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SEASONAL MACRO-DEMOGRAPHY OF NORTH AMERICAN BIRD POPULATIONS

REVEALED THROUGH CITIZEN SCIENCE MONITORING

Abstract

Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic
underpinnings remain poorly understood. A key question is whether spatial and annual variation
in avian population dynamics is driven primarily by variation in breeding season recruitment or
by variation in overwinter survival. We present a method using large-scale eBird citizen-science
data to develop species-specific indices of net population change as proxies for survival and
recruitment, based on twice-annual, rangewide snapshots of relative abundance in spring and
fall. We demonstrate the use of these indices by examining spatially explicit annual variation in
survival and recruitment in two well-surveyed nonmigratory North American species, Carolina
Wren (Thryothorus ludovicianus) and Northern Cardinal (Cardinalis cardinalis). We show that,
while interannual variation in both survival and recruitment is slight for Northern Cardinal, eBird
abundance data reveal strong and geographically coherent signals of interannual variation in
the overwinter survival of Carolina Wren. As predicted, variation in wintertime survival
dominates overall interannual population fluctuations of wrens and is correlated with winter
temperature and snowfall in the northeastern United States, but not the southern United States.
This study demonstrates the potential of volunteer-collected big datasets like eBird for inferring
variation in demographic rates and introduces a new complementary approach towards
illuminating the macrodemography of North American birds at comprehensive continental

extents.

Key words: demography, eBird, population dynamics, productivity, recruitment, survival, vital

rates, weather
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Introduction

Global loss of biodiversity is an alarming trend and escalating crisis (Ceballos et al. 2020,
Cafaro et al. 2022, Habibullah et al. 2022, Finn et al. 2023). Despite diverse, interdisciplinary
research efforts to understand biodiversity loss, the underlying demographic mechanisms
behind species declines are poorly understood (Faaborg et al. 2010b, Knudsen et al. 2011).
Whereas a multitude of environmental factors potentially impact populations (ranging from
habitat degradation and climate change to invasive species, pollution, and pesticide use), a
basic understanding of which specific environmental factors play a role, and which specific
periods in the annual cycle drive population change, remains elusive for most species.
Exemplifying the broad-scale biodiversity crisis, North America is estimated to support 3 billion
fewer birds today than in 1970 (Rosenberg et al. 2019), a 29% decline in the continental
avifauna. Species declines are observed across all ecoregions and biomes, suggesting that
research conducted at a continental extent is needed to understand the underlying causes.
Despite the scale of species declines, to date mostly micro-demographic field studies have been
used to measure the underlying recruitment and mortality patterns of birds (e.g., see references
therein: Tian and Hua 2023, Maresh Nelson et al. 2024). In addition, large-scale capture-
recapture programs have been established to provide demographic information across larger
areas through a huge effort in data collection, including the MAPS program (Monitoring Avian
Population and Survivorship; Desante et al. 1995), MoSI (Monitoring Overwintering Survival;
DeSante et al. 2005) and CES (Constant Effort Sites; Peach et al. 1996). Both local field studies
and large-scale capture-recapture programs have important limitations, however, both
taxonomically (limited number of species captured in sufficient numbers) and geographically
(uneven distribution of field studies and banding stations). Finding broader-scale metrics of

avian demography that complement existing programs and can leverage big data from citizen-
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science monitoring efforts could therefore greatly increase our understanding of species decline

and loss.

Compared to long-term population changes, within-year changes in population size in
response to seasonal mortality and reproduction can be orders of magnitude larger. Identifying
environmental factors impacting seasonal population changes can provide valuable insights into
major limiting factors, and be a steppingstone towards identifying mechanisms relevant for long-
term change. A major unanswered question, however, is whether limiting factors occur primarily
during the breeding or non-breeding season, a dichotomy termed the Tap vs. Tub hypotheses
(Saether et al. 2004). Using the analogy of a bathtub, its water level (i.e. population size) is
determined both by how much water flows in from the tap (i.e. recruitment) and how much water
drains out of the tub (i.e. non-breeding mortality). According to the Tub hypothesis (Lack 1954),
fluctuations in population size are closely tied to environmental conditions during the non-
breeding season that determine the number of birds that survive this critical period. Many
factors can affect non-breeding season mortality, which can depend on winter harshness
directly, or be mediated through variation in food availability and associated density dependent
competition (Newton 1998, Marra et al. 2015). In contrast, the Tap hypothesis (Saether et al.
2004) considers annual variation in population size to be determined by factors affecting
breeding success and the number of new recruits that enter the population. These factors are
equally diverse, including seasonal variation in weather (Dunn et al. 2010), food availability
(Martin 1987), predation risk (Lima 2009), and phenological variability in the duration available
for breeding (Halupka and Halupka 2017). Most bird populations are monitored during the
breeding season only, hampering our ability to determine where and when population change is
actually occurring. Existing evidence for either hypothesis is mixed (Balogh et al. 2011,
Lamanna et al. 2012, Saracco et al. 2012, Brown et al. 2017, Hallworth et al. 2021), and large-

scale studies of avian population change have revealed broad geographic patterns but also
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substantial local variation (DeSante et al. 1999, Rosenberg et al. 2019, Morrison et al. 2022,
Saracco et al. 2022, Fink et al. 2023). Because population trends and demographic
mechanisms vary spatially, answering broad questions on the causes of population change
likely requires a demographic approach that covers large spatial extents and is spatially explicit.
Ideally such an approach should be generalizable to many species, without requiring an
unrealistic additional burden in terms of data collection. |dentifying large-scale drivers of
population change, such as weather and climatic conditions, will also benefit from a macro-
demographic approach capable of estimating demographic patterns across equally large spatial

extents, by integrating over noisy local variation.

