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Individual-level assessments of wild animal health, vital rates, and foraging ecology are critical for understanding
population-wide impacts of exposure to stressors. Large whales face multiple stressors, including, but not limited
to, ocean noise, pollution, and ship strikes. Because baleen is a continuously growing keratinized structure, serial
extraction, and quantification of hormones and stable isotopes along the length of baleen provide a historical
record of whale physiology and foraging ecology. Furthermore, baleen analysis enables the investigation of dead
specimens, even decades later, allowing comparisons between historic and modern populations. Here, we
examined baleen of five sub-adult gray whales and observed distinct patterns of oscillations in 5'°N values along
the length of their baleen plates which enabled estimation of baleen growth rates and differentiation of isotopic
niche widths of the whales during wintering and summer foraging. In contrast, no regular patterns were apparent
in 6'3C values. Prolonged elevation of cortisol in four individuals before death indicates that chronic stress may
have impacted their health and survival. Triiodothyronine (T3) increased over months in the whales with un-
known causes of death, simultaneous with elevations in cortisol, but both hormones remained stable in the one
case of acute death attributed to killer whale predation. This parallel elevation of cortisol and T3 challenges the
classic understanding of their interaction and might relate to increased energetic demands during exposure to
stressors. Reproductive hormone profiles in subadults did not show cyclical trends, suggesting they had not yet
reached sexual maturity. This study highlights the potential of baleen analysis to retrospectively assess gray
whales’ physiological status, exposure to stressors, reproductive status, and foraging ecology in the months or
years leading up to their death, which can be a useful tool for conservation diagnostics to mitigate unusual
mortality events.

1. Introduction Large whales, for example, are exposed to an increasing number of

stressors, including ocean noise (e.g., vessel traffic, military sonar,

Individual-level assessments of changes in health, vital rates,
movements, and foraging ecology of wild animals in response to
disturbance events are key for identifying potential impacts on the
broader population (Pirotta et al., 2022), as well as for gaining insights
needed for effective, targeted conservation and management strategies.
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seismic oil and gas exploration, and construction; Lemos et al., 2022;
Rolland et al., 2012), contaminants such as plastics, heavy metals and
chemicals (Lowe et al., 2022; Reckendorf, 2023; Torres et al., 2023),
harmful algal blooms (D’Agostino et al., 2022), ship strikes and entan-
glement in fishing gear (Clapham, 2016; Derville et al., 2023), marine
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heatwaves (Suryan et al., 2021), and prey shifts (Derville et al., 2023;
Pallin et al., 2023). Yet, conservation efforts to mitigate threats to whale
populations are hindered by the challenges of monitoring and obtaining
repeated samples from individuals due to the large size, mobility, and
remote marine habitats of baleen whales (Hunt et al., 2013).

The use of combined analytical methods in different biological tissue
types collected from free-ranging whales and/or stranded carcasses has
allowed researchers to overcome some of these limitations and increased
our ability to disentangle different aspects of the foraging ecology and
physiology of large whales (Fleming et al., 2018; Hunt et al., 2020, 2013;
Teixeira et al., 2022). Baleen, for example, is a unique structure that
forms the filter-feeding apparatus in mysticetes whales and is perhaps
the best biological tissue for acquiring longitudinal ecological and
physiological data to assess the responses of whales to stressors and their
changing environment (Caraveo-Patino et al., 2007; Fernandez Ajo
et al.,, 2020, 2018; Hunt et al., 2014; Lysiak et al., 2018). Like other
keratinized epidermal tissues (e.g. claws, hair, spines, and whiskers),
baleen is a continuously growing structure that extends from a well-
vascularized dermal zone. The slow growth rate of baleen allows for
the simultaneous incorporation of intrinsic biomarkers, including stable
isotopes and hormones with sufficient temporal resolution to examine
seasonal patterns spanning the time of baleen growth (Best and Schell,
1996; Hunt et al., 2018, 2017a, 2017b; Lysiak et al., 2023, 2018; Schell
etal., 1989). For mysticetes with shorter baleen (e.g., humpback whales,
Megaptera novaeangliae, and gray whales, Eschrichtius robustus), this
period is 1-5 years (Caraveo-Patino et al., 2007; Gabriele et al., 2021;
Lowe et al., 2021b, 2021a) versus a decade or more in species with
longer baleen (e.g., bowheads, Balaena mysticetus; Hunt et al., 2022,
2014; Lysiak et al., 2023; Matthews and Ferguson, 2015; and right
whales, Eubalaena sp.; Hunt et al., 2017a, 2016; Lysiak et al., 2018).

