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Abstract— Assistive robot arms can help humans by partially
automating their desired tasks. Consider an adult with motor
impairments controlling an assistive robot arm to eat dinner.
The robot can reduce the number of human inputs — and
how precise those inputs need to be — by recognizing what
the human wants (e.g., a fork) and assisting for that task (e.g.,
moving towards the fork). Prior research has largely focused on
learning the human’s task and providing meaningful assistance.
But as the robot learns and assists, we also need to ensure
that the human understands the robot’s intent (e.g., does the
human know the robot is reaching for a fork?). In this paper,
we study the effects of communicating learned assistance from
the robot back to the human operator. We do not focus on the
specific interfaces used for communication. Instead, we develop
experimental and theoretical models of a) how communication
changes the way humans interact with assistive robot arms, and
b) how robots can harness these changes to better align with
the human’s intent. We first conduct online and in-person user
studies where participants operate robots that provide partial
assistance, and we measure how the human’s inputs change
with and without communication. With communication, we
find that humans are more likely to intervene when the robot
incorrectly predicts their intent, and more likely to release
control when the robot correctly understands their task. We
then use these findings to modify an established robot learning
algorithm so that the robot can correctly interpret the human’s
inputs when communication is present. Our results from a
second in-person user study suggest that this combination
of communication and learning outperforms assistive systems
that isolate either learning or communication. See videos here:
https://youtu.be/BET9yuVTVU4

I. INTRODUCTION

More than 24 million American adults need external

assistance when performing activities of daily living [1].

Assistive robot arms that share autonomy with humans have

the potential to help address this challenge [2], [3]. In these

shared autonomy settings the human controls the robot arm

using an input device (e.g., a joystick) to indicate their intent,

and the robot helps automate tasks on the human’s behalf

(e.g., picking up foods and feeding them to the operator).

To achieve seamless assistance, both the human operator

and robot arm must be on the same page. Consider Figure 1,

where a human is using a robot arm to manipulate kitchen

items. The human wants the robot to pick up a fork, and

so the human provides joystick inputs that guide the robot

towards that goal. For the robot to align with the human, the

robot must learn from these inputs to determine the human’s

intent and partially automate their task. Here the robot might

correctly infer what the human wants (e.g., a fork) and then
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Fig. 1. Human sharing control with an assistive robot arm. (Top) The robot
tries to infer the correct task from the human’s joystick inputs. (Middle)
We show that — when the robot communicates what it has inferred — the
way humans provide inputs changes. (Bottom) If robots are aware of these
changes, they can more accurately infer the human’s goal.

coordinate its own motions to help reach that goal (e.g.,

fixing any errors in the human’s inputs to precisely pick up

the fork). On the other hand — for the human to align with

the robot — the robot needs to communicate its intended

assistance back to the user. Without this communication the

human does not know what to expect from the robot: is the

robot going to help automate the motion to the fork, or does

the robot think the human wants something else entirely?

Existing research on shared autonomy has largely sepa-

rated learning and communication. On the one hand, methods

such as [4]–[8] focus on inferring the human’s task and

partially automating the robot’s motion, but do not consider
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communication back to the human. On the other hand,

approaches like [9]–[11] develop visual and haptic commu-

nication interfaces for shared autonomy, but do not modify

the robot’s learning algorithm. In this paper, we explore the

intersection of learning and communication within shared

autonomy settings. More specifically, we hypothesize that:

Humans will interact with shared autonomy systems

differently when those systems communicate their learning.

This is important because — if humans do provide different

inputs in the presence of communication — then the way

the robot interprets and learns from human actions should

also be modified. Accordingly, our paper has two main parts.

First, in Section III-B we test our hypothesis and measure

how communication can affect the way humans interact with

assistive robot arms. Second, in Sections IV and V we

harness the changes caused by communication to modify the

robot’s learning algorithm. In practice, this combination of

learning and communication enables a) the robot to more

seamlessly infer the human’s task, and b) the human to more

clearly indicate their intent. Returning to Figure 1, perhaps

the human stops providing inputs because they observe from

the robot’s feedback that the fork is the robot’s most likely

goal. In response, our robot is able to confirm its prediction

(i.e., because the human released control the robot must be

correct), and complete the task more efficiently.

Overall, we make the following contributions:

Measuring the Effects of Communication. We consider

shared autonomy settings where a human is operating a robot

arm, and the robot updates the likelihood of each potential

task based on the human’s inputs. For these settings, we

perform online and in-person user studies with and without

robot communication. We find evidence that humans behave

differently in the presence of communication.