In this study, we present a novel approach for estimating avian demographic indices
from semi-structured citizen science data that is based on repeated sampling of continent-scale
relative abundance. Specifically, we explore the potential for leveraging big data from the large
and rapidly growing eBird database (Sullivan et al. 2014), exploiting its extensive geographic,
temporal, and taxonomic scope that is currently unrivaled by any other monitoring program (La
Sorte and Somveille 2020). We apply our methodology to two nonmigratory North American
species with well-known and contrasting demographic patterns: Carolina Wren (Thryothorus
ludovicianus), which shows large annual population fluctuations (Ziolkowski et al. 2023) in
response to harsh winter conditions (Brooks 1936, Root 1988, Sauer et al. 1996, Mehlman
1997, La Sorte and Thompson 2007, Link and Sauer 2007), and Northern Cardinal (Cardinalis
cardinalis) which is expected to be more winter-hardy due to its granivorous diet and urban
adaptation (Evans et al. 2015). Both species have undergone northward range expansions
(Beddall 1963). We explicitly test whether the new eBird-derived indices detect substantial
interannual variation in overwinter survival related to harsh winters at more northerly latitudes
(Tub dynamics) in the Carolina Wren but not in Northern Cardinal. In addition, we hypothesize

that we would detect additional temperature-associated effects on recruitment in both Carolina
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Wren and Northern Cardinal, and that the direction of these effects would vary latitudinally, with
warm temperatures detrimental near warm range margins and beneficial near cool range
margins (Socolar et al. 2017). While there are many other factors affecting survival and
recruitment, we do not intend to explore all these factors and their relationship with demography
exhaustively. Instead, we aim to present a proof of concept demonstrating that citizen-science
data can provide information on the survival and recruitment of avian populations. Through
revealing well-established patterns with our new macrodemographic indices, we lay the
groundwork for exploring demography across hundreds of resident and potentially migratory
species in North America, contributing new insights into species-specific limiting factors and

potential causes of declines.

Methods

General approach

Our approach is based on tracking within-year population change through repeated sampling of
relative abundance, as illustrated in Figure 1. We used data from eBird (Sullivan et al. 2014) to
derive time series of avian abundance indices across eastern North America with uncertainty.
We computed these indices over the cells of a hexagonal grid to obtain spring and fall
“snapshots” of bird abundance, corresponding to weeks 13-16 (roughly the month of April) and
weeks 40-43 (roughly the month of October) of the calendar year. These population snapshots
allow us to define an index of recruitment as the logarithm of the ratio of the autumn population
index over that of the preceding spring, and a survival index as the logarithm of the ratio of the
spring index over that of the preceding autumn. Since our population indices are confounded by
seasonal changes in detectability, they cannot be used to directly compare population sizes

between spring and autumn. Therefore, we focus on the annual variation in indices for
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recruitment and survival within a given cell. In assuming that this temporal variation is
meaningful, we do not have to assume that detection probabilities are similar in April and
October or across space. Instead, our key assumption is that the detectability difference
between April and October shows up in our population snapshots as an unknown multiplicative
factor that is potentially variable across space but constant through time. Under these
assumptions, our demographic indices can provide a consistent index of high versus low
survival or recruitment years even if it does not provide an absolute measure (Figure 1).
Furthermore, given that annual population fluctuations are expected to be approximately log-
normal, the relative importance of summer versus winter in governing interannual population
fluctuations is directly related to the relative variances in the recruitment and survival indices,
and this remains true despite that the detectability difference between seasons is unknown. We
should note that these “macro”-demographic indices differ from traditional definitions of
recruitment and survival used for example in mark-recapture studies. Our indices represent net
gain and net loss in population size during pre-defined breeding and non-breeding periods,
respectively. As such, the recruitment (gain) index captures both the effect of population
increases due to reproduction and, as an index of net population change, also includes some
co-occurring breeding season mortality. The survival (loss) index, on the other hand, captures
the effect of non-breeding season mortality only, as no reproduction occurs during non-breeding
periods. While seasonal redistribution through immigration and emigration may potentially affect
our indices as well, their combined effect is likely small, given high site fidelity and small
dispersal distances for most species compared to the spatial scale of our analysis (Haggerty

and Morton 2020, Halkin et al. 2021).

To test our Tap and Tub hypotheses, we ask whether temporal variance in the survival
index is larger or smaller than the variance in the recruitment index. The index with the larger

variance will dominate the overall variance of the time series of the log absolute population size,

6
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so this question amounts to asking whether interannual population fluctuations around the mean
trend are more strongly controlled by events during May-September (Tap dynamics) or during
November-March (Tub dynamics). Second, we test whether observed variation in recruitment
and survival indices is correlated with weather conditions during the relevant period. Third, we
ask whether the observed patterns are geographically coherent. When adjacent grid cells are
analyzed independently but display geographical coherence in their results, we gain a measure
of confidence that the patterns we observe are genuine and not affected by the unstructured

sampling inherent in eBird data.

Geographic, temporal, and taxonomic scope

We focused our analysis on the eastern United States and Canada (east of 110° W longitude
and south of 50° N latitude) between the years 2006 and 2019. This region contains a high
density of eBird checklists going back to the earliest years of our time series and represents a
coherent biogeographic unit that contains well-defined populations of multiple resident bird
species. We chose 2006 as our start year to maximize the length of our time series while
avoiding extremely sparse and potentially unreliable data from earlier years. We chose 2019 as
our end year to avoid potentially abrupt changes in the observation process associated with the

Covid-19 pandemic (Hochachka et al. 2021).

We considered two species in our analysis: Carolina Wren and Northern Cardinal. These
are widespread species that are commonly reported in eBird and are year-round residents
within our study area (Haggerty and Morton 2020, Halkin et al. 2021). Year-round residency
enabled us to derive regionally specific population snapshots from well-spaced times of year,
and to assess the influence of weather on recruitment and survival without the complications of

migration. Carolina Wren and Northern Cardinal also provide a useful contrast in that Carolina
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Wren displays large annual population fluctuations and the Northern Cardinal does not based

on data from the North American Breeding Bird Survey (Sauer and Link 2011).

Bird occurrence and abundance data

We subsetted the eBird data to retain only complete checklists (i.e., observers report all
the species they detect and identify) submitted under stationary or traveling protocols of
between 0 and 3 km distance, between 5 and 60 minutes duration, and with a checklist
calibration index (CClI, a measure of observer efficiency; Johnston et al. 2018) of at least O (i.e.,

above average).

