2024 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS) | 979-8-3503-7770-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/IROS58592.2024.10802681

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

Waypoint-Based Reinforcement Learning for Robot Manipulation Tasks

Shaunak A. Mehta, Soheil Habibian, and Dylan P. Losey

Abstract— Robot arms should be able to learn new tasks. One
framework here is reinforcement learning, where the robot is
given a reward function that encodes the task, and the robot
autonomously learns actions to maximize its reward. Existing
approaches to reinforcement learning often frame this problem
as a Markov decision process, and learn a policy (or a hierarchy
of policies) to complete the task. These policies reason over hun-
dreds of fine-grained actions that the robot arm needs to take:
e.g., moving slightly to the right or rotating the end-effector a
few degrees. But the manipulation tasks that we want robots to
perform can often be broken down into a small number of high-
level motions: e.g., reaching an object or turning a handle. In
this paper we therefore propose a waypoint-based approach for
model-free reinforcement learning. Instead of learning a low-
level policy, the robot now learns a trajectory of waypoints,
and then interpolates between those waypoints using existing
controllers. Our key novelty is framing this waypoint-based
setting as a sequence of multi-armed bandits: each bandit
problem corresponds to one waypoint along the robot’s motion.
We theoretically show that an ideal solution to this reformula-
tion has lower regret bounds than standard frameworks. We
also introduce an approximate posterior sampling solution that
builds the robot’s motion one waypoint at a time. Results
across benchmark simulations and two real-world experiments
suggest that this proposed approach learns new tasks more
quickly than state-of-the-art baselines. See our website here:

I. INTRODUCTION

Robots often need to learn behaviors that optimize a re-
ward function. For instance, in Figure | the robot’s objective
is to open a drawer. To learn how to open this drawer the
robot rolls-out behaviors in the environment and determines
which actions increase its reward (i.e., which actions open the
drawer). Existing approaches often solve this reinforcement
learning problem by constructing a policy. Policies map
states to fine-grained actions: e.g., when the arm is near
the handle it moves slightly forward, and when the arm is
holding the handle it pulls slightly backwards. In practice,
this means the robot must reason about hundreds of low-level
decisions throughout the task (i.e., each action of the policy).
But at a high-level the drawer task can be broken down into
three stages: reaching the handle, grasping the handle, and
sliding the drawer open. Hence, the robot could solve this
task — and maximize its given reward — by learning these
high-level waypoints and interpolating between them.

In this paper we propose a waypoint-based approach for
model-free reinforcement learning. Our work focuses on
robot arms: inspired by recent research [1]-[3], we recognize

This work is supported in part by NSF Grants #2129201 and #2205241.
The authors are with the Collaborative Robotics Lab (), Dept. of
Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061.
Corresponding author’s email: mehtashaunak@vt.edu

979-8-3503-7770-5/24/$31.00 ©2024 IEEE

Learning Waypoint 1

Reaching Handle

Opening Drawer

Fig. 1. Our waypoint-based approach for model-free reinforcement learning
in manipulation tasks. The robot arm learns where to place the next waypoint
to maximize its reward by solving a multi-armed bandit. We then freeze the
learned models for waypoint ¢, and repeat the process for waypoint ¢ + 1.
This approach learns the desired task across a distribution of initial states;
i.e., the location and angle of the drawers can change at each interaction.

that many robot manipulation tasks can be broken down into
a sequence of waypoints. Moving between these waypoints
is well understood: robot arms can leverage low-level con-
trollers to track a reference trajectory [4], [5]. But to learn
the correct waypoints in the first place, the robot must trade-
off between exploring the workspace and exploiting high
performing areas. Instead of formalizing this reinforcement
learning problem as a Markov decision process — a standard
approach in robotics [6] — our insight is that:

Each waypoint is a continuous multi-armed bandit problem,
where the arm is the waypoint the robot selects and the
reward for moving to that waypoint is unknown a priori.

Using this insight we introduce a method that builds trajecto-
ries one waypoint at a time to maximize the robot’s reward.
When applied to Figure |, our algorithm causes the robot to
iteratively sample a waypoint and then roll-out a trajectory
that terminates at that waypoint (e.g., trying a point to the
left of the drawer). Based on the measured rewards for this
rolled-out trajectory, the robot updates its estimate of the
waypoint reward and optimizes the current waypoint (e.g.,
correctly reaching the drawer handle during the next roll-
out). The robot then saves what it has learned about waypoint
1 and repeats this process for waypoint ¢+ 1. As we will show
in our experiments, this leads to robots that learn to open the
drawer in fewer interactions than state-of-the-art baselines.

Overall, we make the following contributions:

Formulating as Sequential Multi-Armed Bandits. We
use waypoints to write model-free reinforcement learning
for robot manipulation tasks as a sequence of continuous
multi-armed bandits, where each bandit problem corresponds
to one waypoint along the robot’s learned trajectory. We
theoretically demonstrate that this proposed formulation can
have lower regret bounds than existing frameworks.

Learning Waypoints via Posterior Sampling. We next
introduce an algorithm that approximately solves the se-
quence of multi-armed bandits through posterior sampling.
Our method maintains an ensemble of models to estimate the
reward function for a given waypoint; at each interaction the
robot applies constrained optimization to select a waypoint
that maximizes this estimated reward.

