
Accelerating Function-Centric Applications by Discovering,
Distributing, and Retaining Reusable Context in Workflow

Systems

Thanh Son Phung
University of Notre Dame
Notre Dame, IN, USA

tphung@nd.edu

Colin Thomas
University of Notre Dame
Notre Dame, IN, USA
cthoma26@nd.edu

Logan Ward
Argonne National Laboratory

Lemont, IL, USA
lward@anl.gov

Kyle Chard
University of Chicago

Chicago, IL, USA
chard@uchicago.edu

Douglas Thain
University of Notre Dame
Notre Dame, IN, USA

dthain@nd.edu

ABSTRACT

Workflow systems provide a convenient way for users to write
large-scale applications by composing independent tasks into large
graphs that can be executed concurrently on high-performance clus-
ters. In many newer workflow systems, tasks are often expressed
as a combination of function invocations in a high-level language.
Because necessary code and data are not statically known prior
to execution, they must be moved into the cluster at runtime. An
obvious way of doing this is to translate function invocations into
self-contained executable programs and run them as usual, but this
brings a hefty performance penalty: a function invocation now
needs to piggyback its context with extra code and data to a remote
node, and the remote node needs to take extra time to reconstruct
the invocation’s context before executing it, both detrimental to
lightweight short-running functions.

A better solution for workflow systems is to treat functions
and invocations as first-class abstractions: subsequent invocations
of the same function on a worker node should only pay for the
cost of context setup once and reuse the context between different
invocations. The remaining problems lie in discovering, distributing,
and retaining the reusable context among workers. In this paper, we
discuss the rationale and design requirement of these mechanisms
to support context reuse, and implement them in TaskVine, a data-
intensive distributed framework and execution engine. Our results
from executing a large-scale neural network inference application
and a molecular design application show that treating functions
and invocations as first-class abstractions reduces the execution
time of the applications by 94.5% and 26.9%, respectively.
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1 INTRODUCTION

Modern scientific research applications demand large amounts of
compute and storage power, reaching tens of thousands of CPUs/G-
PUs and petabytes of data. This demand transcends any specific
scientific field, for example the GAMESS application in the Exascale
Computing Project reports using 95% of the Summit supercomputer
for computations involving 20k atoms [26], the Dark Energy Science
Collaboration (DESC) scans and processes an outer space region of
(4.225�?2)3 volume, producing 1PB of intermediate and final data
products [4], the Large Hadron Collider generates petabytes of data
per year through four experimental detectors [22], and Meta trains
its largest LLM (LLaMA 65B) on 2,048 GPUs in 21 days [17].

To match this enormous demand for data and computation,
many applications break their complex computations into a directed
acyclic graph (DAG) of independent tasks and linearly scale the
rate of computation with the number of compute nodes. Workflow
execution engines [1, 30, 38] enable such a distributed program-
ming model, allowing users to express computational needs as a
DAG of tasks and automating node acquisition and release via batch
systems, task scheduling, result retrievals, etc.

However, expressing a DAG of computations is a non-trivial task
even for technical users, as it usually requires them to understand
the computations and their associated I/O behaviors, learn to effec-
tively use the workflow execution engine and its capabilities, and
write complex customized scripts describing computations wrapped
as tasks and their associated data inputs and outputs. Therefore, a
number of parallel programming libraries (e.g., Parsl [6], Dask [23],
RADICAL [32]) have been developed with the aim to automatically
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invocations of the same function can efficiently reuse C to avoid
paying the cost of context reload.

Our contributions in this paper are as follows:

(1) We identify a performance problem within the workflow
system software stack. We then set the goal of removing this
problem by treating functions and invocations as first-class
abstractions and devising new mechanisms to support them.

(2) We enumerate three mechanisms to support acceleration of
function-centric applications via reuse of function contexts:
discover, distribute, and retain. An analysis of the rationale
and design requirement for each mechanism is provided.

(3) We implement thesemechanisms in TaskVine, a data-intensive
distributed framework and execution engine, and describe
in detail our implementation.