Updating the Robot’s Learning Rule. Our experimental

results suggest that — when communication is present —

humans are more likely to intervene if the robot has inferred

the wrong task, and more likely to relinquish control if the

robot is correct. We use these findings to modify the human

model of an existing shared autonomy algorithm.

Combining Learning and Communication. We conduct

another in-person user study with three conditions: learning

(where the robot does not provide explicit feedback), com-

munication (where the robot communicates its intent but does

not adjust its learning rule), and our proposed approach. Our

results suggest that the combination of learning and commu-

nication increases subjective and objective performance in

shared autonomy settings.

II. RELATED WORKS

Below we discuss shared autonomy research that focuses

on either learning (i.e., inferring the task and providing as-

sistance) or communication (i.e., visual and haptic interfaces

to convey the robot’s internal state).

Learning in Shared Autonomy. Shared autonomy is a

collaborative framework for human-robot interaction where

the robot’s behavior is a blend of the human’s inputs and

the robot’s autonomous assistance [12]. The human’s inputs

convey the high-level task (e.g., grasping a fork), and the

robot’s inputs provide fine-grained corrections (e.g., coordi-

nating the motion of the arm to reach that fork). Prior works

develop algorithms to learn both the high-level task and low-

level assistance method. For example, in [4]–[8], [13] the

human’s desired task is to reach a goal from a discrete set of

options, and the robot infers this goal based on the human’s

inputs. As the robot becomes more confident in which goal

the human wants, it can increasingly provide assistance to

automate that task. Similarly, in [14]–[17] the robot builds

an estimate of the task’s reward function, and overrides any

accidental or incorrect human inputs that would result in

poor performance (e.g., preventing the human from moving

the robot arm into a collision). Other methods such as [18]–

[22] learn to assist the human by imitating their previous

behaviors. For instance, if the human showed the robot how

to pick up a fork in a past interaction, the robot leverages

that data to help pick up forks during future interactions.

Overall, each of these works provide a way for the robot

to learn from and assist the human. However, they do not

explicitly communicate what the robot has learned — hence,

the user may not know what to expect from the system.

Communication in Shared Autonomy. Research outside of

shared autonomy suggests that communicating robot learning

has benefits for both the human and the robot. From the

human’s perspective, communication increases the user’s

acceptance and trust in the system [23]; from the robot’s per-

spective, communication can result in more effective human

teaching and accelerated robot learning [24]. Accordingly,

recent works have started to apply communication strategies

to shared autonomy [25].

In some scenarios, it is possible for the robot to implicitly

convey what it has learned by exaggerating its motions [26].

However, for the robot to clearly indicate its latent state

in everyday settings, explicit communication with visual,

auditory, or haptic interfaces is often necessary. In [9] and

[11] augmented reality headsets show the operator what the

robot has learned about their high-level task (e.g., placing

visual markers at the most likely goals) and how the robot

plans to assist (e.g., displaying the robot’s planned trajec-

tory). Similarly, in [10] a wearable haptic interface notifies

the human when the shared autonomy system is uncertain

about their intent. Each of these interfaces has benefits and

drawbacks, but our work seeks to focus on the addition of an

application of a visual interface given its positive prior results

and wider applicability for subject use. Our paper will build

upon these related works by using explicit communication to

convey the robot’s inferred task back to the human. However,

instead of focusing on the communication interface itself,

we are interested in the effects of this communication on the

human operator and assistive agent.

III. EFFECTS OF COMMUNICATION

We consider shared autonomy settings where the human

and robot collaborate in achieving a common goal. A key
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aspect of shared autonomy is the ability of the robot to infer

the human’s goal (i.e., the task they are trying to complete). If

the robot correctly infers the human’s goal, it can complete

the remaining task without requiring further human input.

Alternatively, if the robot’s inference is incorrect, the human

must keep providing inputs towards their intended goal.

However, it can be challenging for humans to determine what

goal the robot has inferred without explicit communication.

In this section, we investigate how explicitly communicat-

ing the robot’s belief about the human’s goal affects their

actions. We first introduce the policies of the human and the

robot collaborator in the absence of communication. Then,

we conduct a user study to understand the role of commu-

nication in shared-autonomy settings and determine how the

users’ actions change when communication is introduced. We

aim to use these findings to improve the robot’s inference of

the human’s goal and provide better assistance.

