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The introduction of assistive construction robots can significantly alleviate physical demands on construction
workers while enhancing both the productivity and safety of construction projects. Leveraging a Building In-
formation Model (BIM) offers a natural and promising approach to driving robotic construction workflows.
However, because of uncertainties inherent in construction sites, such as discrepancies between the as-designed
and as-built components, robots cannot solely rely on a BIM to plan and perform field construction work. Human
workers are adept at improvising alternative plans with their creativity and experience and thus can assist robots
in overcoming uncertainties and performing construction work successfully. In such scenarios, it is critical to
continuously update the BIM as work processes unfold so that it includes as-built information for the ensuing
construction and maintenance tasks. This research introduces an interactive closed-loop digital twin framework
that integrates a BIM into human-robot collaborative construction workflows. The robot’s functions are primarily
driven by the BIM, but it adaptively adjusts its plans based on actual site conditions, while the human co-worker
oversees and supervises the process. When necessary, the human co-worker intervenes in the robot’s plan by
changing the task sequence or workspace geometry or requesting a new motion plan to help the robot overcome
the encountered uncertainties. A drywall installation case study is conducted to verify the proposed workflow. In
addition, experiments are carried out to evaluate the system performance using an industrial robotic arm in a
research laboratory setting that mimics a construction site and in the Gazebo simulation. Integrating the flexi-
bility of human workers and the autonomy and accuracy afforded by the BIM, the proposed framework offers
significant promise of increasing the robustness of construction robots in the performance of field construction
work.

1. Introduction

Construction has been ill-famed for its dangerous and harsh working
environments and excessive physical demands on workers, which often
result in a lack of motivation for people, especially those of diverse
abilities, to pursue their careers in the industry (Escamilla et al., 2016;
Park et al., 2023; Aulin and Jingmond, 2011; Zhang et al., 2023). As a
result, the construction industry is facing severe shortages of skilled
labor (Kim et al., 2020; Cai et al., 2023). According to the Associated
General Contractors of America, 73% of contractors consider worker
shortage as their biggest concern in 2022 (AGC, 2022).

Industrial robotic manipulators can exert high physical power and
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operate at high speeds, and thus have significant potential to reduce the
physical burden on human workers (Brosque et al., 2023). Robots have
already been adopted in several industry sectors such as manufacturing,
nuclear, healthcare, and rescue to reduce human workers’ workload and
their exposure to potential hazards (Fu et al., 2023; Barbash and Glied,
2010; Qian et al., 2012; Davids, 2002; Pérez et al., 2019). Construction
automation powered by robotics has demonstrated the potential to
reduce the physical demand on construction workers and improve the
diversity and inclusion of the construction workforce, thus mitigating
the labor shortage issues faced by the industry (Davila Delgado et al.,
2019; Liang et al., 2021; Rodrigues et al., 2023). On the other hand,
while robotics is still in its emerging phase in the field of construction
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automation, the use of Building Information Models (BIMs) has been
widely adopted in the industry to support digital construction project
workflows (Zhang et al., 2022; Volk et al., 2014).

A BIM is “a digital representation of physical and functional char-
acteristics of a facility” (NIBS, 2015). It contains a variety of geometric
and attribute information, such as 3D models, schedules, construction
methods, and materials, which are used to facilitate the construction
processes (Correa, 2016). Although BIMs play important roles in design,
communication, and project management throughout the project life
cycle (Zhang et al., 2022; Golabchi et al., 2013), they generally lack the
interoperability needed to support construction robot task planning
(Correa, 2019; Kim et al., 2021). Currently, robot installation sequences
and poses are generated primarily by retrieving geometric data from
BIMs encoded using Industry Foundation Classes (IFC) (Correa, 2016;
Kim et al., 2021; Ding et al., 2020). However, such proposed approaches
are limited to specific construction tasks or types of components, such as
bricklaying or wall panels. Moreover, working environments for field
construction involve a lot of uncertainties (e.g., deviations in as-built
components) that can cause robot failure when following a rigid pro-
gram. While a BIM can provide information to the robot, the workflow
needs the ability to improvise (i.e., dynamically adjust plans based on
encountered situations) to flexibly perform the work during the field
construction process (Lundeen et al., 2017).

Compared to robots, humans are more adept at creative and adaptive
planning based on their experience (Suresh et al., 2019; Sharif et al.,
2016). They can adjust a task plan according to what they observe on the
construction site to ensure the quality and continuity of the work. Thus,
human expertise in improvisation is indispensable for field construction
that involves considerable uncertainties and is necessary to support
robotic construction (Yoon et al., 2023; Yu et al., 2024). In addition,
human workers can supervise the robotic construction process to ensure
collision-free safe manipulation in dynamic on-site working environ-
ments. Therefore, by enabling Human-Robot Collaboration (HRC), the
flexibility and robustness of BIM-driven robotic construction systems
can be significantly improved.

This research proposes a closed-loop digital twin framework to
enable BIM-driven Human-Robot Collaborative Construction (HRCC)
workflows, as shown in Fig. 1. The system is built upon an interactive
and immersive process-level digital twin (I2PL-DT) system previously
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developed by the authors (Wang et al., 2021). A BIM module is inte-
grated to provide geometric and attribute data to both the human
workers through the user interface and the Robot Operating System
(ROS). After a robot generates work plans with information from the
BIM, human co-workers supervise the robot’s workflow (e.g., preview
robot plans and monitor execution status) and make interventions (e.g.,
adjust installation target or request another trajectory plan) when
necessary.

In addition, the as-built data collected by the robot during the con-
struction process is sent to the BIM to reflect changes between the as-
designed and the as-built workspace to be used for ensuing construc-
tion tasks, thereby closing the loop. The system supports seamless
integration of various sources of information received from the BIM,
human co-workers, and robot sensors. In parallel, the system processes
the collected information in various ways: it converts data into forms
that can be visualized and understood by humans, prepares it for
computation and control by robots, and saves and presents it within
BIMs.

The BIM-driven HRCC processes involve five main steps, including
(1) formulation of the BIM repository that supports robotic construction;
(2) preparation of the construction site and the BIM for a specific con-
struction activity; (3) automatic digital twin generation; (4) construc-
tion execution, including resolution of as-built / as-designed deviations;
and (5) updating of the BIM repository with as-built construction data
collected by the robot. The technical approach to enable these processes
is discussed in Section 3.

A drywall installation case study conducted on a large-scale physical
Kuka industrial robotic arm is presented as a proof-of-concept imple-
mentation to explore the physical setup process and for system verifi-
cation (Section 4). In addition, physical and simulation experiments
involving block pick-and-place and drywall installation activities are
carried out to evaluate system performance and validate the proposed
deviation adaptation methods (Section 5). The proposed system not only
extends the autonomy and accuracy of robotic construction but also
offers the flexibility to overcome uncertainties in field construction
work. The presented framework and workflow have the potential to be
applied to a broad variety of construction tasks.
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Fig. 1. Closed-Loop Digital Twin Framework Overview.
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2. Background
2.1. Human-robot collaboration

HRC aims to retain the robustness and adaptability of an automated
system by combining robots’ computational ability and durability with
humans’ creativity and flexibility (Tsarouchi et al., 2017; Yu et al,
2023). HRC can be classified into two types, physical collaboration and
contactless collaboration (Hentout et al., 2019). For physical HRC, the
human co-worker intentionally makes physical contact with the robot or
the object held by the robot to hand over or co-manipulate objects (Lee
and Moon, 2014; Devadass et al., 2019). However, working alongside
robots, especially construction robots that carry large and heavy com-
ponents, poses high safety risks to humans. Therefore, contactless HRC
has been used in many applications. It allows humans to guide robots
with gestures (Kim et al., 2009), natural language (Park et al., 2024; She
et al., 2014), joysticks and haptic devices (Chotiprayanakul et al., 2012;
Zhu et al., 2022), Virtual Reality (VR) (Pérez et al., 2019; Li and Zou,
2023; Adami et al., 2021), and neural signals (Zhang et al., 2023; Liu
et al., 2021). One main concern with contactless HRC, especially those
from remote locations, is that humans’ perception of the operational
environment and the robot is limited. It is critical to provide humans
with sufficient and accurate information in an effective way to enable
efficient decision making. One of the popular approaches is to create a
digital twin to provide real-time information about the robot and its
operation environment to humans (Malik and Brem, 2021; Wang et al.,
2020).

