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ABSTRACT
Rapid delay variations in today’s access networks im-
pair the QoE of low-latency, interactive applications,
such as video conferencing. To tackle this problem,
we propose Athena, a framework that correlates high-
resolution measurements from Layer 1 to Layer 7 to
remove the fog from the window through which to-
day’s video-conferencing congestion-control algorithms
see the network. This cross-layer view of the network
empowers the networking community to revisit and re-
evaluate their network designs and application schedul-
ing and rate-adaptation algorithms in light of the com-
plex, heterogeneous networks that are in use today, paving
the way for network-aware applications and application-
aware networks.

CCS CONCEPTS
• Networks → Network measurement; Mobile net-
works.

KEYWORDS
Video Conferencing, Network Measurement, 5G Net-
works

1 INTRODUCTION
Interactive Video-Conferencing Applications (VCAs)
such as Google Meet [15] and Zoom [46] are ubiquitous
[13], yet unreliable [11, 30]. The vagaries of today’s
heterogeneous wireless access networks (4G, 5G, Wi-Fi,
and low-earth orbit satellite)—in particular their capac-
ity and latency variations—challenges VCAs’ estima-
tion of these variables, frustrating their task of encoding
video and audio media streams that match this capacity

[3, 8, 9, 24, 28] to maximize interactive video quality.
Wireless access technologies are complex and neces-
sarily employ sophisticated methods to enable multiple
access to a shared medium and increase the reliability of
data transmission at the link layer. Yet these same meth-
ods introduce various artifacts in the datagram stream
higher layers see, such as rapidly changing packet de-
lays and link capacities. Today, congestion control and
VCA bit-rate adaptation algorithms are largely oblivi-
ous to such artifacts and instead operate on the assump-
tion of the generic bottleneck link model, which has
been used to design congestion-control algorithms for
decades [19]. While some proposals [12, 22, 42] lever-
age machine learning-based approaches to deal with
these hard-to-predict artifacts, we show here that they
still largely see a clouded view of packet arrivals, filtered
through a wireless network that introduces a number of
pathological-seeming—yet in fact explainable—jitter
patterns.

While the physical and link layers of the wireless net-
work know exactly their network state and can provide
the necessary millisecond-level telemetry information
[14, 17, 23, 40, 43], today, this layer-specific informa-
tion remains siloed away from higher layers. If higher-
layer algorithms (e.g., for rate adaptation) had access to
this information, they could track and match physical
capacity more accurately, resulting in higher application
performance. Conversely, higher layers know best about
their demands such that the physical layer does not need
to attempt to infer and predict future application require-
ments. Consequently, in this paper, we argue that (while
functionality should remain within the respective layer)
we need APIs to open up layer-specific information to
adjacent layers to enable more efficient operation of
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Fig. 1 — The Athena Measurement Framework:
Athena synchronizes fine-grained measurements of
video conferencing across all layers of the network
stack, revealing new performance insights for appli-
cation and transport protocol designers to improve
their end-point adaptation algorithms.

today’s heterogeneous networks.

To enable this vision, we propose Athena1, a cross-
layer measurement framework that correlates informa-
tion across the physical, link, network, and application
layers. In the specific context of 5G networks and VCAs,
we demonstrate Athena’s capability to remove the fog
that hinders today’s network applications when estimat-
ing the quality of the underlying network, suggesting
the potential of our approach to do the same for myriad
other types of access networks such as satellite, cable
modem, 5G mmWave New Radio, and others.

Athena correlates measurements across layers (as de-
picted in Fig. 1), revealing the root causes of individual
QoE impairments, such as video stalls, low resolution,
or long mouth-to-ear delay. Specifically:
(1) We extract fine-grained 5G control channel teleme-

try of physical-layer data units (transport blocks),
retransmissions, and scheduling decisions [40].

(2) We precisely time-synchronize this data with packet
captures at the network layer and correlate physical
transport blocks with network datagrams.