Measurements of bulk carbon (513C) and nitrogen (515N) stable iso-
topes in baleen has been successfully applied to assess time-integrated
diet and movements of different cetacean species (e.g., Best and
Schell, 1996; Pomerleau et al., 2018; Silva et al., 2019). 5'5N values are
often used as an indicator of trophic position (Fry, 1988), whereas s13¢
values reflect the sources of primary production that fuel the food webs
and are generally used to distinguish movements across isotopically
distinct food webs. Typically, consumers have higher 5'3C and §'°N
values by 0.5-2 %o and 0.5-5 %o, respectively, compared with their diet
(Post, 2002), but these tissue-to-diet discrimination factors can vary
with growth rates, diet quality, and nutritional or reproductive status
(Ben-David et al., 2012; Borrell et al., 2012; Rita et al., 2019). 6*3C and
5N assimilate longitudinally along baleen plates and generally form
oscillation patterns that may reflect changes in either feeding status (e.
g., active foraging vs. fasting) along their annual migration (Best and
Schell, 1996; Eisenmann et al., 2016; Sang et al., 2005); and/or lat-
itudinal variation in prey isotope values between summering and
wintering grounds (Busquets-Vass et al., 2017; Matthews and Ferguson,
2015; Mitani et al., 2006).

On the other hand, endocrine assessments along the baleen longi-
tudinal axis can aid in reconstructing the endocrine history of whales
leading up to their death (Fernandez Ajo et al., 2020; Lowe et al., 2021a;
Lysiak et al., 2018). For instance, an increased secretion of glucocorti-
coids from the hypothalamic—pituitary—adrenal (HPA) axis signifies the
activation of the vertebrate stress response (Romero and Wingfield,
2016). Assessments on glucocorticoid hormones (cortisol and cortico-
sterone) in baleen have been utilized to infer the physiological response
of whales to stressors and known causes of death (Fernandez Ajo et al.,
2020, 2018; Lowe et al., 2021a; Lysiak et al., 2018). The hypothalamic-
pituitary-thyroid axis (HPT) regulates the synthesis and secretion of
thyroxine (T4), which undergoes enzymatic conversion to the more
active form, T3. Both T3 and T4 modulate basal metabolic rate, growth
and development, thermogenesis, along with other permissive actions
(Romero and Wingfield, 2016). As T3 is generally recognized as the most
biologically active thyroid hormone, it is considered a relevant
biomarker to inform nutritional status (Fales, 1988; Flamant et al.,
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2017). In baleen, T3 has been used to infer nutritional status (Fernandez
Ajo et al., 2020). Additionally, the analysis of reproductive hormones
within baleen has proven valuable for assessing pregnancy and inter-
calving cycles in females, as well as testosterone cycles in males (Hunt
et al., 2022, 2018, 2016; Lowe et al., 2021b; Lysiak et al., 2023).

Therefore, the paired quantification of hormones and stable isotope
values along the longitudinal axis of the baleen plate has the potential to
provide integrated information about individuals’ foraging ecology,
movements, and endocrinology preceding their death. Notably, baleen
is routinely recovered at necropsies, and its inherent strength, dura-
bility, and minimal storage requirements (i.e., these samples can be
preserved dry at room temperature) ensure the preservation of the
analytes of interest within the keratin matrix. Consequently, detection of
hormones and isotopes remains feasible in dried samples for decades
(Fernandez Ajo et al.,, 2022; Hunt et al., 2017b). These remarkable
properties of baleen not only capture multi-year timeframes, enabling
the determination of individuals’ seasonal endocrine and foraging pat-
terns, but also facilitate comparisons between historic and modern
populations of whales (Hunt et al., 2014).

Eastern North Pacific (ENP) gray whales migrate between their
wintering grounds along the Baja California, Mexico, coastline, and their
summer foraging grounds in the Bering, Chukchi, and Beaufort Seas.
Within the ENP gray whale population, a distinctive group known as the
Pacific Coast Feeding Group (PCFG; Calambokidis et al., 2002; Rice and
Wolman, 1971), consists of around 200-250 individuals (Calambokidis
et al., 2019) and is known for shortening its migration to forage along
the Pacific coast, between northern California, USA, to British Columbia,
CA, during the summer months remaining in close proximity to the
shore (Mate and Urban-Ramirez, 2003). Gray whales are considered
generalists (Nerini, 2012), while the ENP whales forage primarily on
benthic amphipods (family Ampeliscidae) along the Bering and Chukchi
Seas (Brower et al., 2017; Moore et al., 2003; Nerini, 2012), the PCFG
whales forage on a variety of prey types, including mysids (family
Mysidae), crab larvae (Cancer magister, Porcellanidae sp.), ghost shrimp
(Callianassa californiensis), and benthic amphipods (Darling et al., 1998;
Dunham and Duffus, 2002, 2001; Hildebrand et al., 2021).

