
Waypoint-Based Reinforcement Learning for Robot Manipulation Tasks

Shaunak A. Mehta, Soheil Habibian, and Dylan P. Losey

Abstract— Robot arms should be able to learn new tasks. One
framework here is reinforcement learning, where the robot is
given a reward function that encodes the task, and the robot
autonomously learns actions to maximize its reward. Existing
approaches to reinforcement learning often frame this problem
as a Markov decision process, and learn a policy (or a hierarchy
of policies) to complete the task. These policies reason over hun-
dreds of fine-grained actions that the robot arm needs to take:
e.g., moving slightly to the right or rotating the end-effector a
few degrees. But the manipulation tasks that we want robots to
perform can often be broken down into a small number of high-
level motions: e.g., reaching an object or turning a handle. In
this paper we therefore propose a waypoint-based approach for
model-free reinforcement learning. Instead of learning a low-
level policy, the robot now learns a trajectory of waypoints,
and then interpolates between those waypoints using existing
controllers. Our key novelty is framing this waypoint-based
setting as a sequence of multi-armed bandits: each bandit
problem corresponds to one waypoint along the robot’s motion.
We theoretically show that an ideal solution to this reformula-
tion has lower regret bounds than standard frameworks. We
also introduce an approximate posterior sampling solution that
builds the robot’s motion one waypoint at a time. Results
across benchmark simulations and two real-world experiments
suggest that this proposed approach learns new tasks more
quickly than state-of-the-art baselines. See our website here:
https://collab.me.vt.edu/rl-waypoints/

I. INTRODUCTION

Robots often need to learn behaviors that optimize a re-

ward function. For instance, in Figure 1 the robot’s objective

is to open a drawer. To learn how to open this drawer the

robot rolls-out behaviors in the environment and determines

which actions increase its reward (i.e., which actions open the

drawer). Existing approaches often solve this reinforcement

learning problem by constructing a policy. Policies map

states to fine-grained actions: e.g., when the arm is near

the handle it moves slightly forward, and when the arm is

holding the handle it pulls slightly backwards. In practice,

this means the robot must reason about hundreds of low-level

decisions throughout the task (i.e., each action of the policy).

But at a high-level the drawer task can be broken down into

three stages: reaching the handle, grasping the handle, and

sliding the drawer open. Hence, the robot could solve this

task — and maximize its given reward — by learning these

high-level waypoints and interpolating between them.

In this paper we propose a waypoint-based approach for

model-free reinforcement learning. Our work focuses on

robot arms: inspired by recent research [1]–[3], we recognize

This work is supported in part by NSF Grants #2129201 and #2205241.
The authors are with the Collaborative Robotics Lab (Collab), Dept. of
Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061.
Corresponding author’s email: mehtashaunak@vt.edu

Learning Waypoint 1

sR
1

sR
1

sR
2

Learning Waypoint 2

O
p

en
in

g
 D

ra
w

er
R

ea
ch

in
g

 H
an

d
le

Fig. 1. Our waypoint-based approach for model-free reinforcement learning
in manipulation tasks. The robot arm learns where to place the next waypoint
to maximize its reward by solving a multi-armed bandit. We then freeze the
learned models for waypoint i, and repeat the process for waypoint i+ 1.
This approach learns the desired task across a distribution of initial states;
i.e., the location and angle of the drawers can change at each interaction.

that many robot manipulation tasks can be broken down into

a sequence of waypoints. Moving between these waypoints

is well understood: robot arms can leverage low-level con-

trollers to track a reference trajectory [4], [5]. But to learn

the correct waypoints in the first place, the robot must trade-

off between exploring the workspace and exploiting high

performing areas. Instead of formalizing this reinforcement

learning problem as a Markov decision process — a standard

approach in robotics [6] — our insight is that:

Each waypoint is a continuous multi-armed bandit problem,

where the arm is the waypoint the robot selects and the

reward for moving to that waypoint is unknown a priori.

Using this insight we introduce a method that builds trajecto-

ries one waypoint at a time to maximize the robot’s reward.

When applied to Figure 1, our algorithm causes the robot to

iteratively sample a waypoint and then roll-out a trajectory

that terminates at that waypoint (e.g., trying a point to the

left of the drawer). Based on the measured rewards for this

rolled-out trajectory, the robot updates its estimate of the

waypoint reward and optimizes the current waypoint (e.g.,

correctly reaching the drawer handle during the next roll-

out). The robot then saves what it has learned about waypoint

i and repeats this process for waypoint i+1. As we will show

in our experiments, this leads to robots that learn to open the

drawer in fewer interactions than state-of-the-art baselines.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

Overall, we make the following contributions:

Formulating as Sequential Multi-Armed Bandits. We

use waypoints to write model-free reinforcement learning

for robot manipulation tasks as a sequence of continuous

multi-armed bandits, where each bandit problem corresponds

to one waypoint along the robot’s learned trajectory. We

theoretically demonstrate that this proposed formulation can

have lower regret bounds than existing frameworks.

Learning Waypoints via Posterior Sampling. We next

introduce an algorithm that approximately solves the se-

quence of multi-armed bandits through posterior sampling.

Our method maintains an ensemble of models to estimate the

reward function for a given waypoint; at each interaction the

robot applies constrained optimization to select a waypoint

that maximizes this estimated reward.