A. Shared Autonomy without Communication

We let s ∈ S be the environment state which includes the

state of the robot, aH ∈ A and aR ∈ A be the human’s and

robot’s actions respectively. The environment state transitions

based on both the human and robot actions.

st+1 = f
(

st, aH, aR
)

(1)

We assume that the human chooses actions to minimize an

internal cost-value function Q⋆:

aH ∼ π⋆

H (◦ | s, θ,Q⋆) (2)

Correspondingly, as the robot is trying to achieve the same

goal as the human, it should take actions that minimize the

human’s cost-value function Q⋆. The robot does not directly

observe the human’s goal or their cost-value function. In-

stead, the robot selects actions according to an approximation

Q of the cost-value function from prior work [4] where the

robot’s belief is not directly communicated to the human:

aR ∼ π⋆

R (◦ | s, b (θ) , Q) (3)

where b(θ) is the robot’s belief of the human’s goal θ.

We suspect that the human’s actions will change in the

presence of communication. If the belief communicated by

the robot aligns with the human’s goal — will the human

continue to provide actions that navigate the robot towards

their goal or will they allow the robot to assume full control?

On the other hand, if the robot’s belief is incorrect — will

the human exaggerate their corrective actions because they

know that the robot’s belief is incorrect? To evaluate how

real users respond to robots that communicate their belief, we

conducted two user studies with and without communication.

B. Shared Autonomy with Communication

We performed online and in-person user studies to gain

insight into the effect of communication on shared autonomy.

Participants collaborated with a robot to reach a goal while

choosing how much input they think is enough for the robot

to learn the task. In half of the interactions, the robot com-

municated its current belief of the user goal as a percentage

using a digital interface. Our results from 25 online users and

10 in-person users show that people provide less input when

the robot communicates its belief over the user goal with a

noted subjective preference for the communicative system.

Experimental Setup. In the online study, participants taught

a robot to reach a goal in multiple shared autonomy settings.

In each setting, there were three objects with varying colors

and the user’s goal was to reach the green square (see

Figure 2 (Left)). The position of these objects varied between

settings. To simulate the settings we used an animated 2D

environment with a top-down view. Online participants first

watched the beginning of the robot arm’s motion and then

selected their choice of input to guide the robot toward the

desired goal or to allow the robot to continue on its partially

demonstrated path. In the in-person study, users commanded

a robot arm using a Logitech F710 gamepad to perform a

similar task of reaching a green cube.

We had five different settings for the objects in the online

study and three settings in the in-person study. All partici-

pants interacted with the robot in each setting twice — with

and without communication. In total, participants had six

interactions in the in-person study and ten interactions in the

online study. Each interaction ended when the robot reached

the correct goal. The order of the settings was randomly

counterbalanced across all users.

Independent Variables. For the online study, the users

interacted with the robot in each setting across two variations.

In one variation, the users had to infer the robot’s intended

goal through its animated motion (Without Interface). In the

other variation, users were provided with the probabilities of

the robot’s belief over the goals (With Interface) in addition

to their observation of the robot’s motion.

For the in-person study, the robot used a state-of-the-art

shared autonomy algorithm [4] to select its action aR in each

setting. In half of the interactions, the robot communicated

its current belief b(θ) as percentages using a digital interface

(With Interface), and for the other half, the users had to

infer the robot’s belief from its motion (Without Interface).

Dependent Variables. In both studies, we focused on how

the user responses change when performing the shared auton-

omy tasks with and without communication. For the online

study, we recorded whether the human chose to command the

robot toward the desired goal or not. For the in-person study,

we recorded the time that users spent using the gamepad and

other joystick inputs (Total Human Inputs) as well as their

subjective responses on a 7-point Likert scale for whether

they preferred the settings with explicit communication or

without the interface.

Participants. For the online study, we recruited 25 anony-

mous participants. We included an instruction and a quali-

fying question at the beginning of the survey for this study.

For the in-person study, we recruited 10 participants from

the Virginia Tech community (2 female, ages 23± 9 years).

All participants provided informed consent as per university

guidelines (IRB #20-755). To assist the participants in be-

coming familiar with the gamepad and the robot we provided
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Fig. 2. Example settings and results from our user studies in Section III-B. Here we explored how communicating the robot’s inferred distribution over a
discrete set of tasks affected the human’s inputs during shared autonomy. In all conditions, the robot used the same learning algorithm. (Left) Results from
the online survey with and without a communication interface. Humans were more likely to release control to an assistive robot that conveyed its learned
distribution over the tasks (t(24) = 4.271, p < 0.005). (Right) Corresponding results from our in-person study. Here humans required fewer inputs to
guide the robot to their goal when the robot communicated its learning (t(29) = 2.986, p < 0.005). Overall, these results suggest that humans are more
willing to yield control to a communicative system. An asterisk (*) denotes statistical significance.

practice time at the beginning of the interaction.

