population fluctuations using 

500 eBird data. The grey dashed curve represents a hypothetical two-year time series of the 

501 logarithm of a population’s size, beginning in early fall. The blue curve represents the apparent 

502 time series from eBird data, which confounds the population time series with detection effects 

503 (e.g., higher detection in spring than fall). We snapshot the eBird time series in fall (circle 'b’) 

504 and spring (circle ‘a’), and we treat the differences between successive snapshots as indices of 

505 survival (i.e., a1 – b0) and recruitment (i.e., b1 – a1; on the log scale, differences correspond to 

506 log-ratios). Because we are interested primarily in the year-to-year variability of these indices 

507 and not in their raw values, we can neglect the differences between the apparent log-population 

508 and the true log-population provided that these differences are consistent from spring to spring 

509 and from fall to fall (a multiplicative detection term becomes an additive term on the log scale). 

510 In this example, survival was higher in the second winter than in the first (i.e., a2 – b1 > a1 – b0), 

511 and the eBird-derived population snapshots provide an unbiased estimate of the difference 

512 between year-1 survival and year-2 survival.

513
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514

515 Figure 2: eBird derived indices for June-to-June population fluctuations at the level of bird 

516 conservation regions (BCRs) are predictive of fluctuations derived from the United States 

517 Breeding Bird Survey (BBS) for the same regions and years. a) The slope is estimated to be 

518 near unity (0.97, 95% CI 0.34–2.14). b) The match in fluctuations through time as visualized for 

519 one of the longest and best-aligned time series (BCR 28 includes the Appalachian Mountains 

520 from Alabama to southern New York). Data from years prior to 2008 did not meet the inclusion 

521 thresholds for eBird analysis.

522

523

524

525
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526 Figure 3: For Carolina Wren (a)--but not Northern Cardinal (b)--northern cells tend to show 

527 evidence for higher variance in survival, implying that in the north, annual population fluctuations 

528 are more strongly controlled by events during winter than by events during summer. The 

529 difference in (log) standard deviations estimated from independent cell-level models of survival 

530 and recruitment for Carolina Wren (a) and Northern Cardinal (b). The color scale gives the 

531 posterior mean effect size for the difference in the logarithm of the standard deviation; the 

532 opacity gives the posterior probability that the true effect is in the same direction as mean effect, 

533 scaled so that a probability of 0.5 is completely transparent and a probability of 1 is completely 

534 opaque. See SI Figure S3 for a color-based representation of these opacity values. 

535
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536

537 Figure 4: Survival and recruitment relationships to winter and summer weather in Carolina 

538 Wren and Northern Cardinal. Carolina Wren survival is higher in warmer winters (a) and lower in 

539 snowier winters (c) in the northeast, whereas recruitment shows no statistically robust 

540 relationship to summer temperatures (e). Northern Cardinal shows potentially similar patterns in 

541 survival, but with low certainty (b, d), while their recruitment is potentially higher when summer 
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542 temperatures were warm in the Mississippi Valley and Texas. The color scale gives the 

543 posterior mean effect size for the true (smoothed) cell-specific slope for a regression of the 

544 demographic index against weather conditions; the opacity gives the posterior probability that 

545 the true effect is in the same direction as mean effect, scaled linearly so that a probability of 0.5 

546 is completely transparent and a probability of 1 is completely opaque. See SI Figure S4 for a 

547 color-based representation of the opacity values, and SI Figures S6 and S7 for unsmoothed 

548 versions.

549

550

551

552

553 Figure 5: Posterior expectations for the slope of the relationship between winter temperature 

554 and survival (natural logarithms per degree C) of Carolina Wren as a function of latitude, based 
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555 on a conditional autoregressive model. The median expectation is given in black; colored bands 

556 delimit credible intervals in steps of 10%, with the widest band giving the 90% credible interval. 

557 Points and vertical lines give the posterior mean +/- 1 standard deviation for the cell-specific 

558 slopes. Opacity of data points is scaled as the uncertainty of the least uncertain point divided by 

559 the uncertainty of the focal point. See SI Figure S5 for an equivalent analysis of Northern 

560 Cardinal.

561

562

563

564

565
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1 Model Structures and Equations

Throughout we will index the type of demographic index as t 2 {recruitment, survival}),
year as y and hexagon macrocell as c. We indicate the dependence of each vari-
able to type of demographic index t, year y and macrocell c by index subscripts.
In addition to the mathematical description of our models, we also include a
brief description of the canonical model formula as used in the R-package BRMS
(1 ). For a full description of the model implementation we refer to the full sup-
plemental R code included with this publication.

