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A B S T R A C T   

The introduction of assistive construction robots can significantly alleviate physical demands on construction 
workers while enhancing both the productivity and safety of construction projects. Leveraging a Building In
formation Model (BIM) offers a natural and promising approach to driving robotic construction workflows. 
However, because of uncertainties inherent in construction sites, such as discrepancies between the as-designed 
and as-built components, robots cannot solely rely on a BIM to plan and perform field construction work. Human 
workers are adept at improvising alternative plans with their creativity and experience and thus can assist robots 
in overcoming uncertainties and performing construction work successfully. In such scenarios, it is critical to 
continuously update the BIM as work processes unfold so that it includes as-built information for the ensuing 
construction and maintenance tasks. This research introduces an interactive closed-loop digital twin framework 
that integrates a BIM into human-robot collaborative construction workflows. The robot’s functions are primarily 
driven by the BIM, but it adaptively adjusts its plans based on actual site conditions, while the human co-worker 
oversees and supervises the process. When necessary, the human co-worker intervenes in the robot’s plan by 
changing the task sequence or workspace geometry or requesting a new motion plan to help the robot overcome 
the encountered uncertainties. A drywall installation case study is conducted to verify the proposed workflow. In 
addition, experiments are carried out to evaluate the system performance using an industrial robotic arm in a 
research laboratory setting that mimics a construction site and in the Gazebo simulation. Integrating the flexi
bility of human workers and the autonomy and accuracy afforded by the BIM, the proposed framework offers 
significant promise of increasing the robustness of construction robots in the performance of field construction 
work.   

1. Introduction 

Construction has been ill-famed for its dangerous and harsh working 
environments and excessive physical demands on workers, which often 
result in a lack of motivation for people, especially those of diverse 
abilities, to pursue their careers in the industry (Escamilla et al., 2016; 
Park et al., 2023; Aulin and Jingmond, 2011; Zhang et al., 2023). As a 
result, the construction industry is facing severe shortages of skilled 
labor (Kim et al., 2020; Cai et al., 2023). According to the Associated 
General Contractors of America, 73% of contractors consider worker 
shortage as their biggest concern in 2022 (AGC, 2022). 

Industrial robotic manipulators can exert high physical power and 

operate at high speeds, and thus have significant potential to reduce the 
physical burden on human workers (Brosque et al., 2023). Robots have 
already been adopted in several industry sectors such as manufacturing, 
nuclear, healthcare, and rescue to reduce human workers’ workload and 
their exposure to potential hazards (Fu et al., 2023; Barbash and Glied, 
2010; Qian et al., 2012; Davids, 2002; Pérez et al., 2019). Construction 
automation powered by robotics has demonstrated the potential to 
reduce the physical demand on construction workers and improve the 
diversity and inclusion of the construction workforce, thus mitigating 
the labor shortage issues faced by the industry (Davila Delgado et al., 
2019; Liang et al., 2021; Rodrigues et al., 2023). On the other hand, 
while robotics is still in its emerging phase in the field of construction 
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automation, the use of Building Information Models (BIMs) has been 
widely adopted in the industry to support digital construction project 
workflows (Zhang et al., 2022; Volk et al., 2014). 

A BIM is “a digital representation of physical and functional char
acteristics of a facility” (NIBS, 2015). It contains a variety of geometric 
and attribute information, such as 3D models, schedules, construction 
methods, and materials, which are used to facilitate the construction 
processes (Correa, 2016). Although BIMs play important roles in design, 
communication, and project management throughout the project life 
cycle (Zhang et al., 2022; Golabchi et al., 2013), they generally lack the 
interoperability needed to support construction robot task planning 
(Correa, 2019; Kim et al., 2021). Currently, robot installation sequences 
and poses are generated primarily by retrieving geometric data from 
BIMs encoded using Industry Foundation Classes (IFC) (Correa, 2016; 
Kim et al., 2021; Ding et al., 2020). However, such proposed approaches 
are limited to specific construction tasks or types of components, such as 
bricklaying or wall panels. Moreover, working environments for field 
construction involve a lot of uncertainties (e.g., deviations in as-built 
components) that can cause robot failure when following a rigid pro
gram. While a BIM can provide information to the robot, the workflow 
needs the ability to improvise (i.e., dynamically adjust plans based on 
encountered situations) to flexibly perform the work during the field 
construction process (Lundeen et al., 2017). 

Compared to robots, humans are more adept at creative and adaptive 
planning based on their experience (Suresh et al., 2019; Sharif et al., 
2016). They can adjust a task plan according to what they observe on the 
construction site to ensure the quality and continuity of the work. Thus, 
human expertise in improvisation is indispensable for field construction 
that involves considerable uncertainties and is necessary to support 
robotic construction (Yoon et al., 2023; Yu et al., 2024). In addition, 
human workers can supervise the robotic construction process to ensure 
collision-free safe manipulation in dynamic on-site working environ
ments. Therefore, by enabling Human-Robot Collaboration (HRC), the 
flexibility and robustness of BIM-driven robotic construction systems 
can be significantly improved. 

This research proposes a closed-loop digital twin framework to 
enable BIM-driven Human-Robot Collaborative Construction (HRCC) 
workflows, as shown in Fig. 1. The system is built upon an interactive 
and immersive process-level digital twin (I2PL-DT) system previously 

developed by the authors (Wang et al., 2021). A BIM module is inte
grated to provide geometric and attribute data to both the human 
workers through the user interface and the Robot Operating System 
(ROS). After a robot generates work plans with information from the 
BIM, human co-workers supervise the robot’s workflow (e.g., preview 
robot plans and monitor execution status) and make interventions (e.g., 
adjust installation target or request another trajectory plan) when 
necessary. 

In addition, the as-built data collected by the robot during the con
struction process is sent to the BIM to reflect changes between the as- 
designed and the as-built workspace to be used for ensuing construc
tion tasks, thereby closing the loop. The system supports seamless 
integration of various sources of information received from the BIM, 
human co-workers, and robot sensors. In parallel, the system processes 
the collected information in various ways: it converts data into forms 
that can be visualized and understood by humans, prepares it for 
computation and control by robots, and saves and presents it within 
BIMs. 

The BIM-driven HRCC processes involve five main steps, including 
(1) formulation of the BIM repository that supports robotic construction; 
(2) preparation of the construction site and the BIM for a specific con
struction activity; (3) automatic digital twin generation; (4) construc
tion execution, including resolution of as-built / as-designed deviations; 
and (5) updating of the BIM repository with as-built construction data 
collected by the robot. The technical approach to enable these processes 
is discussed in Section 3. 

A drywall installation case study conducted on a large-scale physical 
Kuka industrial robotic arm is presented as a proof-of-concept imple
mentation to explore the physical setup process and for system verifi
cation (Section 4). In addition, physical and simulation experiments 
involving block pick-and-place and drywall installation activities are 
carried out to evaluate system performance and validate the proposed 
deviation adaptation methods (Section 5). The proposed system not only 
extends the autonomy and accuracy of robotic construction but also 
offers the flexibility to overcome uncertainties in field construction 
work. The presented framework and workflow have the potential to be 
applied to a broad variety of construction tasks. 

Fig. 1. Closed-Loop Digital Twin Framework Overview.  
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2. Background 

2.1. Human-robot collaboration 

HRC aims to retain the robustness and adaptability of an automated 
system by combining robots’ computational ability and durability with 
humans’ creativity and flexibility (Tsarouchi et al., 2017; Yu et al., 
2023). HRC can be classified into two types, physical collaboration and 
contactless collaboration (Hentout et al., 2019). For physical HRC, the 
human co-worker intentionally makes physical contact with the robot or 
the object held by the robot to hand over or co-manipulate objects (Lee 
and Moon, 2014; Devadass et al., 2019). However, working alongside 
robots, especially construction robots that carry large and heavy com
ponents, poses high safety risks to humans. Therefore, contactless HRC 
has been used in many applications. It allows humans to guide robots 
with gestures (Kim et al., 2009), natural language (Park et al., 2024; She 
et al., 2014), joysticks and haptic devices (Chotiprayanakul et al., 2012; 
Zhu et al., 2022), Virtual Reality (VR) (Pérez et al., 2019; Li and Zou, 
2023; Adami et al., 2021), and neural signals (Zhang et al., 2023; Liu 
et al., 2021). One main concern with contactless HRC, especially those 
from remote locations, is that humans’ perception of the operational 
environment and the robot is limited. It is critical to provide humans 
with sufficient and accurate information in an effective way to enable 
efficient decision making. One of the popular approaches is to create a 
digital twin to provide real-time information about the robot and its 
operation environment to humans (Malik and Brem, 2021; Wang et al., 
2020). 

