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Cloud-Based Hierarchical Imitation Learning for

Scalable Transfer of Construction Skills from
Human Workers to Assisting Robots

Hongrui Yu, S.M.ASCE'; Vineet R. Kamat, Ph.D., F.ASCE?; and Carol C. Menassa, Ph.D., F.ASCE?

Abstract: Assigning repetitive and physically demanding construction tasks to robots can alleviate human workers’ exposure to occupa-
tional injuries, which often result in significant downtime or premature retirement. However, the successful delegation of construction tasks
and the achievement of high-quality robot-constructed work requires transferring necessary dexterous and adaptive construction craft skills
from workers to robots. Predefined motion planning scripts tend to generate rigid and collision-prone robotic behaviors in unstructured
construction site environments. In contrast, imitation learning (IL) offers a more robust and flexible skill transfer scheme. However, the
majority of IL algorithms rely on human workers repeatedly demonstrating task performance at full scale, which can be counterproductive
and infeasible in the case of construction work. To address this concern, in this paper, we propose an immersive and Cloud Robotics-based
virtual demonstration framework that serves two primary purposes. First, it digitalizes the demonstration process, eliminating the need for
repetitive physical manipulation of heavy construction objects. Second, it employs a federated collection of reusable demonstrations that are
transferable for similar tasks in the future and can, consequently, reduce the requirement for repetitive illustration of tasks by human agents.
In addition, to enhance the trustworthiness, explainability, and ethical soundness of the robot training, this framework utilizes a hierarchical
imitation learning (HIL) model to decompose human manipulation skills into sequential and reactive subskills. These two layers of skills are
represented by deep generative models; these models enable adaptive control of robot action. The proposed framework has the potential to
mitigate technical adoption barriers and facilitate the practical deployment of full-scale construction robots to perform a variety of tasks with
human supervision. By delegating the physical strains of construction work to human-trained robots, this framework promotes the inclusion
of workers with diverse physical capabilities and educational backgrounds within the construction industry. DOI: 10.1061/JCCEES.

CPENG-5731. © 2024 American Society of Civil Engineers.

Introduction

The construction industry currently faces substantial challenges in
its workforce (Delvinne et al. 2020). An estimated labor short-
age of 430,000 construction workers (BLS 2023) compounds the
industry’s difficulties, which are further amplified by a forecasted
increasing demand for labor (Wilder 2013; AGC 2016; Delvinne
et al. 2020). For labor-intensive construction work, this shortage
results directly in project delays and increased costs (Sokas et al.
2019). According to RSMeans, burgeoning labor shortages con-
tributed to a 10% increase in total construction costs in 2016
(RSMeans 2016).

Construction robots can play a crucial role in addressing the
workforce gap and mitigating the challenges posed by labor short-
ages (Lundeen et al. 2018; Wang et al. 2021a; Brosque and Fischer
2022). Robots possess superior physical capabilities and, therefore,
excel in handling heavy and repetitive construction tasks (Liang
et al. 2021, 2023). Furthermore, they are less prone to physical
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fatigue and cognitive lapses (Shayesteh and Jebelli 2021; Lee
et al. 2022). By deploying construction robots, significant im-
provements can be achieved in construction productivity, leading
to reduced delays and construction costs (Ryu et al. 2021; Pan
and Pan 2020).

Human-Robot Craft Skill Learning Comparison

However, unstructured construction site environments pose inher-
ent challenges for robots performing construction tasks (Feng et al.
2016; Liang and Cheng 2023). Accomplishing any complex mo-
tion planning for construction robots requires intricate motion con-
trol scripts (Cai et al. 2023; Zhu et al. 2022). Modeling and learning
adaptive construction skills is increasingly challenging due to the
abundance of information that influences the reasoning behind spe-
cific actions (Makondo et al. 2015; Xu et al. 2020). For example, in
Lundeen et al. (2017), a workpiece’s geometric configuration was
reconstructed by carefully calibrating sensors to establish the cor-
relation of choice of robot actions to the environmental observa-
tions. Ignoring such correlations and the accompanying spatial
context tends to limit a robot to generating inflexible and inad-
equate motions (Haddadin et al. 2017). In a dynamic and unstruc-
tured environment like a construction site, relying solely on rigid
robot control schemes significantly increases the risk of a robot
getting stuck (i.e., stalling) or colliding with adjacent objects or
human workers (i.e., interfering) (Zhu et al. 2022; Sun et al. 2023).

In contrast, human apprentices (junior construction workers) ac-
quire dexterous manipulation skills and complex construction tech-
niques organically by observing experienced workers (Sings et al.
2017; Liang et al. 2021). Through their observations, apprentices
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instinctively establish correlations between sequential actions and
the underlying motivations that drive them. These motivations are
influenced by contextual information derived from the environ-
ment, previous actions, and overall work progress (Yu et al. 2023b;
Liang et al. 2021; Lee et al. 2022; Huang et al. 2023). Consequently,
workers naturally transform their observations into a cohesive set
of actions guided by environmental cues and the sequence of pre-
ceding actions.

Skill Transfer from Humans to Robots with Imitation
Learning

Replicating the learning process of humans, robot imitation learn-
ing (IL) (i.e., learning from demonstration) models offer a flexible
and effective approach to motion control. These models employ
neural networks or sequential chains to map complex environmen-
tal observations to desired actions (Liang et al. 2021; Huang et al.
2023; Wang et al. 2023a). For instance, a deep neural network can
represent expected robot action policies based on various factors,
including observed equipment status, worker states, task progress,
and workpiece state. Reinforcement learning (RL) is also often
employed to simulate the sequential decision-making processes of
human workers, forming the deep reinforcement learning (DRL)
framework, which is a prevalent approach in robot learning (DelPreto
et al. 2020).

Low-Workload and Ethical Imitation Learning

However, applying IL to construction robots presents additional
challenges for two primary reasons.

First, construction materials tend to be heavy, and repetitive
manipulation during demonstrations can impose increased phys-
ical strain on construction workers. To address this issue, in this
paper we propose a high-fidelity digital training environment for
construction (DTEC) that enables human workers to naturally dem-
onstrate installation tasks by performing construction tasks with
digital twin models in virtual reality (VR). The DTEC connects
with building information modeling (BIM) modules, which are
capable of being automatically synchronized with site conditions
(Fang and Cho 2016; Du et al. 2018; Wang et al. 2023b). This inter-
face also helps increase worker trust in construction robots and their
self-efficacy (Adami et al. 2022). In addition, in this study, we pro-
pose a federated construction skill cloud database that can leverage
previous knowledge and demonstrations collected from diverse
task environments in order to reduce the number of required future
demonstrations. Such federated data collection allows for crowd-
sourced demonstrations from workspaces representative of various
temporal and spatial contexts, enabling continuous learning and en-
hancing scalability in skill transfer between human workers and
assisting robots (DelPreto et al. 2020).

Second, with regard to the ethical and responsible aspects of
artificial intelligence (Al), the traditional RL-based structure lacks
transparency and explainability (Gunning 2017). From a human
perspective, the robot learning model appears as a black box and
nontransparent model. This lack of transparency may increase the
cognitive load on construction workers who lack programming ex-
pertise and reduce their trust in and willingness to collaborate with
robots (Gunning 2017; Park et al. 2023). To address this issue, an
explicable construction task decomposition framework is proposed
in this paper. It involves decomposing construction skills into se-
quential and reactive skills. A hierarchical imitation learning (HIL)
model is employed to ground the decomposed skills and translate
them into robot control instructions. With improved explainability,
the robot learning model will appear more trustworthy and easier
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Fig. 1. Cloud-based IL framework for construction robots.

for human workers without programming expertise to use (Hamon

et al. 2020). In the long run, the model will result in a more sustain-

able human-robot relationships and enhance the equity and inclusion
of workers with diverse educational background.

Fig. 1 summarizes this paper’s technical contributions in ena-
bling skills transfers from human workers to assisting construction
robots, which include:

1. An immersive virtual demonstration environment (i.e., DTEC),
comprising a digital twin, VR, and wireless data communica-
tions integrated with the robot operating system (ROS). This
training environment enables automated capture of workers’
motions and records them as demonstrations for robots, mini-
mizing the physical workload on workers.

2. A cloud robotics framework designed to store, process, and
reuse the demonstrations collected from the immersive virtual
training environment across diverse task scenarios. This feder-
ated framework reduces the necessity for new demonstrations,
thereby enhancing the scalability and sustainability of construc-
tion robot learning.

3. An explainable representation and transfer scheme for con-
struction skills that effectively translates human manipulation
motions into a hierarchical robot learning model capable of de-
coding both reactive and sequential skills. By incorporating this
knowledge back into the cloud database for storage, the scalabil-
ity and reusability of construction robot programming are fur-
ther amplified.

The remainder of the paper is organized as follows. First, we
provide an introductory literature review of the novel concepts of
HIL and cloud robotics, demonstrating its suitability for application
in the construction industry. Second, we present the methodology
for the demonstration collection and skill decomposition system
based on Cloud Robotics. Third, we present experiments conducted
to evaluate the performance of the system, focusing on its ability to
reduce the human effort required in both the demonstration and
programming phases.

Literature Review

The transfer of skills between human workers and robots has been
widely studied in order to enable robots to adapt to diverse
construction environments (Lundeen et al. 2018; Yu et al. 2023b).
While predefined motion scripts have been considered viable
solutions for tasks such as bricklaying (Wos and Dindorf 2023),
such an approach is unable to accommodate significant variations
in the environment and the corresponding adjustments needed in
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robot actions (Shi et al. 2023). To overcome these limitations, there
has been a growing focus on leveraging deep learning and prob-
abilistic models to mimic the adaptive decision-making process
of humans in response to environmental observations.