Recruitment and survival indices

To explore spatial variation in population dynamics, we computed indices of recruitment and
survival over the cells of an approximately equal-area hexagonal grid with a roughly 285 km
spacing between cell centers (Figure S1) (Barnes et al. 2017). Inter-annual fluctuations in North
American bird population sizes are approximately multiplicative (Kalyuzhny et al. 2014a), and
are only weakly stabilized (Kalyuzhny et al. 2014b), such that populations fluctuate via
multiplicative events that are roughly independent of the population size (in contrast, fluctuations
in strongly stabilized populations tend to be positive when populations are small and negative
when populations are large) (Lande et al. 2003). In this case it is natural to work on the
logarithmic scale, where the multiplicative constant becomes an additive constant with no
influence on variances or regression slopes. Gradual changes in detectability over multi-year
timescales (e.g., due to changes in the eBird user base) are acceptable as long as they impact
detection similarly in April and October and as long as they are sufficiently slow so that

detection probabilities are always similar in consecutive Aprils and consecutive Octobers.
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With an eye towards scalability, we eschew the computationally costly machine-learning
approaches commonly used to analyze eBird data at a fine landscape level, and instead derive
our population indices based on average per-checklist counts with carefully propagated
uncertainty. Modeling fine-scale habitat features was not considered a priority since our analysis
is focused on macroscale patterns derived from seasonal changes in abundance within the
same habitat regions. To support robust uncertainty quantification, we spatially subsampled
each grid cell across a finer hexagonal grid with an 18 km spacing between cell centers (Figure
S1). We refer to the spatio-temporal units comprising one cell of the fine grid and one four-week
period during one year as micro-cells, and we refer to the units comprising one cell of the

coarse grid and one four-week period during one year as macro-cells.

To compute population indices for the macro-cells, we first computed population indices
for each micro-cell as the average per-checklist count of the focal species across all checklists
meeting our criteria for inclusion. Let A ,, . .« be the k-th checklist of in total n,, . , checklists
belonging to the xt" micro-cell, c" macro-cell in year y and season s. Then, the population index

Is,y,cx for the x!" micro-cell in the ¢ macro-cell in the year y and season s is given by:

Ns,y,cx

is,y,c,x = Z As,y,c,x,k/ns,y,c,x
k

Some complete checklists in eBird report the presence of a species but not its count; for these
checklists we imputed the mean of the remaining checklists in the micro-cell that reported
positive counts of the focal species. We excluded micro-cells that contained no complete
checklists and micro-cells that contained at least one complete checklist reporting presence-

only but no complete count-based checklists reporting nonzero abundance.
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We then take our population index for the macro-cell I, . to be the logarithm of the

mean index over the total of ng , . constituent micro-cells:

Ns,y,c

IS.y.C = log Z is,y,c,x /ns,y,c

X

We quantified uncertainty in macro-cell level population indices /s, . by applying the Bayesian

bootstrap (Rubin 1981) over the constituent micro-cells. That is, we generated posterior

samples I3, as:

Ns,y,c Ns,y,c

b ,
Is,y,c - log Z ls,y,cx Wb,x/ z Wh,x
x

X

Where b indexes the bootstrap replicate and w;, , represents the weight assigned to the xt

micro-cell in the bt" bootstrap replicate, sampled from a Dirichlet distribution.

We then calculated the demographic index for recruitment Yﬁ’ecruitment’w and survival
Yls’urvml, y,c indices by subtracting the spring population index from the subsequent fall index,

and the fall index from the next spring index, respectively:

Yb _ Ib _ Ib
recruitment,y,c — ‘fally,c spring,y,c

Ib

b
Y spring, y+1,c — Ifall,y,c

b —
survival,y,c —

Finally, we calculate a mean index Y, . and associated standard deviation ¢, for each type of
demographic index t € {recruitment, survival} by calculating the mean and standard deviation

across bootstrap replicates.

10
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We fully propagated the posterior uncertainty by performing these subtractions sample-
wise through the bootstrapped posteriors. This procedure occasionally produces infinite indices
when no individuals are reported in an entire macro-cell (Yfecmitment’y’c and Yé’urvml'y_c can
become become tinfinity when all micro-cell counts iy ,, . . in @ macro-cell are zero due to the
log-transform in Ié’_yrc; in this limit the bootstrap no longer accurately quantifies uncertainty).
These infinite indices were rare and primarily occurred in the early years with lower sampling
effort and at range boundaries where the species is less common. We removed infinite indices
in all downstream analysis, as they are rare and universally reflect sampling variation that our
bootstrapping does not capture. In regressions of recruitment and survival indices against
weather variables, we simply removed years with infinite indices from analysis. In comparisons
of the variance in survival versus the variance in recruitment, we excluded entire cells if they

yielded infinite indices in any year.

Comparison with the North American Breeding Bird Survey

To validate the use of eBird for the study of population fluctuations, we used similar methods to
create eBird-derived indices of annual June-to-June population change and compared these to
indices derived from the North American Breeding Bird Survey (BBS). BBS data are sparse at
the level of our macro-cells, and so for the purposes of this analysis we replaced the macro-cell
in our method with larger bird conservation regions (BCRs), which are a common unit of
aggregation in BBS analyses (Sauer et al. 2003). To ensure that our bootstrapping approach
covered a reasonable spatial sample of each BCR, we required that data available for at least
100 micro-cells to compute a population snapshot. To compute yearly population snapshots
from the BBS, we fit separate generalized additive models for each BCR with random year

effects and Poisson error for route-level counts, see supplementary information (SI) equations

11
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9, 10. This approach is similar to that of Edwards and Smith (2020), except that we use fully

independent models for each BCR. See Sl for additional details of model fitting.

We then regressed June-to-June log-ratios from our BBS time series against those from
our eBird time series via a mixed model incorporating the known measurement error in the
predictor and the response, with a random intercept by BCR (S| equation 11, 12). We perform
this analysis for Carolina Wren only, as the BBS analysis for Northern Cardinal did not show any
interannual variation with sufficient confidence to support a validation based on correlations

between time series.

Weather data

We obtained weather data from Daymet (Thornton et al. 2022) via Google Earth Engine
(Gorelick et al. 2017) and R package ‘rgee’ (Aybar et al. 2020), summarized as average values
over the spatial macro-cells for which we derived recruitment and survival indices. We focused
on three weather variables that we believed a priori might influence demography: the average
daily high temperature during July and August, reflecting temperatures during the hottest part of
the summer; the average daily high temperature during January and February, reflecting
temperatures during the coldest part of the winter; and the average snowpack, measured in
snow water equivalent, during December-March, reflecting winter weather that might impede

foraging.

Analysis of variance and regression

To obtain spatially explicit estimates of the factors governing the temporal dynamics of

populations we used a regression-based approach applied to each macro-cell separately

12
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followed by a model-based spatial smoothing of the regression results across cells. To
determine whether events during the breeding period versus the non-breeding period exert
stronger control on population dynamics, we fit independent cell-specific regressions to the
distribution of survival and recruitment indices, with season (survival or recruitment) predicting
both the mean and the logarithm of the variance (S| equation 1). The coefficient for the effect of
season on the variance provides inference about whether the variance is higher overall for
recruitment or survival, and therefore whether overall population fluctuations are primarily under

the control of events during May-September or November-March.