Testing in Simulated and Real Environments. We test our

proposed approach across six simulated benchmark tasks,

and two real-world robotic manipulation tasks. The results

suggest that our method leads to higher rewards and faster

convergence than SAC or PPO baselines.

II. RELATED WORK

We will introduce a reinforcement learning approach for

robot manipulators [6] that is based on trajectory waypoints.

Hierarchical Reinforcement Learning. Similar to our ap-

proach, work on hierarchical reinforcement learning breaks

down a robot’s behavior into high-level and low-level poli-

cies [7]. The low-level policies are temporally extended

actions (e.g., subtasks, options, goals), and the high-level

policy connects these subtasks to complete the overall task.

For example, a robot arm can learn to insert a peg into a

block by combining grasping and reaching subtasks [8]. The

low-level policies can be parameterized (e.g., reaching for

a given xyz position) [8], [9] or learned from scratch (e.g.,

policies conditioned on latent variables) [10], [11]. In either

case, hierarchical reinforcement learning has the potential

to accelerate exploration by reducing the number of actions

the high-level policy must take to explore its workspace.

Our approach can be viewed as an instance of hierarchical

reinforcement learning with high-level waypoints and a low-

level controller that guides the robot to each waypoint.

Motion Planning and Reinforcement Learning. Within our

proposed method we learn a trajectory to maximize reward

in model-free settings. Along these lines, recent research

has used motion planning as a building block towards larger

manipulation tasks [12]. In particular, we highlight existing

methods that combine motion planning and reinforcement

learning. In some of these works reinforcement learning is

used to move to nearby goals, and a motion planner connects

these low-level waypoints into a complete task plan [13],

[14]. Alternatively, in other works motion planning finds how

to reach a desired goal, and reinforcement learning deter-

mines where to place these intermediate goals for the larger

task [15], [16]. Prior research suggests that this combination

of motion planning and reinforcement learning is effective

for long-horizon tasks where the robot arm must precisely

move to specific states (e.g., to pick up a block, the robot

must first place its gripper directly above that block).

Posterior Sampling for Reinforcement Learning. Unlike

these previous approaches, we will formulate the problem

of learning the robot’s trajectory as a sequence of multi-

armed bandits, where each bandit corresponds to a waypoint.

One effective heuristic for solving multi-armed bandits is

posterior sampling (i.e., Thompson sampling) [17]. Posterior

sampling has previously been extended to reinforcement

learning, with provable regret bounds in discrete state-action

spaces [18]. However, this same approach is not tractable in

continuous, high-dimensional environments. Instead, recent

research has developed accurate approximations using neural

networks that maintain an ensemble of learned models [19],

[20]. We will similarly leverage an ensemble to approximate

posterior sampling within our proposed algorithm.

III. PROBLEM FORMULATION

We consider settings in which a robot arm is given the

reward function for a manipulation task, and the robot must

learn to optimize this reward without relying on a model

of the environment. Model-free reinforcement learning ap-

proaches can already be applied to these problems settings;

however, current approaches often take thousands to millions

of roll-outs to learn benchmark tasks [6], [8]. To learn

these same tasks in fewer interactions, we will present a

reinforcement learning approach where the robot arm moves

between sequentially placed waypoints.

MDP. Reinforcement learning seeks to maximize the ex-

pected cumulative reward across a finite-horizon Markov

Decision Process (MDP) M = ïS,A, f, r,H, s0ð. Here

s ∈ S is the world state and a ∈ A is the robot arm’s

action. Returning to our motivating example of opening a

drawer, s includes the robot’s pose and the position and

displacement of the drawer, and a is the robot’s end-effector

velocity. At each timestep t the robot receives reward r(st)
and transitions between states based on the dynamics st+1 =
f(st, at). These dynamics are unknown: the robot does not

have access to a model of how its end-effector velocity will

affect the displacement of the drawer or other environment

variables. By contrast, we assume that the reward function

r : S → R is known. For instance, the robot observes +1
reward at states where the drawer is open (i.e., the drawer’s

displacement exceeds a threshold).

The robot repeatedly attempts to complete the same task in

its environment and optimize the MDP M. Each interaction

(i.e., each episode) lasts for a total of H timesteps. Between

interactions the world resets to the start state s0 ∈ S (i.e., the

drawer is closed and the robot returns to its home position).

Let K be the total number of interactions, i.e., the total

number of times the robot can attempt to perform the task.

Regret. During each interaction the system visits a trajectory

of world states Ä = {s0, . . . , sH}, such that Äk is the

system trajectory for the k-th interaction (k f K). Remem-

bering that r(s) is the reward at a given state, we define

R(Ä) =
∑

s∈τ r(s) as the total reward across trajectory Ä .

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

Our objective is to identify trajectories that minimize regret.

Consistent with prior works [21], we define the regret as:

REG(K) =

K
∑

k=1

R(Ä∗)−R(Äk) (1)

where Ä∗ is the best-case trajectory that maximizes the total

reward (e.g., a trajectory that fully opens the drawer). Intu-

itively, minimizing regret means the robot learns actions to

complete the desired task in as few interactions as possible.

For model-free reinforcement learning to be practical on real-

world robot arms, we need methods that quickly reduce the

regret from Equation (1) within a few interactions K.