In prior work, the authors proposed an I2PL-DT system for human
workers to remotely receive and visualize the updated state of a con-
struction workspace (Wang et al., 2021). The system consists of three
modules, including an immersive Virtual Reality (VR) interface, mid-
dleware enabled by ROS, and Robot Operation Environment (ROE) (i.e.,
construction site, robot, and sensors). Human co-workers can visualize
construction site and robot conditions in real-time and perform
high-level task planning (e.g., indicating component installation
sequence and positions). The high-level plan is then used to generate
motion plans, which are processed into realistic animations in VR for the
human co-worker to preview and evaluate. Upon approval, the robot
executes the approved plan under human supervision. The work sup-
ports a collaboration paradigm where human workers perform
high-level decision-making and supervision while robots undertake
low-level motion planning and physical execution of the work.

Despite being a key component of the workflow proposed in this
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paper, the previously developed I2PL-DT system, in and of itself, has
several limitations. First, the process of creating the digital twin for a
construction task takes considerable effort. The immersive VR interface
needs to be manually created by importing BIM data into VR, creating
interactive game objects, and adding interactive functions (e.g., sending
messages to ROS). Second, the human co-worker needs to specify the
work plan for each component by indicating to the robot which
component to pick up and the location to install it. Thus, substantial
human effort is required for such step-by-step instructions. Lastly, since
the human co-worker specifies the high-level task objectives by
manipulating and placing virtual objects with controllers in VR, the
accuracy is limited and the resulting work may not comply with typical
construction work specifications and desired tolerances.

In order to overcome these critical and practical limitations, this
paper integrates a BIM with the I2PL-DT system and proposes an auto-
matic approach to creating digital twins. Fig. 2 shows the elements of the
updated and significantly expanded system presented in this paper and
compares it to the previous I2PL-DT system. With the proposed
approach, manual processes of creating the digital twin and placing each
component step-by-step in VR can be avoided, which improves system
autonomy and work accuracy as well as reduces human workers’
workload. In the remainder of this section, the adoption of a BIM to
support construction automation and robotics, along with the existing
approaches to create digital twins for robotic applications, are intro-
duced and discussed.

2.2. BIMs in construction automation and robotics

BIMs have been widely adopted to promote automation throughout
the life cycle of the Architecture, Engineering and Construction, and
Facilities Management (AEC/FM) industry (Deng et al., 2021). Recently,
BIMs have been used to facilitate robotized construction in various
ways. For example, BIMs can provide information to guide the off-site
prefabrication process (Abanda et al.,, 2017; Zhu et al., 2021) and
assist with object recognition for on-site assembly (Dawod and Hanna,
2019). Layout information contained in the BIM is used to support robot
indoor navigation tasks for building construction and maintenance
(Follini et al., 2020; Park et al., 2016; Mantha et al., 2020). Commercial
mobile robots have been introduced to draw layouts on-site based on
BIMs (Dusty). The geometric information contained in BIMs has also
been used to facilitate 3D printing in construction (Davtalab et al., 2018;
Teizer et al., 2018).

BIMs can also provide information to support robot motion planning.
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For example, in robotic brick assembly tasks, BIMs can provide position
and orientation data for a robot to pick up and place materials, as well as
task sequencing data to control the robotic workflow (Ding et al., 2020;
McClymonds et al., 2022). IFC models have been adapted to work with
robotic simulation platforms for robot navigation (Kim et al., 2021) and
to simulate the robotic wall frame assembly process (Wong Chong et al.,
2022). In these existing studies, robots fully rely on the BIM for task
planning. The construction site needs to conform to the exact BIM
specifications for the robot to perform construction work successfully.
However, considerable uncertainties exist on construction sites. Devi-
ated components, moving workers and equipment, and stacked mate-
rials on-site may interrupt the BIM-generated robot motions, causing
robots to stall while performing construction work on-site. (Lundeen
et al., 2019) used a combination of the BIM and sensing information to
generate adaptive robot motions. Despite such advances, the robot’s
adaptability is limited to a narrow set of situations and construction
tasks (Lundeen et al., 2019).

In summary, existing studies leveraging BIMs in robotics have three
limitations. First, they lack generality to support various types of con-
struction tasks. Second, they cannot handle uncertainties for field con-
struction, which can go beyond the robot’s adaptive capabilities and
interrupt robot activities generated by the BIM. Thus, human interven-
tion is necessary in addition to the BIM for the success of robotic field
construction. Third, as-built data collected by the robot during the
construction process is useful for the ensuing construction, operation,
and maintenance phases of the project; however, a closed loop for a BIM
to both provide and collect construction information is missing in
existing studies. Therefore, a general framework that supports different
types of construction tasks and allows human intervention is necessary.

2.3. Digital twins creation in robotic applications

Digital twins can be used for visualizing and incorporating infor-
mation from different resources, and they also support real-time
communication and interaction (Dembski et al., 2020; Wang et al.,
2023). Therefore, they are a promising candidate to integrate BIMs with
HRCC. Depending on the different application requirements, digital
twins can be created with various approaches. One of the most popular
methods in the AEC/FM industry is to use 3D point clouds. The envi-
ronment is captured with laser scanners or depth cameras as 3D point
clouds (Fang et al., 2016; Feng et al., 2015; Xu et al., 2019). Such sys-
tems can comprehensively capture the environment in real time, theo-
retically allowing for continuous updates of the digital twin to reflect the
evolving environment at any point in time. However, the transmission of
large-size point cloud data is computationally expensive and is subject to
delays. Furthermore, subsequent steps of processing and registering the
point clouds, object detection, or 3D reconstruction are usually needed
to achieve the required functions (Zhou et al., 2020; Park and Cho,
2022).

(Kamat and Martinez, 2003) developed the VITASCOPE language to
integrate simulation models, hardware control, and real-time construc-
tion data for dynamic construction scenario visualization at the opera-
tion level. (Liang et al., 2022) and (Roldan et al., 2019) created digital
twins of a robot to program, control, and visualize robot motions. Joint
state data are exchanged between the physical and virtual robots in real
time. In order to reduce the computation load while allowing real-time
visualization of the construction environment, (Wang et al., 2021)
created a digital twin using a combination of a BIM, 3D meshes of
as-built structures, and point clouds. However, these approaches require
manually importing models or manually enabling the functionality of
the digital twin. As a result, it interrupts the automated workflow of
HRCC initiation, which can potentially hinder the widespread applica-
tion of digital twins in HRCC. Therefore, an approach to automatically
generate digital twins that are equipped with pertinent functions (e.g.,
target object selection, communication between modules) is necessary
to promote and extend the autonomy of the HRCC workflow.
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2.4. Research objectives

To address the abovementioned research gaps, a workflow with the
following characteristics is needed to support HRCC effectively. First,
instead of parsing specific information from BIM repositories to auto-
mate one type of construction work, a general framework that supports
different types of tasks and components is needed. Second, the workflow
should automatically interface with different construction tasks without
additional programming or development effort that cannot be per-
formed by construction workers without related expertise. Third, robots
should have the ability to handle significant uncertainties on construc-
tion sites while allowing human intervention to resolve cases that extend
beyond the robots’ capabilities. Lastly, the workflow should record the
construction-related data collected by the robot sensors during the
HRCC process for future reference to enable loop closure. With these
objectives, the following section presents a closed-loop generalizable
framework integrating a BIM and HRCC, which supports automated
collaborative workflows and can overcome uncertainties in field con-
struction work.

3. Technical approach

A BIM-driven HRCC workflow enabled by closed-loop digital twins is
proposed in this study. The BIM provides data (e.g., component geom-
etry, position, type) to both the robot and the human co-workers by
compiling and sending messages to ROS and Unity (where the interface
is developed). The robot then generates the work plan based on the BIM
and adapts the plan according to the as-built circumstances detected by
its sensors. For example, during drywall installation, the robot retrieves
the name and target position of the next panel to install from the BIM; it
then adjusts the installation position of the panel based on how the wall
frame has actually been built as detected by its camera. Next, human co-
workers supervise the robotic construction process (e.g., by evaluating
and approving the robot plan) and intervene to adjust the high-level task
plan (e.g., by adjusting the target installation sequence and pose pro-
posed by the robot) when necessary.

