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ABSTRACT

Physical interactions between humans and construction robots must inevitably occur under a
capacity-based task allocation scheme for successful implementation of a human-robot
collaboration (HRC) based workflow. For example, in staging and installing components, a robot
can complete physically challenging material handling tasks and a human worker can then
creatively manipulate the materials for installation. When materials are handed over from robots
to humans, tandem manipulation of objects and physical interaction is necessary. However, this
poses several challenges to human workers’ safety, as the objects might fall or break, if the robot
incorrectly perceives the human worker’s grip state. This paper considers object handovers
between robots and humans and explores how to build a safe tandem HRC framework by letting
the robot imitate the mutual physical state adaptation dynamics inherent in human co-workers.
To build such a human physical state-aware robot controller, this paper first proposes the use of a
haptic glove-based sensing system to capture the grip strength and gesture of construction
workers simultaneously. Secondly, the programming by demonstration (PbD) method is used to
automatically program a robot through a one-shot demonstration of natural handover processes
without requiring the demonstrators (i.e., construction workers) to have computational or
programming expertise. The proposed method outperforms prior robot-to-human object
handover studies in handling eight construction materials of random shape, dimensions, and
weight distribution. In addition, to enable such construction HRC implementations to readily
comply with global safety standards, the proposed method is implemented to adhere to ISO
15066:2016 guidelines.

BACKGROUND

Human-Robot Collaboration (HRC) leverages both human cognitive advantages and robot
physical capabilities to further boost productivity (Brosque et al. 2020, Wang et al. 2021a, Liang
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et al. 2022, Park et al. 2023). However, there are two questions remaining unsolved. Firstly, the
robotic material preparation workflows and task allocations are unclear. A suitable workflow
should adapt to both humans' and robots' characteristics (Wang et al. 2020). Secondly, HRC
often assumes physical separations between humans and robots to ensure worker safety (Brosque
et al. 2020). Yet some construction activities inherently require tandem cooperation between two
construction workers. For example, the material transport workers sometimes directly hand over
objects to another worker to reduce unergonomic standing ups and travel for installation workers.
Similarly, the robot must also learn when to release the material to achieve safe and fluent
transitions after transporting materials to designated receivers. Such safe operations will
outperform simple physical separations in enabling skilled workers to perform necessary
improvisations in proximity to the robots.

Correspondingly, we develop a two-step solution. Firstly, we propose a material preparation
workflow with capacity-based task allocation schemes (or adaptive automation) to include both
advantages of humans and robots (Fitts 1951). Based on the classical capacity-based task
allocation scheme, the heavy and repetitive material transport tasks are outsourced to robots with
high physical capabilities. Moreover, the creative manipulation and installation tasks will be kept
for human workers, as shown in Figure 1.

Creative and skilled tasks

2 Handover
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Figure 1. Full-contact construction HRC task allocation schemes

Secondly, we propose to replicate successful practices inherent in human teams to build a
safe robot handover controller. An imitation robot motion planner is built to clone the mutual
physical state aware and adaptive collaboration mechanisms. This controller will perceive the
receiver’s real-time grip states and reacts as human givers. A behavior cloning (BC) model (Fang
et al. 2019) was also built to program human givers’ behaviors from their demonstrations. The
contributions of this paper are:

1) This paper discusses the material preparation and transport workflow for HRC to
maximum efficiency and physical comfort. By exploring the most challenging technical
part of physical state understanding, we also validate the feasibility of this workflow.

2) This paper studies the holding force patterns of human workers. Full-hand pressure maps
collected during holding a cuboid were collected and examined with Principal
Component Analysis (PCA) (Roweis 1997) applied to reveal the holding areas for both
receivers and givers.