Hypothesis. We hypothesized that:

H1. When the robot communicates its belief over

the goal, users will require less effort in command-

ing the robot to reach the desired goal.

H2. Users will prefer using a shared autonomy

system where the robot’s belief is communicated.

Results. Our results from the online and in-person user

studies are summarized in Figure 2. To address H1, we

evaluate the level of effort that users exhibited through the

number of human inputs given through the gamepad. Here,

there was a significant difference (t(24) = 4.271, p < 0.005)

in the requisite human effort to reach the given goals. This

result shows that when the robot communicates its belief, the

user no longer has to provide the same level of effort for the

robot to reach the goal, supporting H1.

For H2, we turn to our Likert-scale survey. We performed

a Paired-Samples T-Test across polled user preferences

for communication; these results were significant (t(9) =
17.676, p < 0.001). In our in-person user study, participants

preferred interacting with a robot that communicated its

belief of the human’s intent.

IV. HARNESSING COMMUNICATION TO IMPROVE

LEARNING

Our results from the first user study (Sec. III-B) demon-

strate that humans behave differently in settings with com-

munication than those without it. In this section, we leverage

the human’s response to the robot’s communication in a

novel shared-autonomy formalism. Instead of solely using

communication to aid the human’s guidance of the robot,

we treat the human’s feedback to the communication as an

indication of the user’s confidence in the robot.

We use this idea to present model human policies for both

modalities: in the presence and absence of communication.

The robot policy uses the appropriate human model to choose

assistive actions that minimize the human’s modality-specific

cost-value function.

Human. The human takes actions that minimize their in-

ternal cost-value function Q. Following previous works [5],

[26], we model the human as a nosily rational agent accord-

ing to the Boltzmann distribution:

πH (aH | s, θ) =
exp (β ·Q (s, aH, θ))

∫

exp (β ·Q (s, a′
H
, θ, )) da′

H

(4)

Here, πH is a model of the human’s true policy π⋆

H
.

In the Boltzmann rational distribution, β ∈ [0,∞) is the

rationality hyperparameter: as β approaches 0, the human is

considered to be more irrational; their actions are essentially

uniformly distributed. On the other hand, as β increases, the

human’s actions are increasingly optimal (i.e. "rational"). The

robot does not have access to the human’s policy; instead,

it assumes an apriori model of the human. In continuous

spaces, Equation 4 is intractable. Similar to [5], we tractably

estimate the human’s policy using the principle of maximum

entropy: the probability of a goal decreases exponentially as

its cost increases. This yields the following approximation:

πH (aH | s, θ) ∝ exp (−β ·Q(s, aH, θ)) (5)

Firstly, in the absence of communication, we approximate

the human’s cost-value function as:

Q(s, aH, θ) = dist(aH + s, θ)− dist(s, θ) + ∥aH∥ (6)

The first two terms measure the distance by which the human

actions move the robot away from the human’s goal, while

the last term measures the magnitude of the human actions.

Formally, Equation 6 is minimized when the human takes

low-effort actions that minimize the distance between the

robot and their goal and require the least effort to do so.

However, in the absence of communication, humans cannot

directly observe whether or not their actions have influenced

the robot’s belief to a state where they no longer need to

provide input actions and thus, have no reliable basis on

which to determine when they can minimize their effort.

In the absence of communication, the human must infer

the robot’s belief by observing the robot’s actions. However,

in many cases there can be uncertainty in determining the

robot’s goal — for example, if the spoon and the fork are
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close to one another, how can the human reliably tell which

goal the robot is moving towards? On the other hand, in

the presence of communication, the human has a reliable

prediction of the robot’s future assistive actions given its

belief and can respond to this communication positively by

removing input or negatively by continuing to work against

the robot. Our key insight is that when the robot’s belief is

communicated, human inputs can be interpreted as assurance

or rebuttal of this communicated belief.

Therefore, we propose that the human’s internal cost-

value function in the presence of communication can be

modeled by incorporating the robot’s belief into the cost of

the human’s actions.