An overview of the BIM-driven HRCC process is shown in Fig. 3.
First, the BIM data accessible by both human co-workers and robots
needs to be created. Next, before construction starts, human workers
need to prepare physically on the construction site (e.g., materials
staging) and digitally in the BIM (e.g., task designation). Then, the
interactive digital twin is generated, followed by the construction
execution. Lastly, after certain construction tasks are finished, the BIM
repository is updated with the latest as-built data. The remaining part of
this section introduces the system design and the technical approach to
enable this process.

3.1. System design

3.1.1. BIMs for robotic construction

BIMs created for traditional construction methods are typically
incompatible with robotic construction (Meschini, 2016). Some addi-
tional elements are necessary for a BIM to better support human-robot
collaborative task planning:

e Shop drawing-level geometry. Shop drawings precede detailed work
plans and contain information needed for fabrication, assembly, and
erection (Pietroforte, 1997). For example, in a robotic drywall
installation task, shop drawings for drywall panels are needed so the
robot knows where each panel should be located. However, shop
drawing-level details are not needed for every component in BIM and
are dependent on the construction plan. For example, an object that
is prefabricated off-site or erected on-site as a whole can be repre-
sented in the BIM as one single component.

e Construction sequence. Detailed construction sequence information
contained in the BIM is crucial to automate the construction process.
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Fig. 3. BIM-driven HRCC Process.

The construction sequence information should be provided in cor-
respondence with the shop drawing-level geometry, specifying the
order of installation of components.
Component relationships. Relationships between components can
affect robot planning, especially when discrepancies exist and the
robot needs to adapt its plan. Even though some component ar-
rangements visually look the same, they might indicate different
relationships (i.e., topologies) which require different construction
plans. As a result, clearly defined component relationships in the BIM
are necessary for the adaptive planning of the human-robot work
team.

Component layers. A unified predefined layer structure in the BIM

not only helps organize components into different groups for better

user comprehension but also supports the development of interfaces
that can quickly connect to different BIM projects, automating
related processes in the project life cycle, such as construction.

Therefore, a BIM layer structure is proposed to facilitate the auto-

matic generation of interactive digital twins and the HRCC process,

as shown in Table 1.

e Robot operation support. Adding information to support robot
operation in the BIM can facilitate HRCC work. The information
added depends on the task type and robot intelligence level. For
example, robots can determine how to grip components by visually
detecting component geometry in some cases, but for some compo-
nents with irregular shapes, external guidance can increase the
success rate of component gripping.

The creation and storage of these elements depend on the BIM
platform selected. In this study, Rhino is used as the BIM platform (R.
M.& Associates). The shop-drawing geometry, component name, and
layer information are stored with the software’s default field. Additional
attribute data are stored as “Attribute User Text” in Rhino. For example,
the component relationships are denoted by the “Parent” attribute of the
components, while the sequence data are held in the “Sequence” attri-
bute. To facilitate robot gripping, a Python script automatically calcu-
lates the gripping reference points from the component’s vertices and

Table 1
BIM Layer Structure for Robotic Construction.
Layer Name Description
Target Physical objects (e.g., timber) or virtual indicators (e.g., fastener
locations) the robot needs to install or operate for the current
construction task.
As-Built Components that have already been built. If they are inside the
workspace, they need to be considered for collision avoidance.
They update with the construction progress or as the robot senses
the environment.
Materials Construction materials staged on-site. If they are inside the

workspace, they need to be considered for collision avoidance and
may be updated during the construction process.

The original design of the components. The information is used by
human co-workers and robots to understand as-designed versus as-
built deviations and develop plans accordingly.

The space that is not physically occupied but the robot needs to
avoid during the movement (e.g., a safety laser curtain that marks
the edge of the work zone). The robot considers it for collision
detection during motion planning.

As-Designed

Virtual
Collision

writes the data to the corresponding component attribute. This geome-
try, layer, and attribute data are extractable through scripts and can be
communicated to ROS and Unity.

It should be noted that, although being manually created in this
study, some of the abovementioned information has a high potential to
be automatically generated by the computer or the robot. For example,
(Kim et al., 2020) proposed an approach for automatically generating
steel erection sequences and (Levine et al., 2018) used convolutional
neural network and large-scale robot grasping experiments to generate
robot grasping plans. (Adel et al., 2018) used computational design to
generate the cutting planes, gripping planes, and connections for off-site
frame prefabrication. This research focuses on how to leverage such
information for HRCC; manual addition is thus sufficient for this study.

3.1.2. BIM-driven HRCC framework design

Five elements are included in the proposed framework for BIM-
driven HRCC: 1) the BIM that provides and saves data about the con-
struction project; 2) the Graphical User Interface (GUI) that supports
both immersive VR and 3D options for human workers to interact with
the robot; 3) ROS as the middleware for communication and the central
unit for data processing, computing, and construction work process and
physical robot control; 4) ROE, which is the construction site that in-
cludes robots, sensors, and materials; and 5) human workers who su-
pervise the construction process and intervene when necessary. In this
study, Rhino 7 is used as the BIM platform, and the GUI is developed in
Unity with Oculus Rift S as the headset for the immersive VR option.

The information flow among system elements at different stages is
shown in Fig. 4. To prepare for construction, setup activities are needed
both physically on the construction site and digitally in the BIM. In
general, workers need to start the sensors that are in use (e.g., cameras,

Preparation
Physical setup
] e
Start GUI
l—b
| Bm | f

[ [ ]
ROS ROE

NG
“e/

In-Progress

GUI
o,,s

[om o ros ¢—
Finish / Checkpoint w( ed ‘\e-
t o

otas

o
| BM —— Ros |
—— : Digital information flow
- --- : Information updates due to human physical activities

Fig. 4. System Information Flow at Different Stages.
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LiDARs) on the robot or construction site for the robot to perceive the
environment. They also need to place the required construction mate-
rials in the robot workspace for the robot to reach and manipulate.
Lastly, workers need to assign tasks to the robot in the BIM (e.g., by
selecting some drywall panels on the frame and placing them onto the
“Target” layer). They should also adjust components’ status in the BIM
according to the task scope (e.g., marking components that are outside
the robot workspace as “unrelated” by changing the user attribute data).
Considering that a BIM interface is intuitive and generally familiar to
construction personnel, it is typically easier for workers to indicate task
scope in a BIM rather than directly indicate this to the robot in ROS.

When construction starts, information is taken from both the BIM
and the construction site to generate the I2PL-DT. An automatic digital
twin generation approach is proposed, which is introduced in Section
3.2.1. During the construction process, human co-workers collaborate
with the robot through the digital twin system, which integrates infor-
mation from the BIM and the construction site. The detailed approach to
updating the digital twin and enabling HRC through bi-directional
communication is discussed in Section 3.2.2. Section 3.2.3 introduces
how the system addresses the challenges caused by component de-
viations on-site. The robot can suggest solutions to adapt to deviations to
human co-workers for approval. Occasionally, human interventions (e.
g., replacing a component with one of a different shape) are required to
resolve the deviations.

When construction completes or reaches a certain checkpoint, the
ROS environment that contains the related construction site information
at the time sends the information to update the BIM repository and re-
cords data in the BIM for future reference. The technical approach to
updating the BIM with construction data is introduced in Section 3.2.4.
It must be noted that even though this study chooses to update the BIM
at certain time points, the framework also allows the BIM repository to
be continuously updated as construction progresses. Lastly, Section
3.2.5 explores the deployment of the physical system to collect and
integrate data from the physical world and to control the physical in-
dustrial robot.