1.1 Mean and variance by season

In each cell c and for each type of demographic index d, we approximated the
bootstrapped posteriors for the fluctuation indices as Normal, and we modeled
the demographic indices as

Yt,y,c ⇠ Normal(zt,y,c, ✏t,y,c)

zt,y,c ⇠ Normal(µt,c,�t,c)

µt,c = ↵c + �c ⇥ ⌧t

log �t,c = �c + c ⇥ ⌧t

(1)

where zd,y,c is the true index, which yields our noisy estimate Yt,y,c with known
standard deviation ✏t,c,y, ↵ is the intercept, � is the e↵ect of type of demo-
graphic index (notated as factor ⌧), � is the log-scale intercept for the standard
deviation, and  is the log-scale e↵ect of ⌧ on the standard deviation.

1.1.1 R code implementation in BRMS

In BRMS we model each cell c separately, using formula

Yt,y,c | resp se(✏t,y,c, sigma = TRUE) ⇠ ⌧t, sigma ⇠ ⌧t (2)

1
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resp se() specifies the known measurement error of the response. Input data
consists of rows values (Yt,y,c, ✏t,y,c, ⌧t) that span all years y and indices t. Figure
3 of the main document shows estimates for c

1.2 Weather predictors of recruitment and survival

In each cell c, we fit three regressions (survival index against mean maximum
winter temperature, survival index against ’snow water equivalent’, and recruit-
ment against mean maximum summer temperature). Each of these regression
had a form

Yt,y,c ⇠ Normal(yt,y,c, ✏t,y,c)

yt,y,c ⇠ Normal(µt,y,c,�t,c)

µt,y,c = ↵t,c + �t,c ⇥ wt,y,c

(3)

where yt,y,c is the true index, which yields our noisy measurement Yt,y,c with
known standard deviation ✏t,y,c, ↵t,c is the intercept, �t,c is the e↵ect of weather
(notated w), and �t,c is the residual standard deviation.

1.2.1 R code implementation in BRMS

In BRMS we model each cell c separately, using formula

Yt,y,c | resp se(✏t,y,c, sigma = TRUE) ⇠ w (4)

and input data consisting of rows values (Yt,y,c, ✏t,y,c, wt,y,c) that span all years
y. In each of the three models, we include only data for one index t for the
relevant period, i.e. recruitment or survival. Figure S6 shows estimates for the
posterior mean of �t,c

1.3 Spatially smoothed weather relationships

For each of our three weather variables, we approximated our posterior estimates
of the regression slopes �t,c as Normal and smoothed these estimates across cells
using regressions of the form

�t,c ⇠ Normal(bt,c, ✏t,c)

bt,c ⇠ Normal(µt,c,�)

µt,c = ↵+ �t,c

(5)

where bt,c is the true slope in a cell, which yields our noisy estimate �t,c with
known standard deviation ✏t,c (obtained from the posterior mean and standard
deviation from the earlier model fit in Eq. 3), ↵ is an intercept, � is a spa-
tial random e↵ect of cell with an intrinsic conditional autoregressive (ICAR)
prior, and � is the residual standard deviation, or in other words the standard
deviation of a non-spatial random e↵ect of cell.

In models that additionally contain an e↵ect of latitude L, that e↵ect (�⇥Lc)
is added to µt,c, as in

µt,c = ↵+ �t,c + � ⇥ Lc (6)

2
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1.3.1 R code implementation in BRMS

In BRMS we model all cells c together, using formula

�t,c | resp se(✏t,c, sigma = TRUE) ⇠ car(M, gr=cell, type=”icar”) (7)

with M the adjacency matrix of locations
In models that additionally contain an e↵ect of latitude L, we used model

formula

�t,c | resp se(✏t,c, sigma = TRUE) ⇠ Lc + car(M, gr=cell, type=”icar”) (8)

Input data consists of rows of values for each cell (�t,c, ✏t,c, Lc), with �t,c the
slope of the weather regression and associated standard deviation ✏t,c and Lc

the centroid latitude of the hexagon cell, and the adjacency matrix M .

1.4 Models for BBS counts

We modeled Breeding Bird Survey (BBS) counts within each BCR via

Cy ⇠ Poisson(py)

log(py) = ⌘y + ⌫ + s(y)

⌘ ⇠ Normal(0,�)

⌫ ⇠ Normal(0, ✓)

(9)

where py is the true count, which yields our noisy estimates Cy of observed
counts, y is the year associated with the count, ⌘ is a random e↵ect of year with
standard deviation �, ⌫ is an observation-level random e↵ect with standard
deviation ✓, and s() is a spline constructed by R package mgcv and cast in its
random e↵ects form for fitting via Stan (2 ).

1.4.1 R code implementation in BRMS

In summary, in BRMS we model the observed counts Cy using formula:

Cy ⇠ s(y) + (1 | i) + (1 | y) (10)

where i is indexing the count observations.