In prior work, the authors proposed an I2PL-DT system for human 
workers to remotely receive and visualize the updated state of a con
struction workspace (Wang et al., 2021). The system consists of three 
modules, including an immersive Virtual Reality (VR) interface, mid
dleware enabled by ROS, and Robot Operation Environment (ROE) (i.e., 
construction site, robot, and sensors). Human co-workers can visualize 
construction site and robot conditions in real-time and perform 
high-level task planning (e.g., indicating component installation 
sequence and positions). The high-level plan is then used to generate 
motion plans, which are processed into realistic animations in VR for the 
human co-worker to preview and evaluate. Upon approval, the robot 
executes the approved plan under human supervision. The work sup
ports a collaboration paradigm where human workers perform 
high-level decision-making and supervision while robots undertake 
low-level motion planning and physical execution of the work. 

Despite being a key component of the workflow proposed in this 

paper, the previously developed I2PL-DT system, in and of itself, has 
several limitations. First, the process of creating the digital twin for a 
construction task takes considerable effort. The immersive VR interface 
needs to be manually created by importing BIM data into VR, creating 
interactive game objects, and adding interactive functions (e.g., sending 
messages to ROS). Second, the human co-worker needs to specify the 
work plan for each component by indicating to the robot which 
component to pick up and the location to install it. Thus, substantial 
human effort is required for such step-by-step instructions. Lastly, since 
the human co-worker specifies the high-level task objectives by 
manipulating and placing virtual objects with controllers in VR, the 
accuracy is limited and the resulting work may not comply with typical 
construction work specifications and desired tolerances. 

In order to overcome these critical and practical limitations, this 
paper integrates a BIM with the I2PL-DT system and proposes an auto
matic approach to creating digital twins. Fig. 2 shows the elements of the 
updated and significantly expanded system presented in this paper and 
compares it to the previous I2PL-DT system. With the proposed 
approach, manual processes of creating the digital twin and placing each 
component step-by-step in VR can be avoided, which improves system 
autonomy and work accuracy as well as reduces human workers’ 
workload. In the remainder of this section, the adoption of a BIM to 
support construction automation and robotics, along with the existing 
approaches to create digital twins for robotic applications, are intro
duced and discussed. 

2.2. BIMs in construction automation and robotics 

BIMs have been widely adopted to promote automation throughout 
the life cycle of the Architecture, Engineering and Construction, and 
Facilities Management (AEC/FM) industry (Deng et al., 2021). Recently, 
BIMs have been used to facilitate robotized construction in various 
ways. For example, BIMs can provide information to guide the off-site 
prefabrication process (Abanda et al., 2017; Zhu et al., 2021) and 
assist with object recognition for on-site assembly (Dawod and Hanna, 
2019). Layout information contained in the BIM is used to support robot 
indoor navigation tasks for building construction and maintenance 
(Follini et al., 2020; Park et al., 2016; Mantha et al., 2020). Commercial 
mobile robots have been introduced to draw layouts on-site based on 
BIMs (Dusty). The geometric information contained in BIMs has also 
been used to facilitate 3D printing in construction (Davtalab et al., 2018; 
Teizer et al., 2018). 

BIMs can also provide information to support robot motion planning. 

Fig. 2. Elements of the Updated System.  
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For example, in robotic brick assembly tasks, BIMs can provide position 
and orientation data for a robot to pick up and place materials, as well as 
task sequencing data to control the robotic workflow (Ding et al., 2020; 
McClymonds et al., 2022). IFC models have been adapted to work with 
robotic simulation platforms for robot navigation (Kim et al., 2021) and 
to simulate the robotic wall frame assembly process (Wong Chong et al., 
2022). In these existing studies, robots fully rely on the BIM for task 
planning. The construction site needs to conform to the exact BIM 
specifications for the robot to perform construction work successfully. 
However, considerable uncertainties exist on construction sites. Devi
ated components, moving workers and equipment, and stacked mate
rials on-site may interrupt the BIM-generated robot motions, causing 
robots to stall while performing construction work on-site. (Lundeen 
et al., 2019) used a combination of the BIM and sensing information to 
generate adaptive robot motions. Despite such advances, the robot’s 
adaptability is limited to a narrow set of situations and construction 
tasks (Lundeen et al., 2019). 

In summary, existing studies leveraging BIMs in robotics have three 
limitations. First, they lack generality to support various types of con
struction tasks. Second, they cannot handle uncertainties for field con
struction, which can go beyond the robot’s adaptive capabilities and 
interrupt robot activities generated by the BIM. Thus, human interven
tion is necessary in addition to the BIM for the success of robotic field 
construction. Third, as-built data collected by the robot during the 
construction process is useful for the ensuing construction, operation, 
and maintenance phases of the project; however, a closed loop for a BIM 
to both provide and collect construction information is missing in 
existing studies. Therefore, a general framework that supports different 
types of construction tasks and allows human intervention is necessary. 

2.3. Digital twins creation in robotic applications 

Digital twins can be used for visualizing and incorporating infor
mation from different resources, and they also support real-time 
communication and interaction (Dembski et al., 2020; Wang et al., 
2023). Therefore, they are a promising candidate to integrate BIMs with 
HRCC. Depending on the different application requirements, digital 
twins can be created with various approaches. One of the most popular 
methods in the AEC/FM industry is to use 3D point clouds. The envi
ronment is captured with laser scanners or depth cameras as 3D point 
clouds (Fang et al., 2016; Feng et al., 2015; Xu et al., 2019). Such sys
tems can comprehensively capture the environment in real time, theo
retically allowing for continuous updates of the digital twin to reflect the 
evolving environment at any point in time. However, the transmission of 
large-size point cloud data is computationally expensive and is subject to 
delays. Furthermore, subsequent steps of processing and registering the 
point clouds, object detection, or 3D reconstruction are usually needed 
to achieve the required functions (Zhou et al., 2020; Park and Cho, 
2022). 

(Kamat and Martinez, 2003) developed the VITASCOPE language to 
integrate simulation models, hardware control, and real-time construc
tion data for dynamic construction scenario visualization at the opera
tion level. (Liang et al., 2022) and (Roldán et al., 2019) created digital 
twins of a robot to program, control, and visualize robot motions. Joint 
state data are exchanged between the physical and virtual robots in real 
time. In order to reduce the computation load while allowing real-time 
visualization of the construction environment, (Wang et al., 2021) 
created a digital twin using a combination of a BIM, 3D meshes of 
as-built structures, and point clouds. However, these approaches require 
manually importing models or manually enabling the functionality of 
the digital twin. As a result, it interrupts the automated workflow of 
HRCC initiation, which can potentially hinder the widespread applica
tion of digital twins in HRCC. Therefore, an approach to automatically 
generate digital twins that are equipped with pertinent functions (e.g., 
target object selection, communication between modules) is necessary 
to promote and extend the autonomy of the HRCC workflow. 

2.4. Research objectives 

To address the abovementioned research gaps, a workflow with the 
following characteristics is needed to support HRCC effectively. First, 
instead of parsing specific information from BIM repositories to auto
mate one type of construction work, a general framework that supports 
different types of tasks and components is needed. Second, the workflow 
should automatically interface with different construction tasks without 
additional programming or development effort that cannot be per
formed by construction workers without related expertise. Third, robots 
should have the ability to handle significant uncertainties on construc
tion sites while allowing human intervention to resolve cases that extend 
beyond the robots’ capabilities. Lastly, the workflow should record the 
construction-related data collected by the robot sensors during the 
HRCC process for future reference to enable loop closure. With these 
objectives, the following section presents a closed-loop generalizable 
framework integrating a BIM and HRCC, which supports automated 
collaborative workflows and can overcome uncertainties in field con
struction work. 

