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Abstract 
The lack of routine viral genomic surveillance delayed the initial detection of SARS-CoV-

2, allowing the virus to spread unfettered at the outset of the U.S. epidemic. Over 

subsequent months, poor surveillance enabled variants to emerge unnoticed. Against this 

backdrop, long-standing social and racial inequities have contributed to a greater burden 

of cases and deaths among minority groups. To begin to address these problems, we 

developed a new variant surveillance model geared toward building ‘next generation’ 

genome sequencing capacity at universities in or near rural areas and engaging the 

participation of their local communities. The resulting genomic surveillance network has 

generated more than 1,000 SARS-CoV-2 genomes to date, including the first confirmed 

case in northeast Louisiana of 

Omicron, and the first and sixth confirmed cases in Georgia of the emergent BA.2.75 and 

BQ.1.1 variants, respectively. In agreement with other studies, significantly higher viral 

gene copy numbers were observed in Delta variant samples compared to those from 

Omicron BA.1 variant infections, and lower copy numbers were seen in asymptomatic 

infections relative to symptomatic ones. Collectively, the results and outcomes from our 

collaborative work demonstrate that establishing genomic surveillance capacity at smaller 
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academic institutions in rural areas 

and fostering relationships between 

academic teams and local health 

clinics represent a robust pathway 

to improve pandemic readiness. 
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Introduction 

In late 2019, a newly emergent 

betacoronavirus, severe acute 

respiratory syndrome coronavirus 2 

(SARS-CoV-2), was identified as the 

etiological agent associated with an 

outbreak of viral pneumonia in 

Wuhan, China [1, 2]. The outbreak 

quickly grew to become a global 

public health emergency, now 

commonly referred to as the COVID-

19 pandemic. Between November 

2020 and January 2021, the first 

variants of concern (VOC) Alpha, 

Beta, and Gamma, were detected in 

England, South Africa, and Brazil and 

Japan, respectively. All three carried 

convergent spike (S) N501Y 

substitutions, while Beta and 

Gamma shared substitutions S:K417N/T and S:E484K. It is now appreciated that SARS-CoV-2 

variants can be more transmissible [3], differ in pathogenicity [4, 5], and/or escape 

immunity afforded by vaccination or by infection with earlier variants [6, 7]. Although the 

Omicron lineage has displaced Delta [8], new Omicron sublineages continue to emerge [9], 

certain of which harbor concerning combinations of S substitutions that escape neutralizing 

antibodies, e.g., F486V, F486P, R346T, K444T, N460K, F490S [10–16]. After multiple waves of 

Omicron descendent lineages, the emergency phase of the pandemic has wound down, but 

COVID-19 remains largely uncontrolled in virtually all geographies. Despite a greatly reduced 

mortality rate, the virus remains a threat, particularly to older individuals, and moreover, 

continues to evolve [17]. Ongoing microbial genomic surveillance is necessary not only to 

promptly identify new SARS-CoV-2 variants, but also to detect and inform public health 

responses to other microbial threats, such as influenza viruses, monkeypox virus, countless 

pre-emergent bat-borne viruses, and antimicrobial resistance in bacteria [18–22]. 

Starting with the sharing on 10 Jan 2020 of the first “novel coronavirus 2019” genome 

[23], scientists have closely tracked the evolution of SARS-CoV-2. Viral genomic surveillance 

activities sprung up to sequence the genomes of circulating viruses, usually from patient 

nasal swabs, sharing their data via GISAID (www.gisaid.org) [24], and/or the international 

nucleotide sequence database collaboration (INSDC) [25]. These practices collectively 

enable scientists around the world to track viral evolution across space and time while 

keeping tabs on mutations that can compromise the utility of diagnostic assays or negatively 

impact the clinical efficacy of vaccines or monoclonal antibody therapeutics. Effective 

surveillance relies on prompt viral whole genome sequencing of recent samples across 

representative geographies and populations, as well as rapid, ‘low latency,’ sharing of 

resulting data. Accordingly, investments in viral whole genome sequencing have increased 

greatly during the pandemic, with vastly more whole genome sequences of SARS-CoV-2 

being shared than any virus in history. 

At the outset of the pandemic, SARS-CoV-2 genome sequencing efforts were patchy at 

best and in many geographies non-existent [26–28]. Although scientists in the U.K. and 

South Africa swiftly established exemplary viral genomic surveillance programs, in the U.S., 

SARS-CoV-2 genome data initially came in large part from ad hoc efforts that often relied on 

discretionary funds or support from private foundations and philanthropies [29–31]. The 

emergence in late 2020 of the first variants of concern prompted the U.S. Centers for 

Disease Control and Prevention and the National Institutes of Health to invest in the 

development of large-scale nationwide genomic surveillance. Despite this, many states in 

the Midwest and Southern U.S. remain poorly represented in the genomic surveillance data 

[32], even though their residents have been disproportionately impacted by COVID-19 [33–

35]. This ruralurban disparity was compounded during the pandemic for racial and ethnic 

minorities [36, 37] who already bore a greater burden of disease [38]. The failure to 

adequately track emerging variants in a representative fashion may have exacerbated 

existing disparities in allocation of public health resources, such as rapid antigen tests and 

monoclonal antibody therapies. 