1.4.2 Details of model fitting for BBS timeseries

For some Bird Conservation Regions (BCRs), numerically simulated trajecto-
ries in Hamiltonian Monte Carlo sampling tended to display divergences, which
we reduced by increasing the target acceptance rate to induce smaller step sizes
when numerically solving for the Hamiltonian trajectories (3 ). Nevertheless, di-
vergences persisted in very low numbers in 5 of the 16 BCRs, with no more than
two divergent transitions out of the 4,000 post-warmup transitions obtained for
each BCR. Any resulting biases in the posterior (which would pass completely
undetected using traditional MCMC fitting engines) are unlikely to seriously
impact downstream analysis.

3
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1.5 Comparison of BBS and eBird

We defined log-scale population fluctuations B as the log-scale di↵erences in
population index between year y and year y+1 for each BCR, as in

Bi = log(Cy+1 � Cy) (11)

with Cy defined as in Eq. 9 for each BCR of the BBS, and i indexing unique
year-BCR combinations. From the posterior samples we obtain an estimate for
both the mean of Bi and the associated standard deviation ✏bi .

For eBird we use an index Ei and known standard deviation ✏ei that is
equivalent to Yt,y,c and ✏t,y,c in Eq. 1, but in this case estimated for a BCR
instead of an macro-cell c and using a log-ratio between two spring seasons of
two consecutive years, instead of a log-ratio between two consecutive spring and
fall seasons.

We approximated the posteriors for these annual log-scale population fluctu-
ations as Normal for both BBS and eBird, and we treated the posterior means
as noisy measurements of the unknown true values. We then regressed the BBS
values against the eBird values as follows:

Bi ⇠ Normal(bi, ✏
b
i )

bi ⇠ Normal(µi,�)

µi = ↵+ � ⇥ ei + ⌘i

ei ⇠ Normal(t, u)

Ei ⇠ Normal(ei, ✏
e
i )

⌘i ⇠ Normal(0, ✓)

(12)

Here, bi is the true BBS fluctuation, which yields our noisy measurement Bi

with known standard deviation ✏bi ; ei is the true eBird fluctuation, which yields
our noisy measurement Ei with known standard deviation ✏ei ; t and u are the
mean and standard deviation (estimated during model fitting) of a regularizing
hierarchical prior on the true eBird fluctuations. µi is the estimate of the true
BBS fluctuation, which is regressed against the eBird fluctuation ✏i with ↵ and
� the regression intercept and slope, respectively; ⌘ is a random intercept for
BCR with standard deviation ✓;

1.5.1 R code implementation in BRMS

In summary, in BRMS we model the observed year-to-year fluctuations Bi using
formula:

Bi | resp se(✏bi , sigma = TRUE) ⇠ me(Ei, ✏
e
i ) + (1 + me(Ei, ✏

e
i ) | BCR) (13)

where me() specifies a predictor with measurement error, and resp se() specifies
known measurement error of the response.

4
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2 Supplementary figures

Figure S1: Indices of spring and fall bird populations and winter and summer
weather conditions are derived on a hexagonal grid with roughly 285 km spacing
between cell centers (left). Within each large hexagon, we construct a fine
hexagonal grid with roughly 18 km spacing between cell centers (right). We
compute our population index over each of these small cells, and we evaluate
the uncertainty in index for the large parent cell by applying the Bayesian
bootstrap over the small-cell indices.

5
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Figure S2: Lengths of timeseries analyzed for recruitment (a, b) and survival
(c, d) of Carolina Wren (a, c) and Northern Cardinal (b, d).

Figure S3: Posterior probabilities that the variance in survival is higher than
the variance in recruitment for Carolina Wren (a) and Northern Cardinal (b).
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Figure S4: Posterior probabilities of positive slopes in regressions of timeseries
against weather variables, smoothed via exact sparse conditional autoregressive
models. Results are shown for the e↵ects of winter temperatures on survival (a,
b), winter snow cover on survival (c, d), and summer temperatures on recruit-
ment (e, f), with Carolina Wren in the left column and Northern Cardinal in
the right.

7
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winter temperature and survival (natural logarithms per degree C) of Northern
Cardinal as a function of latitude, based on a conditional autoregressive model.
The median expectation is given in black; colored bands delimit credible in-
tervals in steps of 10%, with the widest band giving the 90% credible interval.
Points and vertical lines give the posterior mean +/- 1 standard deviation for
the cell-specific slopes. Opacity of data points is scaled as the uncertainty of
the least uncertain point divided by the uncertainty of the focal point.
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Figure S6: An equivalent of figure 4, but showing the unsmoothed cell-level
posteriors.

9
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Figure S7: An equivalent of figure S4, showing the posterior probability of
e↵ect directionality.
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Figure S8: eBird and BBS derived indices for June-to-June population fluctu-
ations at the level of bird conservation regions (BCRs). Data from years prior
to 2008 did not meet the inclusion thresholds for eBird analysis.