(3) We further correlate network datagrams with application-
layer semantics, such as frames, different Scalable
Video Coding (SVC) layers indicating the rela-
tive importance of a frame, and audio samples
whose quality we also measure from the application
side [28].

This broad, new perspective offers deep insights into

1After Athena Glaukopis (lit. gleaming-eyed), Greek goddess of
seeing.

the operation of the 5G Radio Access Network (RAN)
and other access networks, and their immediate impacts
on application QoE. We identify various causes of de-
lay variation and delay spread, along with significant
scheduling inefficiencies within the 5G RAN. Armed
with this understanding, we propose a comprehensive
agenda for future work, outlining concrete steps to mit-
igate these issues using mechanisms at the physical,
network, and application layers. We specifically explore
how application-layer information can be leveraged to
inform the RAN scheduler, significantly reducing up-
link delay. Additionally, we propose an approach where
physical-layer information is fed to the application layer,
enhancing delay-based congestion control mechanisms.

A Call to Cross-Layer Interactive Video Research
As users’ QoE demands and the use of video confer-
encing, cloud gaming, and AR/VR in new wireless
access networks increase, we urgently need research
that can provide deep insights into the operation of
cutting-edge access networks (L1, L2) and their im-
pact on QoE (L7). To this end — and using Athena
with Zoom as a starting point for this arc of research
— we demonstrate and explain the intricacies of 5G
networks that incur significant delay variations, lead-
ing to poor QoE, such as low frame rates and video
stalls.

2 5G TELECONFERENCING
PITFALLS

Today, video-conferencing applications (VCAs) gener-
ally deliver media signals in a similar way [2, 3, 27, 28,
32]: the sender captures media information, encodes it
using a codec such as H.264 [34] or Opus [39], and trans-
mits it over the network using the Real-Time Transport
Protocol (RTP) [36] or similar transport. A congestion-
control algorithm estimates network capacity by observ-
ing delay and loss, so the encoder may adjust media
quality, resolution, and frame rate to match this capacity.
A jitter buffer at the receiver smooths delay variations
before it decodes and plays back the stream.

Given the real-time character of VCAs, stable and low
latency and sustained network capacity are both essential
to their performance. When the network cannot provide
these, VCAs are left with three options. First, they can
reduce the sending rate at the cost of reduced quality,
hoping that this reduces congestion and jitter. Second,
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Fig. 2 — Athena’s measurement framework targeting a Zoom session
for a mobile device accessing the network via 5G Standalone.
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and Zoom RTP Media Traffic.

they can expand the jitter buffer at the cost of increased
mouth-to-ear delay to better smooth out delay variations.
Finally, they may not react and choose to accept a higher
risk of stalls in order to maintain low end-to-end latency
and high picture quality. Clearly, each option has pros
and cons, so the choice of which to use depends on
application requirements and user expectations.

To understand how 5G affects VCA QoE, we run a
20-minute two-party Zoom video call where the sender
of the stream we monitor is connected to a private stan-
dalone 5G small cell [29], and the receiver is wired
(Fig. 2), with all hosts NTP time synchronized. We inject
a prerecorded video file, annotated frame-by-frame with
QR codes, via a virtual camera device. At the receiver
side, we capture the screen at 70 fps (slightly above
the typical monitor refresh rate). Using this method, we
determine if a particular frame was on the screen for
longer than its intended (packetization) time given the
current frame rate. Additionally, we compute picture
quality by comparing each received frame with the cor-
responding sent frame and computing their structural
similarity (SSIM) [41]. Cross traffic from six other cel-
lular mobiles varies in throughput, from 0 to 14, 16, and
finally 18 Mbps, in five-minute phases. Using this data,
Athena computes sender-to-core (via the 5G RAN) and
core-to-receiver (via the Zoom server) one-way delay
(respectively, the red and blue lines in Fig. 2), effectively
isolating the cellular uplink.