To determine if weather conditions drive variation in recruitment or survival, we
regressed the indices against mean daily high temperatures during July and August (recruitment
indices), mean daily high temperatures during January and February (survival indices), and
mean snow-water equivalent during January and February (survival indices). We fit these
regressions independently for each cell. To propagate uncertainty in the demographic indices
through the regressions we fit both a homoskedastic residual and an additional Gaussian error
term whose variance we fixed to the bootstrapped standard error for the measurement (Sl
equation 3, 4). We fit the regression models only in cells where we retained at least five
analyzable years. For the comparisons of variance, we additionally removed all cells where the
estimated demographic index was infinite in any year, as ignoring these years could
substantially bias variance estimates.

We then spatially smoothed the slope estimates from the regressions of demographic
indices against weather variables using both a nonspatial residual and a cell-level spatial
random effect with an intrinsic conditional autoregressive (ICAR) prior (Morris et al. 2019) . We
again propagated uncertainty by including an extra Gaussian error term whose variance we
fixed to the posterior variance in the slope estimate (S| equation 5,6). We present both the

conditional autoregressive (CAR) model and the independent cell-specific results. The CAR

13
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model provides spatial smoothing over cells and distinguishes spatially coherent patterns from
spatially idiosyncratic patterns that might merely reflect cell-specific noise. The independent cell-
specific regressions serve to confirm that the patterns detected in the CAR models reflect
genuine geographic coherence across multiple independently analyzed cells and not merely the
spatially smoothed influence of single cells that take extreme values. Thus, the independent
cell-specific regressions are effectively a robustness check against the possibility that the CAR
model produces spurious patterns due to misspecification of an insufficiently heavy-tailed

residual term.

Latitudinal pattern

The regression models described above suggested that Carolina Wren populations might be
under the control of winter temperatures at high latitudes but not at low latitudes. To further
investigate and quantify this pattern, we fit an additional CAR model to predict the slope of
Carolina Wren survival regressed on temperature as a function of latitude. We again used a
nonspatial Gaussian error term, an ICAR spatial term, and a known error term to propagate
uncertainty, but we modified the model described above by additionally including a fixed effect

of latitude (SI equations 6, 8).

Model fitting

We fit all regressions in the Stan C++ library for Bayesian modeling and inference (Stan
Development Team 2023) using the R package brms (Blirkner 2017) under the default priors,
which are generally weakly informative for intercepts and standard deviations and flat for
coefficients. We assessed model convergence via lack of divergences and r-hat statistics less

than 1.05. Divergences are a sensitive diagnostic unique to Hamiltonian Monte Carlo algorithms
14
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for model fitting for certain forms of non-convergence that frequently manifest in hierarchical
modeling situations (Betancourt 2017). We use a contemporary version of r-hat (split, folded,
rank-normalized) with improved sensitivity for detecting non-convergence (Vehtari et al. 2021).
We also performed posterior predictive checks for each model and visually assessed the model
fit for representative subsets of individual macro-cells (not shown) and for aggregated models
(Sl Figure. S9). As summary checks, we verified for all macro-cells, whether close to 95% of the
observations were within the 95% CI of the posterior model predictions, as expected for good
model fit (SI Figure S10). We also checked normality assumptions through assessment of the
excess kurtosis and skewness of our sampled macrodemographic indices (S| Figure. S11, S12)

and the posterior distributions of the regression coefficients (Sl Figure. S13, S14).

Results

After applying our stringent data filters, we obtained analyzable time series (series including at
least five seasons) in 59 grid cells (macro-cells) for Carolina Wren survival, 60 grid cells for
Carolina Wren recruitment, 66 grid cells for Northern Cardinal survival, and 68 grid cells for
Northern Cardinal recruitment. Although the longest time-series were concentrated in the
northeastern United States, where early eBird uptake was strongest (S| Figure S2), we were

able to analyze time-series spanning latitudes from south Florida to southern Canada.

June-to-June population fluctuations at the level of bird conservation regions were
strikingly consistent between our eBird-derived indices and BBS-derived indices, with a clearly

positive slope statistically indistinguishable from one (Figure 2).

The comparison of recruitment and survival indices reveals higher variance in survival
than recruitment for Carolina Wrens in the northern part of their range but not in the southern

part (Figure 3a, S| Figure S3a). The sample variances were higher in winter across much of the

15
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continent, with especially the northeastern US showing strong evidence for a significant
difference. The geographical coherence in the results, which arises from independent cell-scale
analyses without spatial smoothing, strongly suggests that results are not due to the semi-
structured sampling in eBird but rather are due to a genuine signal of populations controlled
primarily by wintertime dynamics in the northern part of the range. No such pattern was
apparent for Northern Cardinal, consistent with the idea that this species is hardier and less
sensitive to severe winters, and again suggesting that results for Carolina Wren are not artifacts
of the sampling process (Figure 3b, Sl Figure S3b). Cardinal populations are potentially under
stronger control from breeding-season dynamics rather than wintertime dynamics in southern

Texas (see below).

Weather conditions were strongly predictive of winter survival in Carolina Wren (Sl
Figure S4a, Figure S4c), which is substantially controlled by winter harshness as measured by
temperature and snowfall, especially in the northeastern part of its range (Figure 4a, Figure 4c).
Recruitment showed no robust relationship with summer temperatures (Figure 4e, Figure S4e).
In contrast, although Northern Cardinals may have experienced similar patterns in survival
(Figure 4b, Figure 4d), the degree of certainty was low (S| Figure S4b, Figure S4d). However,
their recruitment was positively associated with summer temperatures in the Mississippi Valley

and Texas (Figure 4f, Sl Figure S4f).

The latitudinal ICAR models estimated a clear positive effect of latitude on the slope of
the relationship between winter temperature and Carolina Wren survival of roughly 0.006 (95%
credible interval -0.003 - 0.014) natural logarithms per degree Celsius per degree latitude
(Figure 5). This slope means that a one-degree difference in winter temperatures that has no
effect on Carolina Wren survival rates in the south would have roughly a six percent impact on

survival rates (and therefore on populations) 1000 km to the north.
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Discussion

This study presents a novel method for extracting information on seasonal demographic
changes from large-scale citizen science data. We show how semi-structured bird counts
collected by volunteers can be used to make inferences on processes of seasonal mortality and
recruitment across the full range of two resident species. A feature of eBird that enables large-
scale demographic analysis is that population abundances are sampled continuously throughout
year. This allows us to estimate indices of seasonal change in observed bird counts throughout
the season, as abundances change due to mortality and reproduction. We use annual time
series of the post- to pre-breeding count change to sample the process of mortality, while the
pre- to post-breeding change samples the combined process of recruitment and adult survival
during the breeding period. By assigning annual population fluctuations to different parts of the
annual cycle in this manner, we provide a way of characterizing population dynamics along the

Tap-Tub dichotomy (Szether et al. 2004).

