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Abstract: In the construction industry, where work environments are complex, unstructured and often dangerous, the implementation of
human–robot collaboration (HRC) is emerging as a promising advancement. This underlines the critical need for intuitive communication
interfaces that enable construction workers to collaborate seamlessly with robotic assistants. This study introduces a conversational virtual
reality (VR) interface integrating multimodal interaction to enhance intuitive communication between construction workers and robots. By
integrating voice and controller inputs with the robot operating system (ROS), building information modeling (BIM), and a game engine
featuring a chat interface powered by a large language model (LLM), the proposed system enables intuitive and precise interaction within
a VR setting. Evaluated by 12 construction workers through a drywall installation case study, the proposed system demonstrated its low
workload and high intuitiveness and ease of use with succinct command inputs. The proposed multimodal interaction system suggests that
such technological integration can substantially advance the integration of robotic assistants in the construction industry. DOI: 10.1061/
JCCEE5.CPENG-6106. © 2024 American Society of Civil Engineers.
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Introduction

In the architecture, engineering, and construction (AEC) industry,
the complex, unstructured, and often dangerous work environments
have led to the increasing interest in exploring how robots can assist
humans in completing the tasks (Brosque et al. 2020; Adami et al.
2021; Park et al. 2023; Wang et al. 2023). Human–robot collabo-
ration (HRC) leverages the precision, strength, and repeatability of
work allowed by robotic interfaces, blending these attributes with
human workers’ cognitive capability, knowledge of the craft, and
adaptability to change. Given that effective communication among
construction workers is important for improving labor productivity
(Johari and Jha 2021), sharing essential information for correct
performance within human–robot teams is equally important.
Members of human teams exhibit anticipatory information-sharing
initiatives to accomplish collaborative tasks. To achieve this with
the integration of robotic assistants into the construction industry,
easy to learn and bidirectional communication between workers
and robots is necessary. The importance of the user-friendly and
efficient communication with the robots is highlighted by the fact
that the willingness of construction workers to engage with robotic
assistants is significantly affected by their perceptions of the
system’s ease of use and usefulness (Park et al. 2023).

Speech communication, recognized as an easy and intuitive
form of human interaction, could be the fastest and most efficient
way to interact with robots (Marge et al. 2022). This mode of com-
munication has the capacity to seamlessly transmit task-related in-
formation directly without the constraints of information loss,
highlighting its potential to enhance interaction with collaborative
robots. In construction, this recognition of speech’s utility has
prompted investigations into the application of spoken or typed
natural language to improve operational efficiency (Shin and Issa
2021; Linares-Garcia et al. 2022; Park et al. 2024).

However, the reliance on speech inputs for task execution in
construction environments presents significant challenges. Con-
struction workers often come from varied backgrounds, bringing
a wide range of accents into the communication process. This
can lead to misrecognition of spoken commands because automatic
speech recognition (ASR) systems often struggle to accurately in-
terpret words spoken by users with heavy or uncommon accents
(Saka et al. 2023). This issue is compounded by construction
jargon, which includes specialized terms that may not be recog-
nized by standard speech recognition systems developed for gen-
eral use. The accurate specification of necessary task attributes
(Linares-Garcia et al. 2022; Park et al. 2024) can also be affected.
Such linguistic diversity undermines the practicality and conven-
ience of speech-based interaction.

Addressing these limitations, nonverbal cues can be leveraged
with verbal communication to use the respective strengths of each
mode. Specifically, gestural movements of hands offer a rich array
for semantics and are easily recognizable (Yongda et al. 2018). The
inclusion of the hand gestures in multimodal interfaces alongside
speech introduces the utility of deictic references, such as pointing
at objects during conversations. This allows for more efficient
verbal communications because it eliminates the need for detailed
verbal descriptions (Wagner et al. 2014) that might be misunder-
stood due to accents or unfamiliar jargon, ultimately helping to
mitigate these communication challenges.
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For instance, instead of providing detailed descriptions like
“pick up the middle block in the row of five blocks on the right”
(Paul et al. 2016) or “please pick up the Sheet 500300 and position
it in the Stud 500100” (Park et al. 2024), users can issue succinct
commands like “move this to that location” or “place this one
there” through pointing gestures. The confluence of speech and
pointing gestures offers considerable advantages in reducing cog-
nitive load (Goldin-Meadow et al. 2001), decreasing communica-
tion errors (Lee et al. 2013), and increasing communicative
efficiency (Wagner et al. 2014). Despite these benefits, the appli-
cation and potential of multimodal interfaces that combine speech
and hand gestures within HRC in the construction industry remain
largely unexamined.

Furthermore, noise is a prevalent factor on construction sites
that can adversely affect the accuracy of speech interaction, crucial
for effective HRC through speech inputs (Yoon et al. 2023). De-
spite recent advances in ASR technology, which have enhanced
the robustness of these systems against background noise through
deep neural network–based models and extensive training data sets,
the practical application of speech-based instructions in noisy con-
struction environments remains a challenge. The advent of digital
twins in construction, coupled with the potential for remote oper-
ations, provides an opportunity to interact with robots on construc-
tion sites from quieter and remote environments (Wang et al. 2021;
Park et al. 2024). This setting potentially allows speech inputs to be
delivered to robots with reduced interference from construction
noise and overlapping conversations, which could significantly im-
prove the clarity and accuracy of communication. The effectiveness
of the communication could be enhanced by introducing an addi-
tional layer of verification, such as enabling both robots and oper-
ators to pose questions and review planned tasks before approving
execution for robotic operations (Wang et al. 2024).

Recognizing the underexplored potential of multimodal interfa-
ces and the potential for remote working in digital twins highlights
a significant opportunity for innovation in the design of the HRC
interaction systems. The existing gap in effectively integrating
speech and hand gestures for HRC points toward the need for com-
prehensive solution to implement the interaction for construction
tasks. Consequently, the objectives of this study are to (1) propose
a multimodal VR interaction method for HRC in construction;
(2) devise a strategy for the integration of diverse software solutions
to implement the interaction method; and (3) verify the proposed
method through a user study.

To this end, this paper proposes a novel multimodal interaction
system that integrates voice commands and hand controller inputs
within immersive virtual reality (VR) environments for HRC in
construction. This multimodal interaction allows users to employ
a hardware controller for pinpointing workpieces onsite while
utilizing verbal commands for task specification. Moreover, it
incorporates a large language model (LLM) as a virtual assistant
to facilitate bidirectional communication. Further enriching the
system, the integration of building information modeling (BIM)
ensures retrieval of information about the workpieces for construc-
tion tasks.

