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Recent findings suggest that even those students who demonstrate relevant formal 
knowledge tend not to use it productively, especially on tasks that elicit intuitively 
appealing incorrect responses. Dual-Process Theories of Reasoning suggest that to 
catch a mistake, reasoners must engage in the process of error detection and 
override:  recognize reasoning red flags, consider alternatives, and apply relevant 
knowledge to check their validity. It is, however, challenging for many novice 
physics learners to recognize what specific formal knowledge must be used as a 
criterion that needs to be satisfied for validating or rejecting a response. To help 
students develop skills necessary for error detection and override, we designed a 
sequence of systematic spaced practices in the context of Newton’s 2nd law. We 
examined the effectiveness of this approach and identified specific factors that 
contribute to more productive engagement in error detection and override.    
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I. INTRODUCTION 
Knowledge is central to 

productive reasoning but 
insufficient, especially in situations 
that present reasoning hazards  [1–
4]. Consider two students in an 
introductory mechanics course, Lisa 
and Danny (all names are 
pseudonyms). The students discuss 
forces acting on a box at rest on a 
horizontal surface while a constant 
horizontal 30N force is applied to the 
box, as shown in Fig. 1a [5,6]. Both students correctly argue 
that since the box is at rest, according to Newton's 2nd law, 
the force of friction must be 30N to the left. However, Lisa 
and Danny abandoned this line of reasoning on the follow-
up question in Fig. 1b, where two identical boxes are now at 
rest on surfaces with different friction coefficients (µA<µB) 
while a horizontal 30 N force acts on each box. Lisa now 
argues that the force of friction on Box A is less than that on 
Box B because µA<µB. Danny agrees and supports this 
response with the expression for the maximum value of the 
static friction, fr=µN. While this expression is not applicable 
in this case, it provides confirmation for Lisa’s intuitively 
appealing but incorrect response. Neither student seems to 
question the validity of their answers by checking for 
consistency with Newton’s 2nd law that they had just applied 
on a nearly identical problem presented without salient 
distractive features (i.e., different µ).   

On question 1, Lisa and Danny demonstrated the 
knowledge and skills necessary to analyze forces acting on 
an object at rest. However, they did not transfer this 
knowledge to solve question 2 correctly. Inconsistent 
responses like Lisa’s and Danny's often persist even after 
instruction [3,7–11]. To help students minimize reasoning 
inconsistencies, it is necessary to 1) understand the cognitive 
mechanisms responsible for productive and unproductive 
reasoning pathways and 2) pinpoint factors and instructional 
circumstances that help students enhance their reasoning 
skills necessary to validate or reject a response.   

In this paper, we use Dual-Process Theories of 
Reasoning (DPToR) as a theoretical framework [1,2,12]. We 
describe a sequence of instructional interventions informed 
by DPToR and examine the roles of two factors that may 
impact student reasoning: the strength of relevant knowledge 
and the tendency toward cognitive reflection.   

II.  THEORETICAL FRAMEWORK 

Research in cognitive psychology suggests that 
reasoning involves two processes: quick and subconscious 
process 1 and slow and deliberate process 2. Process 1 is 
often referred to as "gut feeling" or intuition. It immediately 
recognizes a given situation in a specific way based on prior 

knowledge, experiences, 
and expectations. We 
agree with the 
parsimonious and 
pragmatic definition of 
intuition as “nothing 
more and nothing less 
than recognition. [2]” 
This recognition (often 
much more accurate for 
experts than novices) 
leads to the provisional 
mental model, which becomes available for scrutiny by the 
slow, deliberate, and analytical process 2, as shown in Fig. 2. 
It could be argued that Lisa and Danny immediately and 
accurately recognized the task in Fig. 1a as “about balanced 
forces.” However, the salience of different µ in Fig 1b may 
have overshadowed this approach and cued a provisional 
model involving static friction based on µ. 

Process 1 cannot be turned off. As such, a provisional 
mental model is an entry point into any reasoning path, and 
process 2 is tasked with evaluating its validity. If a reasoner 
is confident in the provisional model, process 2 may be 
entirely circumvented such that a conclusion is reached via 
a path of cognitive frugality. Knowing when it is safe to jump 
to a conclusion via that path is linked to cognitive reflection 
skills, defined as a reasoner’s tendency to mediate incorrect 
intuitive responses by engaging in process 2 analysis. The 
Cognitive Reflection Test (CRT) is often used to measure 
domain-general cognitive reflection skills [13–16].  

