
Adaptive Task-Oriented Resource Allocation

for Large Dynamic Workflows on

Opportunistic Resources

Thanh Son Phung

University of Notre Dame

tphung@nd.edu

Douglas Thain

University of Notre Dame

dthain@nd.edu

Abstract—Dynamic workflow management systems offer a
solution to the problem of distributing a local application by
packaging individual computations and their dependencies on-
the-fly into tasks executable on remote workers. Such inde-
pendent task execution allows workers to be launched in an
opportunistic manner to maximize the current pool of resources
at any given time, either through opportunistic systems (e.g.,
HTCondor, AWS Spot Instances), or conventional systems (e.g.,
SLURM, SGE) with backfilling enabled, as opposed to monolithic
or message-passing applications requiring a fixed block of non-
preemptible workers. However, the dynamic nature of task
generation presents a significant challenge in terms of resource
management as tasks must be allocated with some unknown
amount of resources pre-execution but are only observable at
runtime. This in turn results in potentially huge resource waste
per task as (1) users lack direct knowledge about the relationship
between tasks and resources, and thus cannot correctly specify
the amount of resources a task needs in advance, and (2)
workflows and tasks may exhibit stochastic behaviors at runtime,
which complicates the process of resource management.

In this paper, we (1) argue for the need of an adaptive resource
allocator capable of allocating tasks at runtime and adjusting to
random fluctuations and abrupt changes in a dynamic workflow
without requiring any prior knowledge, and (2) introduce Greedy
Bucketing and Exhaustive Bucketing: two robust, online, general-
purpose, and prior-free allocation algorithms capable of producing
quality estimates of a task’s resource consumption as the work-
flow runs. Our results show that a resource allocator equipped
with either algorithm consistently outperforms 5 alternative
allocation algorithms on 7 diverse workflows and incurs at most
1.6 ms overhead per allocation in the steady state.

I. INTRODUCTION

Dynamic workflow management systems are becoming in-

creasingly prevalent in supporting and executing large-scale

scientific and data analytic computations [1]–[3]. This is due

to several reasons, most notably (1) tasks’ definitions and

dependencies are generated and inferred at runtime, thus

removing the need for declaring a static DAG in advance, (2)

local computations are automatically translated and packaged

into tasks to be executed on remote workers, thus removing

unnecessary efforts and frustrations, and 3) workers can be

deployed opportunistically to maximize available resources.

Since each task is executed independently from each other,

workers can be deployed opportunistically to maximize the

available pool of resources at any given time during a work-

flow execution, as opposed to monolithic or message-passing

applications requiring a deployment of a fixed block of non-

preemptible workers and increasing the user’s wait time in the

batch queue. From the perspective of an administrator, such

opportunistic worker deployment also increases the resource

utilization of the local HPC facility, as workers can be de-

ployed by submitting many small pilot jobs to take advantage

of the backfilling strategy commonly seen in large batch sys-

tems (e.g., HTCondor [4], SLURM [5], SGE [6]) and utilize

unused resources as they become available over time. Further-

more, large cloud vendors have been offering opportunistic

resources in their data centers at an extremely low cost (up

to 91% discount) [7]–[10], thus greatly reducing the monetary

barrier and opening the door to practical utilization of a huge

amount of opportunistic computational resources with little

cost and changes to the worker deployment configuration code.

Specifying resources for each task (e.g., cores, memory,

disk) is crucial to the efficiency and performance of a workflow

as it limits the waste of resources during a task run and helps

the underlying execution system make better scheduling deci-

sions [11]. However, the inherent dynamicity of this class of

workflow system poses a significant dilemma to the process of

resource allocation: tasks must first be specified with some

unknown amount of resources in order to be scheduled

for deployment and execution, but the optimal amount of

resources is only visible to the workflow manager upon task

completion. This problem is further exacerbated as workflows

may change over each run, reflecting the evolution of applica-

tion logic, modifications to input data, updates to underlying

software libraries, or random external factors affecting the

state of a workflow system at any given time. Individual tasks

may also differ in resource consumption between runs if they

are inherently stochastic. The combination of dynamicity and

stochasticity of workflows and tasks thus makes the problem

of resource allocation challenging.

In this paper, we argue that an allocation algorithm X can

only be considered a complete solution to the above challenge

by addressing all stated problems, and thus following these 4

design goals:

• General-purpose: X should be able to run generically

with any dynamic workflow without relying on any

workflow- or task-specific feature.

• Prior-free: X should not rely on past information of a

workflow (e.g., previous traces/logs) to allocate resources

for the current run. Many works [12]–[14] apply machine

learning techniques to customize solutions to specific ap-

plications. These techniques however are costly to train,

prone to overfit, and vulnerable to substantial stochastic

changes in workflows.

• Online: since dynamic workflows generate tasks at run-

time instead of having a DAG in advance, X must operate

in an online manner, i.e., be able to collect information

and predict resource allocations as the workflow runs.

• Robust: X must be able to perform well under a variety of

distributions and unexpected changes to workflows when

compared to related works [11], [15].

We hence introduce two resource allocation algorithms,

Greedy Bucketing and Exhaustive Bucketing, that attempt

to minimize the expected resource waste of all tasks in a work-

flow. Each algorithm (1) models the expected resource waste

of tasks in a workflow, (2) collects a list of resource records of

completed tasks, and (3) carefully extracts a potential resource

specification from this list to allocate subsequent tasks in the

workflow. This design thus makes these algorithms general-

purpose (no task-specific feature is used), prior-free (only

information about completed tasks in the current workflow

run is collected), online (resource prediction is derived on

demand), and robust (resource prediction changes as the

workflow changes its behavior during its run.)

We use two production workflows, ColmenaXTB [16] and

TopEFT [17], and further generate a diverse set of 5 syn-

thetic workflows following 5 different resource distributions

(Normal, Exponential, Uniform, Bimodal, Phasing Trimodal)

to evaluate the robustness and performance of these allocation

algorithms. Our results obtained from running 7 workflows

with 20-50 workers deployed opportunistically on a local

HTCondor cluster show that the bucketing algorithms con-

sistently outperform 5 alternative algorithms and can reach

as high as 96% resource efficiency and incur at most 1.6ms

overhead per allocation prediction in the steady state, thereby

substantially reducing the resource waste and increasing the

resource efficiency on a variety of workflow’s behaviors.