The practical application of this interaction system is evaluated
by construction practitioners using a case study of a drywall instal-
lation, a typical pick-and-place task. This system operates within
the concepts of a digital twin framework, where the virtual world
is connected to the physical world through data exchange. This
connection allows for the transfer of operational data from the
virtual to the physical setting, potentially influencing physical
robot operations. It is important to highlight that although this study
effectively demonstrates the pick and place actions, it does not
encompass all possible ground actions such as moving, tilting,

and gripping. Furthermore, the scope of this research is limited
to the virtual environment, and it does not directly address the
application of this system in real-world settings.

Related Work

Recent advancements in natural language processing (NLP) have
led to the application of conversational systems, using natural lan-
guage (NL) inputs, in facilitating interaction between humans and
computers, including HRC. Inspired by the fact that integrating
NL interaction with other input modalities can improve usability
and naturalness (Grammel et al. 2010), multimodal methods for
human–robot interaction (HRI) have been proposed by combined
with gestures with the fact that they are important factors in con-
versations between humans. There have been studies to use prede-
fined gestures with voice commands. Chen et al. (2022) developed
a convolutional neural network that recognizes 16 gestures for
industrial robots, such as Start, Stop, and Slow Down, aligning with
corresponding short voice commands like “move inward” and
“go left.”

In contrast to relying solely on predefined gestures, other studies
have investigated the use of pointing gestures as a means to refer to
objects or locations of interest because it provides a clear and in-
tuitive way to convey directional information to robots (Van den
Bergh et al. 2011). Yongda et al. (2018) and Constantin et al.
(2022) used gestures to point to a certain direction with a finger
while identifying the user intention through speech commands.
Yongda et al. (2018) captured pointing gestures by Leap Motion
and processed commands like “move 2 mm in this direction” to
be precisely executed without the need for explicitly stating the di-
rection verbally, such as “toward the x-axis.” To give instructions to
robots such as “please bring me that thing,” Constantin et al. (2022)
employed transformer model (Vaswani et al. 2017) to analyze
language instructions and computer-vision techniques to detect
hands and forefingers using a fixed two-dimensional (2D) camera,
thereby capturing the pointed object. Although these multimodal
interaction methods enhance real-world HRC by integrating speech
and gestures, their applications in specific sectors like construction
remain distinct.

In the construction industry, researchers have mainly explored
the application of conversational systems in two domains of infor-
mation retrieval (IR) and integration with VR or augmented reality
(AR) technologies (Saka et al. 2023). Most of the efforts on con-
versational systems have focused on retrieving information from
data sources such as BIM (Saka et al. 2023). These efforts have
focused on enabling efficient retrieval of project information
through query-answering systems. Lin et al. (2016) introduced a
data retrieval and representation system for cloud BIM applications
via text input. Shin and Issa (2021) developed a BIM automatic
speech recognition (BIMASR) framework to convert a BIM oper-
ating environment from expert-oriented into a user-oriented. This
framework allows users to manipulate BIM data using speech com-
mands, such as changing materials within a model. Elghaish et al.
(2022) proposed a data retrieval assistant that enables BIM users
to perform tasks such as the creation of a room schedule through
natural language commands. These studies on information retrieval
underline the progress in allowing users to efficiently interact with
project information via natural language queries.

With the rapid growth of artificial intelligence (AI), there has
been significant advancement in LLM, which are built to be flex-
ible and are trained on extensive data sets (Achiam et al. 2023).
In the field of construction, recent studies have leveraged prompt
engineering to develop customized conversation systems using
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LLMs. Prieto et al. (2023) explored the applicability of LLM for
automating construction schedule using natural language prompts,
finding the results promising for simple use cases. Zheng and
Fischer (2023) developed a dynamic prompt–based virtual assistant
that interprets NL queries to improve BIM accessibility, demon-
strating strong performance in intent classification and value
recognition. Jang et al. (2024) proposed an LLM-BIM chaining
framework that generates and modifies object classes in BIM,
facilitating an interactive design detailing environment. This sys-
tem effectively functioned as a design consultant that produced
design details that complied with general engineering standards.

Despite these advancements, challenges such as limited domain-
specific knowledge and a propensity for hallucinations are ac-
knowledged in the use of LLM. Solutions such as incorporating
human-in-the-loop approaches and developing fine-tuned LLMs
have been suggested as potential solutions (Kim et al. 2024;
Jang et al. 2024). Moreover, conversational systems for IR in the
construction industry have demonstrated that natural language in-
puts can effectively manage construction project data. However, the
conversational systems rely on single-mode user inputs like text or
speech, highlighting the need for the advancement of multimodal
interaction systems to enhance the efficiency and intuitiveness of
user interactions with other agents.

Meanwhile, by leveraging visualization functionalities of VR
and AR, several studies have incorporated conversational systems
within VR/AR in construction. In the VR domain, studies have ex-
plored the use of virtual humans to improve educational experien-
ces in construction. Eiris-Pereira and Gheisari (2018) used a virtual
people factory (VPF) web-based application (Rossen et al. 2009)
for conversational modeling. They demonstrated its application
through a high-risk hazard scenario in construction, aiming to im-
prove student communication skills. However, this approach relied
solely on text inputs from users. Wen and Gheisari (2023) focused
on virtual field trips for mechanical and plumbing systems, devel-
oping a conversational system by combining VPF and Google Di-
agflows. This allowed users to interact with objects using computer
mice and make inquiries such as “is this a hot water return pipe?”
through text input. Nonetheless, the method of integrating these
two types of inputs was not discussed. Both systems also have
limitations due to their reliance on predefined templates for NL
answers, which could restrict the flexibility and adaptability of
conversations.

Hussain et al. (2024) introduced a virtual training system de-
signed to deliver knowledge effectively, using LLM as an instruc-
tor. This system does not use predefined templates, enabling
users to ask about various construction hazard situations and re-
ceive tailored responses. However, the background information
on risky situations provided in the prompt was general, which
limited the ability to derive project-specific insights from the
conversations.

In the AR domain, Chen et al. (2024) addressed construction
safety compliance by proposing a visual construction safety query
system. This system employs a deep learning–based vision-
language model, allowing users to inquire about safety issues onsite
using voice input through AR glasses. Despite its advances, they
analyzed spoken words alongside image scenes rather than incor-
porating gestures into the interaction system. Chen et al. (2020)
proposed a multimodal interaction system using human hands de-
signed for swarm robot selection that could be applied to various
industrial domains including construction. This system, facilitated
through AR, enables users to issue instructions like “select the ro-
bots in this range” using speech and pointing gestures. Although
this development provided the integration of software modules and
hardware components for the use of AR in HRC, its applicability is

limited to the selection of multi robots rather than facilitating col-
laborative tasks with the robots.