Testing in Simulated and Real Environments. We test our
proposed approach across six simulated benchmark tasks,
and two real-world robotic manipulation tasks. The results
suggest that our method leads to higher rewards and faster
convergence than SAC or PPO baselines.

II. RELATED WORK

We will introduce a reinforcement learning approach for
robot manipulators [6] that is based on trajectory waypoints.

Hierarchical Reinforcement Learning. Similar to our ap-
proach, work on hierarchical reinforcement learning breaks
down a robot’s behavior into high-level and low-level poli-
cies [7]. The low-level policies are temporally extended
actions (e.g., subtasks, options, goals), and the high-level
policy connects these subtasks to complete the overall task.
For example, a robot arm can learn to insert a peg into a
block by combining grasping and reaching subtasks [8]. The
low-level policies can be parameterized (e.g., reaching for
a given xyz position) [8], [9] or learned from scratch (e.g.,
policies conditioned on latent variables) [10], [11]. In either
case, hierarchical reinforcement learning has the potential
to accelerate exploration by reducing the number of actions
the high-level policy must take to explore its workspace.
Our approach can be viewed as an instance of hierarchical
reinforcement learning with high-level waypoints and a low-
level controller that guides the robot to each waypoint.

Motion Planning and Reinforcement Learning. Within our
proposed method we learn a trajectory to maximize reward
in model-free settings. Along these lines, recent research
has used motion planning as a building block towards larger
manipulation tasks [12]. In particular, we highlight existing
methods that combine motion planning and reinforcement
learning. In some of these works reinforcement learning is
used to move to nearby goals, and a motion planner connects
these low-level waypoints into a complete task plan [13],
[14]. Alternatively, in other works motion planning finds how
to reach a desired goal, and reinforcement learning deter-
mines where to place these intermediate goals for the larger
task [15], [16]. Prior research suggests that this combination
of motion planning and reinforcement learning is effective
for long-horizon tasks where the robot arm must precisely

542

move to specific states (e.g., to pick up a block, the robot
must first place its gripper directly above that block).

Posterior Sampling for Reinforcement Learning. Unlike
these previous approaches, we will formulate the problem
of learning the robot’s trajectory as a sequence of multi-
armed bandits, where each bandit corresponds to a waypoint.
One effective heuristic for solving multi-armed bandits is
posterior sampling (i.e., Thompson sampling) [17]. Posterior
sampling has previously been extended to reinforcement
learning, with provable regret bounds in discrete state-action
spaces [18]. However, this same approach is not tractable in
continuous, high-dimensional environments. Instead, recent
research has developed accurate approximations using neural
networks that maintain an ensemble of learned models [19],
[20]. We will similarly leverage an ensemble to approximate
posterior sampling within our proposed algorithm.

III. PROBLEM FORMULATION

We consider settings in which a robot arm is given the
reward function for a manipulation task, and the robot must
learn to optimize this reward without relying on a model
of the environment. Model-free reinforcement learning ap-
proaches can already be applied to these problems settings;
however, current approaches often take thousands to millions
of roll-outs to learn benchmark tasks [6], [8]. To learn
these same tasks in fewer interactions, we will present a
reinforcement learning approach where the robot arm moves
between sequentially placed waypoints.

MDP. Reinforcement learning seeks to maximize the ex-
pected cumulative reward across a finite-horizon Markov
Decision Process (MDP) M (S, A, f,r,H,s"). Here
s € § is the world state and a € A is the robot arm’s
action. Returning to our motivating example of opening a
drawer, s includes the robot’s pose and the position and
displacement of the drawer, and a is the robot’s end-effector
velocity. At each timestep ¢ the robot receives reward r(s?)
and transitions between states based on the dynamics s'*! =
f(s*,a'). These dynamics are unknown: the robot does not
have access to a model of how its end-effector velocity will
affect the displacement of the drawer or other environment
variables. By contrast, we assume that the reward function
r : 8§ — R is known. For instance, the robot observes +1
reward at states where the drawer is open (i.e., the drawer’s
displacement exceeds a threshold).

The robot repeatedly attempts to complete the same task in
its environment and optimize the MDP M. Each interaction
(i.e., each episode) lasts for a total of H timesteps. Between
interactions the world resets to the start state s° € S (i.e., the
drawer is closed and the robot returns to its home position).
Let K be the total number of interactions, i.e., the total
number of times the robot can attempt to perform the task.

Regret. During each interaction the system visits a trajectory
of world states 7 = {s’,... s}, such that 7% is the
system trajectory for the k-th interaction (k < K). Remem-
bering that 7(s) is the reward at a given state, we define
R(1) = > ,c,7(s) as the total reward across trajectory 7.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

Our objective is to identify trajectories that minimize regret.
Consistent with prior works [21], we define the regret as:

K
REG(K) =Y R(r*) - R(%)
k=1

(D

where 7* is the best-case trajectory that maximizes the total
reward (e.g., a trajectory that fully opens the drawer). Intu-
itively, minimizing regret means the robot learns actions to
complete the desired task in as few interactions as possible.
For model-free reinforcement learning to be practical on real-
world robot arms, we need methods that quickly reduce the
regret from Equation (1) within a few interactions K.