II. PROBLEM FRAMEWORK

A. Background

Figure 1 shows the general architecture of a dynamic

workflow system. The entire software stack including the

application runs on the manager node, whereas computations

(e.g., functions) packaged as tasks are executed at remote

workers. At runtime, an application calls possibly thousands of

expensive functions, each of which is labeled as remote/asyn-

chronous and prepared for remote execution. Functions are

then packaged as tasks by marshalling its arguments, detecting

and packaging library dependencies, wrapping error handling

code, etc., and sent to the workflow manager, which resolves

tasks’ dependencies by constructing a dependency graph be-

tween tasks and passes ready tasks to the task scheduler. The

task scheduler upon receiving a ready task will provision some

Fig. 1: Dynamic Workflow System Architecture

Distributing a local application using a dynamic workflow

system involves detecting, resolving, and packaging tasks and

their dependencies at runtime. Ready tasks are then sent to

workers to execute and results are sent back to the application.

amount of resources to the task and send it to an available

worker to be executed. A worker then allocates the specified

portion of its resources to the task, executes it, records its

resource consumption, and takes proper actions if the task

exceeds its allocation. Finally, the result of the execution

is returned transparently through the software stack to the

application. Note that this paper addresses the problem

of resource allocation to tasks which happens at dispatch

time - after task dependencies are resolved and before

tasks are scheduled to workers for execution.

B. Definitions and Assumptions

Our problem space then requires the definitions of only

two entities: Task and Allocation. A task T (c,m, d, t) is an

isolated executable program that consumes at most c cores,

m MBs of memory, and d MBs of disk in t seconds when

executed. Note that the 4-tuple (c,m, d, t) is not known prior

to execution. An allocation A (ca,ma, da, ta) is a declaration

of the resource requirement for a task before execution, which

tells the workflow execution engine to allocate to the task

ca cores, ma MBs of memory, and da MBs of disk over ta
seconds. In many batch and workflow execution systems [4],

[5], [18], [19], a task is monitored for its resource consumption

using standard OS metrics and killed the moment the execution

system detects it over-consuming its allocation. We shall

follow this reasonable behavior and accordingly introduce the

following set of assumptions:

1) The optimal amount of resources to allocate to each

task is unknown prior to its execution.

2) A task can only execute if its allocation is specified.

3) A task can only consume up to its allocated amount

of resources during its execution.

4) If a task over-consumes its allocation at any given

time, its execution is terminated and the task must

be retried with a bigger allocation.

Therefore, a task executes successfully only if c ≤ ca, m ≤
ma, d ≤ da, t ≤ ta. The main problem then stems directly

from assumption (1): resource allocation is uncertain, as a

large allocation risks a large resource waste, and a small

allocation risks task failure and retry.

C. Goals and Metrics

The goal of any predictive allocation algorithm is to attain

the performance of the oracle: zero resource waste and 100%

resource efficiency. We will now give precise definitions of

these metrics, assuming that for a given resource R, a task T

is allocated with a units of resources and consumes at most c

units during its execution of t seconds.

Resource Waste: There are two types of waste that a task

can incur during its execution: Internal Fragmentation and

Failed Allocation.

1) Internal Fragmentation: This is defined to be t · (a− c),
i.e., the difference over time between a task’s allocation

and its actual consumption, given that c ≤ a. This type

of waste is minimized to 0 when the predicted resource

specification is equal to the peak resource consumption

of T, i.e., a = c.

2) Failed Allocation: When task T over-consumes its allo-

cation, i.e., c > a, then by assumption 4 in Section II-B,

T must be retried with a bigger allocation specification.

This implies that the previous allocation didn’t accom-

plish any work, and thus incurred an unavoidable waste.

Therefore, Failed Allocation is defined to be Σk
i=1(ai·ti),

where k is the number of failed allocation attempts and

each pair of (ai, ti) is the amount of allocated resource

and execution time at the ith attempt.

Combining Internal Fragmentation with Failed Allocation,

we define the resource waste for task T to be:

ResourceWaste(T) = t · (a− c) + Σk
i=1(ai · ti)

Thus, the resource waste for task T is optimal (equal to

0) iff a = c and k = 0. Intuitively, a task incurs no resource

waste when it is allocated once and that allocation is equal

to its peak resource consumption.

Resource Efficiency: For a given type of resource R, we

introduce Absolute Workflow Efficiency (AWE), a metric that

tracks the absolute efficiency in resource usage of a workflow.

To avoid a clutter of symbols, we first define C(Ti) and A(Ti)
to be the resource consumption and total resource allocation

of task i, respectively, where

C(Ti) = ci · ti

A(Ti) = ai · ti +Σki

j=1(aij · tij)

AWE is then defined to be:

AWE({Ti}
n

1) =
Σn

i=1C(Ti)

Σn
i=1A(Ti)

,

where {Ti}
n
1 is a sequence of tasks from T1 to Tn in workflow

W . Intuitively, the numerator tracks the total consumption

of all tasks in W , and the denominator tracks the total

allocation of all tasks in W . Thus, this metric considers the

entire workflow as a whole and measures the ratio of total

useful resource consumption over the total resource allocation.

Furthermore, this metric is independent of the number of

available workers and thus fits well in the common situation

where dynamic workflows are run on opportunistic resources

with workers joining and leaving the worker pool over time,

and will be used as the main metric for evaluation in Section

V. Note that W is allocated optimally iff its AWE is equal

to 1, i.e., W uses all of the allocated resources.

D. Additional Problems and Solution Design

In addition to the stated problem of uncertainty in Section

II-B, we outline further issues that a complete solution must

address by breaking them down into two categories: Internal

Stochasticity and External Stochasticity.

1) Internal Stochasticity: This refers to random and/or

uncontrollable elements that are contained within a workflow’s

run, such as:

1) Arbitrary ordering of task execution: Tasks are submitted

sequentially but potentially executed in an arbitrary

order due to a variety of factors, including: data depen-

dencies between tasks, priority of tasks, data locality on

workers, available capacity of workers, etc.