5G RAN uplink (only) jitters. Athena sees significant
delay variation (jitter) on the 5G uplink in particular,
ranging from 40 to 120 ms as Fig. 3 shows. Separating
this delay into its audio and video components in Fig. 4,
we see audio slightly less delayed but note a long tail
of delay out to seconds. To ascribe the smaller jitter be-
tween the core and the receiver to the WAN or to Zoom
itself, we concurrently ping the Zoom server from the
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Fig. 4 — Zoom audio ex-
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Fig. 6 — 5G frame structure: downlink and uplink
switching pattern and BSR-based uplink transmis-
sion.

core every 20 ms (orange lines in Figs. 2 and 3). Take-
ways: Athena sees that (a) the 5G uplink is the primary
source of jitter, (b) the Zoom server’s application-layer
processing (not present in the ping probes) is a secondary
source of jitter, and (c) the WAN, and importantly, the
5G RAN downlink provide low and stable delay.

Drilling down into Athena’s Zoom latency measure-
ments, we observe that audio samples and video frames
(usually consisting of multiple RTP packets) are sent
in bursts. We calculate the delay spread — the time
between the first and last packets of an audio sample
or video frame — at the sender and in the 5G core, re-
spectively, during a five-minute period without any cross
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Fig. 8 — Zoom adaptation: Zoom reacts to both high
absolute delay and high jitter primarily by adapting
the frame rate.

traffic on the cellular network. We observe (Fig. 5) that
the RAN uplink spreads out the one-way delay of sam-
ples and frames at the receiver in increments of 2.5 ms.
Takeaway: Delay spread accounts for the difference in
packet-level one-way delay between audio and video in
Fig. 4, as audio samples rarely span multiple packets
and are thus only delayed when sent in conjunction with
a video frame. We explain this effect that stems from
RAN scheduling in Section 3.1.

5G Impairs QoE. We next use Athena to isolate the ef-
fect of the aforementioned 5G delay and jitter on Zoom
itself. We create a baseline with a fixed 15 ms latency
that emulates the cellular network’s capacity (calculated

from the physical transport block sizes) using Linux
traffic control (tc) over a wired network. Figure 7 com-
pares key QoE and performance metrics between the
two networks. Takeaway: We see that 5G consistently
delivers lower quality both with respect to bitrate and
media-level jitter, as well as user-centric metrics such as
frame rate and picture quality.

How Zoom Adapts. To understand how Zoom adapts
to delay variations, we plot Zoom’s frame rate and bit
rate as a timeseries in Fig. 8. Zoom uses the temporal
scaling dimension of Scalable Video Coding (SVC) [18,
37], including a base layer at either seven or 14 fps,
and adding enhancement layers to reach 14 or 28 fps,
respectively. When the target frame rate is 14 fps, Zoom
uses a different identifier for the enhancement layer,
denoted “Low-FPS Enhancement” in the figure. The
layer identifier is included in the RTP header extensions.
We spoke with Zoom engineers to confirm that Zoom
indeed uses this type of media scalability. We can see
that Zoom reacts to very high absolute delay (above one
second) by changing the set of SVC layers and more
permanently reducing the frame rate to 14 fps. If the
jitter is high, Zoom appears to transiently skip frames,
reducing to rates around 20 fps. The upper plot shows
the impact on the overall bandwidth utilization the two
adaptation strategies have. Either adaptation leads to
impaired user experience, as summarized in Fig. 7.

3 SHEDDING LIGHT ON THE 5G
RAN

The 5G network introduces significant delay variations
in the uplink direction, as illustrated in Figs. 3, 4 and 8.
We now explain the two main causes of these variations
in detail: link-layer scheduling and link-layer retrans-
missions.
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3.1 Link-Layer Scheduling
Our private 5G small cell operates in Time Division
Duplexing (TDD) mode, as shown in Fig. 6, which di-
vides time into periodic downlink and uplink slots. In
our cell’s configuration, downlink slots occur four times
as frequently as uplink slots, with uplink slots appearing
every 2.5 milliseconds.