The ENP population has experienced at least two recorded Unusual
Mortality Events (UMEs), in 1999-2000 and from 2019 to the present,
during which an unusually high number of gray whales were found dead
along the Pacific coast from northern Mexico to the Alaskan Arctic, USA
(Martinez-Aguilar et al., 2019; Urban, 2020). Several factors have been
considered as possible causes for the high number of gray whale
strandings, including variation in Arctic prey availability and the
duration of their feeding season caused by the timing of sea ice forma-
tion and breakup (Stewart et al., 2023), starvation, anthropogenically
derived toxicants, biotoxins, infectious diseases, parasites, fisheries in-
teractions, and ship strikes (Eguchi et al., 2023; Gulland et al., 2005). In
the current UME, dead whales are frequently emaciated, indicating
nutritional limitation as a causal factor of death (Christiansen et al.,
2021). While the poor condition of many of the stranded whales sup-
ports the idea that starvation could be a significant contributing factor in
these mortalities, the underlying causes of starvation during these events
are unknown, and it is also unclear whether the whales’ decline in body
condition was rapid or gradual.

In this study, we analyzed patterns across time of stable isotopes and
five hormones within baleen plates recovered postmortem from five
subadult gray whales (4 males, 1 female) that stranded during the 2019-
present UME. Our goal is twofold: first, to retrospectively examine the
hormone and isotopic profiles in gray whales prior to mortality; and
second, to assess potential factors contributing to mortality and the
onset timing of chronic illness leading to death. Our isotopic analysis
includes the longitudinal profiles of bulk 5'C and 5'°N values in baleen,
as they are well-established markers of seasonal changes in diet and
foraging grounds in large whales enabling to estimate baleen growth
rates (Best and Schell, 1996; Busquets-Vass et al., 2017; Matthews and
Ferguson, 2015). Our hormonal analysis quantifies two adrenal
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Table 1

Biological information for individual gray whales, Eschrichtius robustus, collected along the Oregon Coast and sampled for both hormone and stable isotope analysis.
Whale Code Whale ID Strand Date Cause of Death Sex TL (cm) Total Samples BGR (mm/week) GS (days) Age Class
Er 1 HMSC_190424_Er 2019-04-24 Unk F 1080 12* 3.2 ~242 Subadult
Er 2 HMSC_200331_Er 2020-03-31 Unk M 1086 26 3.2 ~550 Subadult
Er 3 HMSC_200515_Er 2020-05-15 Unk M 996 20 3.2 ~418 Subadult
Er 4 HMSC_210529_Er 2021-05-29 Unk M 1060 25 3.2 ~528 Subadult
Er 5 HMSC_210816_Er 2021-08-16 Orca M 1000 27 4.7 ~390 Subadult

Cause of death: Unk = undetermined, Orca = evidence of Killer whale, Orcinus orca, predation as acute cause of death; Sex = Female (F), Male (M); TL = Total
Length from snout to fluke notch in cm; Total samples = number of subsamples obtained from each baleen plate; BGR = baleen growth rate estimated in days per cm
(from stable isotope analysis); GS = Growth span, estimated timespan represented by the entire baleen plate, in days, derived from baleen growth rate and total length

of plate; * only the erupted portion of the baleen was collected during the necropsy.

glucocorticoid steroids, cortisol and corticosterone, as biomarkers of
stress. The thyroid hormone triiodothyronine (T3), as a biomarker of
nutritional state, i.e., a proxy of foraging success, given its role in
regulating metabolic rate in mammals, as reviewed in Behringer et al.,
2018. And two gonadal steroids, progesterone and testosterone. The two
gonadal steroids are assessed here as markers of reproductive status, and
to assess sexual maturity. All our specimens are from individuals clas-
sified as subadults at necropsy, although subadult whales may initiate
gonadal secretion of reproductive hormones well in advance of full
reproductive competence, and stress is known to delay sexual maturity
in many mammals (Dettmer and Chusyd, 2023; Hunt et al., 2022).
Further, the individual baselines for each hormone and each individual
whale are assessed to monitor individual variability in response to po-
tential stressors. Through the integration of isotopic and hormone
methodologies, we demonstrate that baleen analysis provides a
comprehensive narrative detailing the endocrine and trophic ecology of
individual whales across time, aiding to fill knowledge gaps between
individual physiology and population impacts. Ultimately, these bio-
markers can make significant contributions to management and con-
servation efforts by informing the complex physiological dynamics that
underlie whale‘s mortality.