3) This paper proposes to use both grip strength and gesture to represent the human’s grip
state and pioneers the use of full-hand tactile gloves to comprehensively sample the
pressure map of an entire hand. This paper is also among the select few in the literature
that applied Imitation Learning to the robot-to-human object handover problem to
minimize the human workers’ efforts. In our research, a 25-second one-shot natural
object handover process serves as the demonstration. Our method is comparably more
efficient and accurate for both seen and unseen grip settings.
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TECHNICAL APPROACH

Robot Material Transition Controller. We propose a closed-loop robot handover control
system with a built-in behavior cloning model. As shown in Figure 2, the controller model is
firstly trained offline with semi-supervised learning. On this basis, the trained control model
parameters are stored in the robot control system and are achieved online control of the robot's
real-time action.

Due to the low-level architecture dependencies, the Tekscan 4256E grip sensor can only
connect to a Windows machine. However, the robot simulation and control system — Robot
Operation System (ROS), runs on the Ubuntu/Linux environment. Thus, a data transmission
system was needed. ROS# serves as the data transmission conduit and connects the C# Tekscan
API with the ROS system.
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Figure 2. Graphical abstract of closed-loop robot handover controller

The data transmission speed was also evaluated. With the average transmission speed for one
frame of a haptic map averaging 0.0693 sec, the system reacts faster than the typical human
visual reaction time of 0.15 sec (Thorpe et al. 1996). Therefore, the wireless data transmission
system is concluded to have a latency that does not affect the perceived fluency of the robot-to-
human handover system.

Principal Holding Area Analysis. We applied PCA to both the giver's and receiver's haptic
maps collected during the handover of three cuboid objects of different weights. This analysis
could return the statistically highest weighted components that can explain more than 98%
variability (hold vs. release) of the haptic maps. By understanding the spatial distribution of such
elements, we can show the dominant holding areas for both hold and release phases during object
transitions.

Grip State Representation and Sensors. Force-based sensors are widely used in robot-to-
human handover studies to understand the grip state (Huang et al. 2015, Wang et al. 2021b, Pan
et al. 2019). Yet it neglected the gesture changes which are often observed to affect the giver's
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acting decisions (Wang et al. 2021b). Inspired by observations of strong correlations between
receiver hand gestures and receiving activities from the above PCA analysis, we propose a new
grip state indicator of both gripping force and gripping gestures. To collect both simultaneously,
we used full-hand haptic sensors. The Tekscan 4256E grip sensor was selected and glued to soft
work gloves, as shown in Figure 3 (right). Such soft tactile gloves can accurately reflect the
human receiver's grip patterns during the material transition process.

The sampling frequency was set to 100 Hz based on similar research experiment settings
(Huang et al. 2015). Every 0.01 sec, a haptic map containing data from 52 (horizontal) x 46
(vertical) hand pressure sensors was created, as shown in Figure 3 (left). The pressure sensor
precision was set to one psi.

| Fingers

Figure 3. The haptic map and the soft tactile glove

Human Handover Behavior Cloning Model. We used the behavior cloning method
proposed by Yu et al. (2023). A 25-sec natural human-to-human handover process as the
demonstration. The human receivers wore haptic gloves during the handover process and gave
verbal commands to show their subjective evaluation of the firmness of their grip states. For
example, when the receiver subjectively feels a stable grip on the object, the receiver will
verbally signal the giver by saying a short multiple-syllable word/sentence such as "okay" or "I
got it". A voice recorder with a resolution of 0.01 sec then recorded the whole handover process
to understand the receiver's subjectively comfortable release moment.

With the collected paired receiver haptic map-intent data, we assigned an action label of
"hold" to haptic maps collected before the release moment. A "release" action was assigned to
those collected after the release moment. With the labeled haptic maps, a classification model
was built to teach robots to recognize the haptic maps that imply the correct time to start
transitioning objects. Several common classification algorithms were experimented with,
including Random Forest, Support Vector Machine (SVM), Long Short-Term Memory (LSTM),
and Ensemble Methods. SVM showed the highest accuracy in this preliminary testing phase (Yu
et al. 2023).

EXPERIMENT SETUP
Construction Materials. 8§ common construction materials of various dimensions, shapes,

weights, and mass distributions, as shown in Table 1. All contact surfaces were also wrapped
with plastic wraps to unify contact conditions.
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Grip Locations. Data are sampled from various grip locations on the same objects,
considering that grip force changes along with different grip locations on the objects. Grasp
points were sampled every 5 cm. The number of grasp points for each object is shown in Table 1.