IV. REINFORCEMENT LEARNING WITH

SEQUENTIAL WAYPOINTS

Our insight is that many manipulation tasks for robot arms

can be broken down into a sequence of high-level waypoints

that the arm must visit [1]–[3]. Consider our running example

of opening the drawer: here the robot arm (1) moves its

end-effector to the handle, (2) grasps the handle, and then

(3) pulls the drawer open. Put another way, the robot arm

completes the drawer task by following a trajectory between

three high-level waypoints. We will assume that the robot

can move between the given waypoints using an existing

controller for trajectory tracking. Hence, our key challenge

is determining where to place each subsequent waypoint so

that the robot’s motion minimizes its regret. In Section IV-A

we use our insight to reformulate reinforcement learning as a

sequence of continuous multi-armed bandits. In Section IV-

B we list the assumptions behind this formulation, and then

in Section IV-C we explore the theoretical implications and

derive lower bounds for regret. Finally, in Section IV-D

we present our algorithm for learning where to place each

subsequent waypoint along the robot’s trajectory.

A. Reformulation as a Sequence of Multi-Armed Bandits

Introducing high-level waypoints lets us present a different

formulation of the standard reinforcement learning problem

described in Section III. Under this new formulation the

robot’s high-level action is the choice of where to place

the next waypoint (i.e., the next state of the robot arm). As

we will show, this leads to a sequence of continuous multi-

armed bandits, where each bandit seeks to optimize the next

waypoint along the robot’s trajectory.

From Actions to Trajectories. Let sR ∈ SR be the state of

the robot arm. The robot’s state sR is a subset of the world

state s such that SR ¦ S . For example, sR could be the

pose of the robot’s end-effector and gripper, while s could

include sR plus the position and displacement of the drawer.

The robot arm has direct control over state sR. Put another

way, the robot’s end-effector velocity a directly adjusts the

position and orientation of its end-effector and gripper.

Under our proposed approach sR is a waypoint, and the

robot arm completes its task by moving through a trajectory

of waypoints. Consider our running example of opening a

drawer: the robot could perform this task by moving to a

state s1
R

where the robot grips the drawer handle, and then a

state s2
R

where the robot arm moves away to pull the drawer

open. We therefore define the robot’s reference trajectory À
as a sequence of desired waypoints: À = {s0

R
, . . . , sT

R
}. The

robot arm has a maximum of T waypoints in its trajectory.

The choice of T is left to the designer; however, we constrain

T < H so that the number of waypoints is less than the

total number of timesteps in one interaction. In what follows

Ài denotes a snippet of the trajectory À with i waypoints

(i f T). For example, À1 is a trajectory snippet with just

one waypoint s1
R

, and À2 is a trajectory snippet with two

waypoints such that À2 = {s1
R
, s2

R
}.

Overall, À defines a reference trajectory that we want the

robot arm to follow. To track this trajectory we assume access

to a low-level robot controller that takes actions a to move

the robot arm along À. There are a variety of robot controllers

for following reference trajectories [4], and our approach is

not tied to any specific controller choice. In our experiments

we use impedance control [5]. In practice, impedance control

causes the robot arm to linearly interpolate between the

waypoints sR while remaining compliant if the robot comes

into contact with objects in the environment.

From Unknown Dynamics to Unknown Rewards. Given

that the robot arm has chosen to roll-out trajectory À, we next

want to determine how effectively this trajectory will perform

the desired task. As the robot tracks À its low-level controller

outputs actions a (e.g., end-effector velocities, opening and

closing the robot gripper). These actions change not only

the robot’s state sR but also the world state s. Returning

to our example, by moving the robot’s end-effector away

from the drawer while holding the handle, the robot modifies

the displacement of the drawer. Accordingly, the complete

trajectory of world states Ä = {s0, . . . , sH} is a function of

the robot’s trajectory À:

Ä = g(s0, À) (2)

Here g depends on both the unknown dynamics f(s, a) and

the robot’s low-level controller. The world starts in state s0

and the robot takes low-level actions a to follow trajectory À.

We overload this g notation for trajectory snippets: g(s0, Ài)
outputs the sequence of world states s when the robot

executes the trajectory snippet Ài.

The robot does not know how its own trajectory À will

map to changes in the world state Ä . From our example: if

the robot plans to reach some waypoint s1
R

and then another

waypoint s2
R

, the robot does not know beforehand whether

this motion will open the drawer, push against the drawer,

or miss the drawer altogether. Without knowing the mapping

g the robot cannot anticipate what effects its trajectory will

have on the world state; however, the robot can measure

the reward for trajectories it has previously executed. After

the robot follows À and observes the sequence of resulting

world states Ä , the robot’s total reward is: R
(

g(s0, À)
)

=
R(Ä). Similarly, after the robot executes a trajectory snippet

Ài, its measured reward is R
(

g(s0, Ài)
)

. We will write these

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

trajectory rewards more compactly as:

Rθ(s
0, À) = R

(

g(s0, À)
)

(3)

where ¹ = {¹1, ¹2, . . . , ¹T } is a set of reward parameters

induced by the unknown mapping g. Here ¹1 parameterizes

to the reward for moving from the start state to waypoint s1
R

,

and ¹i parameterizes the reward for moving from waypoint

i− 1 to waypoint i. The robot does not initially know these

reward parameters: returning to our example, at the first

interaction the robot does not know how moving from si−1
R

to si
R

will affect the drawer’s displacement.