In addition to the aforementioned application areas, there are
studies that explore the use of voice-based conversational systems
to help workers perform construction tasks. One example is the
work of Linares-Garcia et al. (2022), who developed a voice-based
intelligent virtual assistant (VIVA) specifically designed to increase
the productivity of construction workers during welding tasks. The
virtual agent system was developed based on Google Actions re-
quiring expected questions and semantic knowledge (the task
steps). However, users are expected to give questions such as “After
connecting PS-3 and B-8, what should I do next,” which include
pieces’ tag IDs or location of the items in previous steps as part of
the context addition.

Ye et al. (2023) explored the impact of ChatGPT, which is one of
the LLMs, on trust in HRC assembly task. It showed that people
perceived less mental load and high trust when using a GPT-
enabled robot assistant compared with using fixed control com-
mands. Park et al. (2024) introduced a framework that enables
NL-based interactions with robots for pick-and-place construction
operations, demonstrating its effectiveness through drywall installa-
tion tasks. This system employs deep learning–based language mod-
els, allowing it to accurately process instructions that specify targets,
destinations, and placement methods. However, the scope of these
two studies was limited to a single modal interaction, necessitating
precise mentions of task-relevant information, such as the names or
attributes of objects, in instructions. Expanding to encompass multi-
ple modalities in communication thus promises to improve intuitive-
ness and usability in interaction systems for collaboration.

All the previous studies on conversational systems in construc-
tion have primarily focused on users receiving information from
virtual assistants, without addressing how users should respond
when the information provided is incorrect. This oversight could
be particularly significant in operation-critical environments such
as construction sites, where accurate and timely information is
crucial for decision-making and safety.

In the construction industry, the previous studies on NL-based
conversational systems for VR/AR or robotics have the following
limitations:
• Lack of support for HRC in construction: Many studies have

proposed interaction systems for education, safety, and other
areas, rather than for robotic completion of actual construction
work. There is a need for a framework that facilitates the exe-
cution of construction tasks through conversational systems in a
VR environment.

• Limited user input channels to speech: Most of the studies de-
pend on NL inputs, either through voice or text. To improve
intuitiveness and efficiency in interaction, additional input chan-
nels can be added.

• Inherent limitations of conversational systems themselves:
Firstly, some systems require training data to develop the con-
versational systems. Second, several studies rely on predefined
templates for generating natural language responses. Addition-
ally, there is research necessitating reference to previous steps
in multistep tasks. Overall, all the studies position users (or
construction workers) primarily as recipients of information,
where the NL answers have been designed to guide users. The
intention behind the generated NL responses has been to lead
users, rather than enabling users to participate as collaborative
partners capable of offering feedback, providing instructions or
dismissing the wrong information. To harness the potential of
bidirectional communication in collaboration, the design of the
conversational systems with an advanced language model is
needed.
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Table 1 provides a summary of these limitations. To address
these challenges, this study proposes a multimodal interaction
system that facilitates conversation with collaborative robots in
construction. This study integrates diverse software solutions,
enhancing the efficacy and scope of HRC in the construction
industry.

Technical Approach

Overview of the Proposed System

Fig. 1 presents an overall framework for a multimodal interaction
system in VR, designed for easy and intuitive interaction with con-
struction robots. The proposed system requires the integration of
user interaction channels, the robot operating system (ROS), BIM,
and a game engine. The game engine, which encompasses a chat
interface, enables a human operator to interact with a robot using
natural language commands. Users can communicate with robots
using two input channels: speech and controllers. The outputs from
these channels become the input for the chat interface. The game
engine plays an important role in visualizing information from
BIM, displaying the construction site’s data, including three-
dimensional (3D) geometric information and the semantic details
of building materials. A robot engaged in interaction within the
game engine is controlled via ROS, completing the system’s loop
of HRC.

Interaction Interface

Fig. 2 outlines the software integration architecture for the pro-
posed multimodal interaction system in HRC. The diagram pro-
vides a visual representation of how different components and
inputs are integrated within the system. The subsequent subsections
will articulate the design of the integration strategies. Section “In-
tegration of Speech and VR Controller Inputs” will detail the meth-
ods for integrating two distinct user inputs: speech and handheld
controllers captured by the VR interface. Building material infor-
mation retrieved from Rhinoceros and Grasshopper is leveraged in
the integration. Following that, section “Bidirectional Communica-
tion”will concentrate on the design and flow of interaction between
a human operator and a robot, specifically discussing how to imple-
ment the bidirectional communication through GPT-4 and conduct
collaborative operations in ROS in the Unity game engine.

Integration of Speech and VR Controller Inputs
Fig. 3 shows how inputs from two different channels—speech and
VR controllers—are combined in the interaction system. Voice
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Fig. 1. Overview of the proposed system.
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commands are captured by the VR headset’s microphone and sub-
sequently processed by Whisper, which is an automatic speech rec-
ognition (ASR) or speech-to-text (STT) system (OpenAI 2023).
Whisper shows robustness in ASR because it was trained on very
large data sets including 680,000 h of multilingual audio data
(Radford et al. 2023).

When the user is engaging with the VR environment, VR con-
trollers provide an interactive means of selecting objects within the
virtual space. Selecting objects via VR controllers is streamlined
using a ray interactor. The ray interactor projects a virtual beam
from the controller, allowing a user to point at and select an object
from a distance. To visually indicate that the object has been
selected, the color of the object briefly changes to red, signaling
successful engagement.

A key feature of the multimodal interaction proposed in this
study is the retrieval of selected object information from BIM
data during the provision of user instructions. Unity generates in-
teractable objects from BIM through the integration of Rhino and
Grasshopper applications. Utilizing Rhino.Inside (McNeel 2023),
an open-source add-in, Unity is enabled to concurrently operate
the two applications. Once initiated alongside Unity, Grasshopper,

which provides a visual programming environment, imports BIM
data into Rhino. Following this, it retrieves both the geometric and
semantic information of objects from the BIM data, which is sub-
sequently transmitted to Unity.

As shown in Fig. 4, the Grasshopper workspace uses multiple
blocks to deliver the required BIM data in Rhinoceros to Unity for
interaction purposes. This transfer results in the creation of 3D ob-
jects within Unity that are visually consistent with the Rhino model,
encompassing color, geometry, and semantic information such as
names, layers, and IDs. The IDs can be integrated into the user
messages, and the names and layers are utilized to determine
the interactivity of objects within Unity. A part of C# script in Fig. 4
presents how to get various types of object data from the Rhino.
Although the current interaction design does not harness all the se-
mantic data available—such as type and position—this information
can be extracted and has the potential to be employed in interac-
tions with robots.

Upon selection of an object, its ID information is retrieved from
the BIM data and stored in a text format, ready for further process-
ing or use within the system. The retrieved ID is then held in reserve
until the user activates the send button on the chat interface. For
instance, the placeholder ### in the sentence “The ID of the target
object is ###” would be replaced with the captured ID of the se-
lected object. This textual information, representing the selected
object, is then combined with the text that has been transcribed
from the user’s spoken command.