To address this lack of representation, Grambling State University, Louisiana Tech 

University, and Louisiana State University Health Shreveport established a viral genomic 

surveillance hub to reach several vulnerable and underserved populations in north Louisiana 

http://www.gisaid.org/
http://www.gisaid.org/
http://www.gisaid.org/
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[39]. Soon after, we partnered with Mercer University School of Medicine in Georgia, 

Jackson State University in Mississippi, as well as with community health centers in each of 

our areas to increase SARS-CoV-2 genome sequencing volume and representativeness. These 

efforts resulted in a new viral genomic surveillance network serving a total of 16 counties or 

parishes across these 3 southern U.S. states (Fig 1). 

Our primary goals were to improve sampling from rural communities and minorities, to 

empower underrepresented minorities conducting the scientific work of viral genomic 

surveillance, and to provide individuals who donate samples for viral genome sequencing 

the opportunity to do so with consent and an understanding of how their samples would be 

used to track viral variants. Most viral genomic surveillance programs sequence viral 

genomes from patient swabs under a ‘medical waste’ exemption, without obtaining the 

patient’s consent. In participatory surveillance projects, however, community members and 

volunteers collaborate to collect data, such as reporting weekly influenza symptoms [40]. 

Echoing this concept, at our project sites in Louisiana we educated patients about viral 

genomic surveillance and variant tracking, and provided them the opportunity to decide 

whether or not to donate their samples for sequencing. 

The COVID-19 pandemic has also underscored the importance of contextual metadata 

accompanying genomic data. Incomplete metadata confounds comparative analyses and 

impedes data-driven policymaking [41, 42]. Thus, an additional objective was to collect more 

complete metadata to maximize the usefulness of the shared sequences. We used self-

reported patient metadata to assess relationships between viral gene copies (as an index of 

viral load) and variant type, vaccination status, and symptomatology. 

Here, we summarize the results of our work to improve representation and expand viral 

genomic surveillance in Louisiana, Georgia, and Mississippi. 

 

Fig 1. Geographic coverage of SARS-CoV-2 genomic surveillance in Louisiana, Georgia, and Mississippi. Map of the surveillance 

region with parishes (Louisiana) or counties (Georgia, Mississippi) where at least one specimen was sequenced by the network 

indicated in red. Map created using MapChart and republished under a CC BY license with permission from Minas Giannekas, original 

copyright 2014. 
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Results and discussion 

Improving representativeness in genomic surveillance 

In Louisiana, our six partner clinics collected 405 rapid antigen-positive clinical specimens 

from the residents of nine parishes (Allen, Bienville, Franklin, Jackson, Lincoln, Morehouse, 

Ouachita, Union, and Webster) between 22 July 2021 and 12 April 2022 (Fig 1). We worked 

closely with clinicians at the collection sites to gain informed consent from patients and 

collected metadata on patient demographics and vaccination status for more than 90% of 

the specimens (Table 1). 

In these nine parishes, between 24.2% (Ouachita) to 82.9% (Union) of the residents live in 

rural areas as defined by the U.S. Census Bureau [43]. Rural areas may be especially 

vulnerable to the pandemic because they tend to have less capacity for diagnostic testing 

and healthcare services [44, 45] while being home to a poorer, older, health-compromised 

population [46]. Bienville and Franklin parishes in particular ranked among the 20 poorest 

counties out of 300 identified as having the highest COVID-19 mortality rates in recent 

analysis of 3,200 U.S. counties and county equivalents (e.g., parishes) [47]. Notably, the 

majority of the other parishes in the region were likewise characterized as low income and 

high mortality. 

The disproportionate impact of COVID-19 on racial and ethnic minorities is well 

documented [48–50]. Nearly 60% of our donors self-identified as non-white or of mixed 

heritage (two or more races), compared to approximately 41% non-white overall in the 

sampled parishes per U.S. Census data [51]. Therefore, our data reflects enhanced 

representation of minority groups. In our view, this nominal oversampling nonetheless 

comports with equitable genomic surveillance because it compensates [52] for the overall 

disproportionately fewer samples from both rural and minority populations in the U.S. as a 

whole. Notably, 8.4% of our specimens were from Hispanic donors who make up just 3.1% of 

the northeast Louisiana population but were far more likely to contract COVID-19, 

accounting for 13.8% of overall cases in the region (up to 60% in some parishes) according to 

the Louisiana Department of Health COVID-19 dashboard [53]. Our partnership with The 

Health Hut mobile clinic, which was staffed with Spanish-speaking health care workers, 

contributed to improved representativeness among this population. 