IV. REINFORCEMENT LEARNING WITH
SEQUENTIAL WAYPOINTS

Our insight is that many manipulation tasks for robot arms
can be broken down into a sequence of high-level waypoints
that the arm must visit [1]-[3]. Consider our running example
of opening the drawer: here the robot arm (1) moves its
end-effector to the handle, (2) grasps the handle, and then
(3) pulls the drawer open. Put another way, the robot arm
completes the drawer task by following a trajectory between
three high-level waypoints. We will assume that the robot
can move between the given waypoints using an existing
controller for trajectory tracking. Hence, our key challenge
is determining where to place each subsequent waypoint so
that the robot’s motion minimizes its regret. In Section
we use our insight to reformulate reinforcement learning as a
sequence of continuous multi-armed bandits. In Section

we list the assumptions behind this formulation, and then
in Section we explore the theoretical implications and
derive lower bounds for regret. Finally, in Section
we present our algorithm for learning where to place each
subsequent waypoint along the robot’s trajectory.

A. Reformulation as a Sequence of Multi-Armed Bandits

Introducing high-level waypoints lets us present a different
formulation of the standard reinforcement learning problem
described in Section [II. Under this new formulation the
robot’s high-level action is the choice of where to place
the next waypoint (i.e., the next state of the robot arm). As
we will show, this leads to a sequence of continuous multi-
armed bandits, where each bandit seeks to optimize the next
waypoint along the robot’s trajectory.

From Actions to Trajectories. Let sg € Sk be the state of
the robot arm. The robot’s state s is a subset of the world
state s such that Sg C S. For example, sz could be the
pose of the robot’s end-effector and gripper, while s could
include si plus the position and displacement of the drawer.
The robot arm has direct control over state s. Put another
way, the robot’s end-effector velocity a directly adjusts the
position and orientation of its end-effector and gripper.
Under our proposed approach si is a waypoint, and the
robot arm completes its task by moving through a trajectory
of waypoints. Consider our running example of opening a
drawer: the robot could perform this task by moving to a

543

state sy where the robot grips the drawer handle, and then a
state s% where the robot arm moves away to pull the drawer
open. We therefore define the robot’s reference trajectory &
as a sequence of desired waypoints: £ = {s%,...,s%}. The
robot arm has a maximum of 7" waypoints in its trajectory.
The choice of T is left to the designer; however, we constrain
T < H so that the number of waypoints is less than the
total number of timesteps in one interaction. In what follows
& denotes a snippet of the trajectory & with ¢ waypoints
(¢ < T). For example, & is a trajectory snippet with just
one waypoint sk, and & is a trajectory snippet with two
waypoints such that & = {sk, s%}.

Overall, ¢ defines a reference trajectory that we want the
robot arm to follow. To track this trajectory we assume access
to a low-level robot controller that takes actions a to move
the robot arm along &. There are a variety of robot controllers
for following reference trajectories [4], and our approach is
not tied to any specific controller choice. In our experiments
we use impedance control [5]. In practice, impedance control
causes the robot arm to linearly interpolate between the
waypoints sg while remaining compliant if the robot comes
into contact with objects in the environment.

From Unknown Dynamics to Unknown Rewards. Given
that the robot arm has chosen to roll-out trajectory £, we next
want to determine how effectively this trajectory will perform
the desired task. As the robot tracks & its low-level controller
outputs actions a (e.g., end-effector velocities, opening and
closing the robot gripper). These actions change not only
the robot’s state sg but also the world state s. Returning
to our example, by moving the robot’s end-effector away
from the drawer while holding the handle, the robot modifies
the displacement of the drawer. Accordingly, the complete
trajectory of world states 7 = {s°,..., s} is a function of
the robot’s trajectory &:

T=g(s%¢) 2)

Here ¢ depends on both the unknown dynamics f(s,a) and
the robot’s low-level controller. The world starts in state s°
and the robot takes low-level actions a to follow trajectory &.
We overload this g notation for trajectory snippets: g(s°, &;)
outputs the sequence of world states s when the robot
executes the trajectory snippet &;.

The robot does not know how its own trajectory £ will
map to changes in the world state 7. From our example: if
the robot plans to reach some waypoint sk and then another
waypoint s%, the robot does not know beforehand whether
this motion will open the drawer, push against the drawer,
or miss the drawer altogether. Without knowing the mapping
g the robot cannot anticipate what effects its trajectory will
have on the world state; however, the robot can measure
the reward for trajectories it has previously executed. After
the robot follows ¢ and observes the sequence of resulting
world states 7, the robot’s total reward is: R(g(s",¢))
R(7). Similarly, after the robot executes a trajectory snippet
&, its measured reward is R(g(s%,¢;)). We will write these

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

trajectory rewards more compactly as:

R@(‘go?g) R(g(SO,f)) 3

where 0 = {01,03,...,07} is a set of reward parameters
induced by the unknown mapping g. Here 6, parameterizes
to the reward for moving from the start state to waypoint sk,
and 6; parameterizes the reward for moving from waypoint
i — 1 to waypoint 7. The robot does not initially know these
reward parameters: returning to our example, at the first
interaction the robot does not know how moving from sé{l
to s% will affect the drawer’s displacement.