If Process 2 intervenes, it still may not engage in 
productive error detection and override due to reasoning 
biases. Reasoners often look for evidence to justify the 
output of the intuitive process 1 if they already believe it is 
correct (i.e., confirmation bias)  [17]. For example, Danny 
justified Lisa’s comparison of the forces of friction by 
employing the mathematical expression for the maximum 
value of static friction that is not applicable in this case. If 
process 2 does scrutinize the provisional mental model and 
reasoning red flags are detected, then a new reasoning cycle 
begins by process 1 suggesting a new provisional mental 
model. The cycle repeats until a satisfactory answer is 
reached. In summary, to catch a mistake, a reasoner must 
engage in process 2, detect reasoning red flags, possess 
strong enough relevant knowledge to generate plausible 
alternatives, and assess their validity.  

III. MOTIVATION AND STUDY DESIGN 
 The DPToR outlines cognitive mechanisms responsible 
for productive and unproductive reasoning pathways. In this 
study, we probed under what conditions students are more 
likely to reason productively and what factors may impact 
their reasoning approaches. We designed a longitudinal 8-
week  study in  an  introductory  calculus-based  mechanics 
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FIG. 3.  Top row: tasks included in the systematic spaced practices; bottom row: instructional sequence for each spaced practice. 
 

course. Students participated in 4 assignments spaced by 
~10-14 days and administered in a web-based format outside 
of class. Each assignment focused on a task similar to that 
included in the opening paragraph. Tasks for each 
assignment are shown in Fig. 3. Assignment 1 included task 
1 and was administered after all relevant instruction on 
forces and Newton’s laws. Assignments 2-4 included tasks 
2-4, respectively, followed by scaffolded intervention.  
 The task from the opening paragraph is task 1. In task 2 
a magnet weighing 10N is at rest on a refrigerator door while 
a hand supports the magnet from below with a 6N force; 
students determine the force of friction between the magnet 
and the door. In task 3, two pancake-like objects of different 
surface areas but the same mass fall to the ground after 
reaching terminal speeds; students compare the forces of air 
resistance on each object. In task 4, two identical blocks are 
at rest on different springs; students compare the forces on 
each block by a spring [18]. All tasks require the application 
of Newton’s 2nd law to recognize that Fnet=0 on each object, 
and therefore: in task 2, the force of friction between the 
magnet and the door points in the direction of the force by 
the hand; in task 3, the force of air resistance (Fair) is equal 
to the weight and therefore Fair1=Fair2; and in task 4, the force 
by the spring (Fspr) is equal to the weight so that Fspr1=Fspr2.   
 Many students gave incorrect answers, just like Lisa and 
Danny. On task 2, many reasoned that the force of friction 
“opposes the force by the hand” and must point downward. 
These students typically do not recognize the need to draw a 
free-body diagram and include the weight of the magnet or 
use Newton’s 2nd law. When pointed to such an omission, 
many argue that they “forgot about the gravity.” On task 3, 
many stated that the object with a larger surface area 
experiences a greater force of air resistance. Such responses 
often contain the mathematical expression Fair=rACv2/2 to 
justify the dependence of Fair on the surface area A. Students 
engaged in this line of reasoning neglect to recognize that 
this approach includes an inappropriate assumption that the 
objects move with the same terminal speed v. Similarly, 
many responses to task 4 are based on the salience of the 
different heights of the blocks on the springs. Students think 
that the different spring compressions, Dx, signify different 
Fspr and often justify this thinking with Hook’s law while 
inappropriately assuming identical springs (k1=k2).  
 Through the lens of DPToR, it could be argued that 
student responses of this nature stem from incorrect 

provisional mental models cued by salient features of the 
tasks (e.g., different surfaces). Researchers argue that since 
the output of process 1 is subconscious and automatic, two 
approaches may be employed to improve performance. First, 
develop instruction focusing on a more accurate output of 
process 1 [19]. If the relevant knowledge is strengthened to 
the level of automaticity (as is often the case for physics 
instructors), then reasoners are more likely to immediately 
and subconsciously recognize its applicability correctly. 
Second, focus instruction on the more productive 
engagement of process 2 in error detection and override. 
Students should be able to recognize reasoning red flags and 
examine the validity of their provisional mental models by 
checking for consistency with more fundamental knowledge 
(e.g., Newton’s laws). In our study, we create DPToR-
informed learning opportunities by 1) providing systematic 
spaced practices and 2) implementing scaffolded 
interventions for more productive process 2 engagement. 
 Scaffolded interventions were included in assignments 
2-4 and followed each task as shown in Fig. 3. The 
interventions prompted the students to 1) consider 
alternative reasoning approaches, 2) apply relevant formal 
knowledge to help choose between alternative solutions, and 
3) reconsider the initial response, if necessary. Below we 
focus on an intervention for task 4. The interventions for 
tasks 2 and 3 are based on similar principles. 
First, students were asked to consider two expressions 