Overall, we detected SARS-CoV-2 RNA in 389 of the 405 specimens collected in Louisiana, 

using the U.S. CDC’s real-time RT-PCR diagnostic assay. We carried out whole viral genome 

sequencing on these PCR-positive samples, ultimately recovering viral genome data from 

272 (70%) of them. These data represented 1.32% of the 20,617 genomes shared via GISAID 

from Louisiana during the reported period. 

Accelerating regional genomic surveillance 

After successfully establishing relationships with local clinics and developing a pipeline for 

exchanging specimens and data across our network in Louisiana, we felt confident sharing 

our model with other peer institutions across the south. Mercer University School of 

Medicine in Georgia and Jackson State University in Mississippi both joined our efforts, 

building on relationships to engage their own communities in genomic surveillance. 

https://doi.org/10.1371/journal.pgph.0001935.g001
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In Georgia, COVID-19 positive patient swabs were collected by Mercer Medicine Student 

Health Services in Bibb, Chatham, DeKalb, Effingham, and Fulton counties and from a 

community clinic located in Peach County that is operated by Mercer Medicine (Fig 1). 

Roughly 81% of the Georgia specimens were obtained from counties outside of the Atlanta 

metropolitan area. Approximately 48% of Mercer donors did not self-identify as white. After 

testing positive via PCR analysis, specimens were sent to the Center of Excellence for 

Emerging Viral 

Table 1. Characteristics of study donors in Louisiana (22 July 2021–12 April 2022). 

CHARACTERISTICS NUMBER OF DONORS (%)* 

n = 405 

Median age (range) 22 (1–86) years 

Sex  

Male 180 (44.4) 

Female 215 (53.21) 

Not disclosed 10 (2.5) 

Race/ethnicity  

White 99 (24.4) 

Black 205 (50.6) 

Hispanic 34 (8.4) 

Asian 4 (<1) 

Pacific Islander 1 (<1) 

Alaska Native 1 (<1) 

Other 1(<1) 

Not disclosed 66 (16.2) 

PCR  

Negative 15 (3.7) 

Positive 389 (96) 

Indeterminate 1 (<1) 

Vaccination  

No 209 (51.6) 

Yes 170 (42) 

Partial † 26 

Full ‡ 113 

Booster § 18 

Not specified ¶ 13 

Not disclosed 26 (6.4) 

Previous infection  
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No 321 (79.3) 

Yes 41 (10.1) 

Not disclosed 43 (10.6) 

Symptomatic  

No 52 (12.8) 

Yes 336 (83) 

Not disclosed 17 (4.2) 

*unless otherwise indicated 

Vaccination 

† one dose mRNA 

‡ two dose mRNA or one dose Janssen 

§ three dose mRNA 

¶ specific type and date(s) of vaccination unknown 

 

https://doi.org/10.1371/journal.pgph.0001935.t001 

Threats (CEVT) at Louisiana State University Health Shreveport (LSUHS) for Illumina 

sequencing. 

Among other achievements, our collaboration with Mercer identified two globally 

emergent Omicron sub-variants that were being monitored closely by the international 

community due to their concerning patterns of spike substitutions and rapid spread [54, 55]. 

These included the first documented case in Georgia and the 40th overall U.S. case of the 

BA.2.75 variant, as well as the sixth case in Georgia of BQ.1.1, one of the most antibody-

evasive variants that had been described to date [54]. Overall, Mercer generated 703 SARS-

CoV-2 genomes, representing 1.8% of the total data available in GISAID from Georgia 

between 13 September 2021, when the first Mercer sample was collected up to 10 October 

2022. 

At our Mississippi site, the Jackson State University (JSU) team made use of the JSU 

Health Services Center as its sample collection site (Fig 1). The JSU Health Services Center 

served as the primary COVID-19 testing site for students, staff, and visitors of the university 

and supported the surrounding community’s testing and vaccination efforts. The 

participation of JSU extended our project’s network into a predominantly black community 

that has long been subjected to environmental injustices and health disparities, including 

the recent collapse of its city water system [56]. One hundred percent of the 33 samples 

submitted for sequencing at the CEVT were from non-white donors. 