Multi-Armed Bandits. Using waypoints sz and reward
parameters), we can express our problem setting as a
sequence of continuous multi-armed bandits (MAB). Under
this formulation the robot learns how to construct £ one
waypoint at a time. Each MAB in the sequence corresponds
to a different waypoint: in the first MAB the robot learns
waypoint sk, and in i-th MAB the robot learns waypoint
s%. More formally, each individual MAB B; is defined by:

o The continuous space of robot states sg € Sg
o The continuous space of reward parameters 0; € ©; for
the transition from waypoint ¢ — 1 to waypoint ¢

o A prior over the reward parameters such that 6; ~ P;(-)
The robot operates within every MAB for a fixed number of
interactions and then transitions to the next MAB. Below we
overview both stages of this process for learning the robot’s
trajectory. We present a more detailed algorithm for solving
these sequential MABs in Section

Within MABs. Imagine the robot is operating within MAB
B; (i.e., the robot is trying to determine where to place the
i-th waypoint). During an interaction the robot selects and
plays a bandit arm. More specifically, the robot selects the -
th waypoint s% and executes the trajectory snippet &;. After
the trajectory is complete, the robot measures the resulting
reward Ry, (s, ¢;) parameterized by the unknown weights
;. This cycle repeats at each interaction — the robot tests
a new choice of waypoint s» and then observes the reward
for the corresponding trajectory snippet &;.

Between MABs. As the robot operates within MAB B; it
learns what waypoint s, maximizes its measured reward.
We fix this waypoint in place when the robot transitions to
the next MAB B, ;. More generally, we freeze the strategy
the robot uses to choose s%z so that within MAB B, the
robot only explores waypoint s%{rl. To build trajectories with
multiple waypoints the robot iterates through the previously
learned strategies. Returning to our example: perhaps in
B, the robot learned to reach the drawer and in Bs the
robot learned to grasp the handle. When the robot explores
waypoint s% in MAB Bs, trajectory £ = {sk, s%,s% } will
first move to the drawer (sk) and grasp the handle (s%).

B. Assumptions

Before we analyze this proposed MAB formulation we
want to clarify the assumptions behind our approach. First,
we assume that the robot arm can complete the desired task
using a sequence of 1" waypoints. This assumption is violated

544

when the designer chooses too few waypoints (i.e., the robot
cannot open the drawer when 7" = 1), or when the robot is
faced with a task that does not break down into waypoints
(i.e., the robot arm balancing an inverted pendulum).

Second, we assume that the reward r(s) is composed of
multiple local maxima, and each maxima corresponds to a
stage of the task that can be completed by a single waypoint.
For example, the reward function for opening a drawer could
includes terms for distance from the handle, whether the
handle is grasped, and the displacement of the drawer. This
assumption is violated when the reward function does not
encode a necessary subtask. For example, if the robot needs
to approach the drawer handle from above to open it — but
the reward only scores the distance to the center of the handle
— the robot will incorrectly place a waypoint at the center
of the handle (and not approach it from above).

These assumptions limit the types of tasks for which
our sequential MAB formulation applies, and also place an
increased emphasis on reward design. However — as we
will show in our experiments — a variety of manipulation
scenarios still satisfy the listed requirements. We also note
that automated reward design is an ongoing research topic,
and in future work methods such as [22] could be leveraged
to mitigate our second assumption.

C. Lower Bounds on Regret

In Section we reformulated reinforcement learning
with waypoints as a sequence of MABs. Here we explore
the theoretical outcomes of this formulation. Specifically, we
compare lower bounds on regret — as defined in Equation (1)
— when using the standard MDP formulation and our special
case MAB formulation. These lower bounds correspond to
ideal performance: i.e., if we identify optimal algorithms for
both of the problem formulations, how quickly and efficiently
will the robot learn to complete the task? To take advantage
of existing analysis, we consider settings where both the
state space S and the action space A are discrete. In our
experiments (Sections V and VI) we will test whether these
theoretical results extend to continuous state-action spaces.

Discrete Notation. Let |.A| be the number of actions, let |S|
be the number of world states, and let |Sz| be the number
of robot states. As a reminder, H is the time horizon of
one interaction and K is the total number of interactions.
Within each MAB B; the robot can select any state from Sg.
Hence, for one multi-armed bandit there are |Sz| discrete
arms. Because we fix the chosen arm in MAB 5; when
transitioning to MAB B, 1, across the sequence of 7" MABs
the robot reasons over a total of T" - |Sz| discrete arms.

Regret Bounds. Bubeck and Cesa-Bianchi [23] identified a
lower bound on regret for any learning algorithm in an MAB.
When applied to our sequential MAB from Section , this
lower bound becomes: REG(K) > Q(\/KT - |Sg|).
Other research has identified lower bounds on the regret
for any reinforcement learning algorithm that repeatedly
interacts with a finite-horizon MDP [24]. When applied to
our MDP M from Section 111, this lower bound becomes:

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

REG(K) > Q(\/KH?|S[|A]). Osband and Van Roy con-
jecture that this lower bound is unimprovable [21].