Our results indicate that Carolina Wren population dynamics are primarily Tub-driven at
the northern end of the range, as indicated by a higher interannual variance in the survival index
as compared to the recruitment index (Figure 3a). In addition, warmer, less snowy winters are
associated with higher survival (Figure 4a,c), which aligns with the known susceptibility of
Carolina Wrens to harsh winters (Brooks 1936, Sauer et al. 1996, Mehiman 1997, Link and
Sauer 2007). Northern Cardinal exhibits strikingly different patterns, with limited evidence for
either Tap or Tub dynamics across most of the range (Figure 3b, tap-dynamics was detected in
southern Texas only). Only weak associations of demographic indices with weather covariates

were found for this species (Figure 4), though recruitment may be elevated when summers are
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warm in the Mississippi Valley and Texas. These results support our hypothesis that winter

harshness is a key factor in Carolina Wren but not for Northern Cardinal.

We find a remarkable correspondence between our findings and the outcomes of
previous studies, which adds further support that our demographic inferences on Carolina Wren
and Northern Cardinal populations are ecologically meaningful and robust. Previous studies,
typically conducted at local scales, have consistently demonstrated the influential role of
environmental factors, such as overwintering temperature (Brooks 1936, Root 1988, Mehlman
1997, Latimer and Zuckerberg 2021), snow cover (Link and Sauer 2007), food availability (Job
and Bednekoff 2011), in shaping Carolina Wren populations. These factors are crucial
determinants of winter survival and, consequently, may even dictate the northern distribution
range of Carolina Wrens (Huang et al. 2016). For instance, researchers using BBS and
Christmas Bird Count (CBC) data have quantified a 1.1% decrease of abundance for every day
with 4 cm of snow cover in the northern portion of this species winter range (Link and Sauer
2007). This phenomenon may be closely tied to their foraging habits, which primarily occur near
or at ground level (Haggerty et al. 2001). Conversely, Northern Cardinals exhibit comparatively
less interannual variation in their demography (Ziolkowski et al. 2023), owing to their adaptability
to urban forest environments (Evans et al. 2015), which offer more consistent food availability
during winter months (Leston and Rodewald 2006), including supplemental feeding (Job and
Bednekoff 2011). These corresponding findings suggest that our large-scale demographic
information offers a valuable complementary insight, extending the geographic scope of these

local studies.

Our analysis finds similar annual fluctuations in population abundances as those
detected by the more structured and standardized survey of the BBS (Figure 2,SI Figure S8). It
shows that our analysis framework has sufficient power to detect relatively modest demographic

changes in population numbers within seasons and across years. It also indicates that our
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stratified sampling design with bootstrap-based uncertainty quantification successfully
accommodate the opportunistic nature of citizen science data collection, which inherently
introduces spatial and temporal biases in observer effort (Dickinson et al. 2010, Johnston et al.
2021, Fink et al. 2023, Johnston et al. 2023). Spatial biases may emerge due to observers'
preferences for particular locations, such as protected areas (Boakes et al. 2010). An illustrative
example of temporal bias can be observed in the alterations to data collection practices during
the COVID-19 pandemic (Hochachka et al. 2021). Additionally, inclement weather conditions or
poor air quality may constrain birder activity, resulting in fewer checklists on specific days in
certain areas. We avoided these spatiotemporal biases by aggregating data into relatively large
spatial and temporal sampling units (i.e., equal spaced hexagons), with its uncertainty
estimates. Resulting demographic indices and their relationships with weather covariates are
often similar to those of neighboring hexagons. This spatial consistency in demographic
patterns along with spatiotemporal consistency observed in BBS validation provides further

support that our approach is robust against spatiotemporal biases in sampling.

Importantly, detected seasonal changes in counts not only reflects the seasonal change
in abundance of species, but also the seasonal change in their detectability. Birds’ detectability
declines during specific annual cycle events like nesting and molting and increases in spring
when birds vocalize more frequently (Wilson and Bart 1985, Riegert 2022). A central
assumption in our analysis is that this seasonal detectability change is consistent, meaning that
the detectability difference between our population snapshots can be captured by an unknown
multiplicative factor that is potentially variable across space, but approximately constant in
successive years. Seasonal changes in count can then be interpreted as relative indices of
demographic population changes that may be compared across years. However, we
acknowledge that interannual variation in detectability may affect our estimation. Modeling

detectability in eBird either implicitly via the inclusion of detection-related covariates (as in
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STEM models for eBird data; Fink et al. 2023) or explicitly via occupancy models (Hochachka et
al. 2023) or N-mixture models (Goldstein and de Valpine 2022) present interesting avenues for

further refinement of our approach.

Our macro-demographic approach has potential to expand ecologists’ toolkit for
obtaining information on demography and overcome several existing challenges. Traditional
demographic studies tend to be time consuming and requires banding and resighting individuals
in a mark-recapture setting. Detailed demographic studies exist only for a limited number of
model species investigated in long-term population research. Extensive banding programs have
been initiated to obtain demographic information across large spatial extents and for more
species (e.g., MAPS and MoSi in the Americas (Desante et al. 1995, DeSante et al. 2005), and
CES schemes in Europe (Peach et al. 1996)). These programs provide invaluable individual-
based demographic metrics that remain unrivaled in their specificity and ability to distinguish
groups by age and sex. However, they remain limited in their geographic coverage and the
number of species that can be sampled in sufficient numbers (Faaborg et al. 2010b). A citizen-
science based macro-demographic approach has great potential for complementing existing
demographic information. Future work will need to explore how our macro-demographic
approach can scale-up to include multiple species over large spatial-temporal extents using
freely available and rapidly growing citizen science data. The resulting demographic indices,
sampled across large spatial extents instead of at highly local banding sites, are suitable to
detect large-scale demographic processes, such as those influenced by large-scale weather
and climate, and may prove suitable to detect the influences of other large-scale causal drivers
including anthropogenic impacts. Finally, our macro-demographic approach gives us more
freedom to temporally subdivide the annual cycle into “snapshots” of interest, allowing us to

isolate and study multiple transitions across the annual cycle.
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The macro-demographic methodology introduced in this study opens exciting new
opportunities in avian ecology research. Expanding this approach to encompass many other
resident species, as well as migrants that breed or winter in data rich regions, holds significant
potential for uncovering novel insights into population dynamics (Faaborg et al. 2010a, Sullivan
et al. 2014, La Sorte et al. 2018). Although, we note that migration poses special challenges of
compressed temporal windows for observing population changes pre- and post-breeding, as
well as confounding annual variability in migration timing. Still, leveraging the large-scale spatial
and temporal coverage of citizen science data allows for a comprehensive examination of
annual fluctuations, shedding light on distinct patterns and ecological drivers. Furthermore, its
adaptability offers the prospect of exploring finer resolutions within annual cycles, using multiple
snhapshots to achieve higher time resolution analyses. This opens avenues for researchers to
dissect mortality and recruitment dynamics with greater precision, providing a more nuanced

understanding of the temporal intricacies within a species' annual life cycle.