3. Technical approach 

A BIM-driven HRCC workflow enabled by closed-loop digital twins is 
proposed in this study. The BIM provides data (e.g., component geom
etry, position, type) to both the robot and the human co-workers by 
compiling and sending messages to ROS and Unity (where the interface 
is developed). The robot then generates the work plan based on the BIM 
and adapts the plan according to the as-built circumstances detected by 
its sensors. For example, during drywall installation, the robot retrieves 
the name and target position of the next panel to install from the BIM; it 
then adjusts the installation position of the panel based on how the wall 
frame has actually been built as detected by its camera. Next, human co- 
workers supervise the robotic construction process (e.g., by evaluating 
and approving the robot plan) and intervene to adjust the high-level task 
plan (e.g., by adjusting the target installation sequence and pose pro
posed by the robot) when necessary. 

An overview of the BIM-driven HRCC process is shown in Fig. 3. 
First, the BIM data accessible by both human co-workers and robots 
needs to be created. Next, before construction starts, human workers 
need to prepare physically on the construction site (e.g., materials 
staging) and digitally in the BIM (e.g., task designation). Then, the 
interactive digital twin is generated, followed by the construction 
execution. Lastly, after certain construction tasks are finished, the BIM 
repository is updated with the latest as-built data. The remaining part of 
this section introduces the system design and the technical approach to 
enable this process. 

3.1. System design 

3.1.1. BIMs for robotic construction 
BIMs created for traditional construction methods are typically 

incompatible with robotic construction (Meschini, 2016). Some addi
tional elements are necessary for a BIM to better support human-robot 
collaborative task planning:  

• Shop drawing-level geometry. Shop drawings precede detailed work 
plans and contain information needed for fabrication, assembly, and 
erection (Pietroforte, 1997). For example, in a robotic drywall 
installation task, shop drawings for drywall panels are needed so the 
robot knows where each panel should be located. However, shop 
drawing-level details are not needed for every component in BIM and 
are dependent on the construction plan. For example, an object that 
is prefabricated off-site or erected on-site as a whole can be repre
sented in the BIM as one single component.  

• Construction sequence. Detailed construction sequence information 
contained in the BIM is crucial to automate the construction process. 

X. Wang et al.                                                                                                                                                                                                                                   
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The construction sequence information should be provided in cor
respondence with the shop drawing-level geometry, specifying the 
order of installation of components.  

• Component relationships. Relationships between components can 
affect robot planning, especially when discrepancies exist and the 
robot needs to adapt its plan. Even though some component ar
rangements visually look the same, they might indicate different 
relationships (i.e., topologies) which require different construction 
plans. As a result, clearly defined component relationships in the BIM 
are necessary for the adaptive planning of the human-robot work 
team.  

• Component layers. A unified predefined layer structure in the BIM 
not only helps organize components into different groups for better 
user comprehension but also supports the development of interfaces 
that can quickly connect to different BIM projects, automating 
related processes in the project life cycle, such as construction. 
Therefore, a BIM layer structure is proposed to facilitate the auto
matic generation of interactive digital twins and the HRCC process, 
as shown in Table 1.  

• Robot operation support. Adding information to support robot 
operation in the BIM can facilitate HRCC work. The information 
added depends on the task type and robot intelligence level. For 
example, robots can determine how to grip components by visually 
detecting component geometry in some cases, but for some compo
nents with irregular shapes, external guidance can increase the 
success rate of component gripping. 

The creation and storage of these elements depend on the BIM 
platform selected. In this study, Rhino is used as the BIM platform (R. 
M.& Associates). The shop-drawing geometry, component name, and 
layer information are stored with the software’s default field. Additional 
attribute data are stored as “Attribute User Text” in Rhino. For example, 
the component relationships are denoted by the “Parent” attribute of the 
components, while the sequence data are held in the “Sequence” attri
bute. To facilitate robot gripping, a Python script automatically calcu
lates the gripping reference points from the component’s vertices and 

writes the data to the corresponding component attribute. This geome
try, layer, and attribute data are extractable through scripts and can be 
communicated to ROS and Unity. 

It should be noted that, although being manually created in this 
study, some of the abovementioned information has a high potential to 
be automatically generated by the computer or the robot. For example, 
(Kim et al., 2020) proposed an approach for automatically generating 
steel erection sequences and (Levine et al., 2018) used convolutional 
neural network and large-scale robot grasping experiments to generate 
robot grasping plans. (Adel et al., 2018) used computational design to 
generate the cutting planes, gripping planes, and connections for off-site 
frame prefabrication. This research focuses on how to leverage such 
information for HRCC; manual addition is thus sufficient for this study. 

3.1.2. BIM-driven HRCC framework design 
Five elements are included in the proposed framework for BIM- 

driven HRCC: 1) the BIM that provides and saves data about the con
struction project; 2) the Graphical User Interface (GUI) that supports 
both immersive VR and 3D options for human workers to interact with 
the robot; 3) ROS as the middleware for communication and the central 
unit for data processing, computing, and construction work process and 
physical robot control; 4) ROE, which is the construction site that in
cludes robots, sensors, and materials; and 5) human workers who su
pervise the construction process and intervene when necessary. In this 
study, Rhino 7 is used as the BIM platform, and the GUI is developed in 
Unity with Oculus Rift S as the headset for the immersive VR option. 

The information flow among system elements at different stages is 
shown in Fig. 4. To prepare for construction, setup activities are needed 
both physically on the construction site and digitally in the BIM. In 
general, workers need to start the sensors that are in use (e.g., cameras, 

Fig. 3. BIM-driven HRCC Process.  

Table 1 
BIM Layer Structure for Robotic Construction.  

Layer Name Description 

Target Physical objects (e.g., timber) or virtual indicators (e.g., fastener 
locations) the robot needs to install or operate for the current 
construction task. 

As-Built Components that have already been built. If they are inside the 
workspace, they need to be considered for collision avoidance. 
They update with the construction progress or as the robot senses 
the environment. 

Materials Construction materials staged on-site. If they are inside the 
workspace, they need to be considered for collision avoidance and 
may be updated during the construction process. 

As-Designed The original design of the components. The information is used by 
human co-workers and robots to understand as-designed versus as- 
built deviations and develop plans accordingly. 

Virtual 
Collision 

The space that is not physically occupied but the robot needs to 
avoid during the movement (e.g., a safety laser curtain that marks 
the edge of the work zone). The robot considers it for collision 
detection during motion planning.  Fig. 4. System Information Flow at Different Stages.  
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LiDARs) on the robot or construction site for the robot to perceive the 
environment. They also need to place the required construction mate
rials in the robot workspace for the robot to reach and manipulate. 
Lastly, workers need to assign tasks to the robot in the BIM (e.g., by 
selecting some drywall panels on the frame and placing them onto the 
“Target” layer). They should also adjust components’ status in the BIM 
according to the task scope (e.g., marking components that are outside 
the robot workspace as “unrelated” by changing the user attribute data). 
Considering that a BIM interface is intuitive and generally familiar to 
construction personnel, it is typically easier for workers to indicate task 
scope in a BIM rather than directly indicate this to the robot in ROS. 

When construction starts, information is taken from both the BIM 
and the construction site to generate the I2PL-DT. An automatic digital 
twin generation approach is proposed, which is introduced in Section 
3.2.1. During the construction process, human co-workers collaborate 
with the robot through the digital twin system, which integrates infor
mation from the BIM and the construction site. The detailed approach to 
updating the digital twin and enabling HRC through bi-directional 
communication is discussed in Section 3.2.2. Section 3.2.3 introduces 
how the system addresses the challenges caused by component de
viations on-site. The robot can suggest solutions to adapt to deviations to 
human co-workers for approval. Occasionally, human interventions (e. 
g., replacing a component with one of a different shape) are required to 
resolve the deviations. 

When construction completes or reaches a certain checkpoint, the 
ROS environment that contains the related construction site information 
at the time sends the information to update the BIM repository and re
cords data in the BIM for future reference. The technical approach to 
updating the BIM with construction data is introduced in Section 3.2.4. 
It must be noted that even though this study chooses to update the BIM 
at certain time points, the framework also allows the BIM repository to 
be continuously updated as construction progresses. Lastly, Section 
3.2.5 explores the deployment of the physical system to collect and 
integrate data from the physical world and to control the physical in
dustrial robot. 