3.2. Technical approach for system implementation

3.2.1. Automatic digital twin generation
To initiate construction, it is essential to generate the digital twins
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that integrate visualization, interaction, and computation functional-
ities. Our system incorporates two digital twins. One is the interaction
module with the GUI developed in Unity, which facilitates visualization,
supervision, and intervention. The other is the computation module
within ROS that manages the construction workflow (e.g., installation
sequence), adapts to as-built conditions, and generates task plans (e.g.,
collision-free motion plans). The generation of these digital twins takes
advantage of the geometry and attribute data of components from the
BIM. The coordinates of the digital twin world and the BIM are aligned
using the robot’s base frame as the origin point. Sensor data are also
transformed into the robot base frame for integration into the digital
twins. For example, for the camera sensor mounted on the robot in the
experiments of this study, its pose relative to the robot link it is attached
to is calculated through hand-eye calibration (Daniilidis, 1999). The
relative pose is further transformed to the robot base frame using for-
ward kinematics according to the current robot joint states. The auto-
mated generation process of the digital twin system is shown in Fig. 5.

The computation module is developed in ROS. Geometries of task-
related components in the BIM are extracted as meshes, converted
into ROS messages by a script in Rhino, and subsequently sent to ROS.
Attribute information, including names, layers, and customized prop-
erties designated as Attribute User Text (discussed in Section 3.1.1), is
also sent to the computation module in the form of ROS messages. As-
built data, including the locations of as-built components and mate-
rials, are loaded into the module when they are detected at the con-
struction site. During the construction process, the system retrieves
these data for task and motion planning. For example, the system queries
the parent of the target and whether it is deviated to determine if ad-
justments are needed to install the target object.

Motion planning in the computation module is facilitated by the
Movelt planning framework (Chitta et al., 2012). The planning scene of
the Movelt framework contains a virtual robot model that replicates the
actual robot using the URDF descriptions and synchronizes with the
actual robot’s states by subscribing to the joint_states topic. The plan-
ning scene also incorporates environmental representations, where
meshes of task-related components on the “As-Built”, “Materials”, and
“Virtual Collision” layers in the BIM are spawned at their corresponding
locations as collision objects. The robot will use its camera to detect
as-built components and construction materials in the workspace and
subsequently update the collision information in the planning scene. If a
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Fig. 5. Automatic Digital Twins Generation Process.
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component has been constructed but its as-built model is not yet present
in the BIM (not detected by the robot), its corresponding as-designed
model will first be generated and later replaced by the as-built model
once detected (e.g., through fiducial markers). Detected construction
materials are similarly updated in the digital twin. These collision ob-
jects are used by the robot to plan collision-free paths during motion
planning. When the robot arm holding a material, the corresponding
collision object of that material is attached to the robot arm to ensure it
is considered during motion planning.

The interactive digital twin module in Unity is generated by directly
connecting Rhino and Unity through Rhino.Inside (Robert McNeel &
Associates, Rhino.Inside, 2024), which is an open-source add-in that en-
ables other applications (e.g., Unity) in the Windows Operating System
(OS) to run Rhino and Grasshopper (a visual programming tool integrated
with Rhino ([79]Grasshopper 3D, Wikipedia (2023). (https://en.wikipe-
dia.org/w/index.php?title=Grasshopper_3D&oldid=1189175937)
(Accessed 23 April 2024).)) projects. The highlight of this process is that
instead of manually importing a BIM and creating functions in Unity for
different construction projects, a Unity program template is developed. It
contains template models with functions. When it receives information
from other modules (e.g., a BIM), Unity can quickly generate interactive
game objects using these template models according to the object layer.
For example, when it receives an object assigned to the “Target” layer
from a BIM, the program instantiates a game object with the target-type
template. This game object is equipped with functionalities for user se-
lection and pose manipulation. Meanwhile, the mesh geometry received
from the BIM is loaded onto the game object for visualization, and the
game object attributes such as name, layer, and material are set accord-
ingly. As a result, the template Unity program can automatically generate
interactive digital twin interfaces for different BIM projects.

At the initial state, Unity contains 1) light and camera systems for
human partners to visualize objects in the game interface; 2) event
systems to capture user input and enable interaction (e.g., selection,
movement); 3) virtual robot models generated from the Unified Robot
Description Format (URDF) files and meshes from ROS. One virtual
robot is synchronized with the actual robot for supervision. The other
virtual robot is used to evaluate robot motion plans and only appears
when the human workers preview these plans; 4) ROS connectors to
exchange data with ROS through Rosbridge using the ROS# library
(Siemens, 2021); 5) a game object to run Rhino and Grasshopper pro-
jects to retrieve geometry and attribute (e.g., layer, name, type) data
from the BIM; 6) model templates that can automatically generate
interactive game objects with the information received; 7) interface
templates containing text instructions and buttons that appear at spe-
cific times to prompt and receive user input; and 8) a virtual billboard to
show messages.

As the system is initiated, Rhino and Grasshopper applications start
with the Unity program through Rhino.Inside (Robert McNeel & Asso-
ciates, Rhino.Inside, 2024). A script developed in Grasshopper then
loads the BIM into Rhino, retrieves information (i.e., geometry, color,
name, layer) of objects from the BIM, and sends it to Unity. As Unity
receives the information, model templates can create game objects with
the same names, colors, and geometry as what they received from the
BIM. The generated game objects are automatically placed onto the
corresponding layers in the GUI. Based on the object layer, scripts that
contain different functions are embedded in the model templates and
attached to the object, thereby creating different interaction patterns. At
the same time, the communication between Unity and ROS is estab-
lished through the Rosbridge WebSocket server (Crick et al., 2017),
which enables the seamless interaction between the human co-worker
and the robot during the construction process (Section 3.2.2). Lastly,
the robot moves to scan materials and as-built components in the
workspace. As-built components and materials detected are instantiated
at their corresponding locations in Unity to provide the human
co-worker with the most up-to-date representation of the construction
environment. With these steps accomplished, the digital twin systems
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are completely generated and construction can start.

3.2.2. Digital twin update for collaborative construction implementation

During the construction process, the seamless integration of the
human co-worker and the robotic system is achieved through commu-
nications via Rosbridge (Crick et al., 2017), with ROS serving as the
middleware. Data exchange occurs at various frequencies throughout
the construction process. For example, joint states are written onto the
physical robot at a fixed frequency of 250 Hz. In contrast, certain data
are only published when specific events are triggered (e.g., the human
co-worker makes a selection from the GUI). The HRCC process is shown
in Fig. 6. Human operations and decisions are shown in orange, and blue
elements show processes performed by the robot. The robot and its
human co-workers interact through the GUI. The overall workflow is
that the robot shows information and decisions intuitively in the GUI for
its human co-workers to visualize. Then, the GUI detects the human
co-workers’ decisions and operations through their input and sends the
information to the robot. During the interaction process, corresponding
interfaces are generated from the interface templates to prompt the
human co-workers on the current process and get inputs. The templates
contain corresponding functions (e.g., sending messages to the robot on
certain ROS topic channels when the user clicks certain buttons) and are
automatically connected to corresponding scene objects when being
generated.

After generating the digital twins, the robot retrieves the next target
in the construction sequence from the BIM and highlights the target
object in the GUI in semi-transparent green. Meanwhile, it prompts the
human co-worker to confirm the target by instantiating a UI in Unity
with the natural language text “Want to install this?”, where the co-
worker can respond by choosing either the “Yes” or “No” button. If
“No” is selected, the human co-worker can select another target through
mouse clicks on a computer or ray casting in VR. After a target is
confirmed, the robot checks whether there are deviations in the work-
space that affect the operation to achieve the target as originally
designed (e.g., a deviated component occupying the target space will
collide with the target if following the original design). If there is a
deviation, the robot will propose suggestions to adapt (see Section 3.2.3
for the adaptation approach). Note that the adaptation decision is
sometimes based on the robot’s suggested solutions and sometimes
based on human improvisations, thus the “adaptation” block appears in
two colors. If no deviation exists, it will go ahead with the original
installation pose from the BIM. The human co-worker can choose to
directly accept the robot’s suggestion (e.g., an adjusted pose to install
the target). There might be situations where the robot cannot properly
adapt, so the system also allows the human co-worker to improvise an
adaptive plan (e.g., move the target to indicate a desired installation
pose in GUI or directly install the component by themselves).