2. Materials & methods
2.1. Sample collection

From April 2019 to August 2021, a baleen plate from each of five
stranded gray whales (n = 4 males and n = 1 female) was collected by
the Oregon Marine Mammal Stranding Network (OMMSN, NMFS
MMPA/ESA permit No. 18786-06) along the Oregon, USA coast, be-
tween Whaleshead Beach in Brookings (42.15°N, —124.35°W) and Cape
Mears (45.54°N, —123.96°W). All males had complete baleen plates (i.
e., including the most recent growth within the gum), while the female’s
baleen plate was missing the most recently grown baleen at the root of
the baleen plate (i.e., the baleen was cut at the gumline when recovered
at necropsy). All specimens were removed from the right side of the
rostrum and the center of the rack, where the longest baleen plates are
located. The whale’s total length (TL, measured as snout-to-fluke-
notch), presence of scars, general body condition, and presumed cause
of death were also recorded (Table 1). All individuals were classed as
“subadults” based on the size categories (i.e., female TL 9-11.7 m, male
TL 9-11.1 m; Rice and Wolman, 1971), i.e., at least 24 months old but
not yet sexually mature.

2.2. Preparation of baleen plates for hormone extraction and
quantification

To remove any soft tissues adhered to the base of the baleen plates
(proximal end near the gum line with the newest baleen), we rehydrated
and softened the tissues by submerging the baleen plates in freshwater,
and subsequently scrapped the soft tissues off with a metal scraper or
scalpel. We then freeze-dried the baleen plates under vacuum (LabConco
FreeZone 6L system with Stoppering Tray Dryer, Kansas City, MO, USA),

until the pressure reading of the lyophilizer stabilized for at least 12 h,
indicating that the samples were dry. Dried, cleaned plates were then
stored at room temperature in individual sealed plastic bags, each with a
50 g silica gel desiccant pack (Arbor Assays, Ann Arbor, MI, USA).

We collected 20-50 mg of powder from sampling points spaced every
1 cm along the labial edge of the plate, using a hand-held electric rotary
grinder (Dremel® model 395 type 5) fitted with a tungsten carbide ball-
tip, with each sample collected from a < 1.5 cm transverse groove across
the posterior face of the plate. The proximal-most point on the base of
the baleen plate was designated as the 0 cm point.

Sampling started 1 cm from the base and continued every 1 cm to the
tip (distal end) until the baleen became too thin to collect the minimum
required sample mass for hormone extraction (20 mg); thus, we typically
excluded the distal-most two centimeters of each plate (i.e., the oldest
growth). To avoid cross contamination, during sampling we shielded
other regions of the plate with adhesive tape, and between samples the
entire baleen plate, sampling equipment, and fume hood were cleaned
with compressed air, and the work surface and all equipment were also
cleaned with 70 % ethanol. Powder samples were weighed to the nearest
0.1 mg on an Ohaus Explorer Pro EP214C analytical balance (Ohaus,
Pine Brook, NJ, USA), with a nearby workstation ionizer (SPI No. 94000,
SPIwestek.com) placed next to the scale to minimize any effects of static
electric charge. Weighed samples were placed in 16 x 100 mm boro-
silicate glass tubes and securely capped until hormone extraction, which
took place within 72 h of drilling. In total, 110 powder samples were
produced, with each whale’s plate producing between 12 and 27
samples.