(4) We evaluate our work using two applications: a large-scale
neural network inference (LNNI) using the ResNet50 [13]
model and ExaMol [35], a real-world scientific application
that combines molecular simulations with machine learn-
ing training and inference to design new molecules. LNNI
contains 100k tasks running in total 1.6 million inferences.
ExaMol contains 10k tasks. We show that our work reduces
the execution time of LNNI by 94.5% (7,485 to 414 seconds)
and ExaMol by 26.9% (4,600 to 3,364 seconds).

2 FUNCTION CONTEXT

A key characteristic of function-centric applications is that neces-
sary computations are expressed in the form of functions in a given
programming language. We first characterize several important
subjects (application, function, function context, invocation), and
then describe the three capabilities (discover, distribute, retain) for
workflow systems to support efficient context reuse in large-scale
function-centric applications.

2.1 Overview

2.1.1 Application. An application is the driving process for a large-
scale computational need. This process usually resembles a feedback
loop: the application requests some initial computations, and de-
pending on the results of them, the application may decide that
the computation need is satisfied and terminate, or it may request
more computations and continue to the next phase. Extreme forms
of this process are also possible and quite common. On one end,
an application deploys all needed computations in one phase, and
terminates once results are returned (e.g., a full non-overlapping
sweep of a dataset). On the other end, the application acts like a
service that waits for a certain event to occur and deploys computa-
tions on-the-fly. The application may run for an indefinite amount
of time. A function-centric application falls within this characteri-
zation, and special care is needed to address challenges from both
ends of the spectrum.

A function-centric application is usually designed to tackle large-
scale computational needs via the divide-and-conquer approach:
a big computational problem is broken down into many smaller
independent subproblems. The blueprint to each subproblem is
wrapped into a function in the top layer of the manager node in
Figure 1, with the specification of individual subproblems passed
to the function as arguments.

An application starts computations by invoking functions with
some arguments in a given programming language. Such invocation
is usually asynchronous and mediated by underlying frameworks
(e.g., workflow systems) for remote execution. For each computa-
tion request received, the framework returns to the application a
promise that the application will know and receive the result when
a function is successfully executed. The application is otherwise
oblivious to any other problems: it does not know how functions
are transferred over to remote workers, what dependencies are
required, which part of the functions can be effectively reused be-
tween invocations of the same function, etc. It’s the framework’s job
to make remote execution as close to a local execution as possible.

2.1.2 Function. A function is an independent unit of computation
that has inputs and outputs. It usually is not self-contained however,
as inputs can come from several sources: language-specific code
objects via the function’s arguments, access to external data storage
that’s buried deep inside a function’s code, implicit references to
package dependencies, etc. The same applies to outputs, where a
function can return results via its return value but also by writing
results to an external data storage and exiting with a success code.

A function’s code can be separated into two parts: one that sets
up a reusable context and one that invokes computations with the
given arguments. The former usually consists of setting up the con-
text of the function, such as importing relevant modules (this may
imply compiling language-specific code on-the-fly), opening files
to read in necessary states of relevant objects (e.g., load parameters
of a model into memory), or preparing the execution environment
with local resources for the invocation (e.g., move a given model
from memory into a GPU). The latter concerns more about the exe-
cution of a function and is usually dictated by the arguments given
to an invocation. While the function context sets up a shareable
and reusable environment to a function, the invocation executes
the computation and may mutate the environment on the go, with
each invocation likely very different than others to reflect different
subproblems. Therefore, it is important to separate out the reusable
context of a function such that subsequent invocations can reuse
the context efficiently.

2.1.3 Function Context. As discussed above, a function context
takes care of setting up the environment for an incoming invoca-
tion. Since this environment setup happens on a fresh worker with
no dependencies pre-installed as the application runs, this setup
process can be arbitrarily complex, from fetching datasets from
external sources to the worker’s local disk, to caching objects in
memory for subsequent invocations or loading models into acceler-
ators. Therefore, the setup of function context is best represented
by an executable object that allows arbitrary code execution, e.g., an
auxiliary function. This function’s job is not to directly execute the
necessary computations, but to allow users to specify all steps to
prepare the environment in a programmatic way. Most importantly,
once the setup is complete, the executable object must terminate
without relinquishing all the setup work done.

Since the context setup can execute arbitrary code and leaves
behind an environment when terminated, this environment will
occupy arbitrary local resources on the worker. This implies that a
worker must be able to account for such resource occupation and
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wait for the notification of a successful execution, and return results
back to the manager.