3.2. Technical approach for system implementation 

3.2.1. Automatic digital twin generation 
To initiate construction, it is essential to generate the digital twins 

that integrate visualization, interaction, and computation functional
ities. Our system incorporates two digital twins. One is the interaction 
module with the GUI developed in Unity, which facilitates visualization, 
supervision, and intervention. The other is the computation module 
within ROS that manages the construction workflow (e.g., installation 
sequence), adapts to as-built conditions, and generates task plans (e.g., 
collision-free motion plans). The generation of these digital twins takes 
advantage of the geometry and attribute data of components from the 
BIM. The coordinates of the digital twin world and the BIM are aligned 
using the robot’s base frame as the origin point. Sensor data are also 
transformed into the robot base frame for integration into the digital 
twins. For example, for the camera sensor mounted on the robot in the 
experiments of this study, its pose relative to the robot link it is attached 
to is calculated through hand-eye calibration (Daniilidis, 1999). The 
relative pose is further transformed to the robot base frame using for
ward kinematics according to the current robot joint states. The auto
mated generation process of the digital twin system is shown in Fig. 5. 

The computation module is developed in ROS. Geometries of task- 
related components in the BIM are extracted as meshes, converted 
into ROS messages by a script in Rhino, and subsequently sent to ROS. 
Attribute information, including names, layers, and customized prop
erties designated as Attribute User Text (discussed in Section 3.1.1), is 
also sent to the computation module in the form of ROS messages. As- 
built data, including the locations of as-built components and mate
rials, are loaded into the module when they are detected at the con
struction site. During the construction process, the system retrieves 
these data for task and motion planning. For example, the system queries 
the parent of the target and whether it is deviated to determine if ad
justments are needed to install the target object. 

Motion planning in the computation module is facilitated by the 
MoveIt planning framework (Chitta et al., 2012). The planning scene of 
the MoveIt framework contains a virtual robot model that replicates the 
actual robot using the URDF descriptions and synchronizes with the 
actual robot’s states by subscribing to the joint_states topic. The plan
ning scene also incorporates environmental representations, where 
meshes of task-related components on the “As-Built”, “Materials”, and 
“Virtual Collision” layers in the BIM are spawned at their corresponding 
locations as collision objects. The robot will use its camera to detect 
as-built components and construction materials in the workspace and 
subsequently update the collision information in the planning scene. If a 

Fig. 5. Automatic Digital Twins Generation Process.  
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component has been constructed but its as-built model is not yet present 
in the BIM (not detected by the robot), its corresponding as-designed 
model will first be generated and later replaced by the as-built model 
once detected (e.g., through fiducial markers). Detected construction 
materials are similarly updated in the digital twin. These collision ob
jects are used by the robot to plan collision-free paths during motion 
planning. When the robot arm holding a material, the corresponding 
collision object of that material is attached to the robot arm to ensure it 
is considered during motion planning. 

The interactive digital twin module in Unity is generated by directly 
connecting Rhino and Unity through Rhino.Inside (Robert McNeel & 
Associates, Rhino.Inside, 2024), which is an open-source add-in that en
ables other applications (e.g., Unity) in the Windows Operating System 
(OS) to run Rhino and Grasshopper (a visual programming tool integrated 
with Rhino ([79]Grasshopper 3D, Wikipedia (2023). 〈https://en.wikipe
dia.org/w/index.php?title=Grasshopper_3D&oldid=1189175937〉

(Accessed 23 April 2024).)) projects. The highlight of this process is that 
instead of manually importing a BIM and creating functions in Unity for 
different construction projects, a Unity program template is developed. It 
contains template models with functions. When it receives information 
from other modules (e.g., a BIM), Unity can quickly generate interactive 
game objects using these template models according to the object layer. 
For example, when it receives an object assigned to the “Target” layer 
from a BIM, the program instantiates a game object with the target-type 
template. This game object is equipped with functionalities for user se
lection and pose manipulation. Meanwhile, the mesh geometry received 
from the BIM is loaded onto the game object for visualization, and the 
game object attributes such as name, layer, and material are set accord
ingly. As a result, the template Unity program can automatically generate 
interactive digital twin interfaces for different BIM projects. 

At the initial state, Unity contains 1) light and camera systems for 
human partners to visualize objects in the game interface; 2) event 
systems to capture user input and enable interaction (e.g., selection, 
movement); 3) virtual robot models generated from the Unified Robot 
Description Format (URDF) files and meshes from ROS. One virtual 
robot is synchronized with the actual robot for supervision. The other 
virtual robot is used to evaluate robot motion plans and only appears 
when the human workers preview these plans; 4) ROS connectors to 
exchange data with ROS through Rosbridge using the ROS# library 
(Siemens, 2021); 5) a game object to run Rhino and Grasshopper pro
jects to retrieve geometry and attribute (e.g., layer, name, type) data 
from the BIM; 6) model templates that can automatically generate 
interactive game objects with the information received; 7) interface 
templates containing text instructions and buttons that appear at spe
cific times to prompt and receive user input; and 8) a virtual billboard to 
show messages. 

As the system is initiated, Rhino and Grasshopper applications start 
with the Unity program through Rhino.Inside (Robert McNeel & Asso
ciates, Rhino.Inside, 2024). A script developed in Grasshopper then 
loads the BIM into Rhino, retrieves information (i.e., geometry, color, 
name, layer) of objects from the BIM, and sends it to Unity. As Unity 
receives the information, model templates can create game objects with 
the same names, colors, and geometry as what they received from the 
BIM. The generated game objects are automatically placed onto the 
corresponding layers in the GUI. Based on the object layer, scripts that 
contain different functions are embedded in the model templates and 
attached to the object, thereby creating different interaction patterns. At 
the same time, the communication between Unity and ROS is estab
lished through the Rosbridge WebSocket server (Crick et al., 2017), 
which enables the seamless interaction between the human co-worker 
and the robot during the construction process (Section 3.2.2). Lastly, 
the robot moves to scan materials and as-built components in the 
workspace. As-built components and materials detected are instantiated 
at their corresponding locations in Unity to provide the human 
co-worker with the most up-to-date representation of the construction 
environment. With these steps accomplished, the digital twin systems 

are completely generated and construction can start. 

3.2.2. Digital twin update for collaborative construction implementation 
During the construction process, the seamless integration of the 

human co-worker and the robotic system is achieved through commu
nications via Rosbridge (Crick et al., 2017), with ROS serving as the 
middleware. Data exchange occurs at various frequencies throughout 
the construction process. For example, joint states are written onto the 
physical robot at a fixed frequency of 250 Hz. In contrast, certain data 
are only published when specific events are triggered (e.g., the human 
co-worker makes a selection from the GUI). The HRCC process is shown 
in Fig. 6. Human operations and decisions are shown in orange, and blue 
elements show processes performed by the robot. The robot and its 
human co-workers interact through the GUI. The overall workflow is 
that the robot shows information and decisions intuitively in the GUI for 
its human co-workers to visualize. Then, the GUI detects the human 
co-workers’ decisions and operations through their input and sends the 
information to the robot. During the interaction process, corresponding 
interfaces are generated from the interface templates to prompt the 
human co-workers on the current process and get inputs. The templates 
contain corresponding functions (e.g., sending messages to the robot on 
certain ROS topic channels when the user clicks certain buttons) and are 
automatically connected to corresponding scene objects when being 
generated. 

After generating the digital twins, the robot retrieves the next target 
in the construction sequence from the BIM and highlights the target 
object in the GUI in semi-transparent green. Meanwhile, it prompts the 
human co-worker to confirm the target by instantiating a UI in Unity 
with the natural language text “Want to install this?”, where the co- 
worker can respond by choosing either the “Yes” or “No” button. If 
“No” is selected, the human co-worker can select another target through 
mouse clicks on a computer or ray casting in VR. After a target is 
confirmed, the robot checks whether there are deviations in the work
space that affect the operation to achieve the target as originally 
designed (e.g., a deviated component occupying the target space will 
collide with the target if following the original design). If there is a 
deviation, the robot will propose suggestions to adapt (see Section 3.2.3 
for the adaptation approach). Note that the adaptation decision is 
sometimes based on the robot’s suggested solutions and sometimes 
based on human improvisations, thus the “adaptation” block appears in 
two colors. If no deviation exists, it will go ahead with the original 
installation pose from the BIM. The human co-worker can choose to 
directly accept the robot’s suggestion (e.g., an adjusted pose to install 
the target). There might be situations where the robot cannot properly 
adapt, so the system also allows the human co-worker to improvise an 
adaptive plan (e.g., move the target to indicate a desired installation 
pose in GUI or directly install the component by themselves). 