These results quantify the lowest regret (i.e., the best
performance) we could achieve under both problem formu-
lations. Put another way, these bounds tell us about the
minimum number of interactions the robot will need before
it can complete the underlying task. It is not yet clear what
algorithms will consistency reach these lower bounds. How-
ever, comparing the lower bounds does provide theoretical
justification for when we should formulate the problem as an
MDP M (and solve using standard reinforcement learning
methods) or as a sequence of MABs B (and solve using our
proposed approach). As K — oo, the lower bound for our
MAB formulation is less than the MDP lower bound when:

T|Sg| < H?|S||A| 4)

We previously defined T < H and |[Sg| < |S|. Hence,
Equation (4) suggests that — in scenarios where our as-
sumptions from Section apply — the ideal performance
when learning one waypoint at a time is better than the ideal
performance for learning a robot policy.

D. Approximate Solution with Posterior Sampling

In settings where the robot’s task can be broken down into
a sequence of waypoints, our theoretical analysis suggests
that the MAB formulation from Section is beneficial.
Here we propose an approximate solution to this sequential
MAB that constructs the robot’s trajectory one waypoint at
a time. Our approximation is based on posterior sampling, a
heuristic for multi-armed bandit problem [17]. The core idea
in posterior sampling is to maintain a distribution over the
unknown reward parameters 6; at each iteration, the robot
samples a value of 6 from the posterior and then rolls-
out the bandit arm that maximizes reward Ry. Based on
the measured reward from this roll-out, the robot updates
its distribution over # and then repeats the process using
the new posterior. Unfortunately, we cannot directly apply
posterior sampling because our state and parameter spaces
are continuous and high-dimensional. Instead, our algorithm
approximates the posterior distribution through an ensemble
of reward models [19], [20]. Below we explain how we learn
this ensemble within MAB B;, and also how we freeze the
learned weights when transitioning to the next MAB B, 1.

Algorithm. See Algorithm | for our proposed approach. Our
method is composed of two main parts to mirror the structure
of sequential multi-armed bandits (Section). Within
a given MAB the robot approximates posterior sampling
through an ensemble of reward models, and selects the next
waypoint to maximize the estimated reward. Between MABs
the robot saves these trained reward models; during future
MABs the robot can refer back to the saved models to
determine the previous waypoints along its trajectory.

Within MABs. At the start of MAB BB; the robot ini-
tializes an ensemble of N reward models (lines 4 — 6).
These reward models estimate the unknown reward function
Ry, (s%,&;) from Equation (3). This ensemble of reward

545

Algorithm 1 Learning Waypoints via Posterior Sampling

1: Initialize buffer of reward models R = {}
2: Initialize waypoint index ¢ = 0
3: while 7 < T do

4: 1—1+1 > Transition to next waypoint
5: Initialize NV reward models with weights 6; 1,...6; n
6: Initialize dataset D «+ {}

7: for each interaction in MAB B; do

8: Measure world start state s°

9: Initialize trajectory £ <— {} > Build trajectory
10: for j=1,---,1—1do

11: Sy ¢ argmaxg,, % SN R, (5% (&, 5R))
12: &« (&, S%z) > Add previous waypoints
13: end for

14: Sample one or more indices n ~ uniform(1, N)
15: sk < argmaxs, Ry, (5%, (& sr))

16: £+ (& s%) > Add i-th waypoint
17: Roll-out trajectory £ in MDP M

18: Measure reward R for dataset D «+ (s, &, R)
19: for each reward model n do
20: L 06 R)eD IRy, (s°,€) — R||

21: Update weights 6; , to minimize loss £

22 end for

23: end for
24: R < (0i1,...0; n) > Save learned reward models

25: end while

models approximates the posterior distribution over ;. The
robot samples from this ensemble to estimate the reward
for the current interaction (line 14), and applies constrained
optimization to identify the next waypoint s’ that maximizes
the sampled reward (lines 15 — 16). The robot then rolls-out
the resulting trajectory £ in the environment using its low-
level controller (lines 17 — 18). We record the initial world
state, the robot’s trajectory of waypoints, and the measured
reward (i.e., whether the drawer was opened during the
interaction). In lines 19 — 21 the robot updates its posterior
distribution over 6; by training each reward model to match
the measured rewards — over repeated interactions, the
ensemble of reward models should converge towards the
true reward function Ry, (s%,&;). This results in waypoints
st which maximize the trajectory reward and complete the
next stage of the task (i.e., reach for the handle or pull the
drawer open). In practice, sampling from an ensemble of
models causes the robot to trade-off between exploring new
waypoints and exploiting the best performing waypoints.

Between MABs. The process we have described so far
determines the i-th waypoint along the trajectory. But what
about the previous waypoints j = 1 to 7 = ¢ — 1?7 After
completing MAB B;_; the robot saves the ensemble of
reward models it has learned (line 24) When the robot moves
on to the next MAB B;, we leverage these saved models at
each interaction to find the previous waypoint 33{1. Looking
specifically at lines 10 — 12, the robot loads each ensemble
of models from its buffer (from 7 = 1to 7 = ¢ — 1), and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

then applies constrained optimization to solve for waypoints
¢ = {sk,...si>'}. We emphasize that the reward models
used to select these previous waypoints are frozen; the robot
does not continue to train or modify the previous models.
Instead, the robot only focuses on the i-th waypoint while
adding that new waypoint to a trajectory constructed across
the sequence of previous MABs.