Multi-Armed Bandits. Using waypoints sR and reward

parameters ¹, we can express our problem setting as a

sequence of continuous multi-armed bandits (MAB). Under

this formulation the robot learns how to construct À one

waypoint at a time. Each MAB in the sequence corresponds

to a different waypoint: in the first MAB the robot learns

waypoint s1
R

, and in i-th MAB the robot learns waypoint

si
R

. More formally, each individual MAB Bi is defined by:

• The continuous space of robot states sR ∈ SR
• The continuous space of reward parameters ¹i ∈ Θi for

the transition from waypoint i− 1 to waypoint i
• A prior over the reward parameters such that ¹i ∼ Pi(·)

The robot operates within every MAB for a fixed number of

interactions and then transitions to the next MAB. Below we

overview both stages of this process for learning the robot’s

trajectory. We present a more detailed algorithm for solving

these sequential MABs in Section IV-D.

Within MABs. Imagine the robot is operating within MAB

Bi (i.e., the robot is trying to determine where to place the

i-th waypoint). During an interaction the robot selects and

plays a bandit arm. More specifically, the robot selects the i-
th waypoint si

R
and executes the trajectory snippet Ài. After

the trajectory is complete, the robot measures the resulting

reward Rθi(s
0, Ài) parameterized by the unknown weights

¹i. This cycle repeats at each interaction — the robot tests

a new choice of waypoint si
R

and then observes the reward

for the corresponding trajectory snippet Ài.

Between MABs. As the robot operates within MAB Bi it

learns what waypoint si
R

maximizes its measured reward.

We fix this waypoint in place when the robot transitions to

the next MAB Bi+1. More generally, we freeze the strategy

the robot uses to choose si
R

so that within MAB Bi+1 the

robot only explores waypoint si+1
R

. To build trajectories with

multiple waypoints the robot iterates through the previously

learned strategies. Returning to our example: perhaps in

B1 the robot learned to reach the drawer and in B2 the

robot learned to grasp the handle. When the robot explores

waypoint s3
R

in MAB B3, trajectory À = {s1
R
, s2

R
, s3

R
} will

first move to the drawer (s1
R

) and grasp the handle (s2
R

).

B. Assumptions

Before we analyze this proposed MAB formulation we

want to clarify the assumptions behind our approach. First,

we assume that the robot arm can complete the desired task

using a sequence of T waypoints. This assumption is violated

when the designer chooses too few waypoints (i.e., the robot

cannot open the drawer when T = 1), or when the robot is

faced with a task that does not break down into waypoints

(i.e., the robot arm balancing an inverted pendulum).

Second, we assume that the reward r(s) is composed of

multiple local maxima, and each maxima corresponds to a

stage of the task that can be completed by a single waypoint.

For example, the reward function for opening a drawer could

includes terms for distance from the handle, whether the

handle is grasped, and the displacement of the drawer. This

assumption is violated when the reward function does not

encode a necessary subtask. For example, if the robot needs

to approach the drawer handle from above to open it — but

the reward only scores the distance to the center of the handle

— the robot will incorrectly place a waypoint at the center

of the handle (and not approach it from above).

These assumptions limit the types of tasks for which

our sequential MAB formulation applies, and also place an

increased emphasis on reward design. However — as we

will show in our experiments — a variety of manipulation

scenarios still satisfy the listed requirements. We also note

that automated reward design is an ongoing research topic,

and in future work methods such as [22] could be leveraged

to mitigate our second assumption.

C. Lower Bounds on Regret

In Section IV-A we reformulated reinforcement learning

with waypoints as a sequence of MABs. Here we explore

the theoretical outcomes of this formulation. Specifically, we

compare lower bounds on regret — as defined in Equation (1)

— when using the standard MDP formulation and our special

case MAB formulation. These lower bounds correspond to

ideal performance: i.e., if we identify optimal algorithms for

both of the problem formulations, how quickly and efficiently

will the robot learn to complete the task? To take advantage

of existing analysis, we consider settings where both the

state space S and the action space A are discrete. In our

experiments (Sections V and VI) we will test whether these

theoretical results extend to continuous state-action spaces.

Discrete Notation. Let |A| be the number of actions, let |S|
be the number of world states, and let |SR| be the number

of robot states. As a reminder, H is the time horizon of

one interaction and K is the total number of interactions.

Within each MAB Bi the robot can select any state from SR.

Hence, for one multi-armed bandit there are |SR| discrete

arms. Because we fix the chosen arm in MAB Bi when

transitioning to MAB Bi+1, across the sequence of T MABs

the robot reasons over a total of T · |SR| discrete arms.

Regret Bounds. Bubeck and Cesa-Bianchi [23] identified a

lower bound on regret for any learning algorithm in an MAB.

When applied to our sequential MAB from Section IV-A, this

lower bound becomes: REG(K) g Ω
(
√

KT · |SR|
)

.

Other research has identified lower bounds on the regret

for any reinforcement learning algorithm that repeatedly

interacts with a finite-horizon MDP [24]. When applied to

our MDP M from Section III, this lower bound becomes:

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

REG(K) g Ω
(
√

KH2|S||A|
)

. Osband and Van Roy con-

jecture that this lower bound is unimprovable [21].