(Fspr=kDx and Fspr=mg) and determine which expression(s) 
must be used to compare the magnitudes of the forces on 
each block by the spring. This question was designed to 
nudge students to consider alternative reasoning approaches 
and, if appropriate, reject the reasoning based on the 
assumption that k1=k2. To further facilitate the error 
detection and override, students were asked to determine 
which one of the choices in Fig. 4 represents the correct free-
body diagrams for the two blocks. This question was 
designed to make the information about the blocks being 
identical (i.e., equal W) more salient, thus prompting 
students to balance W and Fspr according to Newton’s 2nd law 
and arrive at a correct answer. Finally, the students were 
asked whether they still agreed with their initial responses to 
task 4 and to elaborate on any changes in their reasoning.  
 A classroom discussion led by an instructor followed 
each web-based assignment, as shown in Fig. 3. Students 
considered a task from the assignment again (3rd attempt), 
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discussed their reasoning with peers, and submitted their 
individual answers via a classroom personal response 
system. The instructor then facilitated a discussion 
converging on a normative response. An assessment task 
shown in Fig. 3 was included on the course exam. Students 
considered two identical blocks hanging from springs and 
compared the forces by the springs on each block.  

IV.  PRELIMINARY RESULTS AND MOTIVATION 
FOR FURTHER INVESTIGATION 

 One common limitation of longitudinal studies is a 
reduced student response rate. In our case, 39 out of 60 
students enrolled in the course completed all the 
assignments, reducing the sample size to ~2/3. Nevertheless, 
this potential selection bias provides an upper bound on our 
results since it could be argued that those students who 
completed all the assignments may be more motivated to 
receive a higher grade in the course.   
 As stated above, we designed this study to probe to what 
extent systematic spaced practices improve recognition of 
the applicability of Newton’s 2nd law to novel situations and 
improve recognition of reasoning red flags that may lead to 
error detection and override. The expected desirable 
outcome was a higher success rate on each consecutive task.  
 The results in Table I show no clear improvement 
trajectory on the four tasks. The maximum success rate 
barely exceeds 50%. The scaffolded interventions do not 
appear to engage students in error detection and override 
successfully since only a few students improved on the 2nd 
attempt. The largest (but modest) improvement was 
observed between task 4 and the course exam assessment. 

TABLE I. Results of the systematic spaced practices  
Tasks Correct  

(1st attempt) 
Correct  

(2nd attempt) 
Task 1  41% - 
Task 2 20% 33% 
Task 3 54% 56% 
Task 4 46% 49% 
Assessment for task 4 67% - 

We examined performances on task 4 and the exam to 
gain further insights into student reasoning patterns. On tasks 
1-3, ~72% of students answered at least one of the tasks 
correctly, demonstrating their abilities to recognize the 
applicability of Newton’s 2nd law to a novel situation that 
presents reasoning challenges. This provides some evidence 

that these students possess relevant knowledge and skills to 
solve task 4 correctly as well. Nevertheless, only ~60% of 
these students responded correctly to task 4 after the 
intervention. This leads to two hypotheses. First, students 
who possess relevant knowledge, but answer task 4 
incorrectly, may have a higher tendency to jump to 
conclusions without engaging in process 2 (i.e., have a lower 
tendency toward cognitive reflection). Second, the relevant 
knowledge is not simply present or absent. Instead, to reason 
productively, it must be instantiated to a greater depth, which 
may facilitate automatic recognition of its applicability 
(productive output of process 1) and/or increased confidence 
during error detection and override (productive engagement 
of process 2). 
To test hypothesis 1, we used the cognitive reflection test 

developed and widely used in cognitive psychology and 
beyond [13–16,20]. The test consists of 3 items that cue 
intuitively appealing but incorrect responses that could be 
easily confirmed (or rejected) upon only brief reflection. For 
example, the first CRT item poses the question: “A bat and 
a ball cost $1.10 in total. The bat costs $1.00 more than the 
ball. How much does the ball cost?” A solution based on 
basic arithmetic yields 5¢. Many, however, give a quick 
response of 10¢ without checking for its validity. A correct 
answer to each CRT item is assigned 1 point. Scores 2 or 3 
indicate a stronger tendency to mediate intuition with 
analytical thinking.  
To test hypothesis 2, we created a variable that indicates 

how many tasks 1-3 a student answered correctly after an 
intervention (upon 2nd attempt). In the following discussion, 
this variable, called Strength of Knowledge, provides a rough 
estimate of the level of knowledge instantiation. For 
example, a score of 1 indicates that a student not only 
possesses relevant knowledge but also was able to recognize 
its applicability to a situation eliciting intuitively appealing 
responses at least once. The higher the score, the deeper the 
knowledge is instantiated.   
Since the most significant improvement in student 

performance occurred on the exam after an instructor-led 
classroom discussion, we explored how the shifts in 
performance between task 4 and the exam are linked to the 
Strength of Knowledge and a CRT score.     