Implementation Details. Our experiments used an ensemble
of N = 10 reward models. Each model was a fully connected
multi-layer perceptron with two hidden layers and a leaky
ReLU activation function. The reward models were updated
by Adam with a learning rate of 0.001 and MSE loss. To
find the waypoint that optimizes these reward models we
applied constrained optimization — in our experiments, we
leveraged Sequential Least Squares Programming (SLSQP).
In practice this optimizer can get stuck in local maxima; to
ameliorate this issue we used multiple initial seeds. A repos-
itory of our code is available here:

V. BENCHMARK SIMULATIONS

In this section we evaluate how our proposed approach
learns new manipulation tasks in simulated environments.
We performed these benchmark experiments in robosuite, a
simulated robot environment with a set of standard manip-
ulation tasks for robot arms [25]. Across these benchmark
tasks we compared our proposed approach to state-of-the-art
reinforcement learning algorithms, and measured the rewards
(i.e., the task performance) achieved by each method.

Independent Variables. We compared the performance of
our proposed Algorithm | (Ours) to four baselines. First, we
implemented soft actor-critic (SAC) [26] and proximal policy
optimization (PPO) [27]. Both SAC and PPO are model-
free reinforcement learning algorithms that build a policy
for selecting low-level robot actions a based on state s.

We also extended SAC and PPO to study their perfor-
mance when using high-level waypoints instead of low-level
actions. We will refer to these modified approaches as SAC-
wp and PPO-wp. Similar to the original algorithms, both
methods learn a policy that inputs world states s. But instead
of outputting low-level actions a, now SAC-wp and PPO-wp
output the next waypoint sk, that the robot should visit. We
applied the same impedance controller as in Ours to move
the robot arm between waypoints. The purpose of SAC-wp
and PPO-wp was to test whether using high-level waypoints
is the only advantage of our proposed approach: if Ours
outperforms these baselines, this suggests that the framework
we developed to learn the waypoints is also beneficial.

Environment. We used the benchmark tasks defined in
robosuite [25] to evaluate the performance of each algorithm
(see Figure 2). In Lift the robot needs to pick up a block. For
the Stack task the robot has to pick up one block and stack it
on top of another block. In Nut Assembly the robot picks up
a nut and fits it on a peg. Next, in Pick-and-Place the robot
picks up different objects in the environment and places them
in their respective containers. These four tasks all focused on

the xyz actions of the robot’s end-effector. We also studied
two manipulation tasks where the robot adjusts its position
and orientation. In Door-simple the robot needs to reach for
the door latch and pull the door open. In the more complex
Door-latch task, the robot must turn the latch before it can
open the door. We emphasize that the initial world state for
each of these tasks was randomized at the start of every
episode. For instance, the door was positioned at a different
angle, and the blocks were placed at new locations.

Procedure. All the experiments were performed using a 7-
DoF Franka-Emika robot arm with impedance control in end-
effector space. Each task had an episode length of H = 100
timesteps. Across all environments Qurs, SAC-wp and PPO-
wp were trained to complete the task using 7' = 2 waypoints:
the low-level controller used 50 timesteps to reach waypoint
1, and another 50 timesteps to reach waypoint 2. We made
slight modifications to the given reward functions for the
Stack, Nut Assembly, and Pick-and-Place tasks by increasing
the rewards for completing each stage of the task and adding
penalties for knocking the objects over.

Dependent Variables. The robot’s task performance was
measured using reward. If the robot encountered a trajectory
of world state 7 during a given episode, we reported: R(7) =
> sc- T(s). Higher rewards indicate better performance.

Results. We separated our results into two parts (see Figure
and Table I). Figure 2 shows the rewards achieved by each
model-free reinforcement learning algorithm as it trained in
the environment. Every interaction (i.e., every episode) lasted
H = 100 timesteps, and we reported the total reward across
that episode. After the robot completed K total interactions,
we then saved the learned models and tested their perfor-
mance. Our results from these separate tests are listed in
Table I. Here the simulated robot attempted to complete
each manipulation task 100 times using the models it had
learned from training. Similar to training, during evaluation
the position and orientation of objects in the environment
was randomized at the start of every interaction.

Overall, none of the baselines were able to learn the tasks
correctly within the limited number of episodes available for
training. Across all tasks, we observed that SAC learned to
reach and sometimes grasp the desired objects, while PPO
only learned to reach for these objects. We also noticed that
SAC-wp performed well at the start of training, but its per-
formance dropped as the training progressed. We hypothesize
that this may have occurred because — instead of learning
one waypoint at a time — SAC-wp was simultaneously
learning and adjusting both waypoints of the task. This may
have prevented the robot from determining which waypoints
were leading to higher rewards: e.g., did the robot succeed
because of the position of waypoint 1 or waypoint 2?