Building modern DNA sequencing capacity for local genomic surveillance 

The specimens we collected in Louisiana were initially submitted to the LSUHS CEVT in 

Shreveport for sequencing until we built local sequencing capacity at Grambling State 

University (GSU) and Louisiana Tech (Tech). By sequencing locally, we improved our latency 

or turnaround time from sample collection to release on GISAID, from a median latency of 

24 days to 5 days at GSU and 12 days at Tech when processing contemporary specimens 

(i.e., excluding results from archived samples) (Fig 2B). Through this approach, we identified 

https://doi.org/10.1371/journal.pgph.0001935.t001
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the first confirmed case of Omicron in northeast Louisiana, a region comprising 12 parishes 

and 323,000 residents, within 2 days of sample collection [57]. We then shared the variant 

data along with weekly wastewater surveillance results and other COVID-19-related health 

information through a dashboard developed for the north Louisiana community (www.nla-

health. com/dashboard). 

The results of sequencing including investigation of viral genome coverage and copy 

number, and phylogenetic analyses are described below. 

Viral genome coverage 

Plotting the breadth of coverage for Oxford Nanopore Technologies (Nanopore) sequencing 

reveals that samples with a reverse transcriptase quantitative PCR (RT-qPCR) threshold cycle 

(Ct) or quantification cycle (Cq) for viral RNA detection of approximately Cq 30 reliably 

resulted in complete genome coverage in our hands (Fig 3). In some cases, however, full viral 

genomes were recovered from samples with higher Cq values (indicative of fewer viral 

genomes in the starting material), and the upper limit in our setting was approximately Cq 

35. These observations are congruent with what is seen in the literature across various ‘next 

generation sequencing’ (NGS) methodologies for SARS-CoV-2 genome sequencing [58]. 

Nonetheless, some groups using the Nanopore platform have reported high coverage 

consensus genome sequences from specimens with Cq values as high as 39 [59]. Variability 

in primer design and amplification parameters, library preparation method, and sequencing 

run time can influence results. For example, longer amplicons reduce the likelihood of 

primer interactions [60] and primer mismatches due to mutations [61], generally 

outperforming shorter amplicons [62, 63]. Shorter amplicons, however, can recover more 

complete genomes from specimens where the viral load is low or the RNA is degraded [64, 

65]. 

Specimens with low viral loads can show uneven genome coverage owing to poor 

amplification of certain amplicons. Such coverage problems can be overcome to some extent 

by optimizing PCR and sequencing protocols. For instance, Lagerborg et al. found that 

increasing 

http://www.nla-health.com/dashboard
http://www.nla-health.com/dashboard
http://www.nla-health.com/dashboard
http://www.nla-health.com/dashboard
http://www.nla-health.com/dashboard
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Fig 2. SARS-CoV-2 genomic surveillance in Louisiana. (A) Number of variants sequenced over time in Louisiana overlaid with number 

of confirmed COVID-19 cases in the U.S. (B) Number of sequences uploaded and latency for new sequencing entities established at 

Grambling State University (GSU) and Louisiana Tech University (Tech). 

 

https://doi.org/10.1371/journal.pgph.0001935.g002 

PCR cycles from 35 to 40 resulted in more uniform coverage for Illumina-based ARTIC 

sequencing of low viral load specimens while still avoiding PCR artifacts [65]. Compared to 

the Nanopore rapid barcoding kit used for library preparation in our study, the more 

laborintensive Nanopore ligation sequencing kit can yield greater sequencing depth and 

better (de novo) assembly of the SARS-CoV-2 genome [66]. Of course, longer run times can 

also increase the number of mapped reads to enhance recovery of complete genomes. 

Viral gene copies 

The fast-spreading Omicron variant swiftly displaced the Delta variant in our sampling, with 

a minimal period of overlap (Fig 2A). We find that the mean Cq value of Omicron specimens 

(28.87, 95% CI 28.13–29.61) was significantly higher (p < 0.0001) than that of Delta 

specimens (24.09, 95% CI 22.51–25.66). This corroborates early reports of lower viral gene 

https://doi.org/10.1371/journal.pgph.0001935.g002
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copy number determined by RT-qPCR [67, 68] or lower infectious viral load determined by 

focus forming assay [69] in Omicron infections compared to Delta infections. 

 

Fig 3. Decreasing genome breadth of coverage in samples with high Cq values. Higher Cq values were observed in 

Omicron (n = 115) than in Delta (n = 24). All but one Delta specimen was amplified for 32 cycles and all Omicron 

specimens were amplified for 35–40 cycles. 

 

https://doi.org/10.1371/journal.pgph.0001935.g003 

One possible explanation for the observed difference in gene copy number/imputed viral 

load is that during the initial Omicron surge, a greater proportion of the population may 

have acquired some degree of immunity through vaccination or prior infection. Some 

reports support the idea of attenuated viral load with vaccination [70–72], while others 

found no significant difference in viral genome copies between unvaccinated and vaccinated 

individuals [73–75]. 