To illustrate, if a user verbally commands “pick up this one”
while concurrently selecting an object with the ID 127 using the
controller, the consolidated command is formulated as “pick up
this one. The ID of the target object is 127.” This composite text,
which contains inputs from both speech and controller commands,
is sent to the chat interface when the user presses the send button
of the chat interface. This process establishes a multimodal inter-
action framework, seamlessly integrating verbal commands with
controller-based selections to enable effective communication and
control within the VR space and reduces burden on user to find
object IDs.

Bidirectional Communication
In this study, the scope of the human operator’s duties in the pro-
posed interaction system includes the following activities: issuing
commands to the robots, verifying the accuracy of how these com-
mands are interpreted by the robot equipped with the capability of
GPT-4, and ultimately, supervising the execution of these tasks by
the robot. The conversation with a robot in the proposed interaction
system is specifically designed to facilitate the first two of these
activities. The necessity for the human operator to verify the inter-
pretation of commands arises from the potential for inaccuracies
due to errors in STT conversion or misinterpretations by the chat
system. Therefore, the chat system is designed to detect and rectify
potential errors, thereby enhancing the overall accuracy and effi-
ciency of task execution.

Windows

Rhinoceros 
+ Grasshopper (BIM)

Whisper

GPT4

Unity C# 
script
Unity C# 

script
Unity C# 

script

Linux
Rosbridge server

ROS node

Unity C# 
script
Unity C# 

script
Unity C# 

script

Unity C# 
script
Unity C# 

script
Unity C# 

script

RhinoInside

Rosbridge
VR interface

Fig. 2. Implementation of the proposed multimodal interaction system.

ID: 127

STT engine

Whisper
Speech

VR hand-held 
controller

Text

TextSave ID of the 
pointed object
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of             andText Text

Temporarily

Pick up this one

The ID of the 
target object is 127

Example

Fig. 3. Integration of inputs from voice commands and the VR controller.
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Fig. 5 describes the process flowchart from the issuing to the
approval of the instructions. In this diagram, rectangles represent
the actions executed by the human operator, and hexagons depict
the robot’s expected responses. Within the proposed conversation
system, the user (human operator) issues instructions that include
specific details about the task. The chat system then analyzes these
instructions to identify the essential task information and seeks the
user’s confirmation.

The user, serving as the ultimate decision maker, assesses the
chat system’s interpretation of the task information. If the user
agrees with the chat system’s interpretation, they respond affirma-
tively, prompting the chat system to acknowledge with a reply of
“OKAY!!!” The user then finalizes their approval by clicking an
Approval button on the chat interface, which triggers the robot
to begin the task. Alternatively, if the user does not concur with

the chat system’s interpretation or if the initial instructions were
incorrect, the chat system requests the user to provide the correct
information to ensure accurate task execution. This interactive pro-
cess is essential for ensuring clear communication and precise task
management between the human operator and the robot.

To implement this process, GPT-4 was utilized, which is a large-
sized pretrained language model that demonstrates powerful capa-
bilities to understand and generate human language (Achiam et al.
2023). Prompt engineering is a technique that utilizes natural lan-
guage task specifications to design prompts for LLMs regarding the
downstream task instead of directly altering or training the models
(Trad and Chehab 2024). Eliminating the need for the model train-
ing with extensive data and time, this approach enables obtaining
desired responses in a flexible manner and with fewer resource
demands (Trad and Chehab 2024).

Fig. 4. BIM data in Rhinoceros and Grasshopper workspace.
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Recent studies utilizing GPT models in construction have in-
cluded elements such as task description, assistant’s roles, BIM in-
formation, constraints, rules, and so on into their prompts (Ye et al.
2023; Zheng and Fischer 2023). However, these prompts, although
comprehensive, are not specifically detailed or tailored for HRC as
required in the proposed study. To ensure the prompt is fully
aligned with the needs of the proposed interaction system, this
study meticulously designs the GPT prompt with components like
roles, task-specific object information, and various instructions
for HRC.

In this work, the prompt of the GPT contains two contexts and
four types of task instructions to build effective communication be-
tween a human operator and a robot as shown in Fig. 6. The context
provided in the prompt first outlines the roles of a human operator
and a robot. For example, a sentence like “Act as a robot in the
construction site and you are my teammate” in the prompt sets
the tone for the text generated by the GPT. Following this context,
task-related information is integrated into the prompt. This infor-
mation typically includes the semantic details of construction
materials, enabling the GPT to perform reasoning based on the
commands issued by the human operator.

The prompt also includes four main instructions for the collabo-
ration with robots, enabling the process flowchart described in
Fig. 5. Each instruction, as shown in Fig. 6, is presented with

corresponding examples showing expected robot responses (R)
to human messages (H). The first instruction involves verification
of task understanding, which includes GPT’s interpretation of the
operator’s instructions and asks the operator’s verification of this
interpretation. This step ensures that the GPT’s understanding
aligns with the operator’s intent. In addition, the IDs of the target
objects should be mentioned when a robot asks for confirmation so
that the human operator can clearly identify the understanding of
the robot. Second, the inclusion of clarification on ambiguous in-
structions is vital. This step is designed so the GPT can seek further
information from the user instead of making assumptions when
provided with incomplete or incorrect information.

Third, the consideration of previous tasks is integrated in the
prompt. This aspect is important for multitasking scenarios, encour-
aging the robot to take into account tasks that have been previously
completed. If the workpiece already used is given to the robot as
task information, the robot should have ability to recognize it based
on this context. The sentence in the prompt like “please remember
the previous working history when you confirm the installation in-
formation” can lead to ideal responses such as “T2 cannot be placed
on D1 as there is already T1 placed on it.”

Lastly, to avoid randomly generated responses that are not re-
lated to the intent, the inclusion of inquiry in the absence of instruc-
tions is essential. This is designed to prevent the GPT from making

Fig. 6. Information in the prompt of GPT to manage communication scenarios with examples.

Provide 
Instructions

Request 
Task 

Confirmation

Provide 
affirmative 
response
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negative 
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“OKAY!!!”

Request 
Correct 
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Incorrect Info

Click 
‘Approval’ 

Button

Correct

Incorrect
* Instructions can be 
correct or incorrect

instructions 
Correct?

Human 
operator

Robot 
(Chat 

system)

Send 
button
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Fig. 5. Flowchart for instruction approval in the conversational system.
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incorrect assumptions about human intent or providing responses
that are out of context when a blank message is sent. This approach
ensures that even when instructions are unclear or entirely absent,
the GPT is guided to respond in a manner that is more appropriate
and aligned with the intended purpose.