3 IMPLEMENTATION

Section 2 discusses many requirements, tradeoffs, and possible
implementation routes for all three mechanisms to support context
reuse in large-scale function-centric applications. We now describe
in detail our implementation.

3.1 Overview

We target applications written in Python as it has increasingly be-
come a programming language of choice for large-scale scientific
applications. Much of our implementation is done with TaskVine,
a data-intensive framework for large-scale applications. TaskVine’s
components include a Python frontend where users can specify
Python functions for remote execution, and a C backend that han-
dles task execution, result retrieval, worker acquisition and release,
fault tolerance, etc. For the parallel library layer, we implement
the function context API in the TaskVine frontend. To increase
the potential impact of our work to other established applications
with their own software stack, we also integrate TaskVine as a
backend execution engine to Parsl [6], resulting in the Parsl TaskVi-
neExecutor. For the execution engine layer, we implement all the
mechanisms in the TaskVine backend with changes to many of its
components: task scheduling, task representation and deployment,
worker’s local management of resources, etc. We first describe our
implementation for each mechanism, then show how we enhance
TaskVine and design TaskVineExecutor to incorporate these mecha-
nisms and support the new function and invocation abstractions
with context reuse.

3.2 Discover

As discussed in subsection 2.2.1, the mechanism to discover func-
tion contexts requires the analysis and detection of four elements:
function code, software dependencies, input data, and arbitrary
environment setup.

Function code. Our implementation supports both approaches
in detecting the function’s code. We add to TaskVine an API that
allows a user to specify a list of function objects or names to be
included in the function context. Upon receiving the list, TaskVine
first tries to extract the source code of such functions using the
built-in inspect module in the Python standard library. If success-
ful, TaskVine adds the source code of the functions to the context
so that the worker can simply invoke these functions by their
names. Otherwise, TaskVine serializes the functions to files using
cloudpickle [8] and adds those files as inputs to the relevant con-
text. The functions will later be reconstructed on a worker and
ready for invocations.

Software dependencies. We modify TaskVine and the Pon-
cho [27] toolkit to detect, install, and package all necessary depen-
dencies of a function. After extracting the functions’ code, TaskVine
gives them to Poncho to scan their ASTs for imported modules,
create a local Conda [14] environment containing these modules
with versions resolved, and package the environment into a spe-
cially formatted tarball using the conda-pack [15] tool. Once the
environment tarball is created, TaskVine then binds the tarball to

the functions’ context as an input file. TaskVine extensively uses
this binding to send only the environment tarball when needed:
a context process on a worker will reuse a copy of the tarball to
execute an invocation if it is available in the worker’s cache, and
otherwise will request a transfer of tarball from either the manager
or another worker which has it.

Input data. Any input data that is shareable between invocations
can be declared to TaskVine as an input file to the relevant function’s
context and mark itself as cacheable and transferable. Once all
shareable input data are bound to a given context, we create a
special script that will act like the daemon process on a worker
node as mentioned in subsection 2.2.3. We then create a special task
from this script (this task does no actual work and cooperates with
the worker process to invoke functions instead, more in subsection
3.4), bind all input data to this task, and use TaskVine’s regular
task scheduler and data-intensive capabilities (e.g., unique data
naming, data caching on worker nodes, data transferring between
nodes) to send the environment setup process and stage input data
to the remote node as necessary. Once the special task is ready,
subsequent invocations use the same copy of the shareable input
data as described above.

Environment Setup. Each function F submitted to TaskVine
can specify another helper function H to setup its context. F itself
can just contain the invocation part, and defer the setup to H. We
modify TaskVine such that upon receiving F, TaskVine registers
H to the context of F. A worker is then instructed to execute H as
part of its work setting up F ’s context. Each invocation of F then
only executes its distinctive computation with the guarantee that
all the setup work it needs from H is present and ready to be used
on a worker node.

3.3 Distribute

TaskVine supports distribution modes 3a and 3b in Figure 3. When
an application starts up and the first workers join the system,
TaskVine sequentially sends input files from the manager node
to these workers. If the worker-to-worker transfer feature is avail-
able and enabled, once aworker reports backwith a success-transfer
notification, the manager then directs that worker to start sending
relevant input files to other workers instead. Each worker is capped
to # transfers of input files at any given time to avoid a sink in
the spanning tree of data transfers between workers. To quickly
distribute function contexts to connected workers, we package a
given function context into a set of files as described in subsection
3.2 and use TaskVine’s built-in data distribution capability.