V. RESULTS AND DISCUSSION 
The histogram in Fig 5a suggests no significant 

relationship between the performance on task 4 (labels C and 
I indicate correct and incorrect responses, respectively) and 
a CRT score. While more students with CRT=3 answered 
correctly and all students with CRT=0 answered incorrectly, 
the distributions of correct and incorrect responses for 
CRT=1 and CRT=2 are roughly the same. We used logistic 
regression analysis to formally verify this claim. Logistic 
regression is robust for a sample with more than 10 events 
(i.e., number of correct responses) per predicting variable 
(i.e., CRT score) [21]. The model for the probability of a 
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correct response on task 4 as a function of a CRT score 
suggests that the CRT score is not a statistically significant 
predictor of success on task 4 (b=0.6, p=0.07) [15].  
Even though our data do not support hypothesis 1, it does 

not mean cognitive reflection skills are irrelevant to 
productive reasoning. A replication study with a larger 
sample size is needed to verify the result. It is also possible 
that the strength of knowledge is a more powerful predictor 
in cases of systematic spaced practices. Indeed, a histogram 
in Fig. 5b does suggest a link between student performance 
and the strength of their knowledge. Students who 
consistently answered tasks 1-3 correctly had a 100% chance 
of correct response on task 4. Students with a knowledge 
score of 2 (or 1) were slightly more (or less) likely to answer 
task 4 correctly, and the students with a knowledge score of 
0 were very unlikely to do so. The logistic regression model 
for the probability of answering task 4 correctly as a function 
of the Strength of Knowledge variable suggests a strong 
statistically significant relationship between the two 
variables (b=1.4, p=0.002), thus supporting hypothesis 2.  
Finally, we examined the relationship between student 

performance on the exam, task 4, and a CRT score. The 
results suggest that nearly all students who answered task 4 
correctly (bottom row in Fig. 6) also arrived at a correct 
answer on the exam. About half of the students who 
answered task 4 incorrectly (top row in Fig. 6) recovered on 
the exam and gave a correct response. There does not appear 
to be a dependence of the shifts in student performance 
between task 4 and the exam on the student CRT scores. As 
evident from the top row in Fig. 6, students who improved 
their reasoning on the exam were equally likely to do so 
regardless of their CRT score (except those with CRT=0 who 
consistently underperformed). The logistic regression 
analysis supports the conclusion that the performance on 
task 4 is a strong predictor of success on the exam (b=2.3, 
p=0.007) while a CRT score is not statistically significant.  
We argue that the students who possess relevant 

knowledge do not always apply it successfully because 
intuitively appealing responses often overshadow its 
applicability. If students feel confident in their provisional 
mental models, they do not tend to recognize the need to 
apply formal knowledge to scrutinize intuition-based 
responses. This is consistent with prior findings that novices 
tend to compartmentalize their knowledge instead of 
reasoning from fundamental principles [22,23]. Many 

students learn how to apply Newton’s 2nd law to solve a 
variety of more computationally demanding problems but 
struggle to recognize how to use the same knowledge as a 
criterion that needs to be satisfied when validating or 
rejecting a response.  
A classroom discussion incorporating peer-peer and 

instructor-student interactions helped some students to 
transfer correct reasoning to the situation presented on the 
exam. However, it is still an open question whether students 
will be more successful in applying this knowledge to similar 
tasks in different contexts (e.g., comparing buoyant forces 
on two identical blocks floating on surfaces of different 
liquids at different levels of depth).  

VI.  CONCLUSION 

 We employed DPToR as a guide for developing 
instructional interventions to improve student reasoning on 
tasks that elicit intuitive incorrect responses. Analysis 
revealed that intuitive thinking has a strong hold on student 
reasoning even after systematic spaced practices. We 
examined factors that may impact student performance. In 
prior studies, cognitive reflection skills have been linked to 
productive reasoning on similar tasks. In this study involving 
systematic spaced practices, however, CRT scores do not 
appear to be a predictor of success. The strength of 
knowledge, measured by the success rate on similar tasks in 
different contexts, improves knowledge transfer to a 
different context. A classroom discussion also appears to 
facilitate a more productive application of relevant 
knowledge to a similar context. The improved performance 
may be attributed to two mechanisms: a strengthened 
recognition of the applicability of relevant knowledge and an 
improved recognition of reasoning red flags cued by a 
familiar context. However, more targeted instruction is 
needed to help students recognize how to apply fundamental 
knowledge as a criterion for validity checking. A replication 
study with a larger sample size is necessary to examine the 
validity of our findings and expand to different contexts.   
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FIG. 6. Distribution of performance on exam according to a) 
CRT score and b) performance on task 4 
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FIG. 5. Distribution of correct (indicated by C) and incorrect 
(indicated by I) responses to task 4 according to CRT score 
and Strength of Knowledge score.  
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