As these models evolve to become more accessible to human
workers, there is an increasing demand for scalability, ease-of-use,
and explainability (Gunning 2017; Park et al. 2023). The frame-
work proposed in this paper addresses these requirements through
the integration of cloud robotics and a hierarchical human skill
representation scheme. This section provides an overview of both
methods, highlighting their potential application in the construction
field. At the end of each subsection, we present a summary of the
current research and identify knowledge gaps pertaining to the ef-
fective implementation of these concepts on construction sites. This
information establishes the motivation for the proposed framework,
which is subsequently described in the methodology section.

Explainable Human—Robot Master-Apprentice
Relationship

The seamless transfer of skills between construction workers and
robots is essential for achieving high-quality corobotized construc-
tion tasks (Xu et al. 2020; Shi et al. 2023). Construction workers
possess dexterity and specialized expertise, enabling them to avoid
collisions and effectively address construction-related challenges
(Liang et al. 2021). However, given that programming and robotics
training are not typically part of their skill set, programming robots
is an exceedingly difficult task (Liu et al. 2019). Liang et al. (2020)
proposed construction robot IL (i.e., learning from demonstrations)
as an approach to address this problem. This approach to human—
robot collaboration requires human workers to demonstrate the natu-
ral execution process of tasks. Demonstrations are captured by video
recording and then correlated with environmental observations using
a DRL model. However, human workers must repetitively manipu-
late heavy construction materials to provide sufficient demonstration
data. Huang et al. (2023) explored the use of digital demonstrations
to alleviate the physical strain associated with manipulating heavy
construction materials. Although this study creatively improved the
demonstration environment, its kinesthetic demonstration technique,
which involved the human moving the robot end-effector in a VR
environment to showcase the desired trajectory, heavily depended
on the robot’s specific structure, limiting generalizability to different
robot types. To extend application to a wider range of robot, in this
study we designed demonstrations to represent the installation tra-
jectories of tasks rather than the joint states of a specific robot.

Furthermore, as mentioned in the introduction, a common issue
with robot learning models is their lack of transparency and ex-
plainability. This lack of clarity and understanding may lead to re-
duced trust and perceived validity among human workers (Gunning
2017). HIL addresses this concern by mimicking the natural way in
which humans break down and simplify problems (Zhang et al.
2021). In HIL, high-level planning serves the purpose of task de-
composition and connect the subtasks to a sequence of actions
(Abdo et al. 2012). Low-level policies link task execution steps
with environmental observations, such as task progress, object
states, and robot states (Xie et al. 2020). For example, Zhang et al.
(2021) decoded the robot pouring tasks and categorize them to
three subtasks—phase, state, and action—to improve task perfor-
mance, adaptability, and manipulability. Wang et al. (2021b) used
HIL to teach robots to perform low-clearance insertion assembly
tasks with increased sample efficiencies.

By employing two levels of policies, HIL achieves enhanced
learning efficiency and reduces the need for a large number of dem-
onstrations in long-horizon and complex tasks due to compounding
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errors (Kase et al. 2020; Yu et al. 2023a; Ross et al. 2011). For
example, Hayashi et al. (2022) reduced training time by 20% by
decomposing tasks into a planning layer and a motion primitive
layer to ground the elemental motions. There are additional advan-
tages. First, HIL reduces the errors and uncertainties that accumu-
late during the robot behavior cloning process, improving learning
performance (Zhang et al. 2021). Second, it enables the use of con-
ditional probabilities from previously observed actions to enhance
confidence and simplify the inference of the current state from
observations. This mitigates perceptual aliasing, in which similar
environmental observations may lead to confusion between differ-
ent task steps that serve distinct functions (Kase et al. 2020). For
instance, when a robot aims to install three drywall panels consecu-
tively and environmental observations indicate that the robot is at
the location of the second panel, there are two possible action op-
tions, depending on task progress. Knowing the status of the first
board installation makes the decision-making process considerably
more straightforward.

Hierarchical task decomposition has been proposed and ex-
plored in the context of construction problems in prior studies.
For instance, Wu et al. (2022) proposed a four-level hierarchy to
decompose bricklaying tasks into two levels of subtasks: activities
and actions. However, there is limited research available that con-
nects such knowledge with robot learning models. It is still unclear
how to decompose construction tasks and clearly represent them
with deep robot learning models for robot control. To address this
problem, in this study we explored how to decompose tasks with
two layers: a layer of sequential actions linking the different sub-
tasks and a layer of reactive skills that correlates environmental ob-
servations with choices of subtasks. The details of this technical
approach are described in the methodology section.

Skill Transfer Scalability with Cloud Robotics

With HIL, humans can seamlessly transfer skills to robots. How-
ever, the current state of robot IL schemes is primarily need-based,
requiring human operators to program robots from scratch when-
ever a new task arises. Such repetitive programming activities
impose an additional workload on human workers. A common ap-
proach to address this challenge is to employ a knowledge database
for the sustainable reuse of programmed instructions. For instance,
Karp et al. (1994) proposed building a robot knowledge storage
database and utilizing a database management system (DBMS)
to improve communication efficiency. Bandera et al. (2010) intro-
duced a robot knowledge database architecture that combines per-
ceptive information, reflexive behaviors, and known actions.

Compared to local databases, cloud-based databases offer
greater convenience for sharing and communication between multi-
ple agents. As cloud-based systems gain popularity, more studies
are being conducted to explore effective database architectural de-
signs to adapt to different tasks. Perceptual information, human
demonstrations, and robot executions are commonly stored. For
dexterous tasks, Hsiao and Lozano-Perez (2006) recorded key-
frames of successful grasp trajectories to teach robots precise grasp
tasks with an accuracy of 92%. Zhang et al. (2021) illustrated how
robots can be instructed to perform pouring tasks using demonstra-
tions that include background information, task objects, and task
planning policies.

In addition to human-demonstrated trajectories, supervisory
commands can also serve as demonstrations and be stored in a
robot dexterous manipulation learning database. Yamada et al.
(2001) recorded natural language instructions from humans and
the corresponding robot motion trajectories, manipulation objects,
and elementary motions for a domestic robot operating under
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human supervision. Neto and Mendes (2013) employed a knowledge
database to store analyzed parameters of movement commands, en-
tire motion sequences, velocities, accelerations, blending behaviors,
and signal-switching points.

Furthermore, for the hierarchical decomposition of more com-
plex tasks, Kyrarini et al. (2019) proposed storing atomized tasks,
associated object states, and learned Gaussian mixture models
(GMMs) representing trajectories. Liu et al. (2022) collected both
human-demonstrated trajectories and robot execution joint states,
gripper dimension parameters, and gripper pose data to teach robots
assembly and insertion tasks, effectively reducing the workload for
humans. Wang et al. (2020) used stored dual-arm robot pose and
point cloud models to enhance perception and improve model re-
building accuracy for assembly tasks.

However, despite these initial studies, it is unclear what data or
demonstrations are needed to compose a feasible cloud database
capable of supporting local robot task execution decision making
and planning for both heavy and dexterous construction tasks.
Moreover, there is limited understanding of the impact of data stored
in a cloud database on future task execution in unexpected environ-
ments. In this paper, we propose the dual storage of knowledge and
raw demonstrations. This process was tested and demonstrated using
a construction task case study. Previously stored data were added to
the robot learning model for new tasks situations in order to inves-
tigate the usefulness of cloud storage in robot learning. The proposed
approach is further described in the methodology section.

Cloud Robotics in Construction

In the civil sector, cloud databases and computing are widely used
for natural disaster response, worker safety management, waste
minimization, building management, and project management in-
formatics (Jiao et al. 2013; Rawai et al. 2013; Balaji et al. 2016; Xu
et al. 2018; Wan et al. 2020; Bello et al. 2021; Kohler et al. 2022;
Deng et al. 2023). Nonetheless, their application in robotic con-
struction has been relatively limited. Considering the effectiveness
of cloud databases in exchanging information, building a cloud ro-
botics scheme for construction robot training offers significant
promise. In this paper, we propose a federated construction robot

learning scheme to leverage previously stored demonstrations and
information. Using edge computing and HIL, local robot control
scripts can be retrieved on an as-needed basis to optimize the effi-
ciency of computation resources. The proposed approach can re-
duce workers’ physical demonstration workload and the mental
workload when they collaborate with robots.

Research Methodology

This paper introduces a novel federated learning framework for
construction robots that utilizes cloud robotics technology. The
framework employs an immersive VR demonstration interface that
is connected to a cloud database housing both crowdsourced raw
demonstration data and explanatory knowledge on hierarchical
construction skill decompositions. Within the cloud edge, a HIL
algorithm is utilized to decode and model human adaptive skills
from the demonstrations and data, which are subsequently repli-
cated to guide the operations of construction robots. The following
sections elaborate the technical details of each component. In ad-
dition, a case study of ceiling installation was used to illustrate how
the learning algorithms can be applied to construction tasks.

Cloud-Robotics Learning Workflow Overview

Introducing new methods for robotic construction and robot pro-
gramming inevitably brings changes to construction practice and
workflow. The proposed workflow, adapting to the cloud-robotics
scheme, is shown in Fig. 2.

In this scheme, a robot first recognizes task and target information
by scanning AprilTag markers and BIM database to retrieve the task
object’s dimensions, material specifications, and locations (Aryan
et al. 2021; Wang et al. 2023b). Subsequently, the robot accesses
related demonstrations available in the cloud database. If sufficient
data exist, the robot downloads them to the edge node and commen-
ces imitation learning to derive expected installation trajectories.