3.4 Retain

Once a function context is discovered by the manager (see subsec-
tion 3.2), TaskVine creates a special task called a "library" that runs
like a daemon until terminated and cooperates with the worker
process to execute invocations. The library is a Python script and
acts like a service as described in subsection 2.2.3: it waits for in-
structions from the worker to execute invocations, and once done
lets the worker know that results are available to retrieve. TaskVine
then sends the library with the function context to a given worker.
The protocol between a library and a worker is as follows:



Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

1 import ndcctools.taskvine as vine

2 def context_setup(y):

3 ...

4 def f(x):

5 ...

6 manager = vine.Manager(...)

7 library = manager.create_library_from_functions('lib', f,

8 context=context_setup, context_args=[y])

9 dataset_file = vine.File('dataset.tar.gz', cache=True,

10 peer_transfer=True)

11 library.add_input(dataset_file)

12 manager.install_library(library)

13 ...

14 for i in range(10):

15 invocation = vine.FunctionCall('lib', 'f', args=[i])

16 manager.submit(invocation)

17 ...

Figure 5: Support of Function and Invocation Abstractions

via a Code Sample in TaskVine

A user creates a library for function f, adds a common input data

to the library, and registers the library to the manager. A function

is pinpointed by its library’s name and its name, and subsequent

invocations only need to specify their arguments.

(1) The worker executes the library as a normal task by forking
then exec’ing the Python script.

(2) The library starts up, reads in its configurations, executes all
context setup functions provided to it, sends back a notifica-
tion to the worker to let it know that it’s ready to execute
invocations, and waits for a message from the worker.

(3) The manager sends an invocation to the worker, and the
worker waits for the ready message from the library. Upon
receiving the ready message, the worker sets up a sand-
box specifically for the invocation, and sends the invocation
metadata, its arguments, and the sandbox to the library.

(4) Each invocation has two execution options: direct or fork.
If the option is direct, then the library changes the work-
ing directory to the invocation’s sandbox, then loads the
arguments of the invocation into memory and executes it
synchronously. Once the invocation is complete and the con-
trol is returned to the library, it serializes the result in to
a result file in the invocation’s sandbox, changes its work-
ing directory back, and lets the worker know. If the option
is fork, then the library instead forks itself and waits for
the child process to be done via the SIGCHLD signal or a
message from the worker. The child process changes the
working directory into the sandbox, loads the arguments, ex-
ecutes the invocation, dumps the result to the result file, and
exits. The library upon receiving the SIGCHLD signal lets
the worker know that it has a result to be fetched. In either
case, the worker sends back the result file to the manager
and destroys the invocation’s sandbox. Both the library and
the worker go back to waiting for invocations as in step (3).

3.5 TaskVine Enhancement

With all three mechanisms’ implementation described, we now
present the function context API via a code sample and the changes
to the internal structures of TaskVine.

3.5.1 Function Context API. Figure 5 shows an example of how
TaskVine supports function and invocation abstractions. Assume
a user has broken the computation into f and context_setup, one
first creates a TaskVine Manager object in line 6. Lines 7-8 tell the
manager to create a library for a given function and its context, and
the created library will automatically discover 3 out of 4 elements
in subsection 3.2: function code, software dependencies, and envi-
ronment setup. If there’s a common input data between invocations,
then the user can declare it to the manager and add it as an input
to the library (lines 9-11). Once the context discovery via the f ’s
library is done, it is registered to the manager in line 12. To invoke
a function from a known library, the user simply needs to specify
the relevant library and function’s names with the invocation’s
distinct arguments (line 15).