Next, based on the confirmed plan, the robot generates a collision- 
free motion plan to achieve the target. When the human co-worker re
quests to preview the plan, a virtual robot will appear in the GUI and 
demonstrate the motion plan as an animation. The animation includes 
the robot movement during the whole manipulation process and the 
material movement if it is being held by and moving with the robot. This 
is enabled through a virtual joint state publisher in ROS that extracts and 
publishes the joint states in the generated motion plan at a given fre
quency. A virtual robot emulator in Unity subscribes to the topic that 
publishes the virtual joint states and moves according to the states 
received, thereby allowing the motion plan to be previewed as an ani
mation. Such previewing processes enable the human co-worker to gain 
insights into the consequences of the robot operation and make better 
decisions (Kamat and Martinez, 2000). If the human co-worker is not 
satisfied with the motion plan, the robot will generate another plan with 
MoveIt and demonstrate it in the GUI until the human co-worker finds 
an acceptable plan. After a motion plan is accepted, the actual physical 
robot executes the approved plan. A detailed introduction of the pro
cesses to preview, execute, and supervise the robot motions can be found 
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in the authors’ previous work (Wang et al., 2021). 
Since a robot model in GUI is synchronized with the actual robot by 

subscribing to its joint states, the human co-worker can supervise the 
robot execution states through this synchronized robot. They can also 
understand the robot’s cognitive status (e.g., calculating the motion 
plan) through the virtual billboard in the GUI. It should be noted that 
certain steps of processing and robot operation can be skipped, 
depending on the type of human intervention. The technical approaches 
for establishing connections within the digital twin system and 
achieving motion planning, plan preview, and execution and supervi
sion functions are discussed in (Wang et al., 2021). After a target is 
achieved, the system will check the next target in the sequence from the 
BIM and go through the process again. If no target is left in the queue, 
the assigned task is considered to be finished. 

3.2.3. Deviation adaptation 
This study develops methods to enable robots to provide suggestions 

for adapting to two types of deviations commonly found in construction 
assembly tasks. The process is supervised by the robot’s human co- 

worker, and if needed, the human can intervene to adjust the robot’s 
suggested solution or improvise a different adaptation strategy. 

3.2.3.1. Parent deviation. The parent of the target to be installed is built 
with deviations from its design. Since the target needs to be connected to 
its parent, the installation pose of the target should be adjusted 
accordingly. Two sources of transformation information are used to 
address the deviation. The robot receives the as-designed position and 
orientation of the parent object from the BIM through Rosbridge at the 
beginning of the construction, which is then converted into a trans
formation matrix TD. The as-built transformation of the parent object TB 
is detected by the robot with the camera. After both transformations are 
received, the robot first calculates the design-built deviation TB

D of the 
parent using TB

D = TBT−1
D . Next, it calculates the suggested trans

formation matrix Tt to install a target t using Tt = TB
DDt, where Dt is 

the as-designed transformation of the target coming from BIM. Lastly, 
the installation transformation matrix Tt is converted into an instal
lation pose Pt with position and orientation information for robot 

Fig. 6. Collaborative Construction Process Flow Chart.  
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planning and operation. 

3.2.3.2. Nearby object deviation. When certain objects near the target 
are built with deviation, they might occupy the originally planned space 
of the target. Before installation, the robot checks whether the planned 
installation place collides with any as-built objects. This process is 
enabled by the collider functions in Unity. If no collision is detected, the 
robot will plan to go ahead with the original plan by default. Otherwise, 
the robot will provide suggestions to offset the target installation pose to 
avoid collision based on the deviation of the object that conflicts with 
the target object. 

3.2.3.3. Human supervision and intervention. The robot’s suggested so
lution always requires human approval before execution to prioritize 
human preferences. The suggested installation pose is communicated to 
human co-workers by instantiating a new object with the same geometry 
as the target object highlighted in semi-transparent red material in the 
digital twin interface. Meanwhile, an interface template is instantiated 
asking “Robot suggest install it here. Do you accept?”. The human can 
choose to take the robot’s suggested solution by clicking on the “Yes” 
button. However, due to the possible uncertainties and complexities of 
construction work, the deviation type may not belong to the two situ
ations considered above or the solution suggested by the robot may not 
be optimal, especially for the nearby object deviation case where situ
ations vary. For example, offsetting one component may affect the 
installation of subsequent targets, causing construction plan changes for 
several targets. In this case, the human co-worker may prefer to 
manually replace the target with one in a different shape (e.g., a smaller 
piece). Even if the deviation does not introduce collisions (object de
viates towards other sides), the human co-worker may still want to 
adjust the target workpiece to make it stay together with the objects 
nearby. In these cases, the human co-worker will reject the robot’s 
suggested solution and manually intervene. 

The system affords two operations to facilitate human intervention. 
First, they can manually adjust the position and orientation of the target 
installation pose through sliders in the interface. Otherwise, they can 
skip the robotic installation in the digital twin and manually adjust and 
install the target. In this case, they need to manually record the infor
mation in the BIM to make it available for future use. 

3.2.4. BIM information update 
When an assigned construction task finishes or reaches a certain 

checkpoint, three sources of data tracked by ROS can be sent to the BIM 
via Rosbridge using the COMPAS library (COMPAS, COMPAS, 2021). 
Three sources of data are saved in the BIM repository for future refer
ence. The workspace sensing data as the robot scans the environment 
and the robotic construction data reflected by robot states are saved onto 
the “As-Built” layer. The temporary material data (i.e., on-site con
struction material type, number, and locations) are saved onto the 
“Materials” layer. It is inferred from the start state (e.g., materials 
originally prepared) and the construction process (e.g., how many ma
terials are used). 

To update the BIM, the pose and type (applies to Materials only) data 
of these components in the ROS computation module are sent to the 
BIM. Then, new components are instantiated in the BIM at the given 
poses, with their geometries retrieved from corresponding components 
previously existing on the other layers in the BIM. The Python script in 
Rhino assigns names and layers to the instantiated components and 
generates customized attribute data (e.g., component poses) as Attribute 
User Text. Meanwhile, the components on the “Target” layer that are 
installed by the robot are switched to the “As-Designed” layer. In the 
ensuing steps, the repository will continue updating itself with incoming 
sensing data and completed construction work. 

3.2.5. Physical system deployment 
The physical portion of the system is deployed on a large-scale Kuka 

industrial robotic arm in a research laboratory setting designed to mimic 
a construction site. The industrial robotic arm is selected because it has a 
relatively large payload to manipulate heavy construction components 
and higher flexibility to perform various construction tasks with 
different end effectors. The assumption is that the robot has a relatively 
static workspace (e.g., an area in a room) for each construction task. 
Other workers and equipment conduct construction activities and move 
outside the robot workspace. For safety reasons, if they get into the robot 
workspace during the robotic construction process, the robot will stop 
moving until safety is confirmed by its human co-worker. 

The system involves several devices connected to a Local Area 
Network (LAN). Devices can communicate with each other through 
wired connections or wirelessly. The device communication and robot 
control processes are shown in Fig. 7. The interfaces that the human co- 
worker directly uses, including the GUI in Unity and the BIM in Rhino, 
need to run on a computer with Windows OS. The sensors are connected 
to portable microcontrollers (e.g., Raspberry Pi). Both the Windows 
computer and microcontrollers can communicate with ROS wirelessly 
through a router on the LAN via ROS messages. ROS runs on a computer 
with Ubuntu OS that is connected to the robot embedded PC through an 
Ethernet cable. The computing core in ROS sends the joint states to the 
Automation Device Specification (ADS) interface of the programmable 
logic controller (PLC) (Liang et al., 2022). ADS is an interface layer of 
Twincat PLC that allows commands and data exchange between 
different software modules (Beckoff, 2022). The joint states data is 
received by the PLC and is then sent to the Kuka Robot Sensor Interface 
(RSI) to control the robot (Liang et al., 2022). 

4. System verification and case study 

In order to verify the proposed system and explore the setup neces
sary for its physical deployment, a drywall installation case study is 
conducted in a research laboratory, which is set up to mimic a con
struction site, as a proof-of-concept implementation. Drywall installa
tion is one of the most prevalent construction activities. It is also a 
representative example of large-scale object manipulation and pick-and- 
place operation, which is a common scenario in construction and com
prises the elemental motions for a variety of construction tasks on 
structures (e.g., framing), surface (e.g., ceiling tile installation), and 
systems (e.g., ductwork installation) (Park et al., 2024; Feng, 2015). In 
this context, the wall frame itself is prefabricated without deviation but 
is purposefully installed at a deviated pose on-site to simulate the case of 
parent deviation. Four drywall panels in two different shapes need to be 
installed onto the wall frame, simulating scenarios such as windows, 
doors, or room corners that require varied panel sizes beyond the 
standard dimensions. The remaining part of this section introduces the 
physical and software setup and describes the HRCC process to perform 
the drywall installation task in detail. 