If cloud data are insufficient, the target information is visualized
simultaneously by the DTEC to create a digital training setting for
human workers to generate demonstrations. Relevant demonstrations
from the cloud database, with heterogeneous tasks with similar
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Fig. 2. Proposed workflow for cloud-robotics-based construction learning scheme.

© ASCE

04024019-4

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2024, 38(4): 04024019



Downloaded from ascelibrary.org by University of Michigan on 01/22/25. Copyright ASCE. For personal use only; all rights reserved.

object locations or geometric configurations, are also downloaded
and used in the imitation learning database on the edge node. This
process equips the robot with the capability to utilize the gathered
information effectively. A hierarchical construction skill modeling
system composed of generative and probability models is then used
to replicate the craft skills. Subsequently, accounting for the type of
robot, the edge node employs inverse kinematics (IK) (Tolani et al.
2000). Robots of various kinds can then calculate the intended robot
joint states and execute the learned trajectory efficiently (Nakanishi
et al. 2020). Next, the edge node utilizes wireless communication
methods for real-time robot control based on the IK-calculated joint
states.

Immersive Digital Training Environment and
Demonstration Recording

The proposed technical contribution starts with a digital robot train-
ing environment (the DTEC), in which workers can teach by per-
forming construction tasks naturally. As mentioned previously, the
repetitive manipulation of heavy construction materials, even for
demonstration purposes, causes high physical strain for construc-
tion workers. The proposed framework involves the performance of
construction tasks in a virtual environment and eliminates repetitive
physical interactions with heavy construction materials. The virtual
environment has three components:

1. natural task demonstration capture: Motion capture starts with
a hand motion tracking system with an High-Tech Computer
Corporation (HTC, Taoyuan City, Taiwan), VIVE 3.0 (tracker)
motion sensor, which captures human hand motions continu-
ously to seize the demonstrated trajectories;

2. trajectory recording: The recorded trajectory is sent to the ROS,
where a Linux shells script automatically launces the Rosbag
file recorder and gives sound notifications on the different stages
of demonstration collection. The Rosbag files are also easily
connected with cloud database with AWS S3 packages.

3. digital twin: This can be readily synchronized with real-time
on-site conditions using computer vision approaches, such as
AprilTag-based localization and scan-to-BIM digital reconstruc-
tion (Kim and Cho 2017; Feng et al. 2021; Wang et al.
2023b); and

4. VR: A high-fidelity VR environment accommodates the digital
twin and human-demonstrated motions.

The technical details of each component are described in the
following.

To create an immersive and site-synchronized VR environment,
we leveraged a start-of-the-art system (Wang et al. 2023b) to display
target object and installation object locations, textures, and statuses
in VR with low latency and high fidelity. On the basis of this VR
system, box colliders were added to the digital twin objects with di-
mensions 1 cm larger than the original model. The colliders stop any
potential collisions at a distance of 1 cm. Low-quality demonstra-
tions with collisions can, therefore, be easily identified and avoided.

In addition, a hand motion tracking system was added. The hand
tracking system was based on a base station, dongle, and tracker, as
shown in Fig. 3. The base station emits infrared lasers, and sensors
on the tracker receive these signals for localization. Because the
localization mechanisms are nontransparent (a black box) (Bauer
et al. 2021), experimental testing was used to validate localization
accuracies, as shown in the experimental case study section.

To reflect human hand motions, the motion sensor was attached
to the palm of a human hand. When workers move their hands in
real-world demonstrations, the tracker’s pose in VR will change
correspondingly to reflect the construction material pose change
in this demonstrated installation process. The manipulation objects
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Fig. 3. Human hand motion monitoring with Tracker 3.0.

in the VR environment were set as child objects of the tracker.
With this setting, any motion captured by the tracker is seamlessly
synchronized to the object. Therefore, hand motions for manipu-
lating objects can be replicated accurately in VR. Moreover, to en-
sure applicability across different robot types, in this paper we
propose the use of object trajectories as demonstrations. In the dem-
onstration process, the VR system captures the ideal and expected
object trajectories required to accomplish construction tasks. Using
IK (the Kinematics and Dynamics Library, the default IK calculator
for Movelt version 1 Melodic), the desired joint states necessary to
execute the ideal trajectory can be calculated. The following param-
eters were used for the IK motion planner (Coleman et al. 2014):
* kinematics_solver_search_resolution: 0.005
¢ kinematics_solver_timeout: 5
» kinematics_solver_attempts: 100

Some other IK libraries (including IK fast, Klampt, and ikpy)
and different parameter settings were also tested. However, it was
observed that performance rarely improved compared to the afore-
mentioned settings.

Cloud Robotics for Demonstration Storage and
Information Flow

A cloud database was used to store human demonstrations and en-
sure convenient access without spatial and temporal limitations.
The Amazon Web Services (AWS) S3 package was employed be-
cause of its ease of use. The information flow for the whole system
is shown in Fig. 4. First, the demonstrations are transmitted to the
ROS with ROS# protocol. Second, a Linux shell script automati-
cally saves the trajectories as rosbag files and uses the AWS S3
functions to upload the demonstration files to the cloud. These
unorganized cloud data form a cloud data lake in the AWS cloud
database. When the robot needs certain knowledge or information
from the cloud, it downloads the data from the cloud database using
hypertext transfer protocol secure (HTTPS) protocols.

A dual storage scheme was introduced to sustainably utilize the
computational output. As shown in Fig. 4, the extracted knowledge
is first utilized to guide on-site robot installations, thereby enhanc-
ing the success rate of task execution. Second, the analyzed human
motion patterns and knowledge are sent back to the cloud database
in Python pickle models and .csv files that store the elemental
motions/motion primitives for the assigned tasks. The extracted
elemental motions/motion primitives can be used for future robot
installation tasks and human worker education. By combining the
use of extracted knowledge with the storage of motion patterns in a
cloud database, the system becomes more robust and capable of
handling future installation challenges effectively.

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2024, 38(4): 04024019



Downloaded from ascelibrary.org by University of Michigan on 01/22/25. Copyright ASCE. For personal use only; all rights reserved.

Cyber

Knowledge < Dual Cloud Storage
N _Edge computing: higher

~--. security

Organized .
[ database ]—{ Edge Computing ]
AWS Cloudshell (batch i
essing) :

Unorganized Robot
database Cloud atailake Implementation
ROSR d
Wireless data

transmission

Local Skill
Demonstrations

VR
Demonstration

Physical

Fig. 4. Information flow in the cloud robotics framework.

Federated Robot Learning and Data Collection

With the proposed dual storage scheme, knowledge and demonstra-
tion data can be saved in the cloud database and used at any time for
any task. To alleviate the burden of repetitive demonstrations, we
propose the generalization of previously learned knowledge by col-
lecting demonstration data from heterogeneous tasks, such as tasks
from various locations and installation targets of diverse geometric
configurations. Such diverse data contribute to the generalizability
of robot learning—in contrast to traditional single-source robot
learning data collection. This heterogeneous and crowdsourced
demonstration data naturally forms a federated data collection
scheme.

For a newly encountered task, the trajectory is transformed to
the new task scenario by twisting the pose (x,y,z) with the task
parameter variations, as shown in Eq. (1):

/

X ap apy a3 Ay x
!
y azp @y A3 Qx4 y
! __ —
p=1",=Tr= (1)
< asz aszp azy azy z
1 0 0 0 1 1
with T task parameter transformation matrix
a = hew xold; ay, = ynew _ yold; ay = Zhew Zold

In this way, trajectory demonstrations from diverse task loca-
tions can be transformed to have the same target location and con-
catenated with the new ad hoc demonstrations to form an expanded
database. The performance of the resultant robot learning model
with expanded data set is illustrated in the experimental results
section.

Construction Task Decomposition and Hierarchical
Modeling

Once demonstration data sets are prepared, the next step is the hier-
archical decomposition and learning of construction skills. In tradi-
tional construction master—apprentice relationships between human
workers, the acquisition of construction skills heavily relies on
muscle memory, practical experience, and hands-on work exposure
(Sing et al. 2017). In the domain of robot learning and program-
ming, one responsible and explainable approach to replicating such
apprenticeship is motion primitives to decompose a complex, long-
horizon task into multiple elemental motions (Schaal et al. 2005),
as shown in Fig. 5.
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Fig. 5. Construction task decomposition.

In robot motion primitive learning from demonstrations, both
predetermined elemental motions (Xie et al. 2020) and automatic
extraction of elemental motions from observations (Cohen et al.
2021) have been used. We chose the predetermined approach for
the following reasons. First, construction sites are generally highly
unstructured (Golparvar-Fard et al. 2013; Jeong et al. 2021), and
demonstration trajectories may be affected by the dynamic envi-
ronment of one site. Motions extracted from such sites are not
representative enough to be generalized to all other sites. Second,
there is ongoing research on decomposing construction tasks into
activities and smaller elemental motions [e.g., Wu et al. (2022)].
Wu et al.’s paper decomposed bricklaying activity into guiding
bricks, placing bricks, and cutting bricks. Using predetermined mo-
tions provides easier and more convenient connections with high-
quality construction management studies like this. The connected
approach may also be more efficient than collecting a high quantity
of data only to extract the elemental motions.

The first step in determining motion primitives is to find the
number of elemental motions. We applied k-means clustering on
the average of three demonstrated trajectories. The lowest cluster
error was k = 8, so the number of elemental motions was set to
eight. Collaborative work with an experienced worker was initiated
to develop the name and meaning of each elemental motion based
on the spatial characteristic of each step—that is, the average co-
ordinates of each elemental motion. The resultant eight elemental
steps of ceiling installation are shown in Fig. 6. The results of this
clustering algorithm are still affected by the personal habits of dem-
onstrators. Considering that the main scope of this paper is to pro-
pose a feasible cyber VR learning and knowledge generation
architecture, we are exploring construction segmentation and clus-
tering optimizations in our ongoing work.