These results quantify the lowest regret (i.e., the best

performance) we could achieve under both problem formu-

lations. Put another way, these bounds tell us about the

minimum number of interactions the robot will need before

it can complete the underlying task. It is not yet clear what

algorithms will consistency reach these lower bounds. How-

ever, comparing the lower bounds does provide theoretical

justification for when we should formulate the problem as an

MDP M (and solve using standard reinforcement learning

methods) or as a sequence of MABs B (and solve using our

proposed approach). As K → ∞, the lower bound for our

MAB formulation is less than the MDP lower bound when:

T |SR| < H2|S||A| (4)

We previously defined T < H and |SR| f |S|. Hence,

Equation (4) suggests that — in scenarios where our as-

sumptions from Section IV-B apply — the ideal performance

when learning one waypoint at a time is better than the ideal

performance for learning a robot policy.

D. Approximate Solution with Posterior Sampling

In settings where the robot’s task can be broken down into

a sequence of waypoints, our theoretical analysis suggests

that the MAB formulation from Section IV-A is beneficial.

Here we propose an approximate solution to this sequential

MAB that constructs the robot’s trajectory one waypoint at

a time. Our approximation is based on posterior sampling, a

heuristic for multi-armed bandit problem [17]. The core idea

in posterior sampling is to maintain a distribution over the

unknown reward parameters ¹; at each iteration, the robot

samples a value of ¹ from the posterior and then rolls-

out the bandit arm that maximizes reward Rθ. Based on

the measured reward from this roll-out, the robot updates

its distribution over ¹ and then repeats the process using

the new posterior. Unfortunately, we cannot directly apply

posterior sampling because our state and parameter spaces

are continuous and high-dimensional. Instead, our algorithm

approximates the posterior distribution through an ensemble

of reward models [19], [20]. Below we explain how we learn

this ensemble within MAB Bi, and also how we freeze the

learned weights when transitioning to the next MAB Bi+1.

Algorithm. See Algorithm 1 for our proposed approach. Our

method is composed of two main parts to mirror the structure

of sequential multi-armed bandits (Section IV-A). Within

a given MAB the robot approximates posterior sampling

through an ensemble of reward models, and selects the next

waypoint to maximize the estimated reward. Between MABs

the robot saves these trained reward models; during future

MABs the robot can refer back to the saved models to

determine the previous waypoints along its trajectory.

Within MABs. At the start of MAB Bi the robot ini-

tializes an ensemble of N reward models (lines 4 − 6).

These reward models estimate the unknown reward function

Rθi(s
0, Ài) from Equation (3). This ensemble of reward

Algorithm 1 Learning Waypoints via Posterior Sampling

1: Initialize buffer of reward models R = {}
2: Initialize waypoint index i = 0
3: while i < T do

4: i← i+ 1 ▷ Transition to next waypoint

5: Initialize N reward models with weights ¹i,1, . . . ¹i,N
6: Initialize dataset D ← {}
7: for each interaction in MAB Bi do

8: Measure world start state s0

9: Initialize trajectory À ← {} ▷ Build trajectory

10: for j = 1, · · · , i− 1 do

11: sj
R
← argmaxSR

1

N

∑N

n=1 Rθj,n(s
0, (À, sR))

12: À ← (À, sj
R
) ▷ Add previous waypoints

13: end for

14: Sample one or more indices n ∼ uniform(1, N)
15: si

R
← argmaxSR

Rθi,n(s
0, (À, sR))

16: À ← (À, si
R
) ▷ Add i-th waypoint

17: Roll-out trajectory À in MDP M
18: Measure reward R for dataset D ← (s0, À, R)
19: for each reward model n do

20: L ←
∑

(s0,ξ,R)∈D
∥Rθi,n(s

0, À)−R∥
21: Update weights ¹i,n to minimize loss L
22: end for

23: end for

24: R ← (¹i,1, . . . ¹i,N) ▷ Save learned reward models

25: end while

models approximates the posterior distribution over ¹i. The

robot samples from this ensemble to estimate the reward

for the current interaction (line 14), and applies constrained

optimization to identify the next waypoint si
R

that maximizes

the sampled reward (lines 15− 16). The robot then rolls-out

the resulting trajectory À in the environment using its low-

level controller (lines 17 − 18). We record the initial world

state, the robot’s trajectory of waypoints, and the measured

reward (i.e., whether the drawer was opened during the

interaction). In lines 19− 21 the robot updates its posterior

distribution over ¹i by training each reward model to match

the measured rewards — over repeated interactions, the

ensemble of reward models should converge towards the

true reward function Rθi(s
0, Ài). This results in waypoints

si
R

which maximize the trajectory reward and complete the

next stage of the task (i.e., reach for the handle or pull the

drawer open). In practice, sampling from an ensemble of

models causes the robot to trade-off between exploring new

waypoints and exploiting the best performing waypoints.

Between MABs. The process we have described so far

determines the i-th waypoint along the trajectory. But what

about the previous waypoints j = 1 to j = i − 1? After

completing MAB Bi−1 the robot saves the ensemble of

reward models it has learned (line 24) When the robot moves

on to the next MAB Bi, we leverage these saved models at

each interaction to find the previous waypoint si−1
R

. Looking

specifically at lines 10− 12, the robot loads each ensemble

of models from its buffer (from j = 1 to j = i − 1), and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

then applies constrained optimization to solve for waypoints

À = {s1
R
, . . . si−1

R
}. We emphasize that the reward models

used to select these previous waypoints are frozen; the robot

does not continue to train or modify the previous models.