Our case study highlights the potential of citizen-science data in providing demographic
information on recruitment, mortality, and its associations with weather and climate. Uncovering
these underlying demographic processes will be critical for understanding the causes for
demographic boom and bust years, and the mechanisms behind ongoing long-term population

declines.
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Figure 1: Conceptual overview of our approach for assessing population fluctuations using
eBird data. The grey dashed curve represents a hypothetical two-year time series of the
logarithm of a population’s size, beginning in early fall. The blue curve represents the apparent
time series from eBird data, which confounds the population time series with detection effects
(e.g., higher detection in spring than fall). We snapshot the eBird time series in fall (circle 'b’)
and spring (circle ‘a’), and we treat the differences between successive snapshots as indices of
survival (i.e., a; — bg) and recruitment (i.e., by — as; on the log scale, differences correspond to
log-ratios). Because we are interested primarily in the year-to-year variability of these indices
and not in their raw values, we can neglect the differences between the apparent log-population
and the true log-population provided that these differences are consistent from spring to spring
and from fall to fall (a multiplicative detection term becomes an additive term on the log scale).
In this example, survival was higher in the second winter than in the first (i.e., a, — by > a; — by),
and the eBird-derived population snapshots provide an unbiased estimate of the difference

between year-1 survival and year-2 survival.
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Figure 2: eBird derived indices for June-to-June population fluctuations at the level of bird
conservation regions (BCRs) are predictive of fluctuations derived from the United States
Breeding Bird Survey (BBS) for the same regions and years. a) The slope is estimated to be
near unity (0.97, 95% CIl 0.34—-2.14). b) The match in fluctuations through time as visualized for
one of the longest and best-aligned time series (BCR 28 includes the Appalachian Mountains
from Alabama to southern New York). Data from years prior to 2008 did not meet the inclusion

thresholds for eBird analysis.
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Figure 3: For Carolina Wren (a)--but not Northern Cardinal (b)--northern cells tend to show
evidence for higher variance in survival, implying that in the north, annual population fluctuations
are more strongly controlled by events during winter than by events during summer. The
difference in (log) standard deviations estimated from independent cell-level models of survival
and recruitment for Carolina Wren (a) and Northern Cardinal (b). The color scale gives the
posterior mean effect size for the difference in the logarithm of the standard deviation; the
opacity gives the posterior probability that the true effect is in the same direction as mean effect,
scaled so that a probability of 0.5 is completely transparent and a probability of 1 is completely

opaque. See Sl Figure S3 for a color-based representation of these opacity values.
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Figure 4: Survival and recruitment relationships to winter and summer weather in Carolina
Wren and Northern Cardinal. Carolina Wren survival is higher in warmer winters (a) and lower in
snowier winters (c) in the northeast, whereas recruitment shows no statistically robust
relationship to summer temperatures (e). Northern Cardinal shows potentially similar patterns in
survival, but with low certainty (b, d), while their recruitment is potentially higher when summer
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temperatures were warm in the Mississippi Valley and Texas. The color scale gives the
posterior mean effect size for the true (smoothed) cell-specific slope for a regression of the
demographic index against weather conditions; the opacity gives the posterior probability that
the true effect is in the same direction as mean effect, scaled linearly so that a probability of 0.5
is completely transparent and a probability of 1 is completely opaque. See Sl Figure S4 for a
color-based representation of the opacity values, and S| Figures S6 and S7 for unsmoothed

versions.
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Figure 5: Posterior expectations for the slope of the relationship between winter temperature

and survival (natural logarithms per degree C) of Carolina Wren as a function of latitude, based
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on a conditional autoregressive model. The median expectation is given in black; colored bands
delimit credible intervals in steps of 10%, with the widest band giving the 90% credible interval.
Points and vertical lines give the posterior mean +/- 1 standard deviation for the cell-specific
slopes. Opacity of data points is scaled as the uncertainty of the least uncertain point divided by
the uncertainty of the focal point. See Sl Figure S5 for an equivalent analysis of Northern

Cardinal.
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1 Model Structures and Equations

Throughout we will index the type of demographic index as t € {recruitment, survival}),
year as y and hexagon macrocell as ¢. We indicate the dependence of each vari-

able to type of demographic index ¢, year y and macrocell ¢ by index subscripts.

In addition to the mathematical description of our models, we also include a

brief description of the canonical model formula as used in the R-package BRMS

(1). For a full description of the model implementation we refer to the full sup-
plemental R code included with this publication.

1.1 Mean and variance by season

In each cell ¢ and for each type of demographic index d, we approximated the

bootstrapped posteriors for the fluctuation indices as Normal, and we modeled
the demographic indices as

Yiy.c ~ Normal(zy y ¢, €.y.c)

Zt,y,c ~ Normal(fis, ¢, 0t c)

Hie = 0c+ PBe X Ty

logoc = Yo + Ke X T

(1)

where zq 4 c is the true index, which yields our noisy estimate Y; , . with known
standard deviation €;.,, o is the intercept, B is the effect of type of demo-
graphic index (notated as factor 7), v is the log-scale intercept for the standard
deviation, and « is the log-scale effect of 7 on the standard deviation.

1.1.1 R code implementation in BRMS

In BRMS we model each cell ¢ separately, using formula

Yiy.c | respse(€; y ¢, sigma = TRUE) ~ 7, sigma ~ 7 (2)
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resp_se() specifies the known measurement error of the response. Input data
consists of rows values (Y}}y,c, €t,y,cr 7¢) that span all years y and indices ¢t. Figure
3 of the main document shows estimates for x,.