Across both training and evaluation Ours outperformed
the baselines. In Figure 2 we highlight that Ours had sudden
jumps in episode reward. These jumps corresponded to
episodes where the robot added a new waypoint to its tra-
jectory. For example, in Lift the robot arm solved the multi-
armed bandit for waypoint 1 during the first 200 episodes,

546
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

I
60 |
"E |
S 40 ‘
2
) |
R 20 |
j 7 ‘ j
“ v 0f =t l 4 0
. =, | B 0 100 200 300 400 © NH=NI
Episodes
Pick-and-Place ,, ‘ Door-simple 80
I
- [60
0 B
: | 5
7 40 | &~ 20
[}
BN O o SRS 7
0{ ; ¢ | 0
0 200 400 600 800 1000 *
Episodes

PPO-wp Ours

Nut Assembly

«W\’ .l
w : ‘
0 200 400 200 400 600
Episodes Episodes
‘ Door-latch ‘
I I
I I
I I
| |
| I
‘ { AN
T ey L
DR | Y
L | L
0 200 400 600 200 400 600
Episodes Episodes

Fig. 2. Simulation environments and rewards for six manipulation tasks. These benchmark tasks are taken from robosuite [25]. For each task the image
on the left shows the environment setup, and the plot on the right shows the robot’s rewards averaged over five runs. Higher rewards indicate better task
performance. The dashed lines in the reward plots correspond to the episodes where Our approach added a new waypoint to the trajectory. Adding these
new waypoints often causes a sharp increase in the robot’s reward. This sudden change occurs because the new waypoint enables the robot to complete
the next part of the task: e.g., in Lift the robot needs one waypoint to grasp the block and a second waypoint to lift the block.

TABLE I
EVALUATION RESULTS. AFTER TRAINING IN FIGURE 2, WE SAVED THE
LEARNED MODELS AND EVALUATED THEIR PERFORMANCE ACROSS 100
EPISODES. WE REPORT AVERAGE REWARD £ STANDARD ERROR.

Task Mehtod
SAC PPO SAC-wp PPO-wp Ours

Lift 44314206 17.58+£0.34 0.46+0.02 0.224+0.06 68.83 £ 0.02
Stack 1220+£0.42 3.04£0.19 0.01+£0.0 0.86=+0.09 70.37+3.56
Nut Assembly 9.51+0.14 854+0.33 0.10+0.01 0.74+0.09 190.14+£11.7
Pick-and-Place 6.69+0.24 1.37+£0.10 1.11+£0.17 0.24+£0.05 89.24+2.87
Door-simple 9.78 £0.23 4.58 £0.20 0.01£0 1.67+2.59 63.01 £2.19
Door-latch 1589 £0.17 6.64+£0.26 0.14+£0.01 0.29+£0.03 48.70+2.58

and then transitioned to the next MAB starting at episode
201. The reward increased at this transition because the robot
progressed to the next stage of the task. Returning to Lif,
in the first 200 episodes the robot learned one waypoint
to reach and grasp the randomly initialized block. Starting
from episode 201, the robot applied what it had learned to
grasp the block, and then explored its second waypoint to
decide how to carry that block. In summary, these simulation
results suggest that OQurs can efficiently learn a range of
manipulation tasks in a limited number of interactions by
breaking the task down into several waypoints, and learning
the trajectory one waypoint at a time.

VI. REAL-WORLD EXPERIMENTS

In this section we explore whether our proposed algo-
rithm enables robot arms to learn manipulation tasks from
scratch in real-world environments. We compare our ap-
proach (Ours) with the best-performing baseline from our
simulations (SAC) across two different manipulation tasks.
Within real-world environments with an actual robot arm,
we find that Algorithm | leads to shorter training periods
and more accurate task performance. See the robot’s learned
behaviors here: https://youtu.be/MMEd-1YfgdyY

Experimental Setup. We conducted our real-world experi-
ments on a 7-DoF Franka Emika robot arm (see Figure 3).

We trained the robot to perform two different manipulation
tasks: lifting an object (Lift) and opening a drawer (Drawer).
The robot used Ours and SAC to attempt to learn each task.

For both tasks the episodes lasted H = 140 timesteps.
The robot used end-effector velocity control to take actions
within the environment. Under SAC the robot moved its end-
effector and gripper based on the action output by the learned
policy. With Owurs, the robot learned two waypoints (70
timesteps each), and leveraged the same low-level controller
to interpolate between its start state and the waypoints along
its reference trajectory .

At the beginning of each episode the robot’s initial position
was constant, but the location of the object or drawer was
uniformly randomized within a 6-by-6 cm plane. We se-
lected this smaller range to minimize the number of training
episodes and prevent the robot from running into its joint
limits. We also applied boundary conditions to stop the robot
from colliding with the table or attempting to move beyond
its workspace. For Lift, we used the same reward function
as in robotsuite’s lift task. For Drawer, we defined a dense
reward function that encouraged the robot to grasp the handle
and then pull the drawer out in a straight line.

Results. We first measured the episode rewards throughout
training. Figure 3 shows the training rewards averaged across
three runs for both tasks and methods. The maximum reward
the robot achieved with Qurs was about 1.3 times SAC in
Lift, and about 7.75 times SAC in Drawer.

After training completed, we used the robot’s learned
models to evaluate the robot’s final success rate for both
tasks. A robot trained with Ours grasped and lifted the
randomly placed block in 16/20 evaluation trials (80%
success rate). Similarly, Our robot was able to grasp and
at least partially open the drawer in 20/20 evaluation trials.
By contrast, under SAC the robot was never able to complete
either task given the limited training budget.