Instead, the robot only focuses on the i-th waypoint while

adding that new waypoint to a trajectory constructed across

the sequence of previous MABs.

Implementation Details. Our experiments used an ensemble

of N = 10 reward models. Each model was a fully connected

multi-layer perceptron with two hidden layers and a leaky

ReLU activation function. The reward models were updated

by Adam with a learning rate of 0.001 and MSE loss. To

find the waypoint that optimizes these reward models we

applied constrained optimization — in our experiments, we

leveraged Sequential Least Squares Programming (SLSQP).

In practice this optimizer can get stuck in local maxima; to

ameliorate this issue we used multiple initial seeds. A repos-

itory of our code is available here: https://github.

com/VT-Collab/rl-waypoints

V. BENCHMARK SIMULATIONS

In this section we evaluate how our proposed approach

learns new manipulation tasks in simulated environments.

We performed these benchmark experiments in robosuite, a

simulated robot environment with a set of standard manip-

ulation tasks for robot arms [25]. Across these benchmark

tasks we compared our proposed approach to state-of-the-art

reinforcement learning algorithms, and measured the rewards

(i.e., the task performance) achieved by each method.

Independent Variables. We compared the performance of

our proposed Algorithm 1 (Ours) to four baselines. First, we

implemented soft actor-critic (SAC) [26] and proximal policy

optimization (PPO) [27]. Both SAC and PPO are model-

free reinforcement learning algorithms that build a policy

for selecting low-level robot actions a based on state s.

We also extended SAC and PPO to study their perfor-

mance when using high-level waypoints instead of low-level

actions. We will refer to these modified approaches as SAC-

wp and PPO-wp. Similar to the original algorithms, both

methods learn a policy that inputs world states s. But instead

of outputting low-level actions a, now SAC-wp and PPO-wp

output the next waypoint st
R

that the robot should visit. We

applied the same impedance controller as in Ours to move

the robot arm between waypoints. The purpose of SAC-wp

and PPO-wp was to test whether using high-level waypoints

is the only advantage of our proposed approach: if Ours

outperforms these baselines, this suggests that the framework

we developed to learn the waypoints is also beneficial.

Environment. We used the benchmark tasks defined in

robosuite [25] to evaluate the performance of each algorithm

(see Figure 2). In Lift the robot needs to pick up a block. For

the Stack task the robot has to pick up one block and stack it

on top of another block. In Nut Assembly the robot picks up

a nut and fits it on a peg. Next, in Pick-and-Place the robot

picks up different objects in the environment and places them

in their respective containers. These four tasks all focused on

the xyz actions of the robot’s end-effector. We also studied

two manipulation tasks where the robot adjusts its position

and orientation. In Door-simple the robot needs to reach for

the door latch and pull the door open. In the more complex

Door-latch task, the robot must turn the latch before it can

open the door. We emphasize that the initial world state for

each of these tasks was randomized at the start of every

episode. For instance, the door was positioned at a different

angle, and the blocks were placed at new locations.

Procedure. All the experiments were performed using a 7-

DoF Franka-Emika robot arm with impedance control in end-

effector space. Each task had an episode length of H = 100
timesteps. Across all environments Ours, SAC-wp and PPO-

wp were trained to complete the task using T = 2 waypoints:

the low-level controller used 50 timesteps to reach waypoint

1, and another 50 timesteps to reach waypoint 2. We made

slight modifications to the given reward functions for the

Stack, Nut Assembly, and Pick-and-Place tasks by increasing

the rewards for completing each stage of the task and adding

penalties for knocking the objects over.

Dependent Variables. The robot’s task performance was

measured using reward. If the robot encountered a trajectory

of world state Ä during a given episode, we reported: R(Ä) =
∑

s∈τ r(s). Higher rewards indicate better performance.

Results. We separated our results into two parts (see Figure 2

and Table I). Figure 2 shows the rewards achieved by each

model-free reinforcement learning algorithm as it trained in

the environment. Every interaction (i.e., every episode) lasted

H = 100 timesteps, and we reported the total reward across

that episode. After the robot completed K total interactions,

we then saved the learned models and tested their perfor-

mance. Our results from these separate tests are listed in

Table I. Here the simulated robot attempted to complete

each manipulation task 100 times using the models it had

learned from training. Similar to training, during evaluation

the position and orientation of objects in the environment

was randomized at the start of every interaction.

Overall, none of the baselines were able to learn the tasks

correctly within the limited number of episodes available for

training. Across all tasks, we observed that SAC learned to

reach and sometimes grasp the desired objects, while PPO

only learned to reach for these objects. We also noticed that

SAC-wp performed well at the start of training, but its per-

formance dropped as the training progressed. We hypothesize

that this may have occurred because — instead of learning

one waypoint at a time — SAC-wp was simultaneously

learning and adjusting both waypoints of the task. This may

have prevented the robot from determining which waypoints

were leading to higher rewards: e.g., did the robot succeed

because of the position of waypoint 1 or waypoint 2?