2) Specialization of tasks: Tasks can be core-, memory-, or

I/O-intensive to reflect different purposes in a workflow.

3) Arbitrary structure of workflows: Workflows are often

organized into phases of tasks, each of which serves a

different purpose, and thus possibly consume a different

amount of resources depending on the current phase.

4) Arbitrary moving resource distribution: This issue arises

from the combination of (1) and (2), causing a workflow

to possibly exhibit an arbitrary and moving resource

usage distribution depending on which specialized tasks

are being executed.

2) External Stochasticity: This refers to the random and/or

uncontrollable elements between executions of the same work-

flow, such as:

1) Current system state: On shared premises, the compute

cluster and storage servers are subject to arbitrary usage

from other users, which in turn affects the workflow’s

execution differently between runs and contributes to (1)

and (4) in Section II-D1 [20].

2) Evolution of workflows: Workflows may behave differ-

ently to reflect updates to the underlying software depen-

dencies of tasks, the arrival of a new input distribution,

or the changes in tasks or phases of a workflow.

3) Inherent stochasticity of tasks: Tasks may be inherently

stochastic (e.g., Monte-Carlo-based simulation or SGD-

based ML training tasks) and thus may consume re-

sources differently between runs.

3) Design Goals: The combination of uncertainty and

internal and external stochasticity substantially complicates

the problem of resource allocation. We thus believe that the

following 4 design goals are necessary conditions for an

allocation algorithm X to be considered a complete solution:

1) General-purpose: Since the goal of minimizing re-

source waste only concerns a task’s resource consump-

(a) Core consumption (b) Memory consumption (c) Disk consumption (d) Execution time

Fig. 2: Resource consumption of tasks in ColmenaXTB (top) and TopEFT (bottom).

Left to right: cores, memory, disk, execution time. Each point in a plot is a task’s peak resource consumption.

tion and allocation, X should be accordingly generic and

not rely on any workflow- or task-specific feature.

2) Prior-free: Elements in External Stochasticity discour-

age the use of prior information about a workflow, as

such information is application-specific and vulnerable

to substantial changes to a workflow.

3) Online: Element (4) in Section II-D1 directly requires X

to be an online algorithm and adapt to the ever-changing

resource distribution of tasks.

4) Robust: Elements (3) and (4) in Section II-D1 demand X

to be sufficiently robust to work with arbitrary resource

distribution and phase changes in a workflow run.

III. CASE STUDY: COLMENA-XTB AND TOPEFT

To better understand the stochastic nature of a workflow

execution, we examine the resource logs of two large-scale

production workflows, ColmenaXTB and TopEFT, and show

how several elements of stochasticity as discussed in Section

II-D appear in and impact these workflows.

A. Overview

Both ColmenaXTB and TopEFT workflows follow the ar-

chitecture in Figure 1. ColmenaXTB is an application com-

bining neural network inferences with molecular dynamics

analysis to drive large campaigns of molecular search and

design. It defines two functions: (1) evaluate mpnn, which

takes in a list of candidate molecules and outputs a rank-

ing of those molecules, and (2) compute atomization energy,

which computes the energy values from top-ranked molecules.

ColmenaXTB runs on top of a suite of distributed execution

frameworks, including: (1) Colmena [16], a Python library

driving the molecular search campaign by carefully submitting

tasks and examining returned results (2) Parsl [1], a Python-

native workflow manager that constructs a task dependency

graph on the fly and send ready tasks to (3) Work Queue [18], a

manager-worker distributed programming library that handles

the allocation, deployment, and execution of tasks, along

with result collection and worker management on various

underlying distributed systems.

TopEFT structurally operates in the same manner. Its goal

is to apply the effective field theory (EFT) to detect new

physics by processing a large quantity of events produced

by the Large Hadron Collider (LHC). TopEFT defines three

functions: (1) preprocessing, which scans through a list of

metadata files to find relevant event datasets, (2) processing,

which analyzes a given quantity of events, and (3) accumulat-

ing, which merges processed results into a complex multi-level

histogram. It passes these functions down to Coffea [21], a

high-performance data processing library. Coffea first submits

all preprocessing tasks to fetch metadata files and identify

relevant event datasets, then logically divides events between

processing tasks or partially accumulated results between

accumulating tasks. All tasks generated by Coffea are sent

to Work Queue for remote execution, as described above.

B. Workflows’ Resource Consumption

Figure 2 shows the resource consumption of tasks in Colme-

naXTB (top row) and TopEFT (bottom row). Within each row,

from left to right, we vary the resource types from cores, mem-

ory, disk, to execution time. Within each plot, the x-axis tracks

the order of task submission (each submitted task gets an

incremental ID from 0) and the y-axis displays the magnitude

of a given resource type. Each point in a plot is then a given

task’s peak resource consumption. ColmenaXTB has 228 eval-

uate mpnn tasks and 1000 compute atomization energy tasks,

and TopEFT has 363 preprocessing tasks, 3994 processing

tasks, and 212 accumulating tasks.

Specialization of tasks: For both workflows we can clearly

see major differences in resource consumption between tasks

of different categories, especially in memory consumption. In

ColmenaXTB, while evaluate mpnn tasks use from 1 GB to

1.2 GBs of memory, compute atomization energy tasks only

(a) Overview (b) Deriving allocation predictions (c) Greedy Bucketing Example

Fig. 3: Bucketing algorithms

(a) Interactions between the bucketing manager with relevant components. (b) Resource predictions are probabilistically

derived from a set of computed buckets. (c) Example: Greedy Bucketing greedily and recursively computes a set of buckets.

hover around 200 MBs, suggesting that different categories of

tasks need different amount of resource allocations. However,

preprocessing and accumulating tasks in TopEFT consume

an almost equivalent amount of memory (around 180 MBs),

suggesting that different categories of tasks should instead be

allocated independently from each other, as different categories

don’t necessarily show a correlation in resource consumption.