1.2 Weather predictors of recruitment and survival

In each cell ¢, we fit three regressions (survival index against mean maximum
winter temperature, survival index against ’snow water equivalent’, and recruit-
ment against mean maximum summer temperature). Each of these regression
had a form

Yige~ Normal(yt,y,w 6t,y,c)
Yty,ce ™~ Normal(ﬂt,y,ca Ut,c) (3)
Htye = Qpe+ Bre X Wiy e
where y; . is the true index, which yields our noisy measurement Y;, . with

known standard deviation €, ¢, oy, is the intercept, B . is the effect of weather
(notated w), and oy is the residual standard deviation.

1.2.1 R code implementation in BRMS
In BRMS we model each cell ¢ separately, using formula
Yiy.c | respse(esy.c,sigma = TRUE) ~ w (4)

and input data consisting of rows values (Y7 y.c, €1,y.c, Wt y,c) that span all years
y. In each of the three models, we include only data for one index ¢ for the
relevant period, i.e. recruitment or survival. Figure S6 shows estimates for the
posterior mean of f; .

1.3 Spatially smoothed weather relationships

For each of our three weather variables, we approximated our posterior estimates
of the regression slopes 3; . as Normal and smoothed these estimates across cells
using regressions of the form

Bt.c ~ Normal(bt,c» Et,C)
by ~ Normal(p ¢, 0) (5)
Mt,c =+ (bt,c

where b, . is the true slope in a cell, which yields our noisy estimate ;. with
known standard deviation e . (obtained from the posterior mean and standard
deviation from the earlier model fit in Eq. 3), a is an intercept, ¢ is a spa-
tial random effect of cell with an intrinsic conditional autoregressive (ICAR)
prior, and o is the residual standard deviation, or in other words the standard
deviation of a non-spatial random effect of cell.
In models that additionally contain an effect of latitude L, that effect (8 x L..)
is added to p ¢, as in
Mte=Q+ (bt,c +B8x L (6)
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1.3.1 R code implementation in BRMS
In BRMS we model all cells ¢ together, using formula
Bt.c | resp-se(es ¢, sigma = TRUE) ~ car(M, gr=cell, type="icar”)  (7)

with M the adjacency matrix of locations
In models that additionally contain an effect of latitude L, we used model
formula

Bi.c | resp_se(e; ¢, sigma = TRUE) ~ L. + car(M, gr=cell, type="icar”) (8)

Input data consists of rows of values for each cell (By.c, €.¢, L¢), with B¢ . the
slope of the weather regression and associated standard deviation €. and L.
the centroid latitude of the hexagon cell, and the adjacency matrix M.

1.4 Models for BBS counts
We modeled Breeding Bird Survey (BBS) counts within each BCR via
Cy ~ Poisson(p,)

log(py) =1y +v +5(y)
1 ~ Normal(0, o)
v ~ Normal(0, 9)

(9)

where p, is the true count, which yields our noisy estimates C, of observed
counts, y is the year associated with the count, 7 is a random effect of year with
standard deviation o, v is an observation-level random effect with standard
deviation 6, and s() is a spline constructed by R package mgcv and cast in its
random effects form for fitting via Stan (2).

1.4.1 R code implementation in BRMS
In summary, in BRMS we model the observed counts C, using formula:
Cy~sy)+0[)+0]y) (10)

where 7 is indexing the count observations.

1.4.2 Details of model fitting for BBS timeseries

For some Bird Conservation Regions (BCRs), numerically simulated trajecto-
ries in Hamiltonian Monte Carlo sampling tended to display divergences, which
we reduced by increasing the target acceptance rate to induce smaller step sizes
when numerically solving for the Hamiltonian trajectories (3). Nevertheless, di-
vergences persisted in very low numbers in 5 of the 16 BCRs, with no more than
two divergent transitions out of the 4,000 post-warmup transitions obtained for
each BCR. Any resulting biases in the posterior (which would pass completely
undetected using traditional MCMC fitting engines) are unlikely to seriously
impact downstream analysis.
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1.5 Comparison of BBS and eBird

We defined log-scale population fluctuations B as the log-scale differences in
population index between year y and year y+1 for each BCR, as in

B; =log(Cy+1 — Cy) (11)

with Cy defined as in Eq. 9 for each BCR of the BBS, and 4 indexing unique
year-BCR combinations. From the posterior samples we obtain an estimate for
both the mean of B; and the associated standard deviation €.

For eBird we use an index E; and known standard deviation € that is
equivalent to Y;, . and € 4. in Eq. 1, but in this case estimated for a BCR
instead of an macro-cell ¢ and using a log-ratio between two spring seasons of
two consecutive years, instead of a log-ratio between two consecutive spring and
fall seasons.

We approximated the posteriors for these annual log-scale population fluctu-
ations as Normal for both BBS and eBird, and we treated the posterior means
as noisy measurements of the unknown true values. We then regressed the BBS
values against the eBird values as follows:

B; ~ Normal(b;, €°)
b; ~ Normal(u;, o)
i = a+ B X e+
e; ~ Normal(t, u)
E; ~ Normal(e;, €5)

n; ~ Normal(0, 0)

Here, b; is the true BBS fluctuation, which yields our noisy measurement B;
with known standard deviation €%; e; is the true eBird fluctuation, which yields
our noisy measurement F; with known standard deviation €f; ¢ and u are the
mean and standard deviation (estimated during model fitting) of a regularizing
hierarchical prior on the true eBird fluctuations. p; is the estimate of the true
BBS fluctuation, which is regressed against the eBird fluctuation ¢; with o and
B the regression intercept and slope, respectively; 7 is a random intercept for

BCR with standard deviation 6,

1.5.1 R code implementation in BRMS

In summary, in BRMS we model the observed year-to-year fluctuations B; using
formula:
B; | resp_se(e’, sigma = TRUE) ~ me(F;, €¢) + (1 + me(E;, €¢) | BCR) (13)

where me() specifies a predictor with measurement error, and resp_se() specifies
known measurement error of the response.