3.5.2 Internals. We now describe actions a TaskVine manager
takes once an invocation is submitted in a newly created workflow
(line 16 in Figure 5.) The manager first pinpoints the invocation’s
library via the library and the function’s names. A library by default
takes all resources of a worker, but it can be configured to run on a
portion of a worker as well. A library by default runs 1 invocation
of a function at a given time, but this can also be changed by setting
its number of invocation slots. Once the runtime details of a library
are determined, the manager sequentially checks a hash ring of
connected workers to see if any is available to run the library. The
first available worker is sent an instance of the library to be exe-
cuted as described in subsection 3.4 along with its pre-specified
input data. The manager then holds on to that worker and sends
as many invocations as available slots the library currently has. If
the library is full, the manager can either send another library to
the worker provided that the worker still has adequate amount of
resources, or it moves on to the next worker in the ring.

Resource allocation for libraries and invocations is tricky as
discussed in subsection 2.1.3.We currently employ a resource model
where the library owns an arbitrary but fixed allocation of resources
on a worker node in terms of cores, memory, and disk. A library
has a logical type of resource called invocation slots, in which each
slot runs at most 1 invocation at a time. For example, to run 8
invocations concurrently on a 32-core worker node where each
invocation uses at most 4 cores, one can set the library to occupy
the whole worker node and set the number of invocation slots to 8.
An alternative strategy is to set each library to use 4 cores and have
1 invocation slot, so the manager can run 8 libraries concurrently.

Since a library by default takes over a whole worker, one type of
library can occupy every worker in the system and prevent invo-
cations of functions in other libraries from running. To avoid this,
note that a library is a special task to a worker and by itself doesn’t
do any actual work. Therefore, when the manager is scheduling
an invocation from another library and finds a library on a worker
with no slots being actively used (an empty library), the manager
instructs the worker to remove that library and reclaim resources.
Invocation scheduling then happens as described above.

3.6 Parsl-TaskVineExecutor

We briefly describe our integration of TaskVine with Parsl (TaskVi-
neExecutor) here, and reserve a full explanation to future work.
Going back to Figure 1, the integration sits between the parallel
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Group
Machine
Prefix

CPU Model
(# of Machines, GFlops)

DRAM Capacity
(# of Machines)

1
d32cepyc
[001-070]

AMD EPYC 7532
32-Core Processor

(58, 4.4)
256GBs (58)

2
d32cepyc
[076-260]

AMD EPYC 7543
32-Core Processor

(117, 5.4)

256GBs (95)
2TBs (22)

3
qa-a10-
[001-022]

Intel(R) Xeon(R) Gold
6326 CPU @ 2.90GHz

(14, 1.9)
256GBs (14)

4
qa-a40-
[001-010]

Intel(R) Xeon(R) Gold
6326 CPU @ 2.90GHz

(7, 1.9)
256GBs (7)

5
sa-rtx6ka-
[001-005]

Intel(R) Xeon(R) Silver
4316 CPU @ 2.30GHz

(5, 1.9)
256GBs (5)

Table 3: Major Machine Groups in the Local Cluster

library layer (Parsl) and the execution engine (TaskVine). Since
Parsl maintains the DAG of invocations and sends ready ones to
TaskVine, from TaskVineExecutor’s perspective, it receives an ar-
bitrary stream of function invocations. Therefore, the executor is
designed to be a service process: it waits for any invocation of any
function coming in at any time, packages the invocation into either
a TaskVine Task or FunctionCall, executes it, and returns the result.
Upon startup, the executor spawns a manager process to coordinate
work, and a factory process to coordinate the number of workers in
a cluster. The executor sits in the application process and sends de-
tails of ready invocations to the manager process for execution. The
execution service ends when it is explicitly noted by a user or when
the Python interpreter is exiting. If the interpreter exits normally,
then the executor sends a shutdown signal to the manager process
to stop any work and the factory process to remove workers in the
cluster. For an abnormal exit (e.g., receiving SIGKILL signal), the
manager and factory processes continuously check their ppids and
exit/cleanup upon change.

4 EVALUATION

This section starts with a summary of the LNNI and ExaMol appli-
cations in greater detail. We then describe the general settings of
all the experiments, with special settings explicitly noted in certain
experiments. Lastly, our evaluation aims to answer these following
questions:

• Q1: What is the effect of context reuse in the execution time
of these applications?

• Q2: How is the benefit of context reuse affected when invo-
cations take more time to execute?

• Q3: If we change the amount of available compute power by
increasing or reducing the number of workers, what is the
change in the execution speedup for an application?