Having collected vaccination and prior infection metadata from 379 and 362 of the 405 

donors respectively, we compared immune history with viral gene copy numbers. We found 

no statistically significant differences in the mean Cq value between unvaccinated individuals 

with no previous infection (n = 80) and fully vaccinated individuals with or without a 

previous infection (n = 80) (Fig 4A). 

Several groups have found no correlation between RT-qPCR quantification of viral genes 

and symptomatology [76–79]. Two studies reported higher Cq values in asymptomatic 

individuals (n = 5 or 3) compared to symptomatic individuals (n = 14 or 9) but the sample 

sizes were limited [80, 81]. In a larger study, asymptomatic individuals (n = 2179) exhibited 

higher Cq values compared to symptomatic individuals (n = 739); however, the authors 

concluded that the statistically significant difference of 0.71 cycles was not clinically 

meaningful [82]. In our dataset, the mean Cq value of asymptomatic donors (31.36, 95% CI 

29.7–33.01; n = 30) was more than 3 cycles higher (p = 0.0006) than that of symptomatic 

donors (28.04, 95% CI 

27.28–28.8; n = 160) (Fig 4B). 

https://doi.org/10.1371/journal.pgph.0001935.g003
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The asymptomatic donors in this study were mostly college students who tested positive 

during baseline surveillance on the GSU campus, so the age distribution is highly skewed 

compared to symptomatic donors. There are conflicting reports on the relationship between 

patient age and viral load, but one of the largest cross-sectional studies found that viral load 

tends to increase with age [83]. To account for a possible age effect, we compared 

asymptomatic donors who were age 30 or younger (n = 28) with symptomatic donors in the 

same age group (n = 93) and found that the asymptomatic group still had lower (p = 0.0057) 

mean viral gene copy number (31.78, 95% CI 30.17–33.39 vs 28.55, 95% CI 27.39–29.7). 

 

Fig 4. Viral gene copies by vaccination status and symptomatology. (A) No statistically significant differences (p = 0.1191) in 

viral gene copies were observed between unvaccinated donors without a previous infection (n = 80) and vaccinated donors 

with or without a previous infection (n = 80). (B) Viral gene copies were lower (p = 0.0006) in asymptomatic donors (n = 30) 

compared to symptomatic donors (n = 160). 

 

https://doi.org/10.1371/journal.pgph.0001935.g004 

Only Cq values derived at GSU were used in these analyses to avoid potential 

confounding by interlaboratory variation in PCR assays [84]. These analyses should be 

considered carefully within the limitations of our study which include a relatively small 

sample size and lack of longitudinal information on peak copy number, and also within the 

overarching context that copy number is an imprecise index of viral load [85]. 

Phylogenetic analysis of Louisiana and Georgia SARS-CoV-2 genomes 

We performed independent phylogenetic analysis for Delta and BA.1.x SARS-CoV-2 viral 

populations from Louisiana and Georgia in the context of representative global samples. 

Time-scaled maximum likelihood phylogenies revealed that Delta and BA.1.x isolates from 

Louisiana and Georgia are interspersed throughout the global population suggesting 

multiple independent introductions (Fig 5). Often, these introductions resolve into distinct 

subclades indicative of ongoing transmission within a new location. Further, putative 

introductions were spatially diverse and included Europe and South America as well as other 

states throughout the US. These local epidemics were nested within the larger North 

American epidemic for both Delta and BA.1.x waves. 

https://doi.org/10.1371/journal.pgph.0001935.g004
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Conclusion 

Collaborative community-centered genomic surveillance networks 

As part of a broader initiative supported by the Rockefeller Foundation’s Pandemic 

Prevention Institute, we established a genomic surveillance network focused on equitable 

viral genomic surveillance among more vulnerable and marginalized populations. To achieve 

this, we formed collaborations between institutions with very high research activity, 

primarily undergraduate universities, a graduate medical school, Historically Black Colleges 

and Universities, and local community health centers. Through this collaborative and 

decentralized approach, we sequenced viral genomes from respiratory specimens provided 

by patients in rural areas of Louisiana, Georgia, and Mississippi. These three states rank 41st, 

43rd, and 45th respectively 

 

Fig 5. Time-resolved Maximum Likelihood (ML) phylogenies of Delta and Omicron (BA.1.x) sublineages. The 

genomes generated in this study are colored in red for Georgia and blue for Louisiana. Tree tips are colored 

according to their location (continent) and the color legend is on the top of the figure. 