Next, based on the confirmed plan, the robot generates a collision-
free motion plan to achieve the target. When the human co-worker re-
quests to preview the plan, a virtual robot will appear in the GUI and
demonstrate the motion plan as an animation. The animation includes
the robot movement during the whole manipulation process and the
material movement if it is being held by and moving with the robot. This
is enabled through a virtual joint state publisher in ROS that extracts and
publishes the joint states in the generated motion plan at a given fre-
quency. A virtual robot emulator in Unity subscribes to the topic that
publishes the virtual joint states and moves according to the states
received, thereby allowing the motion plan to be previewed as an ani-
mation. Such previewing processes enable the human co-worker to gain
insights into the consequences of the robot operation and make better
decisions (Kamat and Martinez, 2000). If the human co-worker is not
satisfied with the motion plan, the robot will generate another plan with
Movelt and demonstrate it in the GUI until the human co-worker finds
an acceptable plan. After a motion plan is accepted, the actual physical
robot executes the approved plan. A detailed introduction of the pro-
cesses to preview, execute, and supervise the robot motions can be found
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in the authors’ previous work (Wang et al., 2021).

Since a robot model in GUI is synchronized with the actual robot by
subscribing to its joint states, the human co-worker can supervise the
robot execution states through this synchronized robot. They can also
understand the robot’s cognitive status (e.g., calculating the motion
plan) through the virtual billboard in the GUI. It should be noted that
certain steps of processing and robot operation can be skipped,
depending on the type of human intervention. The technical approaches
for establishing connections within the digital twin system and
achieving motion planning, plan preview, and execution and supervi-
sion functions are discussed in (Wang et al., 2021). After a target is
achieved, the system will check the next target in the sequence from the
BIM and go through the process again. If no target is left in the queue,
the assigned task is considered to be finished.

3.2.3. Deviation adaptation

This study develops methods to enable robots to provide suggestions
for adapting to two types of deviations commonly found in construction
assembly tasks. The process is supervised by the robot’s human co-

worker, and if needed, the human can intervene to adjust the robot’s
suggested solution or improvise a different adaptation strategy.

3.2.3.1. Parent deviation. The parent of the target to be installed is built
with deviations from its design. Since the target needs to be connected to
its parent, the installation pose of the target should be adjusted
accordingly. Two sources of transformation information are used to
address the deviation. The robot receives the as-designed position and
orientation of the parent object from the BIM through Rosbridge at the
beginning of the construction, which is then converted into a trans-
formation matrix Tp. The as-built transformation of the parent object Tp
is detected by the robot with the camera. After both transformations are
received, the robot first calculates the design-built deviation T  of the
parent using TS = TpTp!. Next, it calculates the suggested trans-
formation matrix T; to install a targett using T, = TgD,, where D; is
the as-designed transformation of the target coming from BIM. Lastly,
the installation transformation matrix T, is converted into an instal-
lation pose P,  with position and orientation information for robot
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planning and operation.

3.2.3.2. Nearby object deviation. When certain objects near the target
are built with deviation, they might occupy the originally planned space
of the target. Before installation, the robot checks whether the planned
installation place collides with any as-built objects. This process is
enabled by the collider functions in Unity. If no collision is detected, the
robot will plan to go ahead with the original plan by default. Otherwise,
the robot will provide suggestions to offset the target installation pose to
avoid collision based on the deviation of the object that conflicts with
the target object.

3.2.3.3. Human supervision and intervention. The robot’s suggested so-
lution always requires human approval before execution to prioritize
human preferences. The suggested installation pose is communicated to
human co-workers by instantiating a new object with the same geometry
as the target object highlighted in semi-transparent red material in the
digital twin interface. Meanwhile, an interface template is instantiated
asking “Robot suggest install it here. Do you accept?”. The human can
choose to take the robot’s suggested solution by clicking on the “Yes”
button. However, due to the possible uncertainties and complexities of
construction work, the deviation type may not belong to the two situ-
ations considered above or the solution suggested by the robot may not
be optimal, especially for the nearby object deviation case where situ-
ations vary. For example, offsetting one component may affect the
installation of subsequent targets, causing construction plan changes for
several targets. In this case, the human co-worker may prefer to
manually replace the target with one in a different shape (e.g., a smaller
piece). Even if the deviation does not introduce collisions (object de-
viates towards other sides), the human co-worker may still want to
adjust the target workpiece to make it stay together with the objects
nearby. In these cases, the human co-worker will reject the robot’s
suggested solution and manually intervene.

The system affords two operations to facilitate human intervention.
First, they can manually adjust the position and orientation of the target
installation pose through sliders in the interface. Otherwise, they can
skip the robotic installation in the digital twin and manually adjust and
install the target. In this case, they need to manually record the infor-
mation in the BIM to make it available for future use.

3.2.4. BIM information update

When an assigned construction task finishes or reaches a certain
checkpoint, three sources of data tracked by ROS can be sent to the BIM
via Rosbridge using the COMPAS library (COMPAS, COMPAS, 2021).
Three sources of data are saved in the BIM repository for future refer-
ence. The workspace sensing data as the robot scans the environment
and the robotic construction data reflected by robot states are saved onto
the “As-Built” layer. The temporary material data (i.e., on-site con-
struction material type, number, and locations) are saved onto the
“Materials” layer. It is inferred from the start state (e.g., materials
originally prepared) and the construction process (e.g., how many ma-
terials are used).

To update the BIM, the pose and type (applies to Materials only) data
of these components in the ROS computation module are sent to the
BIM. Then, new components are instantiated in the BIM at the given
poses, with their geometries retrieved from corresponding components
previously existing on the other layers in the BIM. The Python script in
Rhino assigns names and layers to the instantiated components and
generates customized attribute data (e.g., component poses) as Attribute
User Text. Meanwhile, the components on the “Target” layer that are
installed by the robot are switched to the “As-Designed” layer. In the
ensuing steps, the repository will continue updating itself with incoming
sensing data and completed construction work.
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3.2.5. Physical system deployment

The physical portion of the system is deployed on a large-scale Kuka
industrial robotic arm in a research laboratory setting designed to mimic
a construction site. The industrial robotic arm is selected because it has a
relatively large payload to manipulate heavy construction components
and higher flexibility to perform various construction tasks with
different end effectors. The assumption is that the robot has a relatively
static workspace (e.g., an area in a room) for each construction task.
Other workers and equipment conduct construction activities and move
outside the robot workspace. For safety reasons, if they get into the robot
workspace during the robotic construction process, the robot will stop
moving until safety is confirmed by its human co-worker.

The system involves several devices connected to a Local Area
Network (LAN). Devices can communicate with each other through
wired connections or wirelessly. The device communication and robot
control processes are shown in Fig. 7. The interfaces that the human co-
worker directly uses, including the GUI in Unity and the BIM in Rhino,
need to run on a computer with Windows OS. The sensors are connected
to portable microcontrollers (e.g., Raspberry Pi). Both the Windows
computer and microcontrollers can communicate with ROS wirelessly
through a router on the LAN via ROS messages. ROS runs on a computer
with Ubuntu OS that is connected to the robot embedded PC through an
Ethernet cable. The computing core in ROS sends the joint states to the
Automation Device Specification (ADS) interface of the programmable
logic controller (PLC) (Liang et al., 2022). ADS is an interface layer of
Twincat PLC that allows commands and data exchange between
different software modules (Beckoff, 2022). The joint states data is
received by the PLC and is then sent to the Kuka Robot Sensor Interface
(RSI) to control the robot (Liang et al., 2022).

4. System verification and case study

In order to verify the proposed system and explore the setup neces-
sary for its physical deployment, a drywall installation case study is
conducted in a research laboratory, which is set up to mimic a con-
struction site, as a proof-of-concept implementation. Drywall installa-
tion is one of the most prevalent construction activities. It is also a
representative example of large-scale object manipulation and pick-and-
place operation, which is a common scenario in construction and com-
prises the elemental motions for a variety of construction tasks on
structures (e.g., framing), surface (e.g., ceiling tile installation), and
systems (e.g., ductwork installation) (Park et al., 2024; Feng, 2015). In
this context, the wall frame itself is prefabricated without deviation but
is purposefully installed at a deviated pose on-site to simulate the case of
parent deviation. Four drywall panels in two different shapes need to be
installed onto the wall frame, simulating scenarios such as windows,
doors, or room corners that require varied panel sizes beyond the
standard dimensions. The remaining part of this section introduces the
physical and software setup and describes the HRCC process to perform
the drywall installation task in detail.