4.1. Physical setup 

The robot used for the case study is a 6 DOF Kuka KR120 industrial 
robotic arm that has a 120 kg payload and a 2.7 m reaching range. By 
mounting it onto Kuka KL4000 Linear Unit, its base can move 4.5 m 
linearly, which adds one DOF to the robot and significantly increases the 
robot’s physical reach. Therefore, the robot has the capability to 
manipulate a regular-sized drywall panel. The robot workspace is shown 
in Fig. 8. A safety gate is used to mark the robot workspace and a laser 
curtain is installed on the safety gate to prevent other workers and 
equipment from entering the robot workspace while the robot is 
operating. 

Since the goal of the case study is to verify the capability of the 
system framework and functions, the experiment is conducted on a 1:2 
scale. A wall frame 4 feet (1.2192 m) tall by 8 feet (2.2384 m) long with 
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a window area is built with studs on the back side to ensure stability 
(Fig. 9). To expand the workspace, part of the frame support is placed 
outside the gate, but it does not break the operation because it is lower 
than the bottom of the curtain. The robot needs to install three larger 
drywall panels of 2 feet (0.6096 m) by 4 feet (1.2192 m) and one smaller 
panel of 2 feet (0.6096 m) by 2 feet (0.6096 m) onto the frame. A cubic 
handle is attached to each panel for the robot to grip. A pneumatic 

gripper is designed and connected to the robot with a tool changer and a 
connection plate (Fig. 10). The jaws of the gripper are made with slopes 
to clutch the cubic handle on the drywall panel. Stabilizers are installed 
to ensure that the drywall panel can fully contact the gripper to avoid 
torque and shaking during manipulation. Rubber pads are used to add 
friction between the gripper and the cubic handle to prevent slippage. 

Given that only one robotic arm is deployed, for demonstration and 
experiment repeatability, Medium-Density Fiber (MDF) boards with 
higher durability are used as drywalls. Magnets are used to attach the 
panels to the wall frame after the robot releases the panels. For actual 
construction work, the panels could be fixed (typically with screws) onto 
the wall frame, potentially by a human worker or another robot. An RGB 
camera is fixed onto the gripper. It is connected to ROS running on a 
Raspberry Pi microcontroller powered by a portable battery. Raspberry 
Pi can send the camera sensing data as ROS messages wirelessly to the 
ROS master running on the Linux machine. AprilTag fiducial markers 
are positioned near the wall frame and on the panels, and can be 
localized with the RGB camera (Krogius et al., 2019). The markers store 
information about the component type and the offset from the marker to 
the component’s origin to help identify the components and their 6DOF 
pose. The type and offset information can be easily modified by updating 
the configuration file to accommodate multiple tasks. 

4.2. Preparation of the BIM 

Fig. 11 shows a screenshot of the BIM used for the drywall installa
tion task. The surrounding wall of the laboratory is set to be transparent 
grey to make it easier to visualize the robot workspace. Shop drawings 
for drywall installation are shown at the right bottom of the figure. The 
BIM indicates how the panels are designed to be installed. In this drywall 
installation task, these panels are specified as targets. The laser curtain is 
the plane that lasers come through which does not physically exist. 

Fig. 7. Physical Robot System Framework.  

Fig. 8. Robot Workspace.  

Fig. 9. Wall Frame and Drywall Panels Used in Case Study.  Fig. 10. Gripper Design.  
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However, interruption of the laser will cause the robot to stop for safety 
reasons, so the robot should not get into the curtain during operation. 
Thus, the laser curtain is considered a collision object during robot 
motion planning. The BIM components and their corresponding layers 
are shown in Table 2. Before construction, the frame has already been 
installed and materials are prepared but their poses are unknown and 
need to be detected by the robot. 

The BIM contains the component attributes needed for robot pro
cessing and construction, such as its identifier, layer, its relationship 
with other components, whether it is related to the current task, con
struction sequence, and type (e.g., large or small) (Fig. 12). For 
manipulable components, how the robot should grip the component is 
also indicated (e.g., at its center with orientation perpendicular to its 
largest surface), which is also used as the indicator of robot picking and 
installation pose. In this study, the program automatically calculates 
pose indicators using the centroid of the Rhino object. Otherwise, pose 
indicators can be automatically generated with computational design or 
manually specified by human workers selecting points and directions in 
Rhino. 

4.3. Construction process 

To prepare for the construction work, the drywall panels are placed 
into two stacks in the robot workspace (Fig. 9). There is a marker on 
each panel and the wall frame. Offsets from the markers to the objects’ 
pose indicator points are recorded and input into the system. The marker 
is used not only for pose estimation but also to provide configurable 
attribute information (e.g., corresponding object type and quantity). 

As construction starts, the robot follows a predefined trajectory to 
scan the environment. After scanning, the robot replaces the as-designed 
wall frame with the as-built one in the MoveIt planning scene. In the 
meantime, material poses are inferred from the detected stack location, 
quantity, and type data attached to the marker. The materials are also 
added to the MoveIt planning scene as collision objects. When the robot 
plans motion with materials in hand, the collision object of the corre
sponding material is attached to the robot end-effector to ensure that the 
material held by the robot does not collide with the environment or the 
robot itself. The as-built wall frame and materials are also sent to Unity 
to be generated in GUI to support user visualization and decision 
making. 

The robot first highlights the next drywall target in the construction 
sequence in the GUI and asks for the human co-worker’s confirmation or 
adjustment (Fig. 13a). After the human co-worker confirms the target, 
the robot uses the as-built and as-designed deviation of the wall frame to 
calculate a suggested drywall installation pose. Visualization of the 
suggested pose is then generated in GUI for the human co-worker’s 
approval or adjustment (Fig. 13b). In both VR and 3D modes, human co- 
workers can adjust the camera view to inspect the environment from the 
perspectives they prefer, while VR offers a more natural and intuitive 
sight of view control. A video demonstrating the adjustment process is 
shown in Video 1. 

After the installation pose is approved, the robot generates the mo
tion plan to first pick up a corresponding type of panel (i.e., large or 
small) from the detected panel stacks and then places it with the 
approved installation pose onto the wall frame. Upon request from the 
human co-worker, a virtual “planning” robot manifests in the GUI and 
demonstrates the robot motion plan and how the panel is manipulated 
during the installation process for evaluation (Fig. 13c). If the motion 
plan is approved, the physical robot executes the plan, and the human 
co-worker can supervise the robot execution process with the synchro
nized robot and understand the robot status from the messages in the 
GUI (Fig. 13d). After the robot releases the panel, the panel is attached to 
the wall frame with magnets, and the virtual panel in Unity is changed to 
the “As-built” layer. 

The actual installation pose is recorded by the robot and the robot 
prompts the next panel in the sequence for installation. The quantity of 
materials in the corresponding panel stack is reduced by one, and the 
position for the robot to reach the next piece of panel in that stack is 
updated accordingly. These procedures are repeated until all four pieces 
of drywall panels are installed. The snapshots of the physical robot 
drywall installation process during the laboratory experiment are shown 
in Fig. 14. A video demonstrating the process is uploaded as Video 2. 
After referring to the ISO 12018–1:2011 ISO (n.d.) and the robot 
manual, the reviewer found 3% of the robot full speed, which set the 
maximum Tool Center Point (TCP) speed at 60 mm/s (below the spec
ified threshold of 250 mm/s of robot part replacement and reduced 
speed control), as a comfortable operation speed for the research team to 
manage and respond to emergencies, minimizing the risk of accidents 
and preventing potential damage to the laboratory and the robot. 

After all the panels are installed, the as-built condition of the wall 
frame is sent from ROS to Rhino through Rosbridge using COMPAS as 
the workspace sensing data (COMPAS, COMPAS, 2021). The recorded 
installation poses of all panels are inferred from the robot end-effector 
pose and are also sent to be saved in the BIM as the robotic construc
tion data. Both the workspace sensing data and the robotic construction 
data are saved onto the “As-Built” layer. Lastly, the up-to-date condi
tions of the panel stacks are sent to Rhino and saved onto the “Material” 

Fig. 11. The BIM for Drywall Installation.  