 

https://doi.org/10.1371/journal.pgph.0001935.g005 

among U.S. states in the percentage of cumulative cases sequenced [32]. Thus, with only a 

modest investment from the Rockefeller Foundation and internal support from our 

institutions, we increased the viral genomic surveillance coverage from these states such 

that the sequenced samples better represented the ethnic, racial, and cultural diversity of 

the U.S. population. Our approach also enabled us to collect and share rich metadata, 

including vaccination status and county/parish-level geographical location, which is 

https://doi.org/10.1371/journal.pgph.0001935.g005
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particularly important when emerging variants such as BA.2.75 and BQ.1.1 are detected. In 

both the GSU and Tech initiatives, health care workers at partnering clinics briefly educated 

patients about how viral genomic surveillance is used to track emerging variants and 

provided patients with the opportunity to provide consent for their positive sample to be 

used for whole viral genome sequencing. 

Residents of rural areas face significant barriers rooted in geographic isolation, scarcity of 

services, lower socioeconomic status and other social determinants of health, and even 

cultural constraints that impede them from getting the healthcare that they need [86]. 

During the pandemic, this disparity manifested as disproportionately high mortality rates in 

rural America, particularly among minorities [87]. In rural areas, so-called regional 

universities represent essential infrastructure that can provide not only educational 

opportunities but also access to testing and vaccination. These universities are uniquely 

positioned to gain trust and encourage participation in genomic surveillance because they 

often function as community anchors, vital to the local economy, civics, and culture [88]. A 

viral genomic surveillance strategy that leverages these strong community ties also offers a 

much-needed on-ramp for students from 

diverse groups to gain genomics research experience that will prepare them to combat 

misinformation in their own communities and participate in the genomics workforce. 

Viral genomic surveillance at all scales 

Oxford Nanopore Technologies (Nanopore) DNA sequencing has been used for real-time 

genomic surveillance during outbreaks of Ebola in West Africa [89], Zika [90] and Yellow 

Fever [91] in Brazil, and Lassa fever in Nigeria [92]. During the COVID-19 pandemic, many 

laboratories around the world used Nanopore sequencing to rapidly generate and share 

SARS-CoV-2 genome data. The Nanopore platform is especially suitable for smaller 

institutions because start-up costs and infrastructure requirements are minimal, operational 

costs are low, and the approach is highly scalable. A modestly equipped molecular biology 

laboratory can implement a Nanopore rapid barcoding “swab to data” workflow for less 

than $3500 USD at current prices. Operational costs, excluding RNA extraction, are 

estimated at £18.91 ($23.61 USD) per ligated barcode for 12 barcodes on a MinION flow cell 

when using a wash kit to remove the previous library [93]. This corresponds well with our 

cost analysis, which includes RNA extraction, of $20 –$25 USD per tagmented barcode for 12 

barcodes when the flow cell was washed and reused. 

Working with raw genome sequencing data often requires significant computational 

resources and bioinformatics expertise. However, Nanopore-based viral genome sequencing 

can be performed on a consumer-grade personal computer, using readily available 

workflows that include cloud-based, “point-and-click” assembly and analysis pipelines. 

Although higher throughput facilities can multiplex 96 or more barcodes at a cost of less 

than £10 ($12.50 USD) per barcode [93], the platform enables smaller laboratories to cost-

effectively provide genomic surveillance on limited numbers of samples, thus enhancing the 

ability reach underserved communities and provide much needed coverage in under-

sampled areas. 

The democratization of pathogen genomics is nowhere better demonstrated than in 

Africa, where technological advances in viral genome sequencing have been coupled with 
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major investments by Africa CDC and its partners who rapidly expanded genomic 

surveillance across the continent [94]. These efforts in Africa resonate with some of our 

experiences in the rural Southern U.S., highlighting that locally based programs can close 

blind spots in viral genomic surveillance while significantly decreasing turnaround time. The 

success of these types of decentralized, community-based approaches is exemplified by our 

identification of the first confirmed case of Omicron (B.1.1.529, or ‘BA.1’) in northeast 

Louisiana, and by our early detection in Georgia of concerning emergent Omicron 

sublineages BA.2.75 and BQ.1.1. 

Overall, our work demonstrates the positive impact that universities can have within their 

communities, in particular the power of partnerships forged between academic teams and 

local community clinics to build engagement and foster participation while generating 

valuable data relevant to public health responses. We argue that policymakers and funding 

agencies should strongly support the formation of these types of nimble, local networks in 

global strategies to modernize viral genomic surveillance of common respiratory illnesses. To 

facilitate the expansion of community-based genomic surveillance programs, we have 

developed a guide entitled, Building a Collaborative and Equitable Viral Genomic 

Surveillance Program: A Playbook for Researchers, Clinicians, Administrators, and Allies, that 

offers a modular and flexible roadmap for universities and local clinics to set up their own 

viral genomic surveillance program (please contact the corresponding authors for 

information). When community-based programs that rapidly generate and share pathogen 

genome data become commonplace across geographies, the world will be better poised not 

only to promptly detect new pandemic threats but also to train a diverse and representative 

public health workforce for tomorrow. 