The proposed prompt is incorporated as an essential component
within the C# script for leveraging GPT functionality in Unity. On
the Unity script, an application programming interface (API) key
for OpenAI is also included because it is necessary for authentica-
tion purposes in utilizing OpenAI’s application. In addition, the
script for GPT integration includes command lines to facilitate
the integration of two input channels and selection of the GPT
model. For this study, GPT-4, the latest model available, was
chosen to ensure the most advanced capabilities are employed.
The temperature value, which is a parameter to influence the ran-
domness in text generation, was set to zero to minimize the vari-
ability in the responses (Zheng and Fischer 2023).

Finally, for the actualization of tasks using a robot, the ROS run-
ning on Linux OS was employed. To do this, BIM data in Rhino and
task-related information are accessed in ROS through Rosbridge us-
ing the ROS# library. As mentioned in the first instruction of the
prompt, the robot is required to reference the IDs of target objects
when seeking confirmation from the user. Before the user confirms
by pressing an approval button, the robot’s response, which includes
these IDs, is processed within the Unity script. During this process, a
conditional statement is used to isolate and store only the IDs in a
text format in the Window OS. The stored ID information is sent to
ROS once a user presses an approval button of the chat interface.

Utilizing this information, robot motion planning and robot con-
trol are conducted. The motion planning for robotic movements
needs to consider collision-free motion plans designing paths
where both the robot and any workpiece it carries avoid collisions
with other building materials or structures in the environment. This
study uses the motion planning method as proposed by Wang et al.
(2021), which was developed for mobile industrial arm manipula-
tors representing a general application for construction robotics.
The calculated motion plan is then mirrored in Unity, where a
virtual robot executes the movements as per the plan. The virtual
robot is controlled with joint state data from ROS.

In summary, the proposed system leverages several software
components to enable multimodal interactions with construction
robots in a virtual environment. Fig. 7 highlights the main compo-
nents related to the integration of BIM, AI models, VR using Unity,
and ROS. The arrows in Fig. 7 specifically represent the data flow
and the progression of tasks throughout the system.

The workflow starts when users generate a Rhino file in the BIM
layer, which is then imported within Grasshopper as depicted in
Fig. 4. In the AI models layer, both an ASR model and a LLM
are selected, and OpenAI API is provided to Unity. This setup
facilitates advanced speech-based interactions with an intelligent
virtual assistant that follows task-specifications depicted in Fig. 6.
Through a chat interface, users can see the updated input fields and
message areas, and they can finally approve a task based on the
conversation logic depicted in Fig. 5. During interaction, users pro-
vide voice inputs and control handheld devices to engage in multi-
modal interactions (Fig. 3). The process culminates in the ROS
layer, where the system performs robot motion planning and oper-
ations based on refined user inputs, demonstrating a seamless
integration of digital interfaces and robotic execution aimed at
enhancing operational efficiencies in technologically advanced
environments.

Experimental Evaluation

Case Study

An experiment that aims to assess the effectiveness of the proposed
multimodal interaction system through two primary objectives
was designed. The first objective is to evaluate whether the integra-
tion of speech and hand controller inputs enhances the effectiveness
of HRC over a single mode of interaction. The second objective
focused on assessing the effectiveness of a bidirectional interac-
tion system, powered by a virtual assistant, in enabling precise
collaboration between humans and robots to complete construc-
tion tasks. The experiment included two different interaction
parts: (1) speech-based interaction and (2) multimodal interaction
(speech + handheld controller) with a focus on the task of drywall

BIM

AI 
models

VR
(Unity)

Generate 
Rhino file

Import the Data 
in Grasshopper

Set 
Interactable 

Objects

Select ASR model 
with OpenAI api

Select LLM model 
with OpenAI api

[Chat Interface]
Update an Input 

Field

[Chat Interface]
Update a

Message Area

ROS Robot 
Operation

[Multimodal 
Interaction]

Process Inputs

[Prompt 
engineering]
Include Task 
Specifications

Follow 
Conversation 

Logics

[Chat Interface]
Approve a Task

User Give Voice 
Inputs

Control 
Handheld 
Devices

Robot Motion 
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Fig. 7. Interactive workflow diagram of the proposed system.
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installation. The task of drywall installation, which is one of the
pick-and-place operations, was selected because the operations are
one of the most common robotic manipulation tasks (Cheng et al.
2021).

Twelve construction workers were recruited for the experiment
and were asked to interact with a virtual robot through a VR head-
set, visualizing a simulated work environment as shown in Fig. 8.
This environment includes a stud frame and four drywall panels,
each uniquely identified by a three-digit ID.

The experiment employed a six-degrees-of-freedom (DOF)
Kuka industrial robotic arm (Augsburg, Germany), which is
mounted on a track. The scope of robot actions in this experiment
was limited to pickup and place activities, necessitating specific
information about the target object for pickup and the destination
for placement. The experiment utilized two sizes of panels: three
standard panels measuring 1.22 by 2.44 m (4 by 8 ft) and
one uniquely sized panel measuring 1.22 by 1.22 m (4 by 4 ft).
The panels represent target objects for pickup, and studs serve as
destination for placement. The VR environment also featured a
chat interface consisting of several elements: an input field at the

bottom, a message area in the middle, a time bar at the top, and two
buttons, for sending messages and approving robot tasks, on the
lower right side.

Participants were tasked with installing four panels, utilizing
either speech or multimodal interactions. There was no set se-
quence for installing the panels. In the speech interaction, workers
gave installation instructions by referring to the IDs or locations of
panels and studs. For example, a worker might say, “Please place
Panel 504 in the second rightmost position,” illustrated in Fig. 9.
With multimodal interaction, workers gave instructions using de-
monstrative words such as “this” and “that” while pointing at objects
with a handheld controller. For instance, a worker could instruct,
“Please place this panel at this stud.” As a result of selecting objects
using the controller, sentences such as “(the ID of the target panel is
501) (the destination is the center of Stud 602)” could be added in the
input message. It is also permissible in multimodal interactions to
mention the panel’s ID while pointing at it with the controller.

Participants were instructed to intentionally provide incorrect
instructions for panel installation to evaluate the GPT model’s capac-
ity for error detection and correction within the chat application.

Time bar

Message area

Input field

Send button

Approval button

Chat interface

Working 
environment

Drywall panels

Studs

Kuka robot

Fig. 8. VR environment in unity.

(a)

(b)

Fig. 9. Examples of HRC in VR interface: (a) verbal interaction; and (b) multimodal interaction.
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They were instructed to issue two incorrect ones during each inter-
action phase, specifically at least two for speech interaction and
two for multimodal interaction. These incorrect instructions can
be categorized into four types:
• Mismatched Pairing: This involves instructing incompatible

combinations, such as pairing a 4 by 8 panel with Stud 606,
where only a 4 by 4 panel fits.