Q(s, aH, θ) = dist(aH+ s, θ)− dist(s, θ)+ b(θ) · ∥aH∥ (7)

In the presence of communication, if the robot’s belief is

correct, then the human’s cost is minimized by providing

little effort in agreement with the robot’s assistance. If the

robot’s belief is incorrect, then the human will provide

inputs that contradict this belief. For example, in the case

of ambiguous goals (i.e., the spoon and fork placed close

together), with the presence of communication, the human

will hold a definite answer for whether the robot is correct.

This will result in either further adjustments to correct a

misaligned belief or a submission of control seeing that they

can minimize their effort by relying on the robot’s assistance.

Robot. The robot updates its belief b (θ) based on the

observed human actions. Let P (θ | s, aH) denote the

probability that the human is optimizing for the goal θ given

the state s and human action aH. Using Bayes’ theorem, the

posterior probability is defined as:

P (θ | s, aH) ∝ P (aH | s, θ) · P (θ) (8)

Here, P (θ) is the prior of the robot’s belief over the human’s

goal and P (aH | s, θ) is the likelihood function for the

robot’s prediction. Note that P (aH | s, θ) is equivalent to

π⋆

H
, which we model as πH. Similar to Equation 5, we use

the principle of maximum entropy to derive an equivalent

form for Equation 8:

P (θ | s, aH) ∝ exp (−β ·Q (s, aH, θ)) · P (θ) (9)

The robot takes actions aR that minimize Equation 6 in the

absence of communication and Equation 7 in the presence

of communication according to:

aR =
∑

¹∈Θ

P (θ | s, aH) · (θ − s) (10)

Since the robot’s belief may be incorrect, the robot blends

the human’s commanded action with an assistive action:

aB = (1− α) · aH + α · aR (11)

The hyperparameter α ∈ [0, 1] is determined by a threshold

according to the human’s action such that when the robot

displays the correct belief and the human surrenders control,

the robot is allowed to take a higher level of control to assist.

For this, we transition α from a minimum value in the
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Fig. 3. Tasks and user inputs from the user study in Section V. (Left) The
specific items that the human brought the robot to interact with for each task.
(Right) The magnitude of the human’s inputs over time averaged across all
users. These results show that users completed the tasks more quickly with
Ours, and overall needed fewer inputs to convey their intended goals to the
robot.

presence of human action to a maximum value when the

robot is in full control.

{

α = α+ step, α f αmax if ∥aH∥ ≈ 0

α = α− step, α g αmin if ∥aH∥ ̸≈ 0
(12)

Here step is a hyperparameter chosen by the designer to

control the rate at which the robot will increase its assistance

proportionally to the number of timesteps that the user has

allowed for complete robot assistance.

Altogether, Equations 7-12 form our method for selecting

optimal actions in the presence of communication. These

equations build upon existing shared autonomy approaches

for inferring the human’s goal and providing assistance [4]–

[6]. But we have modified this existing learning framework

to explicitly account for communication and the effect com-

munication may have on the human’s internal cost function

Q∗. Without communication, earlier works such as [4] sug-

gest that the human optimizes for their error and effort as

shown in Equation 6. However, with communication, our

experimental results from Section III-B indicate that humans

are willing to increase their effort if the robot is wrong and
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Fig. 4. Objective and subjective results from the user study in Section V. (Left) Total user inputs for Seasoning, Drink, and Utensil tasks. To count the
number of inputs, the robot measured whether the human had pressed the joystick every 0.02 seconds. Across each task, users provided fewer inputs and
relied on the robot’s assistance more when using Ours (p < 0.001, p < 0.001, p < 0.001). These results support H3: Users spent less effort when using
Ours. (Right) Subjective results for the three baselines. Across the four Likert-Scale items, users preferred Our method: they felt that they could easily
control the system (p < 0.001), the robot provided effective assistance (p < 0.005), the robot better predicted their goal (p < 0.001), and the robot
adapted more quickly to their actions (p < 0.001).

release control when the robot is correct. Using these findings

we update our human model for Q in Equation 7. Up to this

point, our modified learning rule is informed by experiments

but has not yet been tested. Accordingly, in Section V we

will compare our proposed method for aligning learning with

communication against baselines that separately learn and

communicate.