As shown in Fig. 6, each motion primitive represents an atomic
motion or subtask that forms a fundamental unit of the overall task.

Y e e ————— ]
3 Rotate > one 4 one edge above
corner above the the grid

grid

1Tile below the 2 Tile close to
grid the grid

Fig. 6. Motion primitives for ceiling installation tasks.
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The entire task is treated as a probabilistic chain that connects each
step of the motion primitives. Each motion primitive also reflects the
human worker’s reaction to relational information observed from the
environment, such as the distance between material that has been
picked up to the target location. To categorize this decision-making
process more comprehensively, we propose hierarchical construction
skill models comprising sequential and reactive skills. The details of
these two skills are described in the following.

Sequential Skills

Sequential skills are proposed to avoid perceptual aliasing, which
conditions the choice of actions to the previous history of actions,
and avoid confusion with similar states observed for different sub-
tasks. With previous actions forming the conditional probability,
the probability of mislabeling environmental observations to those
in other subtasks is largely eliminated.

However, the preliminary condition of the probability chain is
that the robot agent remembers the history of actions, which implies
the necessity of memory capability in the corresponding computa-
tion model. A gated recurrent unit (GRU) suits this purpose—it
has the capability to store the history of past actions and use it to
update the next action decisions. The eight elemental motions are
treated as time-series data and used as the input of the GRU model.
As shown in Fig. 7, the GRU’s gates use both the previous hidden
state and the current input (the actions taken in the previous state) to
decide the output of actions. Therefore, it forms the elemental chain
and demonstrates sequential skills by deciding future actions based
on the history of actions.

In addition, we tested some other models that also condition the
current action based on previous actions, such as the hidden
Markov model (HMM) for high-level sequential skill modeling.
Because the GRU model significantly outperformed the HMM
in terms of learning performance, this paper only illustrates task
decomposition with the GRU model for sequential skills.

At each update and reset gate, the input (the observed last
action) and hidden state are passed to the activation function to
codetermine the next step, as follows:

R, = U(thlwtl +H_Wy+ b,)
U=0X_Ws+H_Wy+b,)

where R, and U, = reset and update gates at time ¢, respectively;
X, 1 and H,_; = input data of previous action histories and hidden
variables, respectively; and W, W, W3, W 4, b,, and b, = weight
parameters.

Reactive Skills

Reactive skills represent how human actions are influenced by
environmental observations. The observed object state (A) is
mapped to a motion primitive (S) through a generative variational
autoencoder (VAE) (Kingma and Welling 2013) model, A = f(S).
The VAE function f is shown in Fig. 8.

Sub-task Sub-task Sub-task | __| Sub-task
1 2 3 4
Xt-1 Xt
Hidden Hidden
State State h;
he-q

Fig. 7. High-level construction task decomposition with sequential
skills.
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Fig. 8. Low-level reactive skill to ground subtask action policies.

The VAE model in Fig. 8 has the following structure and train-
ing parameters:

* Model structure: encoder and decoder, as shown in Fig. 8
¢ Encoder model: GAT-GRU-FC*7-Softmax (Xie et al. 2020)
e Decoder model: GRU-FC*7-Softmax (Xie et al. 2020)

e Latent size: 512

* Training epochs: 1,000

e Optimizer: Adam (Kingma and Ba 2014)

* Learning rate (both encoder and decoder): 0.0001

The model training process was finished with PyTorch (Paszke
et al. 2019).

The input for the lower level of subtask learning is composed of
two parts. The first part is the task parameters. For the case study on
ceiling installations, we chose the model dimensions and the loca-
tion of the ceiling grid to connect with the task information stored
in the cloud BIM database. This information was used to prepro-
cess and prepare the demonstration data sets. The second part of the
data input for the VAE model is the installation object state, which
includes the 6 degree of freedom (DOF) spatial motions of three-
dimensional (3D) linear motions (x, y, z) and 3D rotations (r, p, y).
We used the installation object and the goal pose—the absolute
pose of the ceiling grid. Another option is to use the object’s rel-
ative pose (Zha et al. 2021; Luo et al. 2023). Because the first op-
tion has achieved satisfactory results and the goal of this study was
to provide a working system, we did not compared the two options.

Evaluation Case Study

Ceiling Installation Skill Modeling and Transfer

A case study was conducted to evaluate the proposed approach to
transferring ceiling installation skills to the robot. As described in
Liang et al. (2020), ceiling installation is a construction task with
one of the highest requirements for dexterity and environmental
adaptations. Ceiling tiles are generally larger than the slots in
the ceiling grid and need some manipulation in order to be sus-
pended on a grid. Most motion planning algorithms focus on avoid-
ing obstacles rather than maneuvering through them; therefore,
they cannot be used for ceiling installation tasks (Liang et al. 2020;
Yang et al. 2023).

By observing one experienced construction worker practice the
ceiling installation task, eight elemental motions were summarized,
as shown in Fig. 6. A human subject observed and replicated the
installation in VR for repetitive demonstration data collection. In
the next step, eight VAE models were trained for each elemental mo-
tion to represent the reactive skills. A GRU model connected them
and showed the sequential skills (Xie et al. 2020).
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The object was a standard two-by-two ceiling grid, which
used the most common ceiling tile size. The upper left point
of the grid had coordinates of (2.95, 1.5, 2). The eight elemental
motions in Fig. 6 were used to form a continuous demonstration.
However, these elemental motions were separately recorded in
eight different rosbag files. The recording of the demonstration
for each elemental motion lasted for 5 s (a tested threshold to
ensure the smooth completion of each motion), and the demon-
strator was notified with a beep every 5 s. Five demonstrations
were collected in the DTEC to train the robot to perform this task
(Data Set 1). To expand the database, ten more demonstrations
were performed by the same person and stored in the cloud data-
base as follows: The 5 demonstrations are referring to the number
of new demonstrations and 10 is referring to the total number of
demonstrations in Data Set 2. Likewise for Data Set 3. To avoid
confusions, the authors propose to change the parenthetical state-
ments to: (adding 5 more demonstrations to Data Set 1 to form
Data Set 2. Data Set 2 has a total of 10 demonstrations) and (add-
ing 5 more demonstrations to Data Set 2 to form Data Set 3. Data
Set 3 has a total of 15 demonstrations). The number of data points
collected varied from 382 to more than 400 due to the data trans-
mission speed. To avoid an imbalance in the training data, the
data for each episode of the elemental motion was truncated
to 380 points. The computational results are shown in the results
section.

A KUKA KR120 robot (Augsburg, Germany), a 6DOF robot
with a workload of 120 kg, was used to execute the task. In the
first several batches of simulation robot experiments, the robot ex-
hibited some jitter. The jittery behavior was caused by excessively
small increments in the demonstrated and learned trajectories.
To solve this issue, an adaptive window filter with a window size
of 0.1 was adopted to smooth the trajectories; the filter smooths
the trajectory until the difference between the current or averaged
coordinate and the next waypoint exceeds the given threshold.

Simulation of Real World Skill Transfer and Robot
Motion Control

With the demonstration data collected, stored, and analyzed in
the previous steps, the next step involved determining how to
use these data for robot motion control. One major obstacle
was coordinate misalignment between the DTEC environment
and the robot control environment. The coordinate transforma-
tion matrix was calculated with Algorithm 1, shown in the fol-
lowing. A total of 728 readings from five locations (the four
corners and centroid of the ceiling grid) were used. The average
localization error was 0.0019 m, including 3DOF location and
4DOF quaternion orientation.

Algorithm 1. DTEC-gazebo coordinates transfer
For each Rosbag file i=0,1,2,3,4:
extract the Unity pose information for each stamp
puf — [xut’yut’ Zut’ oxut’ Oy'”, OZM, OWm]
remove outliers
add to a vector for batch processing
For all extracted poses Unity p“':
calculate real world pose: p"' = [x", y*, z",0,0,0, 1]
calculate transformation matrix T': T = p¥i=! . p#
add 7" to a vector and return its mean value of T"
return 74! = mean(T° ~ T*)
For all p“:
calculate p"'' =T< . p
calculate error: e = p*'’ —
return mean error

ut

wt

p
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Experimental Results and Discussion

The proposed cloud robotics framework and hierarchical robot learn-
ing model were evaluated for improvements in skill transfer. The
following evaluation metrics were adopted: (1) learning model train-
ing time and error with different demonstration sources; and (2) robot
task execution success rate with different demonstration sources.

Learning Model Performance

Model training time and mean square error (MSE) loss were used as
evaluation metrics based on established practices from federated
learning research and robot HIL algorithms (Lin et al. 2022;
Yang et al. 2020; Xie et al. 2020; Hayashi et al. 2022). Model train-
ing time shows how long it takes for a learning model to achieve
convergence. In this study, variations in training speed reflected
data set quality, because a consistent model architecture was em-
ployed (Yang et al. 2020). They also offered insights into the effi-
cacy of introducing heterogeneous task demonstrations to enhance
the quality of the cloud database. Second, MSE loss is widely used
for unsupervised learning models in which the outputs comprise
predictions or trajectories. It shows the average euclidean distance
between the demonstration and the learning-model-generated tra-
jectory (Xie et al. 2020; Lin et al. 2022). In this case, the sequential
skill learning model returned zero training and validation errors.
The computation results for reactive skill modeling, in terms of
the reduced learning errors and increased learning speed, are shown
in Fig. 9 and Table 1. The training was conducted on a computer with
a GeForce RTX 3060 graphics processing unit (GPU) (NVIDIA,
Santa Clara, CA). The numerical results of the computational errors
and learning speed vary depending on the computers used.