4.1. Physical setup

The robot used for the case study is a 6 DOF Kuka KR120 industrial
robotic arm that has a 120 kg payload and a 2.7 m reaching range. By
mounting it onto Kuka KL4000 Linear Unit, its base can move 4.5 m
linearly, which adds one DOF to the robot and significantly increases the
robot’s physical reach. Therefore, the robot has the capability to
manipulate a regular-sized drywall panel. The robot workspace is shown
in Fig. 8. A safety gate is used to mark the robot workspace and a laser
curtain is installed on the safety gate to prevent other workers and
equipment from entering the robot workspace while the robot is
operating.

Since the goal of the case study is to verify the capability of the
system framework and functions, the experiment is conducted on a 1:2
scale. A wall frame 4 feet (1.2192 m) tall by 8 feet (2.2384 m) long with
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Fig. 8. Robot Workspace.

a window area is built with studs on the back side to ensure stability
(Fig. 9). To expand the workspace, part of the frame support is placed
outside the gate, but it does not break the operation because it is lower
than the bottom of the curtain. The robot needs to install three larger
drywall panels of 2 feet (0.6096 m) by 4 feet (1.2192 m) and one smaller
panel of 2 feet (0.6096 m) by 2 feet (0.6096 m) onto the frame. A cubic
handle is attached to each panel for the robot to grip. A pneumatic

Fig. 9. Wall Frame and Drywall Panels Used in Case Study.

gripper is designed and connected to the robot with a tool changer and a
connection plate (Fig. 10). The jaws of the gripper are made with slopes
to clutch the cubic handle on the drywall panel. Stabilizers are installed
to ensure that the drywall panel can fully contact the gripper to avoid
torque and shaking during manipulation. Rubber pads are used to add
friction between the gripper and the cubic handle to prevent slippage.

Given that only one robotic arm is deployed, for demonstration and
experiment repeatability, Medium-Density Fiber (MDF) boards with
higher durability are used as drywalls. Magnets are used to attach the
panels to the wall frame after the robot releases the panels. For actual
construction work, the panels could be fixed (typically with screws) onto
the wall frame, potentially by a human worker or another robot. An RGB
camera is fixed onto the gripper. It is connected to ROS running on a
Raspberry Pi microcontroller powered by a portable battery. Raspberry
Pi can send the camera sensing data as ROS messages wirelessly to the
ROS master running on the Linux machine. AprilTag fiducial markers
are positioned near the wall frame and on the panels, and can be
localized with the RGB camera (Krogius et al., 2019). The markers store
information about the component type and the offset from the marker to
the component’s origin to help identify the components and their 6DOF
pose. The type and offset information can be easily modified by updating
the configuration file to accommodate multiple tasks.

4.2. Preparation of the BIM

Fig. 11 shows a screenshot of the BIM used for the drywall installa-
tion task. The surrounding wall of the laboratory is set to be transparent
grey to make it easier to visualize the robot workspace. Shop drawings
for drywall installation are shown at the right bottom of the figure. The
BIM indicates how the panels are designed to be installed. In this drywall
installation task, these panels are specified as targets. The laser curtain is
the plane that lasers come through which does not physically exist.
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Fig. 10. Gripper Design.
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However, interruption of the laser will cause the robot to stop for safety
reasons, so the robot should not get into the curtain during operation.
Thus, the laser curtain is considered a collision object during robot
motion planning. The BIM components and their corresponding layers
are shown in Table 2. Before construction, the frame has already been
installed and materials are prepared but their poses are unknown and
need to be detected by the robot.

The BIM contains the component attributes needed for robot pro-
cessing and construction, such as its identifier, layer, its relationship
with other components, whether it is related to the current task, con-
struction sequence, and type (e.g., large or small) (Fig. 12). For
manipulable components, how the robot should grip the component is
also indicated (e.g., at its center with orientation perpendicular to its
largest surface), which is also used as the indicator of robot picking and
installation pose. In this study, the program automatically calculates
pose indicators using the centroid of the Rhino object. Otherwise, pose
indicators can be automatically generated with computational design or
manually specified by human workers selecting points and directions in
Rhino.

4.3. Construction process

To prepare for the construction work, the drywall panels are placed
into two stacks in the robot workspace (Fig. 9). There is a marker on
each panel and the wall frame. Offsets from the markers to the objects’
pose indicator points are recorded and input into the system. The marker
is used not only for pose estimation but also to provide configurable
attribute information (e.g., corresponding object type and quantity).

As construction starts, the robot follows a predefined trajectory to
scan the environment. After scanning, the robot replaces the as-designed
wall frame with the as-built one in the Movelt planning scene. In the
meantime, material poses are inferred from the detected stack location,
quantity, and type data attached to the marker. The materials are also
added to the Movelt planning scene as collision objects. When the robot
plans motion with materials in hand, the collision object of the corre-
sponding material is attached to the robot end-effector to ensure that the
material held by the robot does not collide with the environment or the
robot itself. The as-built wall frame and materials are also sent to Unity
to be generated in GUI to support user visualization and decision
making.

Table 2

The BIM Components List.
Components Layers
Workspace surroundings (Blue) As-Built
Frame (Design) (Yellow) As-Designed
Target panels on frame (Design) Target
Laboratory walls, breams, and columns As-Built

Laser curtain (Virtual) Virtual Collision

11
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Fig. 12. Attribute Information in the BIM to Drive Robotic Construction.

The robot first highlights the next drywall target in the construction
sequence in the GUI and asks for the human co-worker’s confirmation or
adjustment (Fig. 13a). After the human co-worker confirms the target,
the robot uses the as-built and as-designed deviation of the wall frame to
calculate a suggested drywall installation pose. Visualization of the
suggested pose is then generated in GUI for the human co-worker’s
approval or adjustment (Fig. 13b). In both VR and 3D modes, human co-
workers can adjust the camera view to inspect the environment from the
perspectives they prefer, while VR offers a more natural and intuitive
sight of view control. A video demonstrating the adjustment process is
shown in Video 1.

After the installation pose is approved, the robot generates the mo-
tion plan to first pick up a corresponding type of panel (i.e., large or
small) from the detected panel stacks and then places it with the
approved installation pose onto the wall frame. Upon request from the
human co-worker, a virtual “planning” robot manifests in the GUI and
demonstrates the robot motion plan and how the panel is manipulated
during the installation process for evaluation (Fig. 13c). If the motion
plan is approved, the physical robot executes the plan, and the human
co-worker can supervise the robot execution process with the synchro-
nized robot and understand the robot status from the messages in the
GUI (Fig. 13d). After the robot releases the panel, the panel is attached to
the wall frame with magnets, and the virtual panel in Unity is changed to
the “As-built” layer.

The actual installation pose is recorded by the robot and the robot
prompts the next panel in the sequence for installation. The quantity of
materials in the corresponding panel stack is reduced by one, and the
position for the robot to reach the next piece of panel in that stack is
updated accordingly. These procedures are repeated until all four pieces
of drywall panels are installed. The snapshots of the physical robot
drywall installation process during the laboratory experiment are shown
in Fig. 14. A video demonstrating the process is uploaded as Video 2.
After referring to the ISO 12018-1:2011 ISO (n.d.) and the robot
manual, the reviewer found 3% of the robot full speed, which set the
maximum Tool Center Point (TCP) speed at 60 mm/s (below the spec-
ified threshold of 250 mm/s of robot part replacement and reduced
speed control), as a comfortable operation speed for the research team to
manage and respond to emergencies, minimizing the risk of accidents
and preventing potential damage to the laboratory and the robot.