The base station allocates uplink resources to the mo-
bile via uplink grants, which specify the transport block
size for each uplink slot. There are two types of uplink
grants: requested and proactive. For requested grants, a
5G mobile reports the amount of data in its transmis-
sion buffer using a Buffer Status Report (BSR) [1], as
illustrated in Fig. 6. Based on the BSR, the base station
allocates uplink grants to match the mobile’s traffic de-
mand. However, there is a scheduling delay between the
time a mobile sends a BSR and when it receives and
utilizes the uplink grant [38], ca. 10 ms in our Private
5G network.

To mitigate this BSR scheduling delay, some base
stations use proactive grants, which pre-allocate up-
link resources to the mobile before receiving any BSR.
Proactive grants can consistently reduce delay by around
10 ms for sporadic packets. They, however, come at the
cost of potentially wasting bandwidth (if remain unused)
and require extra computing resources. Additionally, this
scheduling does not fit in well with bursty traffic patterns
as present in VCA traffic.

To investigate link-layer scheduling on VCA traffic,

we use Athena to drill down into our collected trace
(Section 2) and present a time series in Fig. 9(a). In the
upper part of the figure, each horizontal line represents
a packet, where the left and right edges indicate the
timestamps when the packet is sent at the sender and
when we capture it at the mobile core, respectively, as
shown in Fig. 2. The length of the line represents the
one-way delay between the sender and the mobile core.
The lower part of the figure shows the physical layer
transport block (TB) sizes within the same time period.

Multiple packets, sent in a burst, comprise each video
frame—when these are ready at the mobile, a proactive
TB can carry only one or two of them. Given the 2.5 ms
downlink-uplink period, another proactive grant arrives
2.5 ms later, allowing the mobile to send another one
or two packets. This process continues until the BSR-
requested grant arrives, typically around 10 ms after the
initial packet transmission, at which point all remaining
packets in the UE’s buffer are delivered by the BSR-
requested TBs. This scheduling approach results in the
previously discussed delay spread at the frame level,
which is denoted as yellow double arrows in Fig. 9(a).

Proactive grants also cause over-granting issues. As
shown in Fig. 9(a) (green bars), the BSR-requested TB
size is based on the buffer status at the time the UE sends
the BSR. However, once the BSR-requested TB becomes
available to the mobile, 10 ms later, the remaining data in
the mobile’s buffer has decreased, because proactive TBs
have already delivered some packets during the BSR
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scheduling delay period. This over-granting results in
some requested TBs being wasted without transmitting
any data (the unfilled green bars in Fig. 9(a)), ultimately
leading to a waste of bandwidth.

3.2 Link-Layer Retransmissions
5G link-layer retransmissions happen due to mobility
and dynamic channel conditions, which cause errors or
data loss in the transmitted TB. These retransmissions
occur frequently, particularly in environments with high
interference or signal variability. As a result, retransmis-
sions introduce additional delay to the packets they carry,
impacting overall network latency. In our configuration,
retransmission delay is 10 ms.

Fig. 9(b) illustrates another time series example, high-
lighting failed and retransmitted TBs in red and purple,
respectively. In instances where retransmissions occur
for TBs containing packets, the packet delay (the length
of the horizontal lines in Fig. 9(b)) is typically inflated
by 10 milliseconds, indicated with yellow double arrows.
If the retransmitted TBs fail again at the base station, it
leads to multiple rounds of retransmissions of the same
TB, further inflating the packet delay by multiples of
10 milliseconds. This introduces additional variations
to the network latency. Additionally, Athena’s observa-
tions reveal that the base station also mandates the UE
to retransmit empty proactive and requested TBs, which
results in unnecessary bandwidth consumption.

4 A DELAY-BASED SOLUTION?
It is well known that loss-based congestion control is
poorly-suited for low-latency video conferencing appli-
cations because it intentionally creates network buffer-
ing to probe network capacity. When packet loss occurs,
it indicates that the buffer is full and the network is
already congested, leading to increased delay and a de-
graded user experience.