Table 1. Dimensions and weights of tested objects

Object Weight Grip Area Diameter Grip Locations
(2) (cm)

Bolt 216 1.0 3
Hammer (100z) 423 2.8 4
Hammer (16 oz) 678 3.5 4

Light Board 301 2.4 5
Heavy Board 846 9.8 5
Short Tube Glue 472 6.6 3
Long Tube Glue 293 52 3
Fluid Glue 272 4.2 3

Grip Gestures. The two most popular habitual grip gestures (pinch or grasp with all five
fingers) were selected to cover more than 75% of preferred grip gestures for cuboid and cylinder
objects (Lee et al. 2014), as shown in Figure 4. Additionally, as object orientation and relative
location to the hand affect the grip gesture (Paulum et al. 2016), the two most extreme object
orientations (horizontal and vertical) and two grip methods (overhand, underhand) were added to
the combination to show robustness. Therefore, six different grip gesture settings were used, with
some examples shown in Figure 4. Moreover, three users were invited to be demonstrators. This
small user group size was found to be suitable, considering that high similarities in habitual grip
gestures and orientations have been observed (Lee et al. 2014, Paulum et al. 2016).

Unseen Grip Settings. The leave-one-out test was applied to show the knowledge this model
can provide beyond known grip settings to reduce future human demonstration efforts. For
example, as for gripping locations, the receiver can grasp any location in a handover process, and
it is exhausting to demonstrate every potential grip point to the robot. Therefore, supposing n
grip points on the objects were sampled during the demonstration process, only (n-1) data sets
will be input to the ML model and leave one grip location as the test data. This leave-one-out
approach will be used to test all the grip location and gesture variations.

EXPERIMENTAL RESULTS

Dominant Holding Hand Area. The PCA analysis shows that the thumb area is the most
significant receiving activity indicator for both the receiver and giver for light to medium-weight
cuboid objects. For heavy objects, the maximum PC area for the receiver is the fingers and palm
for givers.

Grip State Recognition and Robot Handover Simulation. The average grip state
recognition accuracy for seen gripping settings is shown in Figure 5. Firstly, when using the
collected data, the recognition accuracy is 98.52%, showing the suitability of the proposed
sensory input. Secondly, when assigning higher guess ratios, we notice the model accuracy will
largely decrease. This observation validated the data collection and labeling process.
Additionally, for unseen grip settings, we have also obtained robust performance with an average
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grip state inference accuracy of 88.79%. For unseen grip gestures, the inference accuracy is an
average of 74.22%. In the robot simulation experiment, the Gazebo Panda robot was controlled
by this classification model to release a cube when the human lifted a cuboid wood board from
the edge of the table. Random grip location was adopted, and the simulation experiment achieved
a 94% success rate (release too early: once; not releasing objects: twice).
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Figure 4. Grip gesture variations in this study's experiments

r0.985
0.0030

=
o
o

0.0025
F 0983

0.0020 0932

0.0015 F 0981

False Positive Rate

0.0010 o980

,:.
Classification Accuracy

roa7rs

0.0005

0.0001 02 0.4 0.6 08 0.99
Given Guess Ratio

Figure 5. Hand haptic map classification performance comparison for different guess ratios

Compared to Previous studies, we also have achieved higher human grip state recognition
accuracy for unseen grip settings (Grigore et al. 2013, Koene et al. 2014, Palinko et al. 2016,
Wang et al. 2018). This is presumably due to the choice of a more comprehensive physical state
representation of both grip gestures and forces.

CONCLUSIONS

In summary, this research explored an intuitive programming method that demonstrates
robust performance in teaching the robot safe handover behavior norms. Contributions are made
to both hardware and software systems to improve human grip state recognition accuracy and
reduce the human workload. This controller also can be developed into a personalized model to
preference to enhance each human receiver's experience based on their individual preference
(Deng et al. 2022). Ongoing research by the authors is focused on further improving the
generalizability to new objects. Such research will further reduce the workload and repetition
required from human workers.
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