Table 2 
The BIM Components List.  

Components Layers 

Workspace surroundings (Blue) As-Built 
Frame (Design) (Yellow) As-Designed 
Target panels on frame (Design) Target 
Laboratory walls, breams, and columns As-Built 
Laser curtain (Virtual) Virtual Collision  

Fig. 12. Attribute Information in the BIM to Drive Robotic Construction.  
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layer to reflect the quantity and location of the remaining panels on-site. 
The updated scene in the BIM is shown in Fig. 15. 

5. System validation experiments 

5.1. Physical experiments for overall system evaluation 

In Section 4, a drywall installation case study on the physical robot is 
used to verify the proposed workflow. It is a representative activity in 
construction to demonstrate the workflow. However, the specific nature 
of the task does not allow for the exploration of error margins by varying 
spacing through repeated experiments to evaluate system performance. 
As a result, block pick-and-place experiments that involve a line of four 

blocks are conducted to validate the system’s performance. The BIM 
repository of the system and the physical experiment setting are shown 
in Fig. 16. Four wood blocks are stacked on the ground floor. A stud is 
used to represent a nearby object, possibly installed in earlier con
struction states. AprilTag markers are positioned near the block stack 
and the stud for component identification and localization. The blocks 
are expected to be placed in a line adjacent to the stud. Block pick-and- 
place is selected as the task here because it is fundamental yet repre
sentative of construction activities. On one hand, its simplicity facilitates 
repetitive testing and control over experimental conditions, such as the 
spacing between blocks and end stud positioning. On the other hand, it 
requires precision and adaptability to deviations typically needed for 
construction tasks thereby allowing us to evaluate system performance 

Fig. 13. Screenshots of the HRCC Process.  

Video 1. User_Adjustment.A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.compind.2024. 
104112. 
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in a representative construction context. 
The robot first scans the environment to localize the block stack and 

stud through the ApirlTag markers placed near these components. Then, 
it needs to first pick up a wood block from the stack of blocks and place it 
alongside the stud placed on the ground. If the robot finds the stud takes 
up the space for the planned block placement target, it will suggest 
offsetting the block placement target to avoid collisions. If the stud does 
not occupy the space of the blocks, the robot will follow the original plan 
and will not automatically make adjustments, unless instructed by the 
human supervisor. 

In order to increase system tolerance to errors and prevent damage to 
experiment materials and the robot, gaps of different sizes (10 mm, 
5 mm, 3 mm, and 1 mm) are left between blocks. The gap sizes are 
initiated at 10 mm and are gradually reduced to approximately half of 
the previous value to test the margin of system precision. The gripper 
releases and drops the block 2 mm above the ground floor, leaving room 
for possible vertical errors. For each gap size, 10 trials of picking and 
placing all four blocks were carried out. The wood stud was deliberately 
placed in collision with the planned target for 5 out of the 10 trials to test 

the robot’s capability to resolve deviation. Since the task has lower risks 
compared to drywall installation, the robot is operating at a slightly 
higher speed of 7% of the robot’s full speed (140 mm/s) as the research 
team’s comfortable speed for experiment management and emergency 
handling. 

During the experiment, the human co-worker interacts with the 
robot through the 3D interface. The goal of this experiment is to verify 
the overall performance of the proposed system when the human 
workers completely rely on robot suggestions. Therefore, the human co- 
worker agrees with all robot suggestions and does not perform any 
adjustment or manual intervention during the construction process. 
However, when the co-worker feels the robot planned manipulation 
trajectory is not optimal (e.g., taking extra rotations), the co-worker 
would request the robot to generate a new motion plan for evaluation. 
The number of replanning requests from the human co-worker is 
recorded. The trial is counted as a failure if the robot does not place all 
four blocks successfully. 

The success rate and the number of replanning requests for different 
gap sizes are shown in Table 3. “Successful placements” means the 

Fig. 14. Snapshots of Physical Robot Drywall Installation Process.  
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number of blocks successfully placed by the robot without any collision. 
Once a block fails, the trial ends and the rest of the blocks in the four- 
block line are not placed, resulting in more than one block not being 

successfully placed with one failure case. For example, failure of the first 
block placement will end the trial and cause all four blocks not being 
successfully placed. On average, a successful pick-and-placement trial of 
four blocks takes 217.31 seconds. 56.38 seconds are used for human co- 
worker’s decision-making, such as confirming the target and previewing 
the motion plan. The average time taken by robot computation and 
execution is 160.93 seconds. 

5.2. Simulation experiments for validation of nearby object deviation 
adaptation 

In order to specifically assess the system’s capability to autono
mously adapt to deviations of nearby objects and to accurately trace 
source errors in physical experiments, a block pick-and-place experi
ment is conducted in Gazebo simulation, mirroring the settings of the 
experiments in Section 5.1. While physical experiments evaluate the 
performance of the overall system, simulation enables precise tracking 
of component positions and orientations for performance assessment 
and allows isolating other error sources to focus on the evaluation of 
specific system components. It should be noted that the Gazebo simu
lation has been demonstrated to be replicable on the physical robot 
system used in this study with high accuracy (Liang et al., 2022). In this 
experiment, the robot is provided with ground truth poses of tags to 
eliminate errors arising from component localization. The stud is 
intentionally offset towards the target block placement location, 
necessitating robot adaptation to avoid collisions. Across 10 trials, the 
deviation distance of the stud is set to a randomly generated value be
tween 0 and 0.2 m. No gaps are left between blocks or between a block 
and the ground. As the focus is to evaluate the robot’s capability for 
autonomous deviation adaptation, all the robot’s suggested solutions are 
accepted without human intervention. 

Ground truth poses and actual locations of each of the four blocks in 

Video 2. Construction_Process.A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.compind.2024. 
104112. 

Fig. 15. The Updated BIM.  

Fig. 16. Experimental Settings.  

Table 3 
Block Pick-and-Place Experiment Results.  

Size of 
gap 

Success rate 
(%) 

Replan requests / 
Successful placements 

Reason for failure 
(occurrence) 

10 mm  100 7 / 40   
5 mm 90 2 / 38 Hit ground (1) 
3 mm 90 6 / 36 Collide with stud (1) 
1 mm 60 5 / 26  Collide with stud (3) 

Hit ground (1)  
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the simulation environment are recorded and compared. To avoid errors 
due to movements of the loose objects post-handling, actual block lo
cations are recorded before the robot releases them. Fig. 17 shows ex
amples of the experiment results. The stud is in white and the blocks are 
in wood material in Gazebo simulation. Deviations of the stud and the 
adapted installation pose can be visualized in the digital twin interface. 
Errors of all blocks across 10 trials are analyzed in Table 4. Both the Root 
Mean Square Error (RMSE) and the Standard Deviation (STD) are close 
to zero, demonstrating the effectiveness of the proposed deviation 
adaptation method for the nearby object deviation situations. 

5.3. Simulation experiments for validation of parent deviation 

To assess the system’s capability to autonomously adapt to the 
parent deviations, a drywall installation experiment with settings 
replicating the case study in Section 4 is conducted in Gazebo simula
tion. Ground truths of tag poses are provided to the robot to eliminate 
the errors arising from component localization. The frame is intention
ally offset in both position and orientation to necessitate the adjustment 
for subsequent installation of panels. Across 10 trials, the deviation 
distances of the frame on the X and Y axis are set to randomly generated 
values between 0 and 0.2 m. The yaw orientation deviation of the frame 
is randomly generated between 0 and 15 degrees. This range ensures the 
frame stays within the robot workspace and the panel installation pose 
are valid and reachable by the robot. The robot’s suggested solutions are 
always approved without human intervention. 

The experiment compares the actual poses of each of the four panels 
in the simulation environment with their ground truth poses. Fig. 18 
shows examples from the experiment trials. The deviations of the frame, 
along with the original and adapted installation pose, can be visualized 
in the digital twin interface. The errors of all panels across 10 trials are 

Fig. 17. Examples of Block Pick-and-Place Simulation Experiments.  

Table 4 
Error Analysis for Block Pick-and-Place Simulation Experiment.   