Delay, on the other hand, is widely recognized as
the earliest indicator of network congestion. Conse-
quently, delay-based congestion control algorithms, such
as SCREAM [20], NADA [45], and GCC [7], have been
widely adopted by video conferencing applications to
provide the most responsive performance to network
capacity fluctuations. Among these, GCC is the default
congestion control algorithm for WebRTC [3, 10], a
widely used real-time communication standard that pow-
ers, for example, Google Meet [15]. Since the congestion
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control used in Zoom is proprietary and the details are
unknown, we use GCC as an example to demonstrate
the potential impact of RAN-induced delay variations on
the design of a delay-based congestion control protocol.

GCC leverages the one-way delay gradient to de-
tect the status of network usage, which is defined as
𝑑𝑚 = (𝑇𝑖 − 𝑇𝑖−1) − (𝑡𝑖 − 𝑡𝑖−1) where the 𝑡𝑖 and 𝑇𝑖 are
the sending and receiving timestamps of the 𝑖-th packet,
respectively. GCC then smooths the delay gradient by
applying a trendline filter to obtain the filtered delay
gradient. If the filtered delay gradient is positive and
exceeds a certain threshold, the network is identified
as being overused. Conversely, if the delay gradient is
negative and falls below a negative threshold, the net-
work is considered underused. To demonstrate the im-
pact of RAN-induced delay variations, we measure the
filtered one-way delay gradient of the packets transmit-
ted within one video conference session inside an idle
5G network within which our mobile is the only user.
We plot the filtered delay gradient, the threshold and
the detected network overuse in Fig. 10, from which
we can observe significant fluctuations in the gradient,
which could potentially result in frequent identification
of network overuse and underuse, while the network is
consistently idle and underused. Such frequent misidenti-
fication of overuse could severely mislead GCC, causing
it to falsely react to phantom network fluctuations.

5 ATHENA LOOKING FORWARD
Athena’s analysis of latency artifacts reveals a physical-
layer scheduling and retransmission cause. This natu-
rally motivates future measurement studies Athena’s
first-in-kind cross-layer methodology enables, and leads
to many opportunities for the mitigation of latency infla-
tion and its detrimental effects on video-conferencing
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applications.

5.1 Cross-Layer Measurements
While we demonstrate the potential of the Athena mea-
surement framework in the context of video conferenc-
ing and 5G, our methodology is also a blueprint for fu-
ture measurement. In general, there are more and more
diverse applications that exhibit various traffic patterns
(e.g., short video [26], video on demand, web browsing,
interactive applications) and an ever-growing set of phys-
ical and link-layer technologies (e.g., 4G and 5G with a
wide range of multiple-access and duplexing strategies,
Wi-Fi, satellite networks, and Bluetooth). All underlying
networks introduce different artifacts that are of varying
importance to the different classes of applications. A
challenge here is to find a generic way how these diverse
physical-layer technologies can match and interact with
application-layer demands to maximize performance.
We call for a more frequent, principled interchange of
information between layers enabled through continu-
ous, fine-grained measurement—the Athena framework
enables exactly this.

To gain deeper insights and gather more data points
for this vision, in the future, we plan to use Athena
to further measure Google Congestion Control (GCC)
and work toward a GCC simulator that evaluates video-
conferencing behavior in various physical-layer contexts.
For example, in the context of cellular networks, differ-
ent base stations use different duplexing strategies. Also,
the wireless spectrum can be divided along multiple axes.
Time slicing (as in TDD) is done using different slice
lengths in differing frequency bands, and some cellular
networks use Frequency Division Duplexing (FDD) for
uplink and downlink, resulting in differing impacts on
application-layer latencies (cf. Section 2).