V. TESTING THE COMBINATION OF LEARNING AND

COMMUNICATION

Lastly, we conduct an in-person user study to evaluate

the performance of our proposed method in comparison to

the state-of-the-art shared autonomy baseline [4] with and

without a communicative interface. We wish to demonstrate

that accounting for the knowledge of the robot’s belief in

the human’s cost function, in addition to communicating the

robot’s belief, allows the robot to provide better assistance

than simply communicating the robot’s belief with the base-

line shared autonomy approach.

Experimental Setup. Users were instructed to complete

three tasks in a more complicated environment than the first

in-person user study to highlight the utility of this approach:

1) Seasoning: Retrieve a salt or pepper shaker, bring it to

a plate of food, and then return it to its base position.

2) Drink: Go to the can of soda, bring the can of soda

to a mug, and return the can to its base position.

3) Utensil: Retrieve the spoon or fork and bring it to the

relevant side of the plate.

Participants commanded the robot using a Logitech F310
gamepad to complete each of the three tasks using one

of three methods: Without Interface, With Interface, and

Ours. The order in which participants interacted with these

methods was randomized to avoid any proficiency bias.

Details of these tasks are illustrated in Figure 3 (Left).

Independent Variables. In each task, the robot starts with

a uniform prior over the goals which is gradually updated

according to the methods discussed in section IV. Partici-

pants performed each task three times — using the baseline

shared autonomy approach Without Interface, using the

same baseline With Interface, and using our method of

feedback-enabled shared autonomy - Ours (which combines

learning with communication).

Dependent Variables. We recorded the Total User Inputs to

measure the amount of effort spent by the users in completing

each task. We also recorded subjective User Scores through

a 7-point Likert scale survey with four items — for how

easy it was to Control the robot, how often they could tell

when the robot Assisted them, whether the robot was able to

Predict their goals, and if the robot Adapted to their actions.

Participants. A total of 12 participants from the Virginia

Tech community took part in this study (2 female, ages

28.5±6.5 years). Two of the twelve users had not interacted

with robots before. Users provided written consent as per

university guidelines (IRB #20-755).

Hypothesis. We hypothesized that for this study:

H3. The human will spend less effort in completing

the tasks when using Our method.

H4. Users will provide higher scores on the sub-

jective metrics for Our method than the baselines.

Results. The results of our user study are summarized in

Figure 4. To address H3, we measured the number of user

inputs across three separate tasks for each method. Here, a

lower score is better where fewer inputs imply that the user

is exhibiting less effort when completing the task. Paired-

sample T-tests showed that participants used significantly

fewer inputs when the robot used Ours for each task

(t(11) = 4.106, p < 0.001, t(11) = 5.806, p < 0.001,
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t(11) = 9.636, p < 0.001). Figure 3 shows the average

magnitude of the user input over time for each task; these

results further support H3. It was noted that given the

apparent improvement from the addition of our algorithm,

given how our study varied the order of appearance for each

method, the users noted a lower user preference for the base

interface option. It was noted that this was doubly apparent

given the more complex environment given how, even with

the interface, it didn’t change the robot’s struggle with the

base environment. A struggle that has been noted across

multiple different bodies of work in Shared Autonomy [2],

[4].

Regarding H4, we present the subjective results from our

Likert-scale survey in Figure 4 (right). A one-way ANOVA

analysis of the users’ responses showed a significant differ-

ence in the perceived Control, Assistance, Prediction, and

Adaptation that the robot exhibited when using our method

(F (69) = 11.901, p < 0.001, F (69) = 6.368, p < 0.005,

F (69) = 8.794, p < 0.001, F (69) = 13.345, p < 0.001).

Actions chosen by Ours were preferable to those selected

by baselines; this supports H4.

VI. CONCLUSION

In this paper, we explored the effects of communicating

learned assistance back to the human operator in shared au-

tonomy. While previous research has focused on learning the

human’s task and providing assistance, we instead focused on

harnessing the effect of the communication. We hypothesized

that humans will interact with shared autonomy systems

differently when those systems communicate their learning

back to the human. Using the results from online and in-

person user studies, we showed that humans are more likely

to intervene when the robot incorrectly predicts their intent,

and release control when the robot correctly understands

their task. We used the insights from these results to modify

the robot’s learning algorithm: under our proposed approach,

the robot adjusts its model of the human’s cost function to

account for how communication changes the human’s input

patterns. Finally, we compared our approach for combining

learning and communication against shared autonomy base-

lines that separately handle learning or communication. In a

user study with 12 in-person participants across three kitchen

tasks, we found that our proposed approach for combining

learning and communication increased the subjective and

objective performance of the human-robot team.
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