• Materials Not Present: This refers to instructions involving non-
existent IDs in the virtual environment, such as instructing the
robot to locate a panel or stud with an ID of 106, which does
not exist.

• Component Already Installed: This occurs when a participant
instructs the installation of a component, such as Panel A, even
though it has already been installed.

• Partial Information: This involves giving incomplete or simul-
taneous information about multiple targets without necessary
details about the destination or object.
Participants were given the freedom to choose when and which

type of incorrect instruction to use, with the only stipulation being
that they must provide at least two incorrect instructions before the
end of each interaction phase.

Fig. 10 illustrates the prompts input into the GPT model for the
experiment. These prompts were designed to integrate both the sit-
uational context and the specific instructions elaborated in Fig. 5,
along with additional task-relevant context. This included critical
specifics like the dimensions and identifiers of the target objects,
as well as their intended placement locations. Notably, the auto-
matic transfer of semantic information regarding target objects

Fig. 10. Prompt for GPT for drywall installation.
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from the BIM into the GPT’s prompts was not part of this study.
To incorporate information about the building material into the
prompts, we manually entered the information in the prompt.

Participants

The requirement for participation in the experiment included
people aged 21 or older who have prior experience working on con-
struction sites. However, certain groups were excluded from par-
ticipation to ensure safety. This exclusion applied to individuals
who are pregnant, elderly, or those with preexisting conditions that
may affect their virtual reality experience, such as vision abnormal-
ities, psychiatric disorders, or other medical conditions. Addition-
ally, participants were required to avoid wearing glasses when
using a VR headset to ensure optimal interaction and to prevent
potential discomfort related to the fit of the headset.

A total of 12 construction personnel were recruited in the state
of Michigan, and Table 2 presents their demographic information.
The participant demographic profile indicates uniformity in gender,
with the entire group consisting of male individuals. The age dis-
tribution is moderately varied, with the majority (58.33%) within
the 30–39 age range, 16.67% in the 40–49 age range, and 25%
being over 49 years old. Educational levels among participants
show diversity: 8.33% are high school graduates or hold a general
educational development (GED) qualification, half have some
college or vocational training, 16.67% hold an associate degree,
and 25% have earned a bachelor’s degree.

Occupational roles of the 12 participants span across the con-
struction industry, with skilled craftsmen (carpenter and drywall

finisher), foremen, superintendents (piping labor, general trades,
and general), managers (project, BIM, and operations) and a
smaller representation from detailers, and instructors/coordinators.
Despite the current job titles not necessarily involving onsite work,
all 12 participants had prior experience physically working on con-
struction sites. The range of work experience among the partici-
pants extended from under 10 years to more than 29 years, with
the average work experience in the construction industry being
19.83 years for the group.

The experiment for each participant was structured into four ses-
sions, with a total duration of 55 min as shown in Fig. 11. During
the 10-min introduction phase, participants are briefed on what to
do and shown how to use voice commands and handheld control-
lers to interact with a robot in a virtual environment. With the
explanation of how to use a chat interface, they are also introduced
to how the virtual setting visualized through a VR headset looks
like.

Following the introduction, participants engaged in a 10-min
trial task, practicing with speech-based and multimodal (speech +
controller) interactions. The participants were introduced to
example instructions and their tasks. The main experiment, lasting
25 min, challenges participants to apply these interaction methods
to install four drywall panels. The order in which the four panels are
installed is not predetermined, allowing participants to install them
in any order. Finally, participants are asked to complete a 10-min
survey on Google Forms, where they provide feedback on their ex-
perience, evaluating workload, intuitiveness, ease of use, and their
personal preference between the two interaction methods.

Results and Discussion

Workload

The National Aeronautics and Space Administration Task Load
Index (NASA-TLX) was utilized to measure workload perceived
by participants (Hart 2006). As one of the most widely used instru-
ments to assess overall subjective workload (Hoonakker et al. 2011;
Li et al. 2019), NASA-TLX consists of six domains: Mental de-
mand, Physical demand, Temporal demand, Performance, Effort,
and Frustration. In this study, the Effort dimension was divided into
Mental Effort and Physical Effort to capture more understanding
of the effort type. Participants rated each subscale on a five-point
Likert scale ranging from one (strongly low) to five (strongly high).

Figs. 12 and 13 present the assessment of the perceived work-
load for two interaction methods among 12 participants using
the NASA-TLX scale. Fig. 12 indicates that participants’ workload
perception was largely consistent across most categories for both
speech and multimodal interaction methods. This consistency sug-
gests that the type of interaction method does not significantly alter
the perceived workload. However, a notable variance in responses
regarding mental demand was observed for speech interaction
compared with multimodal interaction, implying that speech inter-
action may be mentally more challenging for some participants.

Table 2. Demographic information of 12 participants

Item Characteristics Frequency Percentage

Gender Male 12 100.00

Age (years) 30–39 7 58.33
40–49 2 16.67
Above 49 3 25.00

Education levels High school graduate or GED 2 8.33
Some college or
vocational training

6 50.00

Associate degree 1 16.67
Bachelor’s degree 3 25.00

Job titles Skilled craftsmen 2 16.67
Foreman 2 16.67
Superintendents 3 25.00
Managers 3 25.00
Detailers 1 8.33
Instructors/coordinators 1 8.33

Work experience
(years)

0–9 3 25.00
10–19 4 33.33
20–29 2 16.67
Over 29 3 25.00

Fig. 11. Timeline of the experiment.
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Fig. 12. Distribution of NASA TLX results.

Fig. 13. Mean scores of NASA TLX results.
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Additionally, one high rating in the frustration category for multi-
modal interaction indicates possible issues within this method that
could lead to user frustration.

Fig. 13 shows the mean workload scores of each dimension,
including error bars that represent the standard deviation. The com-
parison between the two interaction methods showed a minimal
difference, with the discrepancy in scores across all criteria being
0.5 or less. This finding highlights the relatively equivalent work-
load perception between speech and multimodal interactions
among the participants in the experiment. Regarding the variability,
the standard deviations for the speech interaction method ranged
from 0.452 for Physical Demand to 0.996 for Mental Demand,
reflecting a higher variability in perceived mental demand among
participants. Conversely, the multimodal interaction method showed
more consistent variability across dimensions, with most values hov-
ering around 0.753. This consistency suggests a more uniform par-
ticipant response in the multimodal setting.

Intuitiveness and Ease of Use

To assess the interaction modalities, two specific statements were
used: “This interaction method was intuitive to interact with a
robot” was used to evaluate intuitiveness, and “This interaction
method was easy to interact with a robot” was used to measure
ease of use. These items have been utilized in previous research to
evaluate robot interaction methods (Nieuwenhuisen et al. 2010;
Szafir et al. 2015; Fischinger et al. 2016; Campeau-Lecours et al.
2018). Participants expressed their level of agreement with each

statement using a five-point Likert scale, ranging from one
(strongly disagree) to five (strongly agree). Fig. 14 shows the aver-
age scores of the responses, including standard deviation error
bars to illustrate variability in responses to intuitiveness and ease
of use.