Arbitrary structure of workflows: We also see the phasing

behavior arising in both workflows due to internal application

logic, which is most obviously seen in the memory con-

sumption of ColmenaXTB tasks. ColmenaXTB first submits

only evaluate mpnn tasks to rank all molecules, and then

submits only compute atomization energy tasks to process

top-ranked molecules. This phase change suggests that phases

of a workflow must be detected and tasks must be allocated

accordingly at different points in time.

Inherent stochasticity of tasks: Tasks’ core consumption in

ColmenaXTB shows another interesting behavior where tasks

of the same category don’t consume a similar amount of

resources. compute atomization energy tasks in ColmenaXTB

are not consistent in their core consumption at all, ranging

from 0.9 to 3.6 cores. The memory consumption of processing

tasks in TopEFT shares the same behavior but in a puzzling

way, where tasks can seemingly be separated into two clusters

of tasks in terms of memory consumption (one around 580

MBs and the other around 450 MBs). The core consumption

of TopEFT tasks shows another aspect of task stochasticity:

outliers. While most tasks, irrespective of their categories,

use one core or less during execution, some tasks go as

high as three cores, risking execution failure due to resource

exhaustion if a static allocation was made.

This case study on ColmenaXTB and TopEFT demonstrates

several elements of stochasticity in both workflows and shows

that the resource allocation problem for dynamic workflows

is indeed practical and challenging. As the structure of these

workflows is quite common, we further believe that the above

stochastic elements aren’t just restricted to ColmenaXTB and

TopEFT but are generalizable to other large-scale and possibly

more complex production workflows. This case study thus

validates both the design goals of a complete solution as stated

in Section II-D3 and a practical need for a resource allocation

algorithm conforming to such goals.

IV. BUCKETING ALGORITHMS

In this section, we introduce two novel allocation algorithms

forming the basis of an adaptive resource allocator, Greedy

Bucketing and Exhaustive Bucketing, that rely on the principle

of the bucketing approach. We first give the general idea of

the bucketing approach, describe how Greedy Bucketing and

Exhaustive Bucketing operate within this framework, and then

detail a few heuristics to incorporate these algorithms into a

resource allocator. Most importantly, we will show that these

algorithms directly match the design goals stated at the end

of Section II-D3.

A. The Bucketing Approach

Figure 3a shows a quick overview of the bucketing ap-

proach. (1) The workflow manager sends a ready task T

to the task scheduler to be deployed and executed. (2) The

task scheduler asks the bucketing manager for the amount of

resources to allocate T. (3) The bucketing manager maintains

a separate state for each resource type, queries each state for

a value, and sends back a suggested resource allocation A

for T. (4) The task scheduler sends T with allocation A to a

worker for execution. (5) The worker returns the completed

task with result and resource record R and (6)(7) sends R

to both the bucketing manager and the workflow manager

to update their respective states. Note how the bucketing

approach revolves around a bucketing manager that solely

interacts with the task scheduler to perform two operations:

respond to an allocation request upon a ready task and update

its internal states upon a completed task. As Greedy Bucketing

and Exhaustive Bucketing only diverge on how to update the

internal bucketing states and share the resource prediction

approach, we will now explain the prediction approach and

delay state updates to Sections IV-B and IV-C.

As each resource type is managed independently, we will

focus on one resource for simplicity. Figure 3b shows an

example of how the bucketing approach predicts a new task’s

allocation based on a given bucketing state. Assume that we

have a synthetic workflow containing 2,000 tasks of the same

Algorithm 1 Greedy Bucketing

procedure GREEDYBUCKETING(lo, hi, L)

if lo == hi then return [lo]

min cost, break idx = ∞, None

for i = lo to hi do

cost = compute greedy cost(lo, i, hi, L)

if cost < min cost then

min cost, break idx = cost, i

if break idx == hi then return [hi]

lo indices = GreedyBucketing(lo, break idx, L)

hi indices = GreedyBucketing(break idx+1, hi, L)

return lo indices.concat(hi indices)

end procedure

category, each of which’s memory consumption in GBs is

sampled from the normal distribution N (8, 2). Further assume

that the application decides to submit another task of the

same category immediately after all 2000 task executions

in this workflow, which requires the resource allocator to

specify some amount of memory. As the first 2000 tasks

execute successfully and return to the application, the resource

allocator has access to these tasks’ resource consumption

records. It then sorts these records by resource value and tries

to find if there are potential clusters among these values, each

representing a group of tasks consuming a similar amount of

resources. For now assume that these clusters are found to be

three intervals (0, v1] , (v1, v2], and (v2, vmax]. The allocator

then breaks the sorted list of records based on v1 and v2
into three buckets accordingly, where each bucket contains all

records in the respective interval. Each bucket is then reduced

to two elements: the representative value and the probability

value. Let B be the set of all buckets, and Bi be the ith bucket,

then the representative value of Bi is the maximum value of

all records in a bucket:

Bi.rep = max
r∈Bi.records

(r.value),

and the probability value of Bi is the ratio of the number of

records contained in Bi:

Bi.prob =
#records ∈ Bi

ΣBj∈B#records ∈ Bj

Upon a request to allocate a new task, the allocator ran-

domly chooses a bucket among the list of buckets based on

the probability values defined above and returns the chosen

bucket’s representative value. This value doesn’t guarantee

that the next task will not exceed its resource allocation

however, so when that task returns with a resource exhaustion

status, the allocator only considers buckets that have the

representative values greater than that of the previously chosen

bucket. If there are no such buckets, implying that the previous

bucket’s representative value is the greatest one seen so far,

then the allocator doubles the task’s previous peak resource

consumption until the task succeeds.

It is straightforward to see why the bucketing approach

so far follow the design goals listed in Section II-D3. The

bucketing approach (1) operates using only the resource

records of tasks, making it general-purpose, (2) uses only

resource records of tasks completed in the current workflow

run, making it prior-free, and (3) derives allocation predictions

on demand from the task scheduler, making it online. To

partially address the robust design goal, we observe that

when workflows make abrupt changes and exhibit the phasing

behavior, more recent task records serve as a better guidance

to allocate subsequent tasks and should contribute more to

the probability values of buckets than older ones. To build

this observation into the bucketing approach, we add into

each record of a task a significance value, and the higher the

value the more recent or significant the task record is (we will

briefly discuss how to set this value in Section V.) Thus, the

probability value of each bucket Bi is now updated to:

Bi.prob =
Σr∈Bi.recordsr.sig

ΣBj∈BΣr∈Bj .recordsr.sig

where r.sig is the significance value of record r.