Fig. 9 and Table 1 show that for each epoch, the Data Set 1 (the
data set with only one installation location) often had the largest
error. This shows that when the model learned from Data Set 1,
it generated a trajectory that was the most different from the dem-
onstrations, which did not represent the human-demonstrated skills.
This was due to the small amount and homogeneity of the data
contained in this data set (only five demonstrations of a two-by-
two ceiling tile installation in one location). Regarding the two
other data sets: (1) because they exist in the cloud database already,

2.0
I 1 location

1.5 2 sizes
BN 2 sizes & 2 locations

zzlLL;Lu

10 20 30 40 50 60 100 150 200 250 300 500

Training Error
=
=)

Fig. 9. Training error comparison for three data sets: 10-500 epochs.

Table 1. Mean and variance of model learning speed and errors

Training time Training error

Data Set Mean Variance Mean Variance

Data Set 1: one size and one  19.356  405.142  0.389 0.454
location

Data Set 2: two sizes and 19.264  399.528 0.184 0.183
one location

Data Set 3: two sizes and 19.115  389.370  0.0639  0.00885
two locations
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Fig. 10. A KUKA KR120 robot following the demonstrated motion primitives.

the workers do not need to make an extra effort to generate them
again; and (2) with an increase of heterogeneous task demonstra-
tions, model learning error is largely reduced, especially with fewer
training epochs.

Moreover, as the statistical features of the data sets in Table 1
show, Data Set 3 had the lowest mean value of training time and
training error, illustrating the potent learning power provided by the
heterogeneous data. In addition, the variance of the training error
and time from Data Set 3 was the lowest. Because the variance
shows how the number of training epochs affects model perfor-
mance, the small number suggests that using this data set helped
the model converge early (i.e., converge with fewer epochs) and be
more robust for noisy data.

Robot Task Execution Performance

Fig. 10 shows the physical robot following the given motion
primitives.

The evaluation framework aligned with the metrics used by
Liang et al. (2020); a 5-mm allowance between a tile’s ultimate
location and the grid was permissible. Fig. 11 shows a successful
installation instance (on the left) and a case that exceeded the
threshold (on the right).

The batch experiment of robot execution was performed in
Gazebo version 9, in order to avoid damaging the workpiece. The
experiment was designed to evaluate robot task performance for
ceiling installation in different locations with demonstration data

Fig. 11. Robot task execution evaluation criteria example.
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from one or both target locations. Data Sets 1 and 3 were chosen
to train the skill learning model, mainly because Data Set 2 was the
same as Data Set 1 in this case. The results of these evaluations is
shown in Table 2, which enumerates the success rates across dis-
crete experimental scenarios with five repetitions for each scenario.
Table 2 shows that when the robot only used the five ad hoc dem-
onstrations, it successfully finished the given tasks 80% of the time.
However, the robot cannot generalize this knowledge to new task
scenarios with a different target destination—it collides with the
grid and does not move to the designated target location—even
with another round of training, especially for new locations. Yet,
with the same training process (one for the original location and
another for the new location), this problem is well addressed with
five more demonstrations in new task scenarios in Data Set 3. The
KUKA robot is capable of finishing installation tasks at both (2.95,
1.5, 2) and (3.5, 2, 2).

Limitations

Although we accomplished our research goals, complete with ex-
perimental validations, we acknowledge that there were several
limitations to this study.

First, although this paper addressed task heterogeneity, the dem-
onstration data still possess a certain level of homogeneity, because
the demonstrations were performed by only one person. It was as-
sumed that the existing data in the cloud were also from this person.
The literature (Chen et al. 2015; He 2017; de Luca et al. 2022;
Mendieta et al. 2022) shows that having data from different people
may improve or reduce learning performance. However, perfor-
mance drops can still be managed through data preprocessing
approaches, joint modeling, or unifying algorithms (Mandal et al.
2019; Paleja and Gombolay 2019; Nasiriany et al. 2022; Kuhar
et al. 2023). In future studies, the cloud database architecture and
corresponding data selection, augmentation, and unifying methods
will be explored.

Second, this paper addressed skill transfers from humans to
robots, describing a case study that illustrated the proposed frame-
work with a ceiling tile installation and ceiling grid avoidance skill
transfers. However, there are many other challenges on a highly
dynamic and unstructured construction site that were not addressed
in our case study. Future studies will explore the applicability of the
proposed approach in transferring other human skills to robots.
For example, there may be many utility pipes around a ceiling
grid. Utility pipe and ceiling grid coavoidance skills require high
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Table 2. Simulated KUKA robot task execution performance comparisons

Data Set Original location (%) New location (%) New location failure reasons
Data Set 1: one location 80 0 Robot collided with ceiling grid
Data Set 3: two locations 100 80 Unable to find valid motion plans

environmental adaptation, flexibility, and dexterity. In the future,
we will explore transferring these skills with the current or an im-
proved version of the cloud framework.

Third, the proposed construction task decomposition approach
and subtask hierarchies are only demonstrating one feasible way to
decode the construction tasks. There are different ways to decom-
pose a single task. For example, motion primitives are currently
defined based on the pose, including location and orientation, of
task objects. Future work can explore construction task decompo-
sition variations to optimize the proposed hierarchical representa-
tion of construction installation tasks. One committed goal of this
work is to reduce the workload of human workers.

Fourth, this current work only forms an open-loop control sys-
tem of the construction robots. Data preprocessing, uploading to
the cloud, downloading to local devices, and edge learning are
all in separate scripts and need to be connected by the manual
launch of several Linux scripts. Although the proposed system
can be easily applied to any human worker in VR or any robot
on a construction site for scalable applications, the information ex-
change system is not yet in real time. Future work will focus on
connecting the innovations in data exchange and communication
in federated learning to upgrade this system to an advanced
closed-loop construction robot learning and control scheme.

Conclusions

This study targeted several problems in construction robot applica-

tion and craft skill programming. Building on previous research

exploring the possibility of IL to transfer craft skills from human
workers to robots, this work addressed the following problems:

1. The high physical workload in repetitive physical demonstra-
tions: The high workload is caused by (1) the manipulation
of heavy construction materials; and (2) the need for repetitive
demonstrations for new tasks. To address the first reason, we
proposed demonstrating in a high-fidelity VR and digital twin
environment to avoid interacting with heavy materials. To ad-
dress the second reason, we developed a cloud database to con-
nect to VR and ROS to save past demonstrations.

2. The low generalizability in robot IL: The majority of robot IL
models, including RL-based ones, depend heavily on environ-
mental observations and task parameters. In this study, we pro-
posed a data-driven approach with a federated demonstration
collection scheme and saved crowdsourced data in a cloud data-
base. With more variation in the learning data, the learning
model naturally possesses generalizable skills. Experiments
conducted with a simulated robot also validated this conclusion.
For example, as Table 2 shows, the robot cannot generalize the
knowledge learned from one location to tasks in new locations
with data from a single location. However, with data from two
locations, the skill learned from Data Set 3 is generalizable. In
addition, because we purposefully designed the demonstration
to be manipulated workpiece trajectories, learned trajectories
can be generated for different robots, such as the KUKA KR120
prototyping robot.

3. The lack of learning model transparency and corresponding
reduced trustworthiness: Traditional RL-based structure learns
the craft skills in a black box. Human users—especially workers
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without programming expertise—find it challenging to under-
stand and trust robot learning models (Gunning 2017). The pro-
posed explainable hierarchical model decodes craft skills as
high-level sequential skills of subtasks and low-level reactive
skills that map environmental observations to a certain choice
of subtask. A generative VAE model was used to model reactive
skills with a very low average error of 0.000895 m with

500 epochs of training; the GRU model determined the sequence

of actions with a mean error of 0. Because both models achieved

satisfactory performance, the craft skills were also decoded and
recorded in interpretable robot learning models.

To summarize, in this paper we proposed a scalable scheme to
program construction robots with craft skills. The proposed ap-
proach features cloud robotics and hierarchical learning to reduce
the workload on workers and the need for repetitive demonstra-
tions. The approach’s enhanced explainability is also more user-
friendly for workers without programming expertise.
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are available from the corresponding author upon reasonable re-
quest, including the ceiling installation demonstration trajec-
tory data.

Acknowledgments

The authors would like to acknowledge the financial support for
this research received from the US National Science Foundation
(NSF) (Grant Nos. FW-HTF 2025805 and FW-HTF 2128623).
Any opinions and findings in this paper are those of the authors
and do not necessarily represent those of the NSF. The authors
would also like to acknowledge the contribution of engineering
technician Justin Roelofs for demonstrating the ceiling installation
process and building the wooden models used in the physical robot
experiments.

References

Abdo, N., H. Kretzschmar, and C. Stachniss. 2012. “From low-level tra-
jectory demonstrations to symbolic actions for planning.” In Proc.,
ICAPS Workshop on Combining Task and Motion Planning for
Real-World App, 29-36. State College, PA: Citeseer.

Adami, P, P. B. Rodrigues, P. J. Woods, B. Becerik-Gerber, L. Soibelman,
Y. Copur-Gencturk, and G. Lucas. 2022. “Impact of VR-based training
on human-robot interaction for remote operating construction robots.”
J. Comput. Civ. Eng. 36 (3): 04022006. https://doi.org/10.1061/(ASCE)
CP.1943-5487.0001016.