5.2 A More Application-Aware RAN?
Video conferencing and other real-time communication
applications exhibit a very predictable traffic pattern:
a video frame is sent approximately every 33 ms (at
30 fps) or every 66 ms (at 15 fps). The size of the frames
also rarely changes significantly as VCAs typically do
not use I-frames but rather transmit all video as a series
of P-frames that only encode the difference from the
previous picture [28]. In Section 3.1, we show that the
5G TDD uplink-grant scheduling mechanism delivers
the majority of packets using small proactive grants,

leading to delay spread at the frame level, while reactive
grants typically arrive too late and often remain unused,
wasting resources for other users (Fig. 9(a)).

Given the predictability of VCA traffic, there are am-
ple opportunities for the RAN to issue uplink grants in
a more informed, application-aware way. This can be
realized in two ways. First, video-conferencing packets
can be annotated (e.g., through RTP extensions) with
media-level metadata. This information could include
the number of streams originating at a particular sender,
together with data about their sampling rates (in the
case of audio) or frame rates in the case of video, to-
gether with a periodically updated estimate for the cur-
rent frame size as this may depend on multiple factors.
Using this information, the base station can issue grants
exactly at the right times when a sample or frame is
generated and ready for transmission. Second, the base
stations can use machine learning to learn the current
transmission patterns, and predict future traffic demands
to precisely issue grants.

The Open-RAN Alliance specifies the RAN Intelli-
gent Controller (RIC) as a software component that pro-
vides centralized control and optimization of radio net-
work functions [33, 35]. Network operators can use the
RIC to apply customized algorithms to various RAN
operations, including resource allocation. Specifically, a
Real-Time RIC [21] can be employed to implement such
an intelligent traffic learning algorithm and subsequent
grant scheduling. Either approach has the potential to
cut the delay inflation experienced by frames in half.
Note that the frame-level delay (i.e., from the transmis-
sion of the first packet of a frame to the reception of
the last packet of the frame) is extremely relevant as a
frame cannot be rendered until all of its packets have
been received.

5.3 More RAN-Aware Applications?
Conversely to the RAN becoming application-aware,
there is a clear need for applications and transport pro-
tocols to be better informed of the RAN’s state. Here,
the key architectural challenge is to define the conges-
tion protocol for application and transport layer senders.
How should the wireless access network abstract its
complexities to higher-layer senders? How should this
information be communicated to senders across the wide
area network?
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Generally, the RAN could give applications finer in-
sights into its operation through telemetry that, for ex-
ample, conveys the cause for a particular delay increase.
Alternatively, the RAN could mask RAN-induced de-
lays through the congestion-control feedback channel by
modifying per-packet delay information as reported by,
for example, RTCP transport-wide congestion-control
messages in GCC. As a protocol, L4S [4–6] is attractive,
as it adopts ECN bits in the IP header to accelerate or
brake the sender (cf. ABC [16]), which stands a good
chance at practical and incremental deployability, topics
under close consideration in the IETF. But challenges
remain here, too: how should control of the accelerate-
brake signal be defined in the presence of retransmis-
sions due to (unpredictable) loss versus the more pre-
dictable delay spikes and spreads that we observe with
Athena?

6 RELATED WORK
There is a line of research designing cellular PHY-layer
monitoring tools, as in [23, 25, 43]. Additionally, [40,
44] integrates 4G/5G PHY-layer measurements with the
transport layer to enhance congestion control algorithms.
Previous studies have also investigated how cellular net-
work affects network latency, for sporadic and small
traffic applications [38], and in high user mobility sce-
narios [31]. Our work differs by correlating information
across the physical, link, network, and application lay-
ers, and providing a in-depth analysis revealing the root
cause of the impaired VCA QoE under 5G.

7 CONCLUSION
The Athena measurement framework is the first of its
kind to deeply look across all layers of the network stack,
an approach whose time has come given the accelerating
pace of innovation at the high and low ends of the stack.
In this paper, we have reported a proof of concept of
the Athena approach for Zoom, and have scanned the
horizon of new work that Athena enables.
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