It’s quite challenging to address the arbitrary moving re-

source distribution aspect of the robust design goal, and this is

where Greedy Bucketing and Exhaustive Bucketing diverge on

the method to capture and model the problem’s complexity.

While Greedy Bucketing attempts to find a bucketing state

that minimizes the expected resource waste in a greedy and

recursive manner, Exhaustive Bucketing computes the expected

resource waste of all possible combinations of buckets and

chooses the one with the lowest waste.

B. Greedy Bucketing

The question Greedy Bucketing tries to answer is straight-

forward: given a list of records, should it break that list into

exactly two sublists or not, and if yes, where exactly is the

break point? Assume the answer is yes and the break point

is v1. Greedy Bucketing first breaks the list from one interval

(0, vmax] into two: (0, v1] and (v1, vmax], forming two buckets

Bv1
and Bvmax

. Given this configuration, and assume that the

next task T follows the resource consumption behaviors of

completed tasks, then T has a probability of Bv1
.prob to con-

sume an amount of resources in the interval of (0, Bv1 .rep],
and a probability of Bvmax

.prob to consume an amount of

resources in the interval of (Bv1
.rep,Bvmax

.rep]. Since the

bucketing approach probabilistically chooses a bucket to allo-

cate the next task, it will choose bucket Bv1 with a probability

of Bv1
.prob and Bvmax

with a probability of Bvmax
.prob.

Assume the resource consumption of T is vlo if it falls within

Bv1 and vhi if it falls within Bvmax
, then four cases can occur:

1) T falls within Bv1
and Greedy Bucketing chooses

Bv1
: this happens with a probability of Bv1

.prob2

and incurs an expected resource waste of Wlo,lo =
Bv1

.prob2(Bv1 .rep− vlo).
2) T falls within Bv1

and Greedy Bucketing chooses

Bvmax
: this happens with a probability of Bv1

.prob ·
Bvmax

.prob and incurs an expected resource waste of

Wlo,hi = Bv1 .prob ·Bvmax
.prob(Bvmax

.rep− vlo).
3) T falls within Bvmax

and Greedy Bucketing chooses

Bv1 : this happens with a probability of Bvmax
.prob ·

Algorithm 2 Exhaustive Bucketing

procedure EXHAUSTIVEBUCKETING(L)

min cost, break indices = ∞, None

for k = 0 to L.length-1 do

for P in combinations(k, L) do

cost = compute exhaust cost(P, L)

if cost < min cost then

min cost, break indices = cost, P

return break indices

end procedure

Bv1 .prob and incurs an expected resource waste of

Whi,lo = Bvmax
.prob·Bv1 .prob(Bv1 .rep+Bvmax

.rep−
vhi), as T exhausts Bv1 .rep amount of resources and

thus retries with Bvmax
.rep amount of resources.

4) T falls within Bvmax
and Greedy Bucketing chooses

Bvmax
: this happens with a probability of Bvmax

.prob2

and incurs an expected resource waste of Whi,hi =
Bvmax

.prob2· (Bvmax
.rep− vhi).

Thus, the expected resource waste of the next task under

Greedy Bucketing is W = Wlo,lo +Wlo,hi +Whi,lo +Whi,hi.

As Greedy Bucketing doesn’t know the actual value of vlo
or vhi of T , it estimates these values using a weighted average

of values of records that fall in the same bucket, as follows:

vlo =
Σr∈Bv1

.recordsr.value ∗ r.sig

Σr∈Bv1
.recordsr.sig

vhi =
Σr∈Bvmax .records

r.value ∗ r.sig

Σr∈Bvmax .records
r.sig

This is the gist of Greedy Bucketing and represented by

the procedure compute greedy cost in Algorithm 1. As we

don’t know where v1 is at, Greedy Bucketing scans through the

list of records and computes each record’s expected resource

waste as if it is the break point. It then chooses the record

incurring the minimum amount of resource waste and outputs

that record as a break point. However, if vmax is chosen, then

Greedy Bucketing stops its computation and returns no break

point as having only one bucket containing all records yields

the minimum amount of waste.

The final technique of Greedy Bucketing is shown in the

last 4 lines of Algorithm 1, where it recursively calls itself

on two portions of the records and finds possibly more break

points. Figure 3c shows an example of this behavior as Greedy

Bucketing first finds a break point v1, then recursively calls

itself on smaller portions of the list of records to find v2
and v3, yielding a list of break points [v1, v2, v3] and the

final configuration of 4 buckets, guaranteeing that each call

to Greedy Bucketing finds the local optimum that minimizes

the expected local resource waste.

C. Exhaustive Bucketing

Algorithm 2 shows how Exhaustive Bucketing, instead of

finding buckets greedily like Greedy Bucketing, considers

all possible configurations of buckets in a list of records,

computes the expected resource waste produced by each

configuration, and chooses the best one. Let L be a list of

records of tasks. Since each record can form its own bucket,

there can be at least 1 bucket and at most L.length buckets.

Thus, the outer for loop runs from 0 to L.length− 1 as there

can be at least 0 break point and at most L.length− 1 break

points that separate these buckets. The inner for loop then

considers all combinations of break points of length k that

can be drawn from list L and returns the one that yields the

lowest expected resource waste. We now focus on the gist of

Exhaustive Bucketing: the procedure compute exhaust cost.