Across both training and evaluation Ours outperformed

the baselines. In Figure 2 we highlight that Ours had sudden

jumps in episode reward. These jumps corresponded to

episodes where the robot added a new waypoint to its tra-

jectory. For example, in Lift the robot arm solved the multi-

armed bandit for waypoint 1 during the first 200 episodes,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

SAC PPO SAC-wp PPO-wp Ours

Stack

Door-simple

R
ew

ar
d

0

20

40

60

200 4000

Episodes
600

0

20

40

60

80

R
ew

ar
d

200 6004000

Episodes

Nut Assembly

Door-latch

200 6004000

Episodes

0

50

100

150

R
ew

ar
d

0

20

40

60

R
ew

ar
d

200 6004000

Episodes

Lift

Pick-and-Place

100 200 300 4000
0

20

40

60

Episodes

R
ew

ar
d

200 400 600 800 10000

Episodes

0

40

80

120

R
ew

ar
d

Fig. 2. Simulation environments and rewards for six manipulation tasks. These benchmark tasks are taken from robosuite [25]. For each task the image
on the left shows the environment setup, and the plot on the right shows the robot’s rewards averaged over five runs. Higher rewards indicate better task
performance. The dashed lines in the reward plots correspond to the episodes where Our approach added a new waypoint to the trajectory. Adding these
new waypoints often causes a sharp increase in the robot’s reward. This sudden change occurs because the new waypoint enables the robot to complete
the next part of the task: e.g., in Lift the robot needs one waypoint to grasp the block and a second waypoint to lift the block.

TABLE I

EVALUATION RESULTS. AFTER TRAINING IN FIGURE 2, WE SAVED THE

LEARNED MODELS AND EVALUATED THEIR PERFORMANCE ACROSS 100

EPISODES. WE REPORT AVERAGE REWARD ± STANDARD ERROR.

Task Mehtod

SAC PPO SAC-wp PPO-wp Ours

Lift 44.31± 2.06 17.58± 0.34 0.46± 0.02 0.22± 0.06 68.83± 0.02
Stack 12.20± 0.42 3.04± 0.19 0.01± 0.0 0.86± 0.09 70.37± 3.56
Nut Assembly 9.51± 0.14 8.54± 0.33 0.10± 0.01 0.74± 0.09 190.14± 11.7
Pick-and-Place 6.69± 0.24 1.37± 0.10 1.11± 0.17 0.24± 0.05 89.24± 2.87
Door-simple 9.78± 0.23 4.58± 0.20 0.01± 0 1.67± 2.59 63.01± 2.19
Door-latch 15.89± 0.17 6.64± 0.26 0.14± 0.01 0.29± 0.03 48.70± 2.58

and then transitioned to the next MAB starting at episode

201. The reward increased at this transition because the robot

progressed to the next stage of the task. Returning to Lift,

in the first 200 episodes the robot learned one waypoint

to reach and grasp the randomly initialized block. Starting

from episode 201, the robot applied what it had learned to

grasp the block, and then explored its second waypoint to

decide how to carry that block. In summary, these simulation

results suggest that Ours can efficiently learn a range of

manipulation tasks in a limited number of interactions by

breaking the task down into several waypoints, and learning

the trajectory one waypoint at a time.

VI. REAL-WORLD EXPERIMENTS

In this section we explore whether our proposed algo-

rithm enables robot arms to learn manipulation tasks from

scratch in real-world environments. We compare our ap-

proach (Ours) with the best-performing baseline from our

simulations (SAC) across two different manipulation tasks.

Within real-world environments with an actual robot arm,

we find that Algorithm 1 leads to shorter training periods

and more accurate task performance. See the robot’s learned

behaviors here: https://youtu.be/MMEd-lYfq4Y

Experimental Setup. We conducted our real-world experi-

ments on a 7-DoF Franka Emika robot arm (see Figure 3).

We trained the robot to perform two different manipulation

tasks: lifting an object (Lift) and opening a drawer (Drawer).

The robot used Ours and SAC to attempt to learn each task.

For both tasks the episodes lasted H = 140 timesteps.

The robot used end-effector velocity control to take actions

within the environment. Under SAC the robot moved its end-

effector and gripper based on the action output by the learned

policy. With Ours, the robot learned two waypoints (70
timesteps each), and leveraged the same low-level controller

to interpolate between its start state and the waypoints along

its reference trajectory ÀR.

At the beginning of each episode the robot’s initial position

was constant, but the location of the object or drawer was

uniformly randomized within a 6-by-6 cm plane. We se-

lected this smaller range to minimize the number of training

episodes and prevent the robot from running into its joint

limits. We also applied boundary conditions to stop the robot

from colliding with the table or attempting to move beyond

its workspace. For Lift, we used the same reward function

as in robotsuite’s lift task. For Drawer, we defined a dense

reward function that encouraged the robot to grasp the handle

and then pull the drawer out in a straight line.

Results. We first measured the episode rewards throughout

training. Figure 3 shows the training rewards averaged across

three runs for both tasks and methods. The maximum reward

the robot achieved with Ours was about 1.3 times SAC in

Lift, and about 7.75 times SAC in Drawer.

After training completed, we used the robot’s learned

models to evaluate the robot’s final success rate for both

tasks. A robot trained with Ours grasped and lifted the

randomly placed block in 16/20 evaluation trials (80%
success rate). Similarly, Our robot was able to grasp and

at least partially open the drawer in 20/20 evaluation trials.