AGC (Associated General Contractors). 2016. Two-thirds of contractors
have a hard time finding qualified craft workers to hire amid growing
construction demand, national survey finds. Arlington, VA: AGC.

Aryan, A., F. Bosché, and P. Tang. 2021. “Planning for terrestrial laser
scanning in construction: A review.” Autom. Constr. 125 (Mar):
103551. https://doi.org/10.1016/j.autcon.2021.103551.

Balaji, B., et al. 2016. “Brick: Towards a unified metadata schema for build-
ings.” In Proc., 3rd ACM Int. Conf. on Systems for Energy-Efficient

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2024, 38(4): 04024019


https://doi.org/10.1061/(ASCE)CP.1943-5487.0001016
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001016
https://doi.org/10.1016/j.autcon.2021.103551

Downloaded from ascelibrary.org by University of Michigan on 01/22/25. Copyright ASCE. For personal use only; all rights reserved.

Built Environments, 41-50. New York: Association for Computing
Machinery.

Bandera, J. P.,, L. Molina-Tanco, J. A. Rodriguez, and A. Bandera. 2010.
Architecture for a robot learning by imitation system. In Proc., Melecon
2010-2010 15th IEEE Mediterranean Electrotechnical Conf., 87-92.
New York: IEEE.

Bauer, P., W. Lienhart, and S. Jost. 2021. “Accuracy investigation of the
pose determination of a VR system.” Sensors 21 (5): 1622. https://doi
.org/10.3390/521051622.

Bello, S. A., L. O. Oyedele, O. O. Akinade, M. Bilal, J. M. D. Delgado,
L. A. Akanbi, A. O. Ajayi, and H. A. Owolabi. 2021. “Cloud computing
in construction industry: Use cases, benefits and challenges.” Autom.
Constr. 122 (Feb): 103441. https://doi.org/10.1016/j.autcon.2020
.103441.

BLS (US Bureau of Labor). 2023. “Industries at a glance, construction:
NAICS 23.” Accessed June 16, 2023. https://www.bls.gov/iag/tgs/iag23
htm.

Brosque, C., and M. Fischer. 2022. “Safety, quality, schedule, and cost im-
pacts of ten construction robots.” Constr. Rob. 6 (2): 163—-186. https:/
doi.org/10.1007/s41693-022-00072-5.

Cai, J., A. Du, X. Liang, and S. Li. 2023. “Prediction-based path planning
for safe and efficient human-robot collaboration in construction via
deep reinforcement learning.” J. Comput. Civ. Eng. 37 (1): 04022046.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001056.

Chen, Z. Y., Z. P. Fan, and M. Sun. 2015. “Behavior-aware user response
modeling in social media: Learning from diverse heterogeneous data.”
Eur. J. Oper. Res. 241 (2): 422-434. https://doi.org/10.1016/j.ejor.2014
.09.008.

Cohen, Y., O. Bar-Shira, and S. Berman. 2021. “Motion adaptation based
on learning the manifold of task and dynamic movement primitive
parameters.” Robotica 39 (7): 1299-1315. https://doi.org/10.1017
/S0263574720001186.

Coleman, D., 1. Sucan, S. Chitta, and N. Correll. 2014. “Reducing
the barrier to entry of complex robotic software: A Moveit! case
study.” Preprint, submitted April 15, 2014. http://arxiv.org/abs/1404
.3785.

DelPreto, J., J. I. Lipton, L. Sanneman, A. J. Fay, C. Fourie, C. Choi, and
D. Rus. 2020. “Helping robots learn: A human-robot master-apprentice
model using demonstrations via virtual reality teleoperation.” In Proc.,
2020 IEEE Int. Conf. on Robotics and Automation (ICRA), 10226~
10233. New York: IEEE.

de Luca, A. B., G. Zhang, X. Chen, and Y. Yu. 2022. “Mitigating data
heterogeneity in federated learning with data augmentation.” Preprint,
submitted June 20, 2022. http://arxiv.org/abs/2206.09979.

Delvinne, H. H., K. Hurtado, J. Smithwick, B. Lines, and K. Sullivan. 2020.
“Construction workforce challenges and solutions: A national study of
the roofing sector in the United States.” In Proc., Construction Re-
search Congress 2020: Safety, Workforce, and Education, 529-537.
Reston, VA: ASCE.

Deng, M., B. Fu, C. C. Menassa, and V. R. Kamat. 2023. “Learning-based
personal models for joint optimization of thermal comfort and energy
consumption in flexible workplaces.” Energy Build. 298 (Jun): 113438.
https://doi.org/10.1016/j.enbuild.2023.113438.

Du, J., Y. Shi, Z. Zou, and D. Zhao. 2018. “CoVR: Cloud-based multiuser
virtual reality headset system for project communication of remote
users.” J. Constr. Eng. Manage. 144 (2): 04017109. https://doi.org/10
.1061/(ASCE)CO0.1943-7862.0001426.

Fang, Y., and Y. K. Cho. 2016. “Real-time visualization of crane lifting
operation in virtual reality.” In Vol. 11 of Proc., 16th Int. Conf. on Con-
struction Applications of Virtual Reality, 13. Hong Kong: Hong Kong
Univ. of Science and Technology.

Feng, C., V. R. Kamat, and C. C. Menassa. 2016. “Marker-assisted struc-
ture from motion for 3D environment modeling and object pose esti-
mation.” In Proc., Construction Research Congress 2016, 2604-2613.
Reston, VA: ASCE.

Feng, Y., J. Wang, H. Fan, and Y. Hu. 2021. “A BIM-based coordina-
tion support system for emergency response.” IEEE Access 9 (Jun):
68814-68825. https://doi.org/10.1109/ACCESS.2021.3077237.

Golparvar-Fard, M., A. Heydarian, and J. C. Niebles. 2013. “Vision-based
action recognition of earthmoving equipment using spatio-temporal

© ASCE

04024019-11

features and support vector machine classifiers.” Adv. Eng. Inf. 27 (4):
652-663. https://doi.org/10.1016/j.ae1.2013.09.001.

Gunning, D. 2017. “Explainable artificial intelligence (xai), 2017.” In
Defense advanced research projects agency (DARPA) project. Ft. Belvoir,
VA: Defense Technical Information Center.

Haddadin, S., A. De Luca, and A. Albu-Schiffer. 2017. “Robot colli-
sions: A survey on detection, isolation, and identification.” [IEEE
Trans. Rob. 33 (6): 1292-1312. https://doi.org/10.1109/TRO.2017
.2723903.

Hamon, R., H. Junklewitz, and I. Sanchez. 2020. Robustness and ex-
plainability of artificial intelligence—From technical to policy solu-
tions, EUR 30040. Luxembourg: Publications Office of the European
Union.

Hayashi, K., S. Sakaino, and T. Tsuji. 2022. “An independently learnable
hierarchical model for bilateral control-based imitation learning appli-
cations.” IEEE Access 10 (Apr): 32766-32781. https://doi.org/10.1109
/ACCESS.2022.3155255.

He, J. 2017. “Learning from data heterogeneity: Algorithms and applica-
tions.” In Proc., IJCAI, 5126-5130. San Francisco: International Joint
Conferences on Artificial Intelligence.

Hsiao, K., and T. Lozano-Perez. 2006 “Imitation learning of whole-body
grasps.” In Proc., 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 5657-5662. New York: IEEE.

Huang, L., Z. Zhu, and Z. Zou. 2023. “To imitate or not to imitate: Boosting
reinforcement learning-based construction robotic control for long-
horizon tasks using virtual demonstrations.” Autom. Constr. 146 (Feb):
104691. https://doi.org/10.1016/j.autcon.2022.104691.

Jeong, L., Y. Jang, J. Park, and Y. K. Cho. 2021. “Motion planning of mobile
robots for autonomous navigation on uneven ground surfaces.” J. Com-
put. Civ. Eng. 35 (3): 04021001. https://doi.org/10.1061/(ASCE)CP
.1943-5487.0000963.

Jiao, Y., Y. Wang, S. Zhang, Y. Li, B. Yang, and L. Yuan. 2013. “A cloud
approach to unified lifecycle data management in architecture, engi-
neering, construction and facilities management: Integrating BIMs and
SNS.” Adv. Eng. Inf. 27 (2): 173-188. https://doi.org/10.1016/j.aei
.2012.11.006.

Karp, P. D., S. M. Paley, and I. Greenberg. 1994. “A storage system for
scalable knowledge representation.” In Proc., Third Int. Conf. on Infor-
mation and Knowledge Management, 97-104. New York: Association
for Computing Machinery.

Kase, K., C. Paxton, H. Mazhar, T. Ogata, and D. Fox. 2020. “Transferable
task execution from pixels through deep planning domain learning.” In
Proc., 2020 IEEE Int. Conf. on Robotics and Automation (ICRA),
10459-10465. New York: IEEE.

Kim, P., and Y. K. Cho. 2017. “An automatic robust point cloud registra-
tion on construction sites.” In Computing in civil engineering 2017,
411-419. Reston, VA: ASCE.

Kingma, D. P,, and J. Ba. 2014. “Adam: A method for stochastic optimi-
zation.” Preprint, submitted December 22, 2014. https://arxiv.org/abs
/1412.6980.

Kingma, D. P., and M. Welling. 2013. “Auto-encoding variational bayes.”
In Proc., 2nd Int. Conf. on Learning Representations (ICLR). Amherst,
MA: Univ. of Massachusetts Ambherst.

Kohler, M. D., R. W. Clayton, Y. Bozorgnia, E. Taciroglu, and R. Guy.
2022. “The community seismic network: Applications and expansion
to 1200 stations.” In Vol. 2022 of Proc., AGU Fall Meeting Abstracts.
Washington, DC: American Geophysical Union.

