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ABSTRACT 

 
Physical interactions between humans and construction robots must inevitably occur under a 

capacity-based task allocation scheme for successful implementation of a human-robot 
collaboration (HRC) based workflow. For example, in staging and installing components, a robot 
can complete physically challenging material handling tasks and a human worker can then 
creatively manipulate the materials for installation. When materials are handed over from robots 
to humans, tandem manipulation of objects and physical interaction is necessary. However, this 
poses several challenges to human workers’ safety, as the objects might fall or break, if the robot 
incorrectly perceives the human worker’s grip state. This paper considers object handovers 
between robots and humans and explores how to build a safe tandem HRC framework by letting 
the robot imitate the mutual physical state adaptation dynamics inherent in human co-workers. 
To build such a human physical state-aware robot controller, this paper first proposes the use of a 
haptic glove-based sensing system to capture the grip strength and gesture of construction 
workers simultaneously. Secondly, the programming by demonstration (PbD) method is used to 
automatically program a robot through a one-shot demonstration of natural handover processes 
without requiring the demonstrators (i.e., construction workers) to have computational or 
programming expertise. The proposed method outperforms prior robot-to-human object 
handover studies in handling eight construction materials of random shape, dimensions, and 
weight distribution. In addition, to enable such construction HRC implementations to readily 
comply with global safety standards, the proposed method is implemented to adhere to ISO 
15066:2016 guidelines. 
 
BACKGROUND 
 

Human-Robot Collaboration (HRC) leverages both human cognitive advantages and robot 
physical capabilities to further boost productivity (Brosque et al. 2020, Wang et al. 2021a, Liang 
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et al. 2022, Park et al. 2023). However, there are two questions remaining unsolved. Firstly, the
robotic material preparation workflows and task allocations are unclear. A suitable workflow 
should adapt to both humans' and robots' characteristics (Wang et al. 2020). Secondly, HRC 
often assumes physical separations between humans and robots to ensure worker safety (Brosque 
et al. 2020). Yet some construction activities inherently require tandem cooperation between two 
construction workers. For example, the material transport workers sometimes directly hand over 
objects to another worker to reduce unergonomic standing ups and travel for installation workers. 
Similarly, the robot must also learn when to release the material to achieve safe and fluent 
transitions after transporting materials to designated receivers. Such safe operations will 
outperform simple physical separations in enabling skilled workers to perform necessary 
improvisations in proximity to the robots. 

Correspondingly, we develop a two-step solution. Firstly, we propose a material preparation 
workflow with capacity-based task allocation schemes (or adaptive automation) to include both 
advantages of humans and robots (Fitts 1951). Based on the classical capacity-based task 
allocation scheme, the heavy and repetitive material transport tasks are outsourced to robots with 
high physical capabilities. Moreover, the creative manipulation and installation tasks will be kept 
for human workers, as shown in Figure 1. 

Figure 1. Full-contact construction HRC task allocation schemes

Secondly, we propose to replicate successful practices inherent in human teams to build a 
safe robot handover controller. An imitation robot motion planner is built to clone the mutual 
physical state aware and adaptive collaboration mechanisms. This controller will perceive the 
receiver’s real-time grip states and reacts as human givers. A behavior cloning (BC) model (Fang 
et al. 2019) was also built to program human givers’ behaviors from their demonstrations. The
contributions of this paper are:

1) This paper discusses the material preparation and transport workflow for HRC to 
maximum efficiency and physical comfort. By exploring the most challenging technical 
part of physical state understanding, we also validate the feasibility of this workflow. 

2) This paper studies the holding force patterns of human workers. Full-hand pressure maps 
collected during holding a cuboid were collected and examined with Principal 
Component Analysis (PCA) (Roweis 1997) applied to reveal the holding areas for both 
receivers and givers.