• Q4: Howmany times does a function context on a worker get
shared between invocations? Does the share value increase
over time?

• Q5: What is the invocation overhead breakdown of different
levels of context reuse, and how does increasing the level of
context reuse affect this overhead?

4.1 Application Summary

4.1.1 Large-Scale Neural Network Inference. The LNNI application
runs 10k to 100k inference invocations, each of which runs 16 to
1,600 inferences, on a pretrained ResNet50 model. ResNet50 is a
convolutional neural network with the goal of classifying a given
image to 1,000 predefined classes of objects. The application invokes
functions by calling the TaskVine frontend API. The TaskVine fron-
tend prepares the invocations and, depending on the configuration,
sends ready tasks or invocations to the TaskVine backend for exe-
cution. The TaskVine backend then manages the execution of tasks,
result retrievals, worker control, etc., as shown in Figure 1.

4.1.2 ExaMol. ExaMol implements workflows to explore materials
design through a combination of quantum chemistry and machine
learning tasks. We utilize an ExaMol application which implements
a single-objective optimization of ionization potential through an
active learning approach [11]. The task-scheduling logic is defined
using Colmena [2, 36] and deploys PM7 calculations with Open-
MOPAC [29] to gather new data concurrently with training or
inference tasks implemented with Scikit-Learn and RDKit [16, 19].
Each type of task is defined using Python functions and invoked via
Parsl’s API [6]. Parsl maintains a graph of pending functions and
sends ready ones to the TaskVineExecutor, which deploys functions
remotely using the TaskVine backend, as described above. The total
number of tasks is around 10k.

4.2 Experiment Settings

We run all applications using machines from a local heterogeneous
HTCondor [31] cluster. All machines in the cluster have SATA
6GB/s SSD as local disk with 10 Gbs Ethernet link running Red
Hat Enterprise Linux release 8.9 (Ootpa) as their OS. Table 3 shows
5 major machine groups with varying CPU models and DRAM
capacity in the cluster that account for 96.2% of all machines used
in any run. All experiments are run with a similar proportion of
machine groups to that of Table 3 unless explicitly noted otherwise.
Workers and invocations in applications have generous memory
allocations (e.g., LNNI invocations never exceed 1GB and are al-
located 4 GBs of DRAM.) Note that while a faster CPU generally
results in a faster execution time, our work reduces execution time
instead via state sharing and reducing the amount of unnecessarily
repeated computation between invocations.

Applications are run using 10 to 150 TaskVine workers, noted
explicitly in every experiment. Each worker is allocated 32 cores
and 64GBs of memory and disk. For the LNNI application, each
inference invocation is allocated 2 cores and 4 GBs of memory and
disk, so a worker can run 16 concurrent invocations. For the Examol
application, each invocation is allocated 4 cores and 8 GBs of mem-
ory and disk, resulting in a maximum of 8 concurrent invocations
per worker. An application starts its execution when submitted
invocations are known by the workflow system and at least 95% of
the requested workers are connected.

We investigate three levels of context reuse in this paper:

• L1: No context reuse. This level consists of running invo-
cations purely as tasks without use of local resources for
sharing or caching on any worker. Invocations are wrapped
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execution, providing Functions-as-a-Service (FaaS). Prominent ser-
vices include Amazon Lambda [5], Apache OpenWhisk [12], and
Azure Serverless [9]. These platforms allow users to invoke remote
functions using the appropriate scheme as defined by the vendor.
To utilize these platforms however, functions must be manually
registered and invoked in a platform-specific way. In many cases,
proprietary cloud storage must be used, and compute resources
must be provided by the vendor. In contrast, workflow systems that
enable context reuse as stated above are more application-specific.
Functions don’t have to be registered with workflow systems in ad-
vance. All dependencies of a function can be dynamically discovered
and packaged instead of a user’s manual dependency specification.
Computational power (i.e., workers/compute nodes) is not vendor-
specific: an application using TaskVine’s context setup APIs can
spawn workers anywhere, on cloud or on premise. Finally, work-
flow systems have a more proactive approach to data movement
and tracking: instead of being hidden behind a cloud storage, data
is explicitly moved between workers to maximize the aggregated
bandwith of the system.