After all the panels are installed, the as-built condition of the wall
frame is sent from ROS to Rhino through Rosbridge using COMPAS as
the workspace sensing data (COMPAS, COMPAS, 2021). The recorded
installation poses of all panels are inferred from the robot end-effector
pose and are also sent to be saved in the BIM as the robotic construc-
tion data. Both the workspace sensing data and the robotic construction
data are saved onto the “As-Built” layer. Lastly, the up-to-date condi-
tions of the panel stacks are sent to Rhino and saved onto the “Material”
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Video 1. User_Adjustment.A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.compind.2024.

104112.

layer to reflect the quantity and location of the remaining panels on-site.
The updated scene in the BIM is shown in Fig. 15.

5. System validation experiments
5.1. Physical experiments for overall system evaluation

In Section 4, a drywall installation case study on the physical robot is
used to verify the proposed workflow. It is a representative activity in
construction to demonstrate the workflow. However, the specific nature
of the task does not allow for the exploration of error margins by varying
spacing through repeated experiments to evaluate system performance.
As a result, block pick-and-place experiments that involve a line of four
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blocks are conducted to validate the system’s performance. The BIM
repository of the system and the physical experiment setting are shown
in Fig. 16. Four wood blocks are stacked on the ground floor. A stud is
used to represent a nearby object, possibly installed in earlier con-
struction states. AprilTag markers are positioned near the block stack
and the stud for component identification and localization. The blocks
are expected to be placed in a line adjacent to the stud. Block pick-and-
place is selected as the task here because it is fundamental yet repre-
sentative of construction activities. On one hand, its simplicity facilitates
repetitive testing and control over experimental conditions, such as the
spacing between blocks and end stud positioning. On the other hand, it
requires precision and adaptability to deviations typically needed for
construction tasks thereby allowing us to evaluate system performance
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Fig. 14. Snapshots of Physical Robot Drywall Installation Process.

in a representative construction context.

The robot first scans the environment to localize the block stack and
stud through the ApirlTag markers placed near these components. Then,
it needs to first pick up a wood block from the stack of blocks and place it
alongside the stud placed on the ground. If the robot finds the stud takes
up the space for the planned block placement target, it will suggest
offsetting the block placement target to avoid collisions. If the stud does
not occupy the space of the blocks, the robot will follow the original plan
and will not automatically make adjustments, unless instructed by the
human supervisor.

In order to increase system tolerance to errors and prevent damage to
experiment materials and the robot, gaps of different sizes (10 mm,
5 mm, 3 mm, and 1 mm) are left between blocks. The gap sizes are
initiated at 10 mm and are gradually reduced to approximately half of
the previous value to test the margin of system precision. The gripper
releases and drops the block 2 mm above the ground floor, leaving room
for possible vertical errors. For each gap size, 10 trials of picking and
placing all four blocks were carried out. The wood stud was deliberately
placed in collision with the planned target for 5 out of the 10 trials to test
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the robot’s capability to resolve deviation. Since the task has lower risks
compared to drywall installation, the robot is operating at a slightly
higher speed of 7% of the robot’s full speed (140 mm/s) as the research
team’s comfortable speed for experiment management and emergency
handling.

During the experiment, the human co-worker interacts with the
robot through the 3D interface. The goal of this experiment is to verify
the overall performance of the proposed system when the human
workers completely rely on robot suggestions. Therefore, the human co-
worker agrees with all robot suggestions and does not perform any
adjustment or manual intervention during the construction process.
However, when the co-worker feels the robot planned manipulation
trajectory is not optimal (e.g., taking extra rotations), the co-worker
would request the robot to generate a new motion plan for evaluation.
The number of replanning requests from the human co-worker is
recorded. The trial is counted as a failure if the robot does not place all
four blocks successfully.

The success rate and the number of replanning requests for different
gap sizes are shown in Table 3. “Successful placements” means the
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Video 2. Construction_Process.A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.compind.2024.

104112.

Table 3

Block Pick-and-Place Experiment Results.
Size of Success rate  Replan requests / Reason for failure
gap (%) Successful placements (occurrence)
10 mm 100 7 /40
5 mm 90 2/38 Hit ground (1)
3 mm 920 6/ 36 Collide with stud (1)
1 mm 60 5/26 Collide with stud (3)

Hit ground (1)

successfully placed with one failure case. For example, failure of the first
block placement will end the trial and cause all four blocks not being
successfully placed. On average, a successful pick-and-placement trial of
four blocks takes 217.31 seconds. 56.38 seconds are used for human co-

Fig. 15. The Updated BIM. worker’s decision-making, such as confirming the target and previewing
the motion plan. The average time taken by robot computation and
number of blocks successfully placed by the robot without any collision. execution is 160.93 seconds.

Once a block fails, the trial ends and the rest of the blocks in the four-
block line are not placed, resulting in more than one block not being 5.2. Simulation experiments for validation of nearby object deviation
adaptation

In order to specifically assess the system’s capability to autono-
mously adapt to deviations of nearby objects and to accurately trace
source errors in physical experiments, a block pick-and-place experi-
ment is conducted in Gazebo simulation, mirroring the settings of the
experiments in Section 5.1. While physical experiments evaluate the
performance of the overall system, simulation enables precise tracking
of component positions and orientations for performance assessment
and allows isolating other error sources to focus on the evaluation of
specific system components. It should be noted that the Gazebo simu-
lation has been demonstrated to be replicable on the physical robot
system used in this study with high accuracy (Liang et al., 2022). In this
; - experiment, the robot is provided with ground truth poses of tags to
2 ‘Faﬁ; eliminate errors arising from component localization. The stud is

— intentionally offset towards the target block placement location,
necessitating robot adaptation to avoid collisions. Across 10 trials, the
deviation distance of the stud is set to a randomly generated value be-
tween 0 and 0.2 m. No gaps are left between blocks or between a block

(a) BIM at Experiment Start (b) BIM at Experiment Finish

F— Block stack

S il ?'°9d 3 and the ground. As the focus is to evaluate the robot’s capability for

(¢) Experiment Start (Physical) (d) Experiment Finish (Physical) autonomous deviation adaptation, all the robot’s suggested solutions are
accepted without human intervention.

Fig. 16. Experimental Settings. Ground truth poses and actual locations of each of the four blocks in
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(b) Digital twin interface (yellow: as-designed; red: as-built)

Fig. 17. Examples of Block Pick-and-Place Simulation Experiments.

Table 4
Error Analysis for Block Pick-and-Place Simulation Experiment.

Position errors Orientation errors

X y z roll pitch yaw
RMSE  1.657e- 5.163e- 4.864e- 2.033e- 1.289%- 2.426e-
04 05 04 04 04 04
STD 1.651e- 5.023e- 4.534e- 1.939%- 1.266e- 2.423e-
04 05 04 04 04 04

the simulation environment are recorded and compared. To avoid errors
due to movements of the loose objects post-handling, actual block lo-
cations are recorded before the robot releases them. Fig. 17 shows ex-
amples of the experiment results. The stud is in white and the blocks are
in wood material in Gazebo simulation. Deviations of the stud and the
adapted installation pose can be visualized in the digital twin interface.
Errors of all blocks across 10 trials are analyzed in Table 4. Both the Root
Mean Square Error (RMSE) and the Standard Deviation (STD) are close
to zero, demonstrating the effectiveness of the proposed deviation
adaptation method for the nearby object deviation situations.

5.3. Simulation experiments for validation of parent deviation

To assess the system’s capability to autonomously adapt to the
parent deviations, a drywall installation experiment with settings
replicating the case study in Section 4 is conducted in Gazebo simula-
tion. Ground truths of tag poses are provided to the robot to eliminate
the errors arising from component localization. The frame is intention-
ally offset in both position and orientation to necessitate the adjustment
for subsequent installation of panels. Across 10 trials, the deviation
distances of the frame on the X and Y axis are set to randomly generated
values between 0 and 0.2 m. The yaw orientation deviation of the frame
is randomly generated between 0 and 15 degrees. This range ensures the
frame stays within the robot workspace and the panel installation pose
are valid and reachable by the robot. The robot’s suggested solutions are
always approved without human intervention.