2.3. Stable isotope analyses (SIA)

We weighed approximately 1 mg of baleen powder from each sam-
pling location (i.e., every 1 cm along the longitudinal axis on each
baleen plate) directly into tin capsules. Bulk 53C and §'°N were
measured using a Thermo FlashSmart elemental analyzer coupled to a
Thermo Finnigan Delta Plus XP continuous-flow isotope ratio mass
spectrometer (Thermo Scientific, Bremen, Germany). Results are
expressed in parts per thousand (%0) and delta notation () using the
equation: ésample = [Rsample/Rstandard — 1] * 1000, where Rsample
and Rstandard are the '3C/'2C or >N/!“N ratios of the sample and
standard, respectively (Peterson and Fry, 1987). The isotopic reference
materials used were supplied by the International Atomic Energy
Agency (IAEA-N-1, 5!°N = 0.4 + 0.2 %o; IAEA-CH-7, §'3C = — 32.1 +
0.05 %g; TAEA-CH-3, 5'3C = — 24.7 + 0.04 %0) and the United States
Geological Survey (USGS25, 5'C = — 34.58 + 0.06 %o, 5'°N = — 0.94
+ 0.16 %o; USGS40, 6'3C = — 26.3 + 0.04 %o, §'°N = — 4.5 £ 0.1 %o;
USGS41, 6'3C = +37.6 £ 0.04 %o, 5'°N = 47.6 + 0.2 %c;). Internal
standards were included with all samples as quality controls; all error
data are SD (purified methionine, Alfa Aesar, s13C = —34.5+0.06 %o,
5N = — 0.9 + 0.1 %o; homogenized Chinook salmon muscle, NOAA
Auke Bay Laboratories, 5°C = — 19.2 = 0.05 %o, 5°N = 15.5 + 0.1 %o).
The analytical precision based on the standard deviation of the standard
laboratory replicas was < 0.1 %o for both §'3C and 5'°N. To ensure that
our samples did not contain any 3C-depleted lipids, we also measured
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Fig. 1. Longitudinal profiles of 5'°N (left) and 5'3C (right) in baleen plates of stranded subadult gray whales collected along the Oregon Coast. X-axes show sample
location along the baleen, in cm from base of the baleen plate (i.e., newest baleen = 1 cm), with 1 cm (newest baleen) at far right, i.e., time runs from left to right. Y-
axes show 5'3C or 6!°N values (%o). Estimated season and year of growth is shown below the x-axes, and the time of death is noted with a red X on the x-axis.
Migration phenology is denoted by dark gray (putative summer foraging phase) and light grey (putative wintering phase) shading, estimated based on §'°N fluc-
tuations. Squares and closed circles depict actual values of 5'°N and §'>C, respectively; the dotted and dashed lines depict the fit of the GAM models, with the blue
(5'°N) and green 530 fringe illustrating the 95 % confidence intervals. Only the erupted portion of the baleen plate from Er_1 (top) was available, i.e., the proximal-
most portion of the base of the plate was missing, denoted with two parallel red lines on the x-axis. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Table 2

Mean §'>C and 6*°N values + SD, and niche size for each of the five baleen plates
of stranded subadult gray whales sampled by phenology phase (summer
foraging vs. wintering).

Summer Wintering
Foraging
5'3C (%0) 8N Niche s'3c 8N Niche
(%0) Region (%0) (%0) Region
(%0%) (%0%)

Erl -15.6+ 12.4 2.05 —-15.8 13.9 0.47
0.3 +0.3 +0.2 +0.2

Er 2 —-16.3 + 12.2 1.98 -16.3 13.0 0.98
0.4 + 0.5 + 0.2 + 0.3

Er3 -16.0 % 12.9 0.17 —-16.0 14.2 0.84
0.1 +0.2 + 0.1 +0.3

Er 4 -16.2 + 12.4 0.51 —16.1 13.7 0.52
0.1 +0.3 +0.2 +0.2

Er5 -15.0+ 11.9 3.57 —15.2 15.1 0.49
0.4 + 0.4 + 0.1 + 0.2

the C:N ratio of each sub-sample; all of which were within the range
expected for pure protein (2.7-3.5) (Ambrose, 1990); see Supplemen-
tary Material, Table S2).