Methods 

Specimen collection 

Patients testing positive (n = 405) on the BinaxNOW rapid antigen test (Abbott Laboratories; 

Abbott Park, IL) at the Foster Johnson Health Center in Grambling State University 

(Grambling, LA), The Health Hut (Ruston, LA), Louisiana Tech University (Ruston, LA), Michael 

Brooks Family Clinic (Ruston, LA), Minden Family Care Center (Minden, LA), and Serenity 

Springs Specialty Hospital (Ruston, LA) between 23 August 2021 and 12 April 2022 were 

recruited through an informed consent process. Remnant anterior nasal swabs used in the 

rapid test (The Health Hut, Michael Brooks Family Clinic, Louisiana Tech University, Minden 

Family Care Center, Serenity Springs Specialty Hospital) or freshly collected mid-turbinate 

nasal swabs (Foster Johnson Health Center) were preserved in 3 mL of viral transport media 

(VTM) at 4C̊ and later in the study in 1 mL of DNA/RNA Shield to inactivate the virus and 

allow for storage at room temperature. 

Ethical considerations 

Specimen collection in Louisiana clinics was conducted under 45 CFR 46.102(l)(2) as a public 

health surveillance activity. Consent was obtained in writing from all participants in 

Louisiana in accordance with Louisiana Tech University (Ruston, LA) IRB protocol HUC 21–

106. Specimen collection in Georgia was conducted under Mercer University (Macon, GA) 

IRB protocol H2110206. Specimen collection in Mississippi was conducted under Jackson 

State University (Jackson, MS) IRB protocol 0097–22. Consent was not obtained from 
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participants in Georgia or Mississippi because the IRBs only approved collection of fully de-

identified clinical remnant samples. Sequencing of samples at LSUHS CEVT was conducted 

under IRB protocol # STUDY00001445. 

Illumina sequencing (LSUHS CEVT) 

Total RNA was isolated from VTM within 72 hours of specimen collection using the Omega 

Bio-Tek Viral RNA Xpress kit (Norcross, GA) on an automated extraction platform. Presence 

of SARS-CoV-2 RNA was determined by using CDC primers and probes with LunaScript RT 

Supermix Kit (NEB) run on BioRad (Hercules, CA) C1000 real-time PCR machines. cDNA, 

PCR amplification, and library preparation was performed using the NEBNext ARTIC SARS-

CoV-2 FS kit (NEB) according to the manufacturer’s instructions. Libraries were quantified 

using Invitrogen Qubit BR dsDNA kit and size determined on an Agilent Tapestation 2200 

using high sensitivity d1000 tapes (Santa Clara, CA). Libraries were loaded at 10.5 pM on an 

Illumina (San Diego, CA) MiSeq version 2, 300 cycle kit on an Illumina MiSeq instrument. 

Consensus sequences were generated with an in-house data analysis pipeline using bwa, 

samtools, and ivar. 

Nanopore sequencing (GSU and Tech) 

Total RNA was extracted from VTM or DNA/RNA Shield within 48 hours of specimen 

collection via the QIAmp Viral RNA Minikit (Qiagen; Germantown, MD) or Zymo Quick-DNA/ 

RNA Viral MagBead Kit (Zymo Research; Irvine, CA) according to the manufacturers’ 

protocols. Briefly, 500 uL of VTM was centrifuged at 5,000 g for 10 minutes to pellet cells 

and debris and either 140 uL of supernatant was extracted in 560 uL of Buffer AVL containing 

560 ug of carrier RNA (QIAmp) or 200 uL of supernatant was extracted in 400 uL of Viral 

DNA/RNA Buffer followed by addition of 10 uL MagBinding Beads (Zymo). After washing the 

spin column or beads with the manufacturers’ respective wash buffers, total RNA was eluted 

from the column in 60 uL of Buffer AVE (QIAmp) or from the beads in 30 uL of DNase/RNase-

free water (Zymo) and immediately used for RT-qPCR and library preparation. The presence 

of SARS-CoV-2 was confirmed using the SARS-CoV-2 Research Use Only qPCR Primer and 

Probe Kit (Integrated DNA Technologies, IDT; Coralville, IA) and qScript XLT One-Step RTqPCR 

ToughMix (Quantabio; Beverly, MA) according to the CDC 2019-nCoV Real-Time RT-PCR 

Diagnostic Panel procedure. 