The experiment compares the actual poses of each of the four panels
in the simulation environment with their ground truth poses. Fig. 18
shows examples from the experiment trials. The deviations of the frame,
along with the original and adapted installation pose, can be visualized
in the digital twin interface. The errors of all panels across 10 trials are

(a) Gazebo simulation

(b) Digital twin interface (yellow: as-designed; semi-transparent: original targets; red: as-built)

Fig. 18. Examples of Drywall Installation Simulation Experiments.
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Table 5
Error Analysis for Drywall Installation Simulation Experiment.

Position errors Orientation errors

roll

X y z pitch yaw
RMSE  8.347e- 8.513e- 1.160e- 6.046e- 3.75%- 1.376e-
04 05 04 05 05 05
STD 8.211e- 8.311e- 6.481e- 3.340e- 2.268e- 1.288e-
04 05 05 05 05 05

analyzed in Table 5. Similar to the nearby object deviation situation,
both the RMSE and the STD are close to zero, demonstrating the effec-
tiveness of the proposed deviation adaptation method for the parent
deviation scenarios.

6. Discussion

In order to successfully perform the construction work with the
proposed system, the robot needs to adequately localize components in
the construction environment, make decisions and suggestions to adapt
to uncertainties, and accurately reach specific positions and manipulate
components. Errors in any of these aspects will disrupt the workflow.
The low errors from experiments in simulation indicate that the robot
can accurately make adaptations and find the appropriate pose to place
the target. The block pick-and-place experiment with a physical robot is
conducted to evaluate the overall system performance. It is observed
that once the first block is placed, the rest of the blocks are placed
without collision with each other. It indicates that after the robot
accurately determines the adapted installation poses, it executes the
plan with high precision.

Most failure cases are caused by the first block colliding with the stud
while being placed (Fig. 19). There are also two cases of failure where
the blocks were moved too close to the ground and the robot sensed
excessive force on its end-effector. These failures are caused by errors in
component localization. AprilTag markers are used for component
localization, which is a low-cost and easy-to-deploy solution that pro-
vides relatively high localization accuracy and is robust to various
environmental conditions (Lundeen et al., 2016; Feng and Kamat,
2013). However, it still introduces certain localization errors, which can
lead to collisions when the tolerance is very low. For example, in the
drywall installation case study, the panel cannot be firmly held onto the
frame if a minor gap between magnets exists. Since the marker is
installed on one end of the frame, orientation errors in marker detection
are amplified by the long distance and cause a larger position offset
when installing the panel on the other end of the frame. This results in
task failure in some cases during the implementation process.

Fig. 19. Collision with Stud during Block Placement.
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Fortunately, with the evolving object detection algorithms and hard-
ware (e.g., LIDAR) (Du et al., 2021; Fan et al., 2022), the accuracy of
component localization is increasing to meet the needs of precise con-
struction tasks.

Considering the visual localization error, the success rate of the block
pick-and-place experiment is found to be particularly high. Several
reasons may lead to this result. First, all the blocks are stacked at one
location, and thus the same offsets are maintained for all blocks.
Therefore, collisions between blocks are avoided provided that the
digital twin system successfully adapts to the nearby object deviation.
Second, the gripper compensates for certain localization errors when
closing the jaws to grab the block at its horizontal center. Third, only the
localization error in a certain direction can cause task failure. For
example, the block will only collide with the stud if the stud is in the way
of the block target pose but the robot thinks the stud is still far away and
does not make any adjustments to avoid the collision. Fourth, the robot
drops the blocks onto the ground at a height of 2 mm, which increases
the vertical tolerance of the task. Even if the robot drops the block from a
slightly higher or lower position, the block placement is still considered
successful.

This study leverages the meshes as BIM component geometry and
employs the proposed layer structure to generate the interactive digital
twin through template programs in Unity, demonstrating that the digital
twin can be generated provided the components are placed on the
designated layers. Different from existing studies that parse component
IFC files for robot motion planning, this study directly loads the meshes
of BIM components as collision objects in the Movelt planning scene and
uses the attribute data from the BIM to generate collision-free motion
plans. Therefore, the manipulation targets or other objects are not
required to conform any specific shape or follow a particular IFC
structure to be processed by the system. The BIM update process le-
verages the existing component geometries in BIM and generates as-
built data by offsetting the existing components based on the sub-
scribed pose information. This approach avoids the challenges associ-
ated with creating diverse and complex geometries. These features
enhance the framework’s flexibility for various types of construction
assembly tasks. Two distinct tasks, drywall installation and brick pick-
and-place, are implemented in this study for verification. Since a vari-
ety of other construction tasks can be similarly composed with the un-
derlying elemental motions and large-size object manipulation methods
demonstrated in these example tasks, the developed methods can be
readily adapted to new tasks directly or with minor modifications (Park
et al., 2024; Feng, 2015). However, it should be noted that the proposed
system is primarily designed for rigid objects and is less effective for
tasks involving fluid or deformable materials such as freshly mixed
concrete or waterproofing membranes.

During the physical experiment, several limitations are observed,
and future research directions are identified. First, as discussed above,
although the robot can localize objects with up to millimeter-level ac-
curacy, it is not sufficient for some construction tasks that require high
precision. It also takes time to set up and for the robot to scan fiducial
markers on all related components in the workspace. A more direct and
precise approach for the robot to perceive the environment, continually
track components, and subsequently update BIM based on the detected
installation pose of components should be considered in future
developments.

Second, because of the laboratory condition, only one robotic arm is
used, and the panels are grabbed by a 2-jaw gripper in the drywall
installation case study. One more robotic arm can be included to fasten
panels onto the wall frame, and a vacuum gripper can be used to grab
panels so that cubic handles are not needed.

Third, information to support robotic construction, such as robot
gripping pose and construction sequence, is manually created in the
BIM. Future work should integrate computational design into the sys-
tem, which can automatically generate detailed digital fabrication in-
formation, construction sequence, and gripping plans for components
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(Adel, 2020).

Fourth, some motion plans generated by the robot are valid but not
desirable, and replanning is preferred. Sometimes, the robot manipu-
lates material extremely close to other objects on-site. While no collision
occurs, these situations cause high mental stress on human co-workers
when the workpiece is large. Future studies may consider applying
force feedback control and reinforcement learning for more trustworthy
and desirable component manipulation (Emaminejad and Akhavian,
2022; Liang et al., 2022).

Lastly, for experimental purposes, the robot’s working speed is
deliberately set to a slow pace (3% or 7% of its full capacity) to minimize
risks such as object falls, collisions, and robot damage, and to emphasize the
safety of the research team conducting the experiments. This results in
extended work times. In the future, the efficiency of the workflow can be
improved by applying faster robot speed, foregoing the preview step for
low-risk operations, and eliminating the need for human approval when
the confidence level of robot decision is high. Future studies will benefit
from a comprehensive efficiency assessment that analyzes various
impact factors.

7. Conclusions

This study proposes a BIM-driven HRCC workflow that addresses
technical solutions ranging from the preparation stage to the end of the
construction work, enabled by a closed-loop digital twin framework.
The proposed framework offers several significant improvements to the
previous I2PL-DT as well as other independent contributions. First, it
presents a BIM framework that supports HRCC. The BIM contains the
attribute and geometric information human workers and robots need for
construction, and the predefined layer structure provides a unified
standard to interface different BIM projects with the interactive digital
twin, thereby improving BIM interoperability. Second, an automatic
approach for generating interactive digital twins for HRCC is proposed,
which is enabled by a template-based Unity program and the predefined
layer structure in the BIM. Third, this study introduces an approach for
component placement deviation adaptation using a combination of as-
designed data from the BIM and perceived as-built information. Lastly,
the construction site as-built information is sent to the BIM for
recording, forming a closed-loop system. By closing the loop, the BIM is
updated with as-built data to support decision-making and automation
in subsequent construction, operation, and maintenance of a facility.

Physical and simulation experiments are conducted to identify the
effort needed to enable a physical construction robotic system, verify
and validate system performance, and recognize limitations for future
improvements. Overall, through the integration of the BIM, the pro-
posed system not only improves construction work quality but also in-
creases the robot’s capability in lower-level task planning thereby
reducing human workers’ planning efforts.
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