Figure S9: The examples of Posterior Predictive Check (PPC) for the lati-
tudinal weather regression model (panel-a; regression model underlying Figure
5) and BBS validation model (panel-b; regression model underlying Figure 2a).
The PPCs compare the empirical distribution of the data y to the distributions
of simulated/replicated data yrep from the posterior predictive distribution.

11
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Figure S10: Posterior Predictive Checks of weather regression models. The
color scale indicates the percentage of observed values that are within 95%
credible interval of predicted values from posterior distribution estimated from
independent cell-level weather regressions.
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Figure S11: Histograms of the excess kurtosis (top) and skewness (bottom)
of survival indices calculated for the bootstrap samples for each year - macro-
cell combination. Values centered near zero confirm of the adequacy of normal
approximations in our regression models.
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Figure S12: Histogram of the excess kurtosis (top) and skewness (bottom) of
recruitment indices calculated for the bootstrap samples for each year - macro-
cell combination. Values centered near zero confirm of the adequacy of normal
approximations in our regression models.
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Figure S13: Skewness of the posterior distribution for the regression slope
estimated in regressions between demographic indices and weather variables.
Skewness was close to zero for most macro-cells, consistent with our normality
assumptions.
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Figure S14: Excess kurtosis of the posterior distribution for the regression
slope estimated in regressions between demographic indices and weather vari-
ables. Excess kurtosis was close to zero for most macro-cells, consistent with
our normality assumptions.
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Figure 1: Conceptual overview of our approach for assessing population fluctuations using eBird data. The 
grey dashed curve represents a hypothetical two-year timeseriestime series of the logarithm of a 

population’s size, beginning in early fall. The blue curve represents the apparent timeseriestime series from 
eBird data, which confounds the population timeseriestime series with detection effects (e.g., higher 

detection in spring than fall). We snapshot the eBird timeseriestime series in fall (circle 'b’) and spring (circle 
‘a’ and ‘c’), and we treat the differences between successive snapshots as indices of survival (i.e., a1c -– b0) 

and recruitment (i.e., b1 -– a1; on the log scale, differences correspond to log-ratios). Because we are 
interested primarily in the year-to-year variability of these indices and not in their raw values, we can 

neglect the differences between the apparent log-population and the true log-population provided that these 
differences are consistent from spring to spring and from fall to fall (a multiplicative detection term becomes 
an additive term on the log scale). In this example, survival was higher in the second winter than in the first 
(i.e., a2 – b1 > a1 – b0), and the eBird-derived population snapshots provide an unbiased estimate of the 

difference between year-1 survival and year-2 survival. 
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Figure 2: eBird derived indices for June-to-June population fluctuations at the level of bird conservation 
regions (BCRs) are predictive of fluctuations derived from the United States Breeding Bird Survey (BBS) for 
the same regions and years. a) The slope is estimated to be near unity (0.97, 95% CI 0.34–2.14). b) The 

match in fluctuations through time as visualized for one of the longest and best-aligned timeseries (BCR 28 
includes the Appalachian Mountains from Alabama to southern New York). Data from years prior to 2008 did 

not meet the inclusion thresholds for eBird analysis. 
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Figure 4: Survival and recruitment relationships to winter and summer weather in Carolina Wren and 
Northern Cardinal. Carolina Wren survival is higher in warmer winters (a) and lower in snowier winters (c) in 
the northeast, whereas recruitment shows no statistically robust relationship to summer temperatures (e). 
Northern Cardinal shows potentially similar patterns in survival, but with low certainty (b, d), while their 

recruitment is potentially higher when summer temperatures were warm in the Mississippi Valley and Texas. 
The color scale gives the posterior mean effect size for the true (smoothed) cell-specific slope for a 

regression of the demographic index against weather conditions; the opacity gives the posterior probability 
that the true effect is in the same direction as mean effect, scaled linearly so that a probability of 0.5 is 

completely transparent and a probability of 1 is completely opaque. See figure S4 for a color-based 
representation of the opacity values, and figures S6 and S7 for unsmoothed versions. 
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Figure 5: Posterior expectations for the slope of the relationship between winter temperature and survival 
(natural logarithms per degree C) of Carolina Wren as a function of latitude, based on a conditional 

autoregressive model. The median expectation is given in black; colored bands delimit credible intervals in 
steps of 10%, with the widest band giving the 90% credible interval. Points and vertical lines give the 

posterior mean +/- 1 standard deviation for the cell-specific slopes. Opacity of data points is scaled as the 
uncertainty of the least uncertain point divided by the uncertainty of the focal point. See figure S5 for an 

equivalent analysis of Northern Cardinal. 
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