Position errors Orientation errors  

x y z roll pitch yaw 

RMSE 1.657e- 
04 

5.163e- 
05 

4.864e- 
04 

2.033e- 
04 

1.289e- 
04 

2.426e- 
04 

STD 1.651e- 
04 

5.023e- 
05 

4.534e- 
04 

1.939e- 
04 

1.266e- 
04 

2.423e- 
04  

Fig. 18. Examples of Drywall Installation Simulation Experiments.  
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analyzed in Table 5. Similar to the nearby object deviation situation, 
both the RMSE and the STD are close to zero, demonstrating the effec
tiveness of the proposed deviation adaptation method for the parent 
deviation scenarios. 

6. Discussion 

In order to successfully perform the construction work with the 
proposed system, the robot needs to adequately localize components in 
the construction environment, make decisions and suggestions to adapt 
to uncertainties, and accurately reach specific positions and manipulate 
components. Errors in any of these aspects will disrupt the workflow. 
The low errors from experiments in simulation indicate that the robot 
can accurately make adaptations and find the appropriate pose to place 
the target. The block pick-and-place experiment with a physical robot is 
conducted to evaluate the overall system performance. It is observed 
that once the first block is placed, the rest of the blocks are placed 
without collision with each other. It indicates that after the robot 
accurately determines the adapted installation poses, it executes the 
plan with high precision. 

Most failure cases are caused by the first block colliding with the stud 
while being placed (Fig. 19). There are also two cases of failure where 
the blocks were moved too close to the ground and the robot sensed 
excessive force on its end-effector. These failures are caused by errors in 
component localization. AprilTag markers are used for component 
localization, which is a low-cost and easy-to-deploy solution that pro
vides relatively high localization accuracy and is robust to various 
environmental conditions (Lundeen et al., 2016; Feng and Kamat, 
2013). However, it still introduces certain localization errors, which can 
lead to collisions when the tolerance is very low. For example, in the 
drywall installation case study, the panel cannot be firmly held onto the 
frame if a minor gap between magnets exists. Since the marker is 
installed on one end of the frame, orientation errors in marker detection 
are amplified by the long distance and cause a larger position offset 
when installing the panel on the other end of the frame. This results in 
task failure in some cases during the implementation process. 

Fortunately, with the evolving object detection algorithms and hard
ware (e.g., LiDAR) (Du et al., 2021; Fan et al., 2022), the accuracy of 
component localization is increasing to meet the needs of precise con
struction tasks. 

Considering the visual localization error, the success rate of the block 
pick-and-place experiment is found to be particularly high. Several 
reasons may lead to this result. First, all the blocks are stacked at one 
location, and thus the same offsets are maintained for all blocks. 
Therefore, collisions between blocks are avoided provided that the 
digital twin system successfully adapts to the nearby object deviation. 
Second, the gripper compensates for certain localization errors when 
closing the jaws to grab the block at its horizontal center. Third, only the 
localization error in a certain direction can cause task failure. For 
example, the block will only collide with the stud if the stud is in the way 
of the block target pose but the robot thinks the stud is still far away and 
does not make any adjustments to avoid the collision. Fourth, the robot 
drops the blocks onto the ground at a height of 2 mm, which increases 
the vertical tolerance of the task. Even if the robot drops the block from a 
slightly higher or lower position, the block placement is still considered 
successful. 

This study leverages the meshes as BIM component geometry and 
employs the proposed layer structure to generate the interactive digital 
twin through template programs in Unity, demonstrating that the digital 
twin can be generated provided the components are placed on the 
designated layers. Different from existing studies that parse component 
IFC files for robot motion planning, this study directly loads the meshes 
of BIM components as collision objects in the MoveIt planning scene and 
uses the attribute data from the BIM to generate collision-free motion 
plans. Therefore, the manipulation targets or other objects are not 
required to conform any specific shape or follow a particular IFC 
structure to be processed by the system. The BIM update process le
verages the existing component geometries in BIM and generates as- 
built data by offsetting the existing components based on the sub
scribed pose information. This approach avoids the challenges associ
ated with creating diverse and complex geometries. These features 
enhance the framework’s flexibility for various types of construction 
assembly tasks. Two distinct tasks, drywall installation and brick pick- 
and-place, are implemented in this study for verification. Since a vari
ety of other construction tasks can be similarly composed with the un
derlying elemental motions and large-size object manipulation methods 
demonstrated in these example tasks, the developed methods can be 
readily adapted to new tasks directly or with minor modifications (Park 
et al., 2024; Feng, 2015). However, it should be noted that the proposed 
system is primarily designed for rigid objects and is less effective for 
tasks involving fluid or deformable materials such as freshly mixed 
concrete or waterproofing membranes. 

During the physical experiment, several limitations are observed, 
and future research directions are identified. First, as discussed above, 
although the robot can localize objects with up to millimeter-level ac
curacy, it is not sufficient for some construction tasks that require high 
precision. It also takes time to set up and for the robot to scan fiducial 
markers on all related components in the workspace. A more direct and 
precise approach for the robot to perceive the environment, continually 
track components, and subsequently update BIM based on the detected 
installation pose of components should be considered in future 
developments. 

Second, because of the laboratory condition, only one robotic arm is 
used, and the panels are grabbed by a 2-jaw gripper in the drywall 
installation case study. One more robotic arm can be included to fasten 
panels onto the wall frame, and a vacuum gripper can be used to grab 
panels so that cubic handles are not needed. 

Third, information to support robotic construction, such as robot 
gripping pose and construction sequence, is manually created in the 
BIM. Future work should integrate computational design into the sys
tem, which can automatically generate detailed digital fabrication in
formation, construction sequence, and gripping plans for components 

Table 5 
Error Analysis for Drywall Installation Simulation Experiment.   

Position errors Orientation errors  

x y z roll pitch yaw 

RMSE 8.347e- 
04 

8.513e- 
05 

1.160e- 
04 

6.046e- 
05 

3.759e- 
05 

1.376e- 
05 

STD 8.211e- 
04 

8.311e- 
05 

6.481e- 
05 

3.340e- 
05 

2.268e- 
05 

1.288e- 
05  

Fig. 19. Collision with Stud during Block Placement.  
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(Adel, 2020). 
Fourth, some motion plans generated by the robot are valid but not 

desirable, and replanning is preferred. Sometimes, the robot manipu
lates material extremely close to other objects on-site. While no collision 
occurs, these situations cause high mental stress on human co-workers 
when the workpiece is large. Future studies may consider applying 
force feedback control and reinforcement learning for more trustworthy 
and desirable component manipulation (Emaminejad and Akhavian, 
2022; Liang et al., 2022). 

Lastly, for experimental purposes, the robot’s working speed is 
deliberately set to a slow pace (3% or 7% of its full capacity) to minimize 
risks such as object falls, collisions, and robot damage, and to emphasize the 
safety of the research team conducting the experiments. This results in 
extended work times. In the future, the efficiency of the workflow can be 
improved by applying faster robot speed, foregoing the preview step for 
low-risk operations, and eliminating the need for human approval when 
the confidence level of robot decision is high. Future studies will benefit 
from a comprehensive efficiency assessment that analyzes various 
impact factors. 

7. Conclusions 

This study proposes a BIM-driven HRCC workflow that addresses 
technical solutions ranging from the preparation stage to the end of the 
construction work, enabled by a closed-loop digital twin framework. 
The proposed framework offers several significant improvements to the 
previous I2PL-DT as well as other independent contributions. First, it 
presents a BIM framework that supports HRCC. The BIM contains the 
attribute and geometric information human workers and robots need for 
construction, and the predefined layer structure provides a unified 
standard to interface different BIM projects with the interactive digital 
twin, thereby improving BIM interoperability. Second, an automatic 
approach for generating interactive digital twins for HRCC is proposed, 
which is enabled by a template-based Unity program and the predefined 
layer structure in the BIM. Third, this study introduces an approach for 
component placement deviation adaptation using a combination of as- 
designed data from the BIM and perceived as-built information. Lastly, 
the construction site as-built information is sent to the BIM for 
recording, forming a closed-loop system. By closing the loop, the BIM is 
updated with as-built data to support decision-making and automation 
in subsequent construction, operation, and maintenance of a facility. 

Physical and simulation experiments are conducted to identify the 
effort needed to enable a physical construction robotic system, verify 
and validate system performance, and recognize limitations for future 
improvements. Overall, through the integration of the BIM, the pro
posed system not only improves construction work quality but also in
creases the robot’s capability in lower-level task planning thereby 
reducing human workers’ planning efforts. 
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