Although users favored speech interaction slightly more in us-
ability, that both methods were perceived as relatively intuitive and
easy to use, with average scores equal to or above four out of five.
The standard deviations for speech interaction, at 0.514 for intui-
tiveness and 0.492 for ease of use, suggest a relatively consistent
perception among users. In contrast, the multimodal interaction
method displayed higher variability, with standard deviations of
0.853 for intuitiveness and 0.835 for ease of use. This variability
indicates that user experiences with the multimodal interaction
method were more diverse compared with speech interaction.

Preferences

To understand participants’ interaction preferences within the VR
environment, the survey included two questions. Initially, partici-
pants were asked “Which type of interaction do you prefer in the
VR environment?” Subsequently, to gain insight into their choices,
the question “Why do you prefer that interaction?” was posed. This
led to 66.7% of participants (8 out of 12) favoring multimodal in-
teraction with the remaining 33.3% (4 out of 12) opting for speech
interaction. Participants’ justifications for their preferred interac-
tion method varied and could be systematically categorized into
five themes: efficiency, accuracy, ease of use, engagement, and
versatility. These categorizations are detailed in Table 3, which
summarizes the participants’ responses.

A notable observation is that both speech and multimodal inter-
actions were commended for their efficiency and accuracy. Partic-
ipants who preferred speech interaction highlighted its speed and
precision as the reason of their choice and noted a perceived redun-
dancy in the multimodal approach’s combination of gestures and
speech. In contrast, those who preferred multimodal interaction
valued its higher accuracy and efficiency, noting particularly the
consequent decrease in verbal miscommunication. Furthermore,
multimodal interaction was also noted for its versatility because
it allows for an integration of verbal and gestural communication,
which could influence the more natural and engaging way to inter-
act with the robot. The capability to use speech and handheld con-
troller was lauded for its ease of use, contributing to the perceived
engagement and versatility of the multimodal method. These fac-
tors outline the users’ preferences for their respective interaction
methods in a VR environment.

Fig. 14. Mean scores for intuitiveness and ease of use assessment.

Table 3. User feedback on preferences for two interaction methods: speech and multimodal

Interaction method Theme Statements

Speech interaction Efficiency • Speech interaction seems faster.
• In multimodal interaction, duplicating hand gestures and some speech seems a bit redundant.

Accuracy • Speech was more accurate.
• I can be thorough with my intent during speech interaction.

Multimodal interaction Efficiency • It seemed quicker.
• It just seemed to be more efficient and quicker.

Accuracy • More accurate input, less opportunity to miss-speak or be misunderstood.
Ease of use • I feel like it is easier for me to use my words and hands at the same time when I am working.

• I believe that it is easier to be able to point at an object then to have the exact identity.
• It was an easier version of communication. I am able to just point to an object and

instruct the robot to perform a task.
Engagement • I felt more involved in giving the commands to the robot
Versatility • To be able to physically give instructions as well as verbal instructions.
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Performance of Chat Application

Regarding the drywall panel installation, the execution of robot
tasks was not validated, focusing instead on assessing the effective-
ness of interaction methods and the accurate interpretation and
transmission of task information to the robot. This approach was
based on the assumption that accurate communication would en-
sure error-free task execution by the robot. The interaction system
design includes the Approval button, shown in Fig. 8, which re-
quires operator confirmation before any task information is sent
to the robot. This setup allows operators to address and rectify any
misinterpretations by resubmitting the instructions. Throughout the
experiment, the chat application displayed commendable accuracy,
generating responses that were consistent with the given instruc-
tions. During the experiment, 12 participants successfully executed
four panel installations, with Fig. 15 illustrating examples of con-
versations in two interaction ways.

There were no instances where GPT misinterpreted or re-
sponded incorrectly to correct user instructions. Notably, three par-
ticipants sent blank messages to GPT by pressing the Send button
without saying anything. In response to these instances, GPT fol-
lowed the prompt for handling the absence of instructions, offering
responses such as “How can I assist you further?” and “I am sorry,
but I need your confirmation. Can you confirm that the information
is correct?”

In analyzing the communication length between interaction
methods, a notable difference was found in the average number
of words per instruction: speech interaction commands averaged
8.27 words, with the longest command “Okay, robot, could you
please pick up Panel 503 and install it at the rightmost portion
of the framing?,” reaching 19 words, and the shortest being “Panel
504 to Stud 606,” which contains five words. Conversely, multimo-
dal interaction commands were more concise, averaging 6.65
words. The longest command was “Okay, robot, could you please
pick up Panel 503 and install it at the rightmost portion of the fram-
ing?” comprising 18 words, whereas the briefest instruction, “in-
stall this here,” consisted of just three words. This distinction
not only illuminates the multimodal interface’s capacity to support
more succinct communication but also its effectiveness in making
interactions more streamlined, marking a critical enhancement in
the chat interface’s role in facilitating efficient and accurate HRC
tasks.

Additionally, the participants intentionally issued a total of
55 incorrect instructions to test the system’s capability. The chat
system, powered by GPT, accurately pinpointed errors in 51 cases,
achieving an accuracy rate of 92.73%. These results are described
in Table 4, which details the types of incorrect instructions and
the frequency with which GPT recognized and addressed the
issues.

Fig. 15. Examples of conversation for success panel installation.

Table 4. Chat system’s detection of incorrect instructions

Incorrect instructions

Speech interaction Multimodal interaction

Number of cases Issues detected Number of cases Issues detected

Mismatched pairing 22 22 11 10
Materials not present 4 4 1 1
Component already installed 2 1 5 3
Partial information 0 0 10 10
Total 28 27 27 24
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During the speech interaction phase, the system accurately de-
tected 27 out of 28 issues, resulting in a 97.43% accuracy rate. All
cases of Mismatched Pairing and Materials Not Present were cor-
rectly identified, but one Component Already Installed case was
missed. In the multimodal interaction phase, the system correctly
identified 24 out of 27 issues, yielding an accuracy of 88.89%. It
successfully detected all Partial Information cases but struggled
with Mismatched Pairing and Component Already Installed, miss-
ing one and two cases, respectively. Future improvements could
focus on enhancing detection accuracy in these challenging areas
to increase overall system robustness.

Fig. 16 further exemplifies the system’s reactions to incorrect
instructions across four distinct categories, with the incorrect in-
structions indicated by dotted lines and the inputs from handheld
controllers highlighted in italics. The GPT component within the
chat system showcased its analytical prowess by not only identify-
ing wrong instructions but also by proposing alternative actions
where applicable in some cases. For example, when the instruction
incorrectly directed to place Panel 504 on Stud 605 instead of its
correct paired destination, Stud 606, the chat system inquired,
“would you like to install Panel 504 on Stud 606 instead?”