Assume the next task’s resource consumption vi falls within

the bucket Bi in a list of buckets B of length N . As Exhaustive

Bucketing doesn’t know vi, it estimates this value in a similar

way to how Greedy Bucketing estimates vlo and vhi:

vi =
Σr∈Bi.recordsr.value ∗ r.sig

Σr∈Bi.recordsr.sig

Note that the bucketing approach randomly chooses a bucket

according to its probability value. Since a task can be any-

where in N buckets and the allocator can choose any of the

N buckets, we have N2 cases to handle. Let T [i, j] be the

expected resource waste when the next task falls within bucket

Bi and Exhaustive Bucketing chooses bucket Bj . If i ≤ j, then

T [i, j] = Bj .rep− vi,

as the allocation from Bj is sufficient for the next task’s

execution. Otherwise,

T [i, j] = Bj .rep+ΣN
k=j+1

Bk.prob

ΣN
m=j+1Bm.prob

∗ T [i][k]

To see this, note that Bj .rep is the resource waste from

Failed Allocation as bucket j’s representative value is less

than the amount of consumed resource of the next task. As

described above, Exhaustive Bucketing now only considers

higher buckets from j+1 to N , and probabilistically chooses

one of these buckets to re-allocate the task. As the pool

of buckets is reduced to [j + 1, N], Bk.prob

ΣN
m=j+1

Bm.prob
simply

renormalizes the probability value of bucket Bk. T [i][k] is

defined as above, and thus T [i][j] is intuitively equal to the

sum of the current resource waste of the next task plus the

expected resource waste of that task’s next allocation. If j < i

and j < k, then T [i][j] depends on T [i][k]. Therefore, the table

T should be filled from the last column to the first column per

row. After computing T , the expected resource waste of a list

of buckets B is then:

WB = ΣN
i=1Σ

N
j=1Bi.prob ∗Bj .prob ∗ T [i][j],

as there’s a probability of Bi.prob ∗ Bj .prob that the next

task falls within Bi and Exhaustive Bucketing chooses Bj .

As mentioned above, the algorithm’s job now is to apply

compute exhaust cost to every configuration of buckets and

choose the best one.

(a) Normal
N(8, 1)

(b) Uniform
U(6, 10)

(c) Exponential
E(6)

(d) Bimodal
N1(4, 1), N2(12, 2)

(e) Phasing Trimodal
N1(4, 1), N2(12, 2),

N3(8, 1)

Fig. 4: Memory consumption of tasks in five synthetic workflows.

x-axis: Task execution order, numbered from 1 to 1000. y-axis: amount of memory used in MBs.

D. Integrating Bucketing Algorithms

Additional refinements are needed to integrate these algo-

rithms into a resource allocator. Both Greedy Bucketing and

Exhaustive Bucketing assume the existence of a list of records.

To get these records in the first place, an allocator runs in the

exploratory mode for a while and allocates each task some

predefined amount of resources until the it collects an enough

number of records (Details are delayed to Section V.)

As discussed in Section III-B, an allocator treats each

category of tasks independently and uses a separate instance of

a bucketing manager per category. Within each category, the

bucketing manager maintains a separate instance of a resource

state that follows either the Greedy Bucketing or the Exhaustive

Bucketing algorithm. Thus, an adaptive resource allocator

would more or less adhere to the following pseudocode:

c l a s s A l l o c a t o r :
d e f i n i t (s e l f , work f low metada t a) :

i n i t i a l i z e t h e l i s t o f b u c k e t i n g i n s t a n c e s ,
one p e r c a t e g o r y

d e f add (s e l f , t a s k r e c o r d) :
add t a s k r e c o r d t o t h e a p p r o p r i a t e
b u c k e t i n g i n s t a n c e

d e f p r e d i c t (s e l f , t a s k c a t e g o r y) :
c a l l t h e a p p r o p r i a t e b u c k e t i n g i n s t a n c e
t o compute t h e l i s t o f b u c k e t s and a l l o c a t e
t h e n e x t t a s k a c c o r d i n g l y

To conclude this section, we now address the call to

combinations in Algorithm 2. There are N !
k!(N−k)! ways to

choose k records out of N records, which grows exponentially

as the allocator continues to accumulate tasks and increases N

over time. To avoid this computational problem and spread the

number of considered records evenly, a call to combinations(k,

L) instead operates as follows:

1) form a list of k−1 candidate break points L to break the

space of records evenly, so L[i] = vmax∗i
k

for i = 1 to

k−1, where vmax is the maximum value in all records.

2) for each candidate break point, map its value to the

closest record that has a lower value than it and remove

all duplicate or empty mappings.

3) return newly found records as a list of break points to

be considered.

V. EVALUATION

We begin this section by describing the settings that Greedy

Bucketing and Exhaustive Bucketing use in all experiments.

To understand and evaluate the performance and robustness of

these algorithms, we additionally generate five synthetic work-

flows along with ColmenaXTB and TopEFT. We conclude

this section by presenting our analysis on these workflows’

performance under 7 allocation algorithms, and thus show that

the allocation predictions made by the bucketing algorithms

are performant and reliable1.

A. Settings

We implement the bucketing algorithms in the core sched-

uler of Work Queue [18] to minimize changes to all workflow

applications. For each experiment, we run the corresponding

workflow on opportunistic workers with 16 cores, 64 GBs

of memory, and 64 GBs of disk. The number of workers

varies from 20 to 50 depending on the availability of the local

HTCondor cluster. Algorithm-wise, there are many ways to

set the significance value of a task record. In all experiments

we simply set it to the task ID, so the task’s record with ID

1 has a significance value of 1, and so on. For Exhaustive

Bucketing, it is from our experience running both algorithms

that the number of buckets rarely exceeds 10 at any given

time, so we restrict k to at most 10 in the outer for loop of

Algorithm 2. In the exploratory mode of both algorithms, we

allocate each task 1 core, 1 GB of memory, and 1 GB of disk

until 10 records are retrieved. If a task exhausts any type of

resources during this phase, it is simply retried by doubling

the amount of respective resources.

To evaluate the performance of the bucketing algorithms,

we use 2 naive algorithms, Whole Machine and Max Seen,

and 3 alternative algorithms that align to our design goals, Min

Waste, Max Throughput, and Quantized Bucketing. Naive al-

gorithms are straightforward: Whole Machine simply allocates

each task a whole worker and thus serves as our baseline, and

Max Seen allocates each task the maximum resource value

seen so far in the current workflow run. On the other hand,

Min Waste and Max Throughput follow the description of

respective algorithms in [15], and Quantized Bucketing follows

1All logs are available at https://github.com/tphung3/ipdps2024-resource-
paper.

as the algorithms have to predict exactly how much resource

a task needs and an under-prediction in any resource at any

attempt will cause the task to be under-allocated and thus must

be retried with a bigger allocation. In contrast, the TopEFT

workflow shows a somewhat less diverse resource distributions

in all 3 resource dimensions, especially in disk and cores. This

helps the algorithms to narrow down that only the memory

dimension needs to be closely tracked and thus makes it easier

for the algorithms to predict the allocations, resulting in the

fact that most allocations from the predictive algorithms are

over-allocations.