547

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

@ sAC Ours
Lift 50 |
0 15 20 35 50
Episodes

oo o A

1
0 150 300 450 600
Episodes

Fig. 3. Setup and results from our real-world experiments in Section

In Lift the robot learned to pick up an item, and in Drawer it learned to
open a drawer (also see Figure). The robot measured the initial position of
the item or drawer as a part of the start state s°. SAC learned a policy that
often moved to the object of interest, but did not correctly interact with that
object. When using Ours, the robot built a trajectory of two waypoints: the
first waypoint grasped the object, and then the second waypoint interacted
with that object (e.g., picked the item up, pulled the drawer open). The
dashed line in the reward plots corresponds to the episode where Our robot
added a second waypoint to its trajectory.

VII. CONCLUSION

In this paper we focused on model-free reinforcement
learning for robot arms. We recognized that many of the
everyday manipulation tasks that we want robots to learn can
be broken down into a series of high-level waypoints (e.g.,
reaching an object). We therefore proposed a framework
for waypoint-based reinforcement learning, where the robot
learns new tasks by building a trajectory one waypoint at a
time. Our key contribution was reformulating this problem as
a sequence of multi-armed bandits: our theoretical analysis
suggests that best-case solutions to this bandit formulation
will outperform standard approaches. We next introduced one
possible algorithm for solving the sequential bandit problem.
Our proposed approach leveraged an ensemble of models
to approximate posterior sampling: in practice, this method
learned each subsequent waypoint to greedily maximize the
robot’s reward. We found that our approach outperformed
commonly used model-free reinforcement learning algo-
rithms across a set of simulated and real-world manipulation
tasks. In future works we will explore more complicated
tasks that require a higher number of waypoints.

REFERENCES

[1] S. Belkhale, Y. Cui, and D. Sadigh, “HYDRA: Hybrid robot actions
for imitation learning,” in Conference on Robot Learning, 2023.

548

[2]

[3]

[4]

[6]

[7]

[8

[t}

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-based
learning from demonstration: Method and evaluation,” International
Journal of Social Robotics, vol. 4, pp. 343-355, 2012.

L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn, “Waypoint-based
imitation learning for robotic manipulation,” in Conference on Robot
Learning, 2023.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. John Wiley & Sons, 2020.

S. Haddadin and E. Croft, “Physical human-robot interaction,” in
Springer Handbook of Robotics. Springer, 2016.

D. Han, B. Mulyana, V. Stankovic, and S. Cheng, “A survey on deep
reinforcement learning algorithms for robotic manipulation,” Sensors,
vol. 23, no. 7, 2023.

R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial Intelligence, pp. 181-211, 1999.

S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting reinforcement learning
with behavior primitives for diverse manipulation tasks,” in IEEE
International Conference on Robotics and Automation, 2022.

O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hier-
archical reinforcement learning,” in Advances in Neural Information
Processing Systems, 2018.

P-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
in AAAI 2017.

J. Zhang, H. Yu, and W. Xu, “Hierarchical reinforcement learning by
discovering intrinsic options,” in International Conference on Learning
Representations, 2021.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual Review of Control, Robotics, and Autonomous Systems, 2021.
B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on
the replay buffer: Bridging planning and reinforcement learning,” in
Advances in Neural Information Processing Systems, 2019.

R. Gieselmann and F. T. Pokorny, “Planning-augmented hierarchi-
cal reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5097-5104, 2021.

F. Xia, C. Li, R. Martin-Martin, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Integrating motion generation in reinforcement learn-
ing for mobile manipulation,” in IEEE International Conference on
Robotics and Automation, 2021.

J. Yamada, Y. Lee, G. Salhotra, K. Pertsch, M. Pflueger, G. Sukhatme,
J. Lim, and P. Englert, “Motion planner augmented reinforcement
learning for robot manipulation in obstructed environments,” in Con-
ference on Robot Learning, 2021.

D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, “A
tutorial on thompson sampling,” Foundations and Trends in Machine
Learning, vol. 11, no. 1, pp. 1-96, 2018.

I. Osband and B. Van Roy, “Why is posterior sampling better than
optimism for reinforcement learning?” in International Conference on
Machine Learning, 2017.

C. Qin, Z. Wen, X. Lu, and B. Van Roy, “An analysis of ensemble
sampling,” Advances in Neural Information Processing Systems, 2022.
K. Lee, M. Laskin, A. Srinivas, and P. Abbeel, “Sunrise: A simple uni-
fied framework for ensemble learning in deep reinforcement learning,”
in International Conference on Machine Learning, 2021.

I. Osband and B. Van Roy, “On lower bounds for regret in reinforce-
ment learning,” arXiv preprint arXiv:1608.02732, 2016.

F. Memarian, W. Goo, R. Lioutikov, S. Niekum, and U. Topcu, “Self-
supervised online reward shaping in sparse-reward environments,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2021.

S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends
in Machine Learning, vol. 5, no. 1, pp. 1-122, 2012.

0. D. Domingues, P. Ménard, E. Kaufmann, and M. Valko, “Episodic
reinforcement learning in finite mdps: Minimax lower bounds revis-
ited,” in Algorithmic Learning Theory, 2021.

Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” in arXiv:2009.12293, 2020.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning, 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 23,2025 at 22:59:29 UTC from IEEE Xplore. Restrictions apply.