Page 78 of 96



Page 79 of 96

Ecography

2 Supplementary figures

110°'W 100°W 0w

Figure S1: Indices of spring and fall bird populations and winter and summer
weather conditions are derived on a hexagonal grid with roughly 285 km spacing
between cell centers (left). Within each large hexagon, we construct a fine
hexagonal grid with roughly 18 km spacing between cell centers (right). We
compute our population index over each of these small cells, and we evaluate
the uncertainty in index for the large parent cell by applying the Bayesian
bootstrap over the small-cell indices.
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Figure S2: Lengths of timeseries analyzed for recruitment (a, b) and survival
(¢, d) of Carolina Wren (a, c) and Northern Cardinal (b, d).
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Figure S3: Posterior probabilities that the variance in survival is higher than
the variance in recruitment for Carolina Wren (a) and Northern Cardinal (b).
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Carolina Wren MNarthern Cardinal
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Figure S4: Posterior probabilities of positive slopes in regressions of timeseries
against weather variables, smoothed via exact sparse conditional autoregressive
models. Results are shown for the effects of winter temperatures on survival (a,
b), winter snow cover on survival (c, d), and summer temperatures on recruit-
ment (e, f), with Carolina Wren in the left column and Northern Cardinal in
the right.
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Figure S5: Posterior expectations for the slope of the relationship between
winter temperature and survival (natural logarithms per degree C) of Northern
Cardinal as a function of latitude, based on a conditional autoregressive model.
The median expectation is given in black; colored bands delimit credible in-
tervals in steps of 10%, with the widest band giving the 90% credible interval.
Points and vertical lines give the posterior mean +/- 1 standard deviation for
the cell-specific slopes. Opacity of data points is scaled as the uncertainty of
the least uncertain point divided by the uncertainty of the focal point.
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Figure S6: An equivalent of figure 4, but showing the unsmoothed cell-level
posteriors.
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Figure S7: An equivalent of figure S4, showing the posterior probability of
effect directionality.
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Figure S8: eBird and BBS derived indices for June-to-June population fluctu-
ations at the level of bird conservation regions (BCRs). Data from years prior
to 2008 did not meet the inclusion thresholds for eBird analysis.
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Figure S9: The examples of Posterior Predictive Check (PPC) for the lati-
tudinal weather regression model (panel-a; regression model underlying Figure
5) and BBS validation model (panel-b; regression model underlying Figure 2a).
The PPCs compare the empirical distribution of the data y to the distributions
of simulated /replicated data yrep from the posterior predictive distribution.
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Figure S10: Posterior Predictive Checks of weather regression models. The
color scale indicates the percentage of observed values that are within 95%
credible interval of predicted values from posterior distribution estimated from
independent cell-level weather regressions.
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Figure S11: Histograms of the excess kurtosis (top) and skewness (bottom)
of survival indices calculated for the bootstrap samples for each year - macro-
cell combination. Values centered near zero confirm of the adequacy of normal
approximations in our regression models.
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Figure S12: Histogram of the excess kurtosis (top) and skewness (bottom) of
recruitment indices calculated for the bootstrap samples for each year - macro-
cell combination. Values centered near zero confirm of the adequacy of normal
approximations in our regression models.
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Figure S13: Skewness of the posterior distribution for the regression slope
estimated in regressions between demographic indices and weather variables.
Skewness was close to zero for most macro-cells, consistent with our normality
assumptions.
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Figure S14: Excess kurtosis of the posterior distribution for the regression
slope estimated in regressions between demographic indices and weather vari-
ables. Excess kurtosis was close to zero for most macro-cells, consistent with
our normality assumptions.
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Figure 1: Conceptual overview of our approach for assessing population fluctuations using eBird data. The
grey dashed curve represents a hypothetical two-year timeseriestime series of the logarithm of a
population’s size, beginning in early fall. The blue curve represents the apparent timeseriestime series from
eBird data, which confounds the population timeseriestime series with detection effects (e.g., higher
detection in spring than fall). We snapshot the eBird timeseriestime series in fall (circle 'b") and spring (circle
‘a’ and 'c’), and we treat the differences between successive snapshots as indices of survival (i.e., alc -- b0)
and recruitment (i.e., bl -— al; on the log scale, differences correspond to log-ratios). Because we are
interested primarily in the year-to-year variability of these indices and not in their raw values, we can
neglect the differences between the apparent log-population and the true log-population provided that these
differences are consistent from spring to spring and from fall to fall (a multiplicative detection term becomes
an additive term on the log scale). In this example, survival was higher in the second winter than in the first
(i.e., @2 - bl > al - b0), and the eBird-derived population snapshots provide an unbiased estimate of the
difference between year-1 survival and year-2 survival.
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Figure 2: eBird derived indices for June-to-June population fluctuations at the level of bird conservation
regions (BCRs) are predictive of fluctuations derived from the United States Breeding Bird Survey (BBS) for
the same regions and years. a) The slope is estimated to be near unity (0.97, 95% CI 0.34-2.14). b) The
match in fluctuations through time as visualized for one of the longest and best-aligned timeseries (BCR 28
includes the Appalachian Mountains from Alabama to southern New York). Data from years prior to 2008 did
not meet the inclusion thresholds for eBird analysis.

559%x203mm (118 x 118 DPI)



Ecography

6

3 )

o log-sd difference

3 (survival-recruitment)
%

559x177mm (118 x 118 DPI)

Page 94 of 96



Page 95 of 96 Ecography

Carolina Wren Northern Cardinal

survival ~ winter temperature

estimated regression
slope (smoothed)
1.0

05
0.0

-0.5

survival ~ snow cover

-1.0

recrutiment ~ summer temperature

Figure 4: Survival and recruitment relationships to winter and summer weather in Carolina Wren and
Northern Cardinal. Carolina Wren survival is higher in warmer winters (a) and lower in snowier winters (c) in
the northeast, whereas recruitment shows no statistically robust relationship to summer temperatures (e).
Northern Cardinal shows potentially similar patterns in survival, but with low certainty (b, d), while their
recruitment is potentially higher when summer temperatures were warm in the Mississippi Valley and Texas.
The color scale gives the posterior mean effect size for the true (smoothed) cell-specific slope for a
regression of the demographic index against weather conditions; the opacity gives the posterior probability
that the true effect is in the same direction as mean effect, scaled linearly so that a probability of 0.5 is
completely transparent and a probability of 1 is completely opaque. See figure S4 for a color-based
representation of the opacity values, and figures S6 and S7 for unsmoothed versions.
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Figure 5: Posterior expectations for the slope of the relationship between winter temperature and survival
(natural logarithms per degree C) of Carolina Wren as a function of latitude, based on a conditional
autoregressive model. The median expectation is given in black; colored bands delimit credible intervals in
steps of 10%, with the widest band giving the 90% credible interval. Points and vertical lines give the
posterior mean +/- 1 standard deviation for the cell-specific slopes. Opacity of data points is scaled as the
uncertainty of the least uncertain point divided by the uncertainty of the focal point. See figure S5 for an
equivalent analysis of Northern Cardinal.
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