E. Summary

The ability of the novel bucketing algorithms to consistently

make quality predictions in a diverse set of combinations of

workflow’s behaviors and resource types therefore demon-

strates that the bucketing approach accurately models the

problems outlined in Sections II-B, II-C, II-D and follows the

design goals in Section II-D3 and that the core strategies in

Greedy Bucketing and Exhaustive Bucketing are effective at

finding useful buckets in a given list of task records. Since

the Exhaustive Bucketing algorithm delivers higher resource

consumption efficiency than alternative approaches in most

cases (comparable to the Greedy Bucketing algorithm) and

much faster time to compute a new allocation (computation

time grows linearly with the amount of completed tasks as

demonstrated in Table I), it is the recommended algorithm to

allocate unknown workflows and tasks.

VI. RELATED WORKS

A large quantity of algorithms, strategies, and heuristics on

improving workload’s resource consumption efficiency have

been produced, tracked, and compiled over time by a number

of research groups. Witt et al. [13] provide an extensive survey

on the approach of modeling tasks’ resource consumption

using black-box machine learning models. We argue that while

machine learning is a promising approach, it requires a large

quantity of labeled data and takes a long time to train and

infer, and thus needs careful design to work as an online

algorithm. Pupykina et al. [22] focus on the management of

only memory consumption of tasks in HPC systems, and thus

doesn’t account for cores and disk.

Other papers focus on different objectives to improve a

workflow’s execution. Zhang et al. [12] leverage reinforcement

learning techniques and present a scheduling inspector module

that optimizes the average task wait time. Thekkepurayil et.

al. [23] schedule workflows in cloud systems according to a

variety of objectives, including optimal resource consumption,

quality of services, load balancing, etc. Li et al. [24] instead

focus on scheduling decisions that make sure workflows

are fault-tolerant and data are placed efficiently across geo-

distributed data centers. Several groups focus on the problem

of minimizing the energy consumption of workflows in clouds

with a budget constraint, as presented by Choudhary et al.

[25] and Taghinezhad-Niar et al. [26]. In this paper, we

model the problem of resource consumption in a general way

with only two entities: Task and Allocation, and thus believe

that our solution can be applied to both cloud and HPC systems

and incorporated into these work independently.

Other research groups, while also attempt to reduce the re-

source waste of workflows, extract workflow- or task-specific

information. Rodrigo et al. [27] optimize the turnaround time

of a workflow by analyzing the task dependency graph. Tanash

et al. [28] use metadata of tasks to train several machine

learning models and predict a task’s memory consumption.

Witt et al. [29] instead use the input size of each task as a

parameter to infer tasks’ resource consumption. Rodrigues et

al. [30] use a machine learning model to process and infer a

task’s memory consumption based on its LSF job specification.

Many papers also extract information from a chronological

list of resource records accumulated during a workflow’s

execution. Tovar et al. [15] present two strategies that aim to

minimize waste and maximize throughput, each relying on the

policy of at-most-once retry. Our bucketing algorithms instead

relax the policy of at-most-once retry by using a bounded

list of buckets. Phung et al. [11] study the heterogeneity

of tasks and allocate tasks based on their categories using

the k-means and quantile clustering methods. Fan et al. [14]

train a reinforcement learner to schedule tasks based on the

availability of the local cluster instead of predicting tasks’

resource consumption.

VII. CONCLUSION AND FUTURE WORKS

The nature of executing dynamic workflows on opportunis-

tic resources complicates the process of resource management,

as tasks are generated dynamically at run time and consume an

unknown amount of resources but must be specified a resource

allocation in advance. To avoid potentially huge resource

waste due to over- or under-allocation, this paper presents

two allocation algorithms, Greedy Bucketing and Exhaustive

Bucketing, that are designed to be general-purpose, online,

prior-free, and robust to allocate tasks on-the-fly. Results show

that the bucketing algorithms perform well on a diverse set of

workflows and outperform alternative algorithms, showing that

the algorithmic design of the bucketing algorithms is correct

in addressing potential stochasticity of workflow’s behaviors

and useful in predicting tasks’ resource consumption.

In the future, we target to evaluate our algorithms on even

larger workflows (> 10,000 tasks). We hypothesize that the

bucketing algorithms should perform even better on larger

workflows since they are shown to perform well and quickly

converge to a steady state on workflows of around 4,500 tasks.

Other future works include: potential optimizations of the

bucketing algorithms, an extension to additional resource

types, and exploring other approaches and deriving alternative

solutions to the problem of resource allocation.

ACKNOWLEDGEMENT

This work was supported by National Science Foundation

Grant OAC-1931348. We thank Ben Tovar, Logan Ward,

Kevin Lannon, and Kelci Morman for providing us with

the code and data for the runs. TaskVine is available at

http://ccl.cse.nd.edu/software/taskvine.

REFERENCES

[1] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, “Parsl: Pervasive parallel programming in python,” in
Proceedings of the 28th International Symposium on High-Performance

Parallel and Distributed Computing, ser. HPDC ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 25–36. [Online].
Available: https://doi.org/10.1145/3307681.3325400

[2] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in Science Confer-

ence, K. Huff and J. Bergstra, Eds., 2015, pp. 130 – 136.

[3] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 18),
2018, pp. 561–577.

[4] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience.” Concurrency - Practice and Experi-

ence, vol. 17, no. 2-4, pp. 323–356, 2005.

[5] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel

Processing, 2003.

[6] “Oracle Grid Engine: An Overview,” Oracle Corporation. Accessed:
2023-09-27, Tech. Rep., 2010 [Online].