3) This paper proposes to use both grip strength and gesture to represent the human’s grip 
state and pioneers the use of full-hand tactile gloves to comprehensively sample the 
pressure map of an entire hand. This paper is also among the select few in the literature 
that applied Imitation Learning to the robot-to-human object handover problem to 
minimize the human workers’ efforts. In our research, a 25-second one-shot natural 
object handover process serves as the demonstration. Our method is comparably more 
efficient and accurate for both seen and unseen grip settings.
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TECHNICAL APPROACH

Robot Material Transition Controller. We propose a closed-loop robot handover control 
system with a built-in behavior cloning model. As shown in Figure 2, the controller model is 
firstly trained offline with semi-supervised learning. On this basis, the trained control model 
parameters are stored in the robot control system and are achieved online control of the robot's 
real-time action. 

Due to the low-level architecture dependencies, the Tekscan 4256E grip sensor can only 
connect to a Windows machine. However, the robot simulation and control system – Robot 
Operation System (ROS), runs on the Ubuntu/Linux environment. Thus, a data transmission 
system was needed. ROS# serves as the data transmission conduit and connects the C# Tekscan 
API with the ROS system. 

Figure 2. Graphical abstract of closed-loop robot handover controller

The data transmission speed was also evaluated. With the average transmission speed for one 
frame of a haptic map averaging 0.0693 sec, the system reacts faster than the typical human 
visual reaction time of 0.15 sec (Thorpe et al. 1996). Therefore, the wireless data transmission 
system is concluded to have a latency that does not affect the perceived fluency of the robot-to-
human handover system.

Principal Holding Area Analysis. We applied PCA to both the giver's and receiver's haptic 
maps collected during the handover of three cuboid objects of different weights. This analysis 
could return the statistically highest weighted components that can explain more than 98% 
variability (hold vs. release) of the haptic maps. By understanding the spatial distribution of such 
elements, we can show the dominant holding areas for both hold and release phases during object 
transitions. 

Grip State Representation and Sensors. Force-based sensors are widely used in robot-to-
human handover studies to understand the grip state (Huang et al. 2015, Wang et al. 2021b, Pan 
et al. 2019). Yet it neglected the gesture changes which are often observed to affect the giver's 
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acting decisions (Wang et al. 2021b). Inspired by observations of strong correlations between 
receiver hand gestures and receiving activities from the above PCA analysis, we propose a new 
grip state indicator of both gripping force and gripping gestures. To collect both simultaneously, 
we used full-hand haptic sensors. The Tekscan 4256E grip sensor was selected and glued to soft 
work gloves, as shown in Figure 3 (right). Such soft tactile gloves can accurately reflect the 
human receiver's grip patterns during the material transition process.

The sampling frequency was set to 100 Hz based on similar research experiment settings
(Huang et al. 2015). Every 0.01 sec, a haptic map containing data from 52 (horizontal) × 46 
(vertical) hand pressure sensors was created, as shown in Figure 3 (left). The pressure sensor 
precision was set to one psi. 

Figure 3. The haptic map and the soft tactile glove

Human Handover Behavior Cloning Model. We used the behavior cloning method 
proposed by Yu et al. (2023). A 25-sec natural human-to-human handover process as the 
demonstration. The human receivers wore haptic gloves during the handover process and gave 
verbal commands to show their subjective evaluation of the firmness of their grip states. For 
example, when the receiver subjectively feels a stable grip on the object, the receiver will 
verbally signal the giver by saying a short multiple-syllable word/sentence such as "okay" or "I 
got it". A voice recorder with a resolution of 0.01 sec then recorded the whole handover process 
to understand the receiver's subjectively comfortable release moment. 

With the collected paired receiver haptic map-intent data, we assigned an action label of 
"hold" to haptic maps collected before the release moment. A "release" action was assigned to 
those collected after the release moment. With the labeled haptic maps, a classification model 
was built to teach robots to recognize the haptic maps that imply the correct time to start 
transitioning objects. Several common classification algorithms were experimented with, 
including Random Forest, Support Vector Machine (SVM), Long Short-Term Memory (LSTM), 
and Ensemble Methods. SVM showed the highest accuracy in this preliminary testing phase (Yu 
et al. 2023).