Kuhar, S., S. Cheng, S. Chopra, M. Bronars, and D. Xu. 2023. “Learning to
discern: Imitating heterogeneous human demonstrations with prefer-
ence and representation learning.” In Proc., Conf. on Robot Learning,
1437-1449. Cambridge, MA: Proceedings of Machine Learning
Research.

Kyrarini, M., M. A. Haseeb, D. Ristic-Durrant, and A. Griser. 2019.
“Robot learning of industrial assembly task via human demonstrations.”
Auton. Robots 43 (1): 239-257. https://doi.org/10.1007/s10514-018
-9725-6.

Lee, D., S. Lee, N. Masoud, M. S. Krishnan, and V. C. Li. 2022. “Digital
twin-driven deep reinforcement learning for adaptive task allocation in
robotic construction.” Adv. Eng. Inf. 53 (Aug): 101710. https://doi.org
/10.1016/j.2€1.2022.101710.

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2024, 38(4): 04024019


https://doi.org/10.3390/s21051622
https://doi.org/10.3390/s21051622
https://doi.org/10.1016/j.autcon.2020.103441
https://doi.org/10.1016/j.autcon.2020.103441
https://www.bls.gov/iag/tgs/iag23.htm
https://www.bls.gov/iag/tgs/iag23.htm
https://doi.org/10.1007/s41693-022-00072-5
https://doi.org/10.1007/s41693-022-00072-5
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001056
https://doi.org/10.1016/j.ejor.2014.09.008
https://doi.org/10.1016/j.ejor.2014.09.008
https://doi.org/10.1017/S0263574720001186
https://doi.org/10.1017/S0263574720001186
http://arxiv.org/abs/1404.3785
http://arxiv.org/abs/1404.3785
http://arxiv.org/abs/2206.09979
https://doi.org/10.1016/j.enbuild.2023.113438
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001426
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001426
https://doi.org/10.1109/ACCESS.2021.3077237
https://doi.org/10.1016/j.aei.2013.09.001
https://doi.org/10.1109/TRO.2017.2723903
https://doi.org/10.1109/TRO.2017.2723903
https://doi.org/10.1109/ACCESS.2022.3155255
https://doi.org/10.1109/ACCESS.2022.3155255
https://doi.org/10.1016/j.autcon.2022.104691
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000963
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000963
https://doi.org/10.1016/j.aei.2012.11.006
https://doi.org/10.1016/j.aei.2012.11.006
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10514-018-9725-6
https://doi.org/10.1007/s10514-018-9725-6
https://doi.org/10.1016/j.aei.2022.101710
https://doi.org/10.1016/j.aei.2022.101710

Downloaded from ascelibrary.org by University of Michigan on 01/22/25. Copyright ASCE. For personal use only; all rights reserved.

Liang, C. J., and M. H. Cheng. 2023. “Trends in robotics research in
occupational safety and health: A scientometric analysis and review.”
Int. J. Environ. Res. Public Health 20 (10): 5904. https://doi.org/10
.3390/ijerph20105904.

Liang, C. J., V. R. Kamat, and C. C. Menassa. 2020. “Teaching robots
to perform quasi-repetitive construction tasks through human demon-
stration.” Autom. Constr. 120 (Dec): 103370. https://doi.org/10.1016/]
.autcon.2020.103370.

Liang, C. J., T. H. Le, Y. Ham, B. R. Mantha, M. H. Cheng, and J. J. Lin.
2023. “Ethics of artificial intelligence and robotics in the architecture,
engineering, and construction industry.” Preprint, submitted October 9,
2023. https://arxiv.org/abs/2310.05414.

Liang, C. J., X. Wang, V. R. Kamat, and C. C. Menassa. 2021. “Human—
robot collaboration in construction: Classification and research trends.”
J. Constr. Eng. Manage. 147 (10): 03121006. https://doi.org/10.1061
/(ASCE)CO0.1943-7862.0002154.

Lin, X., Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan. 2022.
“Diffskill: Skill abstraction from differentiable physics for deformable
object manipulations with tools.” Preprint, submitted March 21, 2022.
http://arxiv.org/abs/2203.17275.

Liu, C., S. Shirowzhan, S. M. E. Sepasgozar, and A. Kaboli. 2019. “Evalu-
ation of classical operators and fuzzy logic algorithms for edge detec-
tion of panels at exterior cladding of buildings.” Buildings 9 (2): 40.
https://doi.org/10.3390/buildings9020040.

Liu, H., S. Nasiriany, L. Zhang, Z. Bao, and Y. Zhu. 2022. “Robot learn-
ing on the job: Human-in-the-loop autonomy and learning during de-
ployment.” Preprint, submitted July 4, 2023. http://arxiv.org/abs/2211
.08416.

Lundeen, K., V. Kamat, C. Menassa, and W. McGee. 2018. “Adaptive
perception and modeling for robotized construction joint filling.” In Proc.,
Int. Symp. on Automation and Robotics in Construction (ISARC),
244-251. Oulu, Finland: International Association for Automation and
Robotics in Construction.

Lundeen, K. M., V. R. Kamat, C. C. Menassa, and W. McGee. 2017. “Scene
understanding for adaptive manipulation in robotized construction
work.” Autom. Constr. 82 (Oct): 16-30. https://doi.org/10.1016/j.autcon
.2017.06.022.

Luo, J., C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schall, and S. Levine.
2023. “Multi-stage cable routing through hierarchical imitation learn-
ing.” IEEE Trans. Rob. 40 (Jan): 1476-1491. https://doi.org/10.1109
/TRO.2024.3353075.

Makondo, N., B. Rosman, and O. Hasegawa. 2015. “Knowledge trans-
fer for learning robot models via local Procrustes analysis.” In Proc.,
2015 IEEE-RAS 15th Int. Conf. on Humanoid Robots (Humanoids),
1075-1082. New York: IEEE.

Mandal, S. K., G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and U. Y.
Ogras. 2019. “Dynamic resource management of heterogeneous mobile
platforms via imitation learning.” IEEE Trans. Very Large Scale Integr.
VLSI Syst. 27 (12): 2842-2854. https://doi.org/10.1109/TVLSL.2019
.2926106.

Mendieta, M., T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen. 2022.
“Local learning matters: Rethinking data heterogeneity in federated
learning.” In Proc., IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 8397-8406. New York: IEEE.

Nakanishi, J., S. Itadera, T. Aoyama, and Y. Hasegawa. 2020. “Towards the
development of an intuitive teleoperation system for human support
robot using a VR device.” Adv. Rob. 34 (19): 1239-1253. https://doi
.org/10.1080/01691864.2020.1813623.

Nasiriany, S., T. Gao, A. Mandlekar, and Y. Zhu. 2022. “Learning and
retrieval from prior data for skill-based imitation learning.” Preprint,
submitted November 15, 2022. http://arxiv.org/abs/2210.11435.

Neto, P., and N. Mendes. 2013. “Direct off-line robot programming via a
common CAD package.” Rob. Auton. Syst. 61 (8): 896-910. https://doi
.org/10.1016/j.robot.2013.02.005.

Paleja, R., and M. Gombolay. 2019. “Heterogeneous learning from dem-
onstration.” In Proc., 14th ACM/IEEE Int. Conf. on Human-Robot
Interaction (HRI), 730-732. New York: IEEE.

Pan, M., and W. Pan. 2020. “Stakeholder perceptions of the future ap-
plication of construction robots for buildings in a dialectical system

© ASCE

04024019-12

framework.” J. Manage. Eng. 36 (6): 04020080. https://doi.org/10.1061
/(ASCE)ME.1943-5479.0000846.

Park, S., H. Yu, C. C. Menassa, and V. R. Kamat. 2023. “A comprehensive
evaluation of factors influencing acceptance of robotic assistants in field
construction work.” J. Manage. Eng. 39 (3): 04023010. https://doi.org
/10.106 1/JMENEA.MEENG-5227.

Paszke, A., et al. 2019. “Pytorch: An imperative style, high-performance
deep learning library.” In Advances in neural information processing
systems, 32. Cambridge, MA: MIT Press.

Rawai, N. M., M. S. Fathi, M. Abedi, and S. Rambat. 2013. “Cloud com-
puting for green construction management.” In Proc., 2013 Third
Int. Conf. on Intelligent System Design and Engineering Applications,
432-435. New York: IEEE.

Ross, S., G. Gordon, and D. Bagnell. 2011. “A reduction of imitation
learning and structured prediction to no-regret online learning.” In
Proc., Fourteenth Int. Conf. on Artificial Intelligence and Statistics,
627-635. Maastricht, Netherlands: ML Research Press.

RSMeans. 2016. Building construction cost data. Norwell, MA: Construc-
tion Publishers & Consultants.

Ryu, J., M. M. Diraneyya, C. T. Haas, and E. Abdel-Rahman. 2021.
“Analysis of the limits of automated rule-based ergonomic assessment
in bricklaying.” J. Constr. Eng. Manage. 147 (2): 04020163. https://doi
.org/10.1061/(ASCE)C0.1943-7862.0001978.

Schaal, S., J. Peters, J. Nakanishi, and A. Ijspeert. 2005. “Learning move-
ment primitives.” In Proc., Robotics Research. The Eleventh Int. Symp.:
With 303 Figures, 561-572. Berlin: Springer.

Shayesteh, S., and H. Jebelli. 2021. “Investigating the impact of construction
robots autonomy level on workers’ cognitive load.” In Proc., Canadian
Society of Civil Engineering Annual Conf., 255-267. Singapore:
Springer.