However, the system’s detection was not infallible; it missed an
error in one instance of mismatched pairing and in three cases
where components were not reported as already installed, prompt-
ing the system to request user confirmation. The examples of these
errors are shown in Fig. 17. For example, even though Panel 501
cannot be installed on Stud 608 because the Panel 503 is already
installed there, it did not catch it and it just asked if its understand-
ing is correct. Another example shows that the chat system did not
catch the fact that the Panel 502 cannot be installed on the Stud 606
designed for 4 by 4-sized panels like Panel 504.

Discussion

The user study conducted as part of this study has demonstrated the
potential for successful deployment of the proposed multimodal
interaction system within VR interfaces, integrated with a chat ap-
plication, for HRC. In a case study focused on drywall installation,
construction workers reported experiencing a low workload and
high usability with the multimodal system. Although the assess-
ment of workload and usability between the two interaction meth-
ods showed similar results, this uniformity may stem from the
simplicity of the task, which possibly did not challenge the partic-
ipants enough to discern a significant difference. This aspect sug-
gests a need for further exploration with more complex tasks to
truly gauge the differential impact on usability and workload.

However, the findings indicated a strong preference for the mul-
timodal approach, with two-thirds of participants selecting it over
speech interaction. This preference was influenced by the multimo-
dal system’s perceived efficiency, accuracy, ease of use, emergence,
and versatile communication combining verbal and gestural inputs.
The preference may also stem from the multimodal systems’ dem-
onstration of more concise commands on average than those of
speech interaction, indicating a streamlined communication pro-
cess. Efficiency and accuracy contributed to a marked preference
for speech interaction, yet they were also cited as advantages of
multimodal interaction. The versatile nature of multimodal interac-
tion contributed to ease of use and helped to deepen user engage-
ment in HRC tasks.

The GPT-4 model exhibited a high degree of responsiveness
within the chat application, showing its sophisticated reasoning
capabilities. Nonetheless, it did not achieve perfect accuracy. To
address this, this study incorporated an additional module that

Fig. 16. Examples that correctly caught the incorrect instructions.
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allowed the GPT-4 to query its own interpretations, thereby ena-
bling human operators to review and correct any misinterpretations.
During the experiments, the chat system demonstrated an impres-
sive accuracy rate of 92.73%, correctly identifying errors in 51 out
of 55 intentional incorrect instructions. However, the system’s oc-
casional failure to detect errors in instructions underscored the need
for continued human oversight.

These findings highlight the potential of integrating intuitive
multimodal interfaces with AI-driven chat systems in HRC in the
construction industry. By reducing cognitive load and enhancing
task accuracy, this innovative approach paves the way for more
efficient, reliable, and user-centric HRC systems. These advance-
ments are not only expected to improve operational efficiency in
construction but also provide substantial support to construction
workers in their daily tasks. Furthermore, the experimental results
emphasize the critical role of a well-designed human–AI interface.
Although AI demonstrates a capability to reduce the cognitive load
of human operators by accurately interpreting and responding to
most instructions, the necessity for human oversight remains. This
balanced approach could potentially lead to enhanced precision in
task execution and a reduction in operational errors, fostering a
more efficient and reliable HRC system in construction.

Conclusion

This paper proposed a multimodal interaction system for HRC in
construction, leveraging VR to enhance the interaction between
human workers and robots. The proposed system integrated speech
and handheld controller inputs to enable easy and intuitive commu-
nication with construction robots. It employed VR controllers to
point at objects of interest and NL commands to specify tasks.
Furthermore, the system integrated BIM for material data retrieval,
a robotic operation system for robot control, and GPT-based chat
system for bidirectional communication. The practical application
of the system was demonstrated through a drywall installation
task, validated by 12 construction workers. Their successful com-
pletion of the task using the multimodal interaction highlighted
the system’s low workload and high levels of intuitiveness and ease
of use.

This study makes several key contributions to the field of HRC
in construction, primarily through the proposal and implementation
of a multimodal interaction system. First, the system integrates
speech and handheld controller inputs with the use of BIM data
within Unity. BIM data were used not only for providing visual
information but also as a functional part of the operational work-
flow. Building components selected during construction activities
were used to trigger robot actions, enhancing interaction and opera-
tional efficiency.

Second, a significant aspect of this study is the successful in-
tegration of diverse software components, including BIM, ROS,
external servers for OpenAI API, and a game engine like Unity.
This strategic integration not only augments the functionality of
each individual component but also ensures that the entire system
operates efficiently in a cohesive manner. This allows for intuitive
communication and seamless collaboration between construc-
tion workers and robotic assistants, leading to more effective
collaboration than could be achieved by any single technology
independently. Moreover, the system’s architecture is designed
with scalability, enabling it to expand to support a variety of con-
struction activities for HRC.

Additionally, the study extends domain knowledge by designing
GPT prompts and proposing a conversation flow for HRC, show-
casing the potential of advanced AI assistants in enhancing HRC.
Next, the user study with construction workers provided in-depth
qualitative and quantitative analyses on the HRC experiences, of-
fering valuable insights into the system’s operational effectiveness
and user satisfaction.

However, there are several limitations that should be addressed
in future research. Firstly, the case study focused on drywall instal-
lation which represents one aspect of construction pick-and-place
tasks and limited to two actions of pick and place rather than
various grounding actions. Future studies should expand the pro-
posed interaction system to include a wider variety of construction
activities and structures. Furthermore, the management of ground
actions, including moving, tilting, and gripping within construction
activities, should be systematically incorporated into future studies
to enhance the applicability and robustness of the findings.

Secondly, this study has the lack of automatic integration of
the BIM data to the GPT prompt. This necessitated the manual

Fig. 17. Examples that did not catch the incorrect instructions.
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inclusion of semantic information about workpieces in the GPT
prompt. Automating this process in future research could signifi-
cantly enhance the chat system for HRC, leading to more advanced
task management and user interaction.

Thirdly, the absence of female participants in the experiment
might introduce a gender bias in both the delivery of instructions
and in perceptions related to workload and usability. This limitation
could potentially affect the generalizability of the study’s findings
across different demographic groups. In future studies, efforts will
be made to recruit a more diverse participant pool to address and
mitigate this issue.

Fourthly, the system to display all of object IDs around corre-
sponding objects in the virtual environment may not be effective for
more complex construction tasks that involve intricate structures
and numerous materials because it might confuse operators. Future
implementations might require additional modules that enable
users to access only the information pertinent to specific queries
or to selectively display data, enhancing effective information man-
agement and accessibility.
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