The sequencing library was prepared using the 1200 bp amplicon "midnight" primer set 

(versions 1 or 2) [95] following the protocol by Freed and Silander [61]. Briefly, the RNA was 

reverse transcribed using the LunaScript RT Supermix Kit (New England BioLabs, NEB; 

Ipswich, MA). Tiled 1200 bp amplicons were generated using midnight primers (IDT) with Q5 

Hot Start High-Fidelity 2X Master Mix (NEB) for 32 cycles (LA-GSU1 to LA-GSU19) or up to 40 

cycles (LA-GSU20 to LA-GSU148 and LA-TECH1 to LA-TECH68) of multiplex PCR amplification. 

The two overlapping amplicon pools for each specimen were combined and quantified using 

the Qubit dsDNA HS Assay Kit (Invitrogen; Carlsbad, CA). A total of 75–150 ng of PCR product 

per specimen was barcoded using the Nanopore Rapid Barcoding Kits SQK-RBK004 or SQK-

RBK110.96 (Oxford Nanopore Technologies, ONT; Oxford, UK). The barcoded samples were 

pooled and purified using AMPure XP beads at a 1:1 ratio of sample: beads (Beckman 

Coulter; Brea, CA). The final libraries (350–800 ng DNA) were sequenced on an R9.4.1 flow 

cell using a MinION Mk1B or Mk1C device, basecalled in real-time via MinKNOW, and 
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analyzed using the wf-artic workflow (medaka, minimap2, bcftools, samtools, nextclade, 

artic, pangolin) according to the ONT protocol. 

Nanopore concordance with Illumina 

We validated the performance of Nanopore MinION sequencing at GSU and Tech by 

sequencing a matched subset of 16 SARS-CoV-2 positive specimens using a well-established 

Illumina workflow at the CEVT. The results confirmed the accuracy of the Nanopore 

sequencing protocol and analysis pipeline in our setting with 100% consensus sequence 

identity in 13/ 16 of the samples and 99.9% sequence identity in 3/16 samples. The one 

discordant basecall was identical in the three samples: T by Illumina sequencing and G by 

Nanopore sequencing at 17,259, within the gene encoding the replicase accessory protein 

NSP13. The reference SARS-CoV-2 genome also contains a G at this position; the T mutation 

identified by Illumina sequencing results in a glutamic acid rather than an aspartic acid. The 

E1264D mutation identified in the samples sequenced with the Illumina protocol is well 

supported. Nanopore basecalling accuracy decreases in homopolymeric tracts [96], but 

there was not a homopolymer in this region, so the reason for this discordance remains 

unclear. 

Importantly, all sequences were 100% concordant for the Pango lineages and GISAID 

clade assignments. The 16 samples sequenced by both protocols spanned a wide range of 

Cq values (15.6–32.4) but almost all samples, Nanopore or Illumina, generated > 98% 

genome coverage (Nanopore: 98.73%, Illumina: 99.67%). Illumina sequencing resulted in an 

average of 285 bases more sequence data than Nanopore, but this was mainly confined to 

the extreme 5’ and 3’ ends of the genome. 

Phylogenetic analysis 

SARS-CoV-2 genomes were downloaded from GISAID (www.gisaid.org) excluding the low 

coverage and incomplete records up to 30 April 2022, and subsampling carried out using 

subsampler to obtain a representative dataset [97]. Subsampling 4,199,772 (Delta 

sublineages) and 2,895,902 (BA.1.x sublineages) genomic sequences resulted in 5,882 (Delta 

sublineages) and 

6,843 (BA.1.x sublineages) total sequences. Viral sequences were aligned using ViralMSA with 

default parameters [98] using Wuhan-1 (MN908947.3) reference and then manually curated 

with Aliview to designate the start site and trim terminal regions [99]. A maximum likelihood 

(ML) phylogeny was inferred using IQTREE v1.6.10 with the best-fit nucleotide substitution 

model identified by the Model Finder function [100]. Statistical support for nodes was 

determined using 1,000 bootstrap replicates. TreeTime [101] was used to transform this ML 

tree topologies into a dated tree using a constant mean rate of 8.0 × 10−4 nucleotide 

substitutions per site per year, after the exclusion of outlier sequences. The phylogeny was 

visualized using the ggtree package in RStudio with tips colored by collection source 

(continent). 

Statistical analysis 

Statistical analysis was performed using Prism version 7.05 (GraphPad; San Diego, CA). 

Continuous variables between two groups were tested for normal distribution (D’Agostino & 

http://www.gisaid.org/
http://www.gisaid.org/
http://www.gisaid.org/
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Pearson test) and homogeneity of variance (F test) then compared using an independent t-

test with two-tails and alpha set to 0.05. 

Supporting information 

S1 Table. EPI_SET ID for sequences from this initiative. 

(PDF) 

S2 Table. EPI_SET ID for subsampled set of global sequences. 

(PDF) 
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