By contrast, under SAC the robot was never able to complete

either task given the limited training budget.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

OursSAC

125 375 5000

0

10

20

30

Episodes

R
ew

ar
d

40

50

250

150 300 450 6000

0

50

100

150

Episodes

R
ew

ar
d

200

250

Lift

Drawer

Fig. 3. Setup and results from our real-world experiments in Section VI.
In Lift the robot learned to pick up an item, and in Drawer it learned to
open a drawer (also see Figure 1). The robot measured the initial position of
the item or drawer as a part of the start state s

0. SAC learned a policy that
often moved to the object of interest, but did not correctly interact with that
object. When using Ours, the robot built a trajectory of two waypoints: the
first waypoint grasped the object, and then the second waypoint interacted
with that object (e.g., picked the item up, pulled the drawer open). The
dashed line in the reward plots corresponds to the episode where Our robot
added a second waypoint to its trajectory.

VII. CONCLUSION

In this paper we focused on model-free reinforcement

learning for robot arms. We recognized that many of the

everyday manipulation tasks that we want robots to learn can

be broken down into a series of high-level waypoints (e.g.,

reaching an object). We therefore proposed a framework

for waypoint-based reinforcement learning, where the robot

learns new tasks by building a trajectory one waypoint at a

time. Our key contribution was reformulating this problem as

a sequence of multi-armed bandits: our theoretical analysis

suggests that best-case solutions to this bandit formulation

will outperform standard approaches. We next introduced one

possible algorithm for solving the sequential bandit problem.

Our proposed approach leveraged an ensemble of models

to approximate posterior sampling: in practice, this method

learned each subsequent waypoint to greedily maximize the

robot’s reward. We found that our approach outperformed

commonly used model-free reinforcement learning algo-

rithms across a set of simulated and real-world manipulation

tasks. In future works we will explore more complicated

tasks that require a higher number of waypoints.

REFERENCES

[1] S. Belkhale, Y. Cui, and D. Sadigh, “HYDRA: Hybrid robot actions
for imitation learning,” in Conference on Robot Learning, 2023.

[2] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-based
learning from demonstration: Method and evaluation,” International

Journal of Social Robotics, vol. 4, pp. 343–355, 2012.
[3] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn, “Waypoint-based

imitation learning for robotic manipulation,” in Conference on Robot

Learning, 2023.
[4] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and

Control. John Wiley & Sons, 2020.
[5] S. Haddadin and E. Croft, “Physical human–robot interaction,” in

Springer Handbook of Robotics. Springer, 2016.
[6] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, “A survey on deep

reinforcement learning algorithms for robotic manipulation,” Sensors,
vol. 23, no. 7, 2023.

[7] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial Intelligence, pp. 181–211, 1999.

[8] S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting reinforcement learning
with behavior primitives for diverse manipulation tasks,” in IEEE

International Conference on Robotics and Automation, 2022.
[9] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hier-

archical reinforcement learning,” in Advances in Neural Information

Processing Systems, 2018.
[10] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”

in AAAI, 2017.
[11] J. Zhang, H. Yu, and W. Xu, “Hierarchical reinforcement learning by

discovering intrinsic options,” in International Conference on Learning

Representations, 2021.
[12] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-

bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual Review of Control, Robotics, and Autonomous Systems, 2021.

[13] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on
the replay buffer: Bridging planning and reinforcement learning,” in
Advances in Neural Information Processing Systems, 2019.

[14] R. Gieselmann and F. T. Pokorny, “Planning-augmented hierarchi-
cal reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5097–5104, 2021.

[15] F. Xia, C. Li, R. Martín-Martín, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Integrating motion generation in reinforcement learn-
ing for mobile manipulation,” in IEEE International Conference on

Robotics and Automation, 2021.
[16] J. Yamada, Y. Lee, G. Salhotra, K. Pertsch, M. Pflueger, G. Sukhatme,

J. Lim, and P. Englert, “Motion planner augmented reinforcement
learning for robot manipulation in obstructed environments,” in Con-

ference on Robot Learning, 2021.
[17] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, “A

tutorial on thompson sampling,” Foundations and Trends in Machine

Learning, vol. 11, no. 1, pp. 1–96, 2018.
[18] I. Osband and B. Van Roy, “Why is posterior sampling better than

optimism for reinforcement learning?” in International Conference on

Machine Learning, 2017.
[19] C. Qin, Z. Wen, X. Lu, and B. Van Roy, “An analysis of ensemble

sampling,” Advances in Neural Information Processing Systems, 2022.
[20] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel, “Sunrise: A simple uni-

fied framework for ensemble learning in deep reinforcement learning,”
in International Conference on Machine Learning, 2021.

[21] I. Osband and B. Van Roy, “On lower bounds for regret in reinforce-
ment learning,” arXiv preprint arXiv:1608.02732, 2016.

[22] F. Memarian, W. Goo, R. Lioutikov, S. Niekum, and U. Topcu, “Self-
supervised online reward shaping in sparse-reward environments,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2021.

[23] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends

in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.
[24] O. D. Domingues, P. Ménard, E. Kaufmann, and M. Valko, “Episodic

reinforcement learning in finite mdps: Minimax lower bounds revis-
ited,” in Algorithmic Learning Theory, 2021.

[25] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” in arXiv:2009.12293, 2020.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, 2018.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