Workflow Systems. Workflow systems encompass a variety of
softwares assisting in the deployment of work across computational
resources [10, 32, 39]. These systems strike a balance between ease
of application development, performance benefits, and other desir-
able characteristics of scalable applications. Here we pay specific
attention to the distinction between task-based and invocation-
based workflow systems. Workflows are traditionally viewed as
task-based applications. Invocation-based systems imply that con-
text resides on the remote execution site, reducing startup cost
and latency. Ray [18] is an integrated parallel workflow system in
which tasks are expressed as decorated Python functions which
may be invoked. There may only be one actor, or context per Ray
worker, and data is typically accessed through a shared file sys-
tem. TaskVine however may have multiple libraries installed on a
worker, and data may be shared across invocations inside a worker,
leveraging the benefit of many cores on a single node.

Parallel Libraries. Parallel libraries offer the convenience to
express and execute a workflow via invoking functions in a given
programming language. Function invocations are represented in
a DAG in which concurrent tasks are easily recognizable. Parallel
libraries such as Ray, Parsl [6], and Dask [23] construct a DAG of
tasks in which an underlying task scheduler may utilize to exe-
cute the workflow. Our contribution in TaskVine is a sophisticated
scheduler which directly supports invocation as a standalone unit
of computation and an alternative execution model to task. With
the ability to have many libraries, or contexts, on a single worker,
TaskVine function invocations can be efficiently matched with exe-
cution platforms at a fine-grained level. While users have the option
of expressing their workflows using the TaskVine frontend APIs,
the choices of a parallel library to use are much wider. The TaskVine
backend is fully integrated with popular libraries like Parsl and
Dask, in which TaskVine acts like the execution engine for work-
flows described in the language of either library. This combines
the sophisticated workflow expression and DAG creation of the
parallel libraries while also utilizes the proactive data management
and efficient computation execution features of TaskVine.

Data Staging Technologies. HPC-scale distributed file systems
such as Lustre [7] and Panasas [37] are effective in their purpose

and often the best solution in cases where the size of application
data exceeds the available local storage on compute nodes. However
a predominant contemporary issue in such distributed file systems
is the scale and concurrency at which they can handle and will
become a bottleneck for data-intensive applications. This has led
to the development of various data staging technologies such as
burst buffers and ephemeral file systems which reside across node
local storage. Examples of these include BeeOND [3], GekkoFS
[33], and BurstFS [34]. A key component of TaskVine is data man-
agement and distribution. For many applications we encourage
the use of local storage and inter-node communication instead of
relying on distributed file systems. The fundamental difference be-
tween TaskVine and other node-local storage implementations is
that TaskVine manages both the workflow and storage, fully lever-
aging the awareness of data locality in making decisions for task
scheduling. This holistic capability of TaskVine makes it possible to
efficiently utilize the local resources of compute nodes to support
both the task and invocation execution modes of data-intensive
and/or function-centric workflows. Other burst buffer and ad-hoc
file system implementations must be deployed and managed inde-
pendently, and while providing generally favorable performance,
valuable information about storage is hidden from the workflow
manager, blocking the full potential of using local storage for state-
ful computations.

6 CONCLUSION AND FUTUREWORK

Workflow systems allow users to express and execute large scale
applications on remote computational resources via a DAG of inde-
pendent stateless tasks. These workflows are often interpreted and
executed in a task-based model, in which tasks and its dependen-
cies are bundled together and delivered to remote nodes at runtime
and live in the cluster only as long as the task is running. This
execution model is detrimental to the performance of function-
centric applications however. Invocations differentiate themselves
via their arguments, but when executed as tasks, must also reload
their contexts, including code and data, for every execution. Our
work addresses this execution deficiency by treating functions and
invocations as first-class abstractions for execution: reusable func-
tion contexts are first discovered via analysis of the function code
and/or user’s specification, distributed efficiently across all workers
in the system, and then retained indefinitely on the workers waiting
for invocations. Subsequent invocations then can reuse the function
context and its already set-up environment, and only have to wait
for arguments to load into their memory space before promptly
starting to execute. Future work includes further improvements
to the function-centric programming model in order to facilitate
a seamless discovery of high-level contexts among invocations to
the same function, with necessary code, data, and dependencies
packaged automatically without the need for user intervention.
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