EXPERIMENT SETUP

Construction Materials. 8 common construction materials of various dimensions, shapes, 
weights, and mass distributions, as shown in Table 1. All contact surfaces were also wrapped 
with plastic wraps to unify contact conditions.
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Grip Locations. Data are sampled from various grip locations on the same objects, 
considering that grip force changes along with different grip locations on the objects. Grasp 
points were sampled every 5 cm. The number of grasp points for each object is shown in Table 1. 

 
Table 1. Dimensions and weights of tested objects 

 

Object Weight 
(g) 

Grip Area Diameter 
(cm) Grip Locations 

Bolt 216  1.0 3 
Hammer (10oz) 423 2.8 4 
Hammer (16 oz) 678 3.5 4 

Light Board 301 2.4 5 
Heavy Board  846 9.8 5 

Short Tube Glue 472 6.6 3 
Long Tube Glue 293 5.2 3 

Fluid Glue  272 4.2 3 
 

Grip Gestures. The two most popular habitual grip gestures (pinch or grasp with all five 
fingers) were selected to cover more than 75% of preferred grip gestures for cuboid and cylinder 
objects (Lee et al. 2014), as shown in Figure 4. Additionally, as object orientation and relative 
location to the hand affect the grip gesture (Paulum et al. 2016), the two most extreme object 
orientations (horizontal and vertical) and two grip methods (overhand, underhand) were added to 
the combination to show robustness. Therefore, six different grip gesture settings were used, with 
some examples shown in Figure 4. Moreover, three users were invited to be demonstrators. This 
small user group size was found to be suitable, considering that high similarities in habitual grip 
gestures and orientations have been observed (Lee et al. 2014, Paulum et al. 2016). 

Unseen Grip Settings. The leave-one-out test was applied to show the knowledge this model 
can provide beyond known grip settings to reduce future human demonstration efforts. For 
example, as for gripping locations, the receiver can grasp any location in a handover process, and 
it is exhausting to demonstrate every potential grip point to the robot. Therefore, supposing n 
grip points on the objects were sampled during the demonstration process, only (n-1) data sets 
will be input to the ML model and leave one grip location as the test data. This leave-one-out 
approach will be used to test all the grip location and gesture variations.  
 
EXPERIMENTAL RESULTS  
 

Dominant Holding Hand Area. The PCA analysis shows that the thumb area is the most 
significant receiving activity indicator for both the receiver and giver for light to medium-weight 
cuboid objects. For heavy objects, the maximum PC area for the receiver is the fingers and palm 
for givers. 

Grip State Recognition and Robot Handover Simulation. The average grip state 
recognition accuracy for seen gripping settings is shown in Figure 5. Firstly, when using the 
collected data, the recognition accuracy is 98.52%, showing the suitability of the proposed 
sensory input. Secondly, when assigning higher guess ratios, we notice the model accuracy will 
largely decrease. This observation validated the data collection and labeling process. 
Additionally, for unseen grip settings, we have also obtained robust performance with an average 
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grip state inference accuracy of 88.79%. For unseen grip gestures, the inference accuracy is an 
average of 74.22%. In the robot simulation experiment, the Gazebo Panda robot was controlled 
by this classification model to release a cube when the human lifted a cuboid wood board from 
the edge of the table. Random grip location was adopted, and the simulation experiment achieved 
a 94% success rate (release too early: once; not releasing objects: twice).

Figure 4. Grip gesture variations in this study's experiments

Figure 5. Hand haptic map classification performance comparison for different guess ratios

Compared to Previous studies, we also have achieved higher human grip state recognition 
accuracy for unseen grip settings (Grigore et al. 2013, Koene et al. 2014, Palinko et al. 2016, 
Wang et al. 2018). This is presumably due to the choice of a more comprehensive physical state
representation of both grip gestures and forces.

CONCLUSIONS

In summary, this research explored an intuitive programming method that demonstrates 
robust performance in teaching the robot safe handover behavior norms. Contributions are made 
to both hardware and software systems to improve human grip state recognition accuracy and 
reduce the human workload. This controller also can be developed into a personalized model to 
preference to enhance each human receiver's experience based on their individual preference 
(Deng et al. 2022). Ongoing research by the authors is focused on further improving the 
generalizability to new objects. Such research will further reduce the workload and repetition 
required from human workers.
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