[7] A. Inc. (2023) Amazon spot instances. [Online].
Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using-spot-instances.html.Accessed:2023-09-28

[8] G. LLC. (2023) Google spot vms. [Online]. Available: https:
//cloud.google.com/spot-vms.Accessed:2023-09-28

[9] M. Corporation. (2023) Azure spot virtual machines. [Online].
Available: https://learn.microsoft.com/en-us/azure/virtual-machines/
spot-vms.Accessed:2023-09-28

[10] A. Group. (2023) Alibaba preemptible instances. [Online]. Avail-
able: https://www.alibabacloud.com/help/en/ecs/user-guide/overview-4.
Accessed:2023-09-28

[11] T. S. Phung, L. Ward, K. Chard, and D. Thain, “Not all tasks are created
equal: Adaptive resource allocation for heterogeneous tasks in dynamic
workflows,” in 2021 IEEE Workshop on Workflows in Support of Large-

Scale Science (WORKS). IEEE, 2021, pp. 17–24.

[12] D. Zhang, D. Dai, and B. Xie, “Schedinspector: A batch job
scheduling inspector using reinforcement learning,” in Proceedings

of the 31st International Symposium on High-Performance Parallel

and Distributed Computing, ser. HPDC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 97–109. [Online].
Available: https://doi.org/10.1145/3502181.3531470

[13] C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive performance
modeling for distributed batch processing using black box monitoring
and machine learning,” Information Systems, vol. 82, p. 33–52, May
2019. [Online]. Available: http://dx.doi.org/10.1016/j.is.2019.01.006

[14] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. E. Papka,
“Deep reinforcement agent for scheduling in hpc,” 2021.

[15] B. Tovar, R. F. da Silva, G. Juve, E. Deelman, W. Allcock, D. Thain,
and M. Livny, “A Job Sizing Strategy for High-Throughput Scientific
Workflows,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 2, pp. 240–253, 2018.

[16] “Colmena,” 2021 [Online], exaLearn and Parsl Teams. Available: https://
colmena.readthedocs.io/en/latest/index.html.

[17] A. Basnet et al., “Topeft/topcoffea: Topcoffea 0.1 (v0.1),” (2021),
zenodo. Available: https://doi.org/10.5281/zenodo.5258003.

[18] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A Framework For Scalable Scientific Ensemble Ap-
plications,” in Workshop on Python for High Performance and Scien-

tific Computing (PyHPC) at the ACM/IEEE International Conference

for High Performance Computing, Networking, Storage, and Analysis

(Supercomputing) , 2011.

[19] B. Sly-Delgado, T. S. Phung, C. Thomas, D. Simonetti, A. Hennessee,
B. Tovar, and D. Thain, “Taskvine: Managing in-cluster storage for
high-throughput data intensive workflows,” in Proceedings of the SC

’23 Workshops of The International Conference on High Performance

Computing, Network, Storage, and Analysis, ser. SC-W ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1978–1988.
[Online]. Available: https://doi.org/10.1145/3624062.3624277

[20] T. S. Phung, B. Clifford, K. Chard, and D. Thain, “Maximizing data
utility for hpc python workflow execution,” in Proceedings of the SC

’23 Workshops of The International Conference on High Performance

Computing, Network, Storage, and Analysis, ser. SC-W ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
637–640. [Online]. Available: https://doi.org/10.1145/3624062.3624136

[21] “Coffea,” 2021 [Online], fermi National Accelerator Laboratory. Avail-
able: https://github.com/CoffeaTeam/coffea.

[22] A. Pupykina and G. Agosta, “Survey of memory management techniques
for hpc and cloud computing,” IEEE Access, vol. 7, pp. 167 351–167 373,
2019.

[23] J. Kakkottakath Valappil Thekkepurayil, D. P. Suseelan, and
P. M. Keerikkattil, “Multi-objective scheduling policy for workflow
applications in cloud using hybrid particle search and rescue algorithm,”
Serv. Oriented Comput. Appl., vol. 16, no. 1, p. 45–65, mar 2022.
[Online]. Available: https://doi.org/10.1007/s11761-021-00330-4

[24] C. Li, J. Liu, M. Wang, and Y. Luo, “Fault-tolerant scheduling and
data placement for scientific workflow processing in geo-distributed
clouds,” J. Syst. Softw., vol. 187, no. C, may 2022. [Online]. Available:
https://doi.org/10.1016/j.jss.2022.111227

[25] A. Choudhary, M. C. Govil, G. Singh, L. K. Awasthi, and E. S. Pilli,
“Energy-aware scientific workflow scheduling in cloud environment,”
Cluster Computing, vol. 25, no. 6, p. 3845–3874, dec 2022. [Online].
Available: https://doi.org/10.1007/s10586-022-03613-3

[26] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “Energy-efficient
workflow scheduling with budget-deadline constraints for cloud,”
Computing, vol. 104, no. 3, p. 601–625, mar 2022. [Online]. Available:
https://doi.org/10.1007/s00607-021-01030-9

[27] G. P. Rodrigo, E. Elmroth, P.-O. Östberg, and L. Ramakrishnan,
“Enabling workflow-aware scheduling on hpc systems,” in Proceedings

of the 26th International Symposium on High-Performance Parallel

and Distributed Computing, ser. HPDC ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 3–14. [Online].
Available: https://doi.org/10.1145/3078597.3078604

[28] M. Tanash, B. Dunn, D. Andresen, W. Hsu, H. Yang, and
A. Okanlawon, “Improving hpc system performance by predicting
job resources via supervised machine learning,” in Proceedings of

the Practice and Experience in Advanced Research Computing on

Rise of the Machines (Learning), ser. PEARC ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3332186.3333041

[29] C. Witt, J. van Santen, and U. Leser, “Learning low-wastage memory
allocations for scientific workflows at icecube,” in 2019 International

Conference on High Performance Computing Simulation (HPCS), 2019,
pp. 233–240.

[30] E. R. Rodrigues, R. L. F. Cunha, M. A. S. Netto, and M. Spriggs,
“Helping hpc users specify job memory requirements via machine
learning,” in 2016 Third International Workshop on HPC User Support

Tools (HUST), 2016, pp. 6–13.