Shi, H., R. Li, X. Bai, Y. Zhang, L. Min, D. Wang, X. Lu, Y. Yan, and
Y. Lei. 2023. “A review for control theory and condition monitoring
on construction robots.” J. Field Rob. 40 (4): 934-954. https://doi.org
/10.1002/rob.22156.

Sing, M. C., V. W. Tam, I. W. Fung, and H. J. Liu. 2017. “Critical analysis
of construction workforce sustainability in a developed economy—case
study in Hong Kong.” Proc. Inst. Civ. Eng. Eng. Sustainability 171 (7):
342-350. https://doi.org/10.1680/jensu.17.00007.

Sokas, R. K., X. S. Dong, and C. T. Cain. 2019. “Building a sustainable
construction workforce.” Int. J. Environ. Res. Public Health 16 (21):
4202. https://doi.org/10.3390/ijerph16214202.

Sun, Y., I. Jeelani, and M. Gheisari. 2023. “Safe human-robot collaboration
in construction: A conceptual perspective.” J. Saf. Res. 86 (Sep): 39-51.
https://doi.org/10.1016/j.js1.2023.06.006.

Tolani, D., A. Goswami, and N. 1. Badler. 2000. “Real-time inverse
kinematics techniques for anthropomorphic limbs.” Graphical Models
62 (5): 353-388. https://doi.org/10.1006/gmod.2000.0528.

Wan, W., Y. He, J. Liu, H. Lu, and H. Zhang. 2020. “Application of ‘BIM+’
architecture based on cloud technology in intelligent management of
rail transit.” In Resilience and sustainable transportation systems,
474-484. Reston, VA: ASCE.

Wang, X., C.J. Liang, C. C. Menassa, and V. R. Kamat. 2021a. “Interactive
and immersive process-level digital twin for collaborative human—robot
construction work.” J. Comput. Civ. Eng. 35 (6): 04021023. https://doi
.org/10.1061/(ASCE)CP.1943-5487.0000988.

Wang, X., S. Wang, C. C. Menassa, V. R. Kamat, and W. McGee.
2023a. “Automatic high-level motion sequencing methods for enabling
multi-tasking construction robots.” Autom. Constr. 155 (Aug): 105071.
https://doi.org/10.1016/j.autcon.2023.105071.

Wang, X., H. Yu, W. McGee, C. C. Menassa, and V. R. Kamat. 2023b.
“Enabling BIM-driven robotic construction workflows with closed-loop
digital twins.” Preprint, submitted June 16, 2023. http://arxiv.org/abs
/2306.09639.

Wang, Y., C. C. Beltran-Hernandez, W. Wan, and K. Harada. 2021b.
“Robotic imitation of human assembly skills using hybrid trajectory
and force learning.” In Proc., 2021 IEEE Int. Conf. on Robotics and
Automation (ICRA), 11278-11284. New York: IEEE.

Wang, Z., Y. Gan, and X. Dai. 2020. “An environment state perception
method based on knowledge representation in dual-arm robot assembly

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2024, 38(4): 04024019


https://doi.org/10.3390/ijerph20105904
https://doi.org/10.3390/ijerph20105904
https://doi.org/10.1016/j.autcon.2020.103370
https://doi.org/10.1016/j.autcon.2020.103370
https://arxiv.org/abs/2310.05414
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002154
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002154
http://arxiv.org/abs/2203.17275
https://doi.org/10.3390/buildings9020040
http://arxiv.org/abs/2211.08416
http://arxiv.org/abs/2211.08416
https://doi.org/10.1016/j.autcon.2017.06.022
https://doi.org/10.1016/j.autcon.2017.06.022
https://doi.org/10.1109/TRO.2024.3353075
https://doi.org/10.1109/TRO.2024.3353075
https://doi.org/10.1109/TVLSI.2019.2926106
https://doi.org/10.1109/TVLSI.2019.2926106
https://doi.org/10.1080/01691864.2020.1813623
https://doi.org/10.1080/01691864.2020.1813623
http://arxiv.org/abs/2210.11435
https://doi.org/10.1016/j.robot.2013.02.005
https://doi.org/10.1016/j.robot.2013.02.005
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000846
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000846
https://doi.org/10.1061/JMENEA.MEENG-5227
https://doi.org/10.1061/JMENEA.MEENG-5227
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001978
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001978
https://doi.org/10.1002/rob.22156
https://doi.org/10.1002/rob.22156
https://doi.org/10.1680/jensu.17.00007
https://doi.org/10.3390/ijerph16214202
https://doi.org/10.1016/j.jsr.2023.06.006
https://doi.org/10.1006/gmod.2000.0528
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000988
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000988
https://doi.org/10.1016/j.autcon.2023.105071
http://arxiv.org/abs/2306.09639
http://arxiv.org/abs/2306.09639

Downloaded from ascelibrary.org by University of Michigan on 01/22/25. Copyright ASCE. For personal use only; all rights reserved.

tasks.” Int. J. Intell. Rob. Appl. 4 (2): 177-190. https://doi.org/10.1007
/s41315-020-00128-1.

Wilder, R. 2013. “Big increase in Gulf coast projects equals big demand for
skilled workers.” The Conrnerstone. Northbrook, IL: Scott Foresman.

Wos, P., and R. Dindorf. 2023. “Develop and Implement a masonry algo-
rithm control in a bricklaying robot.” In Vol. 2949 of Proc., AIP Conf.
Woodbury, NY: American Institute of Physics.

Wu, H., H. Li, X. Fang, and X. Luo. 2022. “A survey on teaching workplace
skills to construction robots.” Expert Syst. Appl. 205 (Nov): 117658.
https://doi.org/10.1016/j.eswa.2022.117658.

Xie, F., A. Chowdhury, M. De Paolis Kaluza, L. Zhao, L. Wong, and R. Yu.
2020. “Deep imitation learning for bimanual robotic manipulation.” In
Vol. 33 of Proc., Advances in Neural Information Processing Systems,
2327-2337. Cambridge, MA: MIT Press.

Xu, G., M. Li, C. H. Chen, and Y. Wei. 2018. “Cloud asset-
enabled integrated IoT platform for lean prefabricated construction.”
Autom. Constr. 93 (Sep): 123-134. https://doi.org/10.1016/j.autcon
.2018.05.012.

Xu, L., C. Feng, V. R. Kamat, and C. C. Menassa. 2020. “A scene-adaptive
descriptor for visual SLAM-based locating applications in built envi-
ronments.” Autom. Constr. 112 (Apr): 103067. https://doi.org/10.1016
/j.autcon.2019.103067.

Yamada, T., J. Tatsuno, and H. Kobayashi. 2001. “A practical way to
apply the natural human like communication to human-robot interface.”
In Proc., 10th IEEE Int. Workshop on Robot and Human Interactive
Communication. ROMAN 2001 (Cat. No. 0ITH8591), 158-163).
New York: IEEE.

© ASCE

04024019-13

Yang, S., P. Liu, and N. E. Pears. 2023. “Benchmarking of robot
arm motion planning in cluttered environments.” In Proc., 28th
Int. Conf. on Automation and Computing (ICAC2023). New York:
IEEE.

Yang, S., X. Yu, and Y. Zhou. 2020. “LSTM and GRU neural network per-
formance comparison study: Taking yelp review dataset as an example.”
In Proc., 2020 Int. Workshop on Electronic Communication and
Artificial Intelligence (IWECAI), 98-101. New York: IEEE.

Yu, H., V. R. Kamat, C. C. Menassa, W. McGee, Y. Guo, and H. Lee.
2023a. “Grip state recognition for enabling safe human-robot object
handover in physically collaborative construction work.” In Computing
in civil engineering 2023, 787-795. Reston, VA: ASCE.

Yu, H., V. R. Kamat, C. C. Menassa, W. McGee, Y. Guo, and H. Lee. 2023b.
“Mutual physical state-aware object handover in full-contact collabora-
tive human-robot construction work.” Autom. Constr. 150 (Apr): 104829.
https://doi.org/10.1016/j.autcon.2023.104829.

Zha, Y., S. Bhambri, and L. Guan. 2021. “Contrastively learning visual
attention as affordance cues from demonstrations for robotic grasping.”
In Proc., 2021 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 7835-7842. New York: IEEE.

Zhang, D., Q. Li, Y. Zheng, L. Wei, D. Zhang, and Z. Zhang. 2021.
“Explainable hierarchical imitation learning for robotic drink pouring.”
IEEE Trans. Autom. Sci. Eng. 19 (4): 3871-3887. https://doi.org/10
.1109/TASE.2021.3138280.

Zhu, Q., T. Zhou, P. Xia, and J. Du. 2022. “Robot planning for active colli-
sion avoidance in modular construction: Pipe skids example.” J. Constr.
Eng. Manage. 148 (10): 04022114. https://doi.org/10.1061/(ASCE)CO
.1943-7862.0002374.

J. Comput. Civ. Eng.

J. Comput. Civ. Eng., 2024, 38(4): 04024019


https://doi.org/10.1007/s41315-020-00128-1
https://doi.org/10.1007/s41315-020-00128-1
https://doi.org/10.1016/j.eswa.2022.117658
https://doi.org/10.1016/j.autcon.2018.05.012
https://doi.org/10.1016/j.autcon.2018.05.012
https://doi.org/10.1016/j.autcon.2019.103067
https://doi.org/10.1016/j.autcon.2019.103067
https://doi.org/10.1016/j.autcon.2023.104829
https://doi.org/10.1109/TASE.2021.3138280
https://doi.org/10.1109/TASE.2021.3138280
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002374
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002374