2.4. Baleen growth rates and timelines

To assign an estimated season of growth to each part of the baleen
plate, we inspected the 5'°N data for evidence of seasonal changes.
Specifically, based on the patterns observed in other baleen whales (Best
and Schell, 1996; Lysiak et al., 2018; Matthews and Ferguson, 2015), we
assumed that the areas of baleen with lower §!°N were grown during
summer when whales are most actively foraging, while the regions of
baleen with higher 5'°N were assumed to have grown during winter.
Similarly, points with intermediate 5'°N values (i.e., between summer
5N troughs and winter 5'°N peaks) were assumed to represent spring
and fall migrations. However, because gray whale baleen is relatively
short and hence expected to only capture a single full annual cycle, these
potential timelines may be imprecise. Thus, we also compared each
whale’s §!°N data to published estimates of baleen growth rate (BGR) for
gray whales, which vary from 3.2 mm/week (Sumich, 2001) to 4.7 mm
/week (Caraveo-Patino et al., 2007). Therefore, for each plate we
calculated two potential timelines, counting cm from the base of the
baleen plate, using the two published BGR estimates, i.e., assuming the
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proximal-most point on the plate was grown near the day the whale was
found dead, with all other points on the plate then assigned an estimated
date of growth based on that BGR (either 3.2 or 4.7 mm/week). These
two timelines bracket a range of potential plausible BGRs. The two BGR-
derived timelines were then compared to the 5'°N timeline for that
whale, i.e., to verify that our §'°N interpretations involve a plausible
BGR for this species.

2.5. Hormone extraction and quantification

We extracted hormones from pre-weighed baleen powder samples
using 1.6 mL of absolute methanol per 20 mg powder, i.e., keeping a
constant ratio of 80:1 mL of solvent to g of sample. This solvent:sample
ratio yields good detectability with low variation (inter-sample coeffi-
cient of variation < 10 %; (Fernandez Ajo et al., 2022). The solvent:
sample mixture was vortexed 2 h at room temperature (Large Capacity
Mixer, Glas-Col, Terre Haute, IN, USA; speed set on 40) and centrifuged
for 1 min at 4025 g. The supernatant from each tube was transferred to
individual 13 x 100 mm borosilicate tubes and dried at 45 °C for a
minimum of 4 h in a sample evaporator (SpeedVac 121P, Thermo Fisher
Scientific, Waltham, MA, USA) under vacuum. We reconstituted the
dried samples in 0.50 mL of assay buffer (X065 buffer; Arbor Assays, Ann
Arbor, MI, USA), sonicated for 5 min, vortexed for 5 min, and transferred
the sample to 1.5 mL vapor proof O-ring-capped cryovials. We stored the
tubes overnight at — 80 °C and decanted the extract into a new cryovial
the following day. This was considered the “1:1" (full-strength, neat)
extract and was stored at —80C until assay.

We used commercial enzyme immunoassay (EIA) kits to quantify
immunoreactive corticosterone, cortisol, progesterone, testosterone,
and T3 in baleen extracts (Arbor Assays Kkits: corticosterone #K014,
cortisol #KO003, progesterone #K025, testosterone #K032, and T3
#K056, Ann Arbor, MI, USA). These five kits have previously been
validated for gray whale baleen extracts (Hunt et al.,, 2017b). We
assayed all samples at a 1:2 dilution, which in this species produces
acceptable detectability and percent-bounds while also allowing assay
of multiple hormones from a single 500ul extract. Final data are
expressed as ng of hormone per g of dried baleen powder. All assays
adhered to standard QA/QC criteria, which included a full standard
curve, NSB (non-specific binding), zero dose (“blank™), and an inde-
pendent control in every EIA microplate. All samples, standards, con-
trols, NSBs, and zeros were assayed in duplicate. Any sample that
exhibited a coefficient of variation exceeding 10 % between duplicates
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Fig. 2. Violin plots for A) 5'°N and B) §'3C values in baleen plates of stranded subadult gray whales sampled by phenology phase (i.e., summer foraging in dark grey
and wintering in light gray). Circles depict actual §'°N and §'3C values. The black dot represents the mean, and whiskers indicate the standard deviation; statistically
significant differences between groups are shown at the top with F and p values from ANOVA.
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Fig. 3. 5'3C and §'°N biplot illustrating the isotopic niche width of five subadult gray whales stranded along the Oregon Coast, divided by phenology phase (summer
foraging vs. wintering). Points within each ellipse represent sub-samples within each sampled baleen plate, and ellipses represent the niche region for each phenology

within individuals (light grey = summer foraging; dark grey = wintering).

was re-analyzed. For antibody cross-reactivities, assay sensitivities, and
other methodological details, see Hunt et al., (2017a) and the manu-
facturer’s protocols (https://www.arborassays.com).

We evaluated the complete longitudinal profiles for both glucocor-
ticoids, cortisol and corticosterone, in only two individuals (Er_1 and
Er_4) to determine the dominant (most abundant) glucocorticoid and to
compare the longitudinal profiles of the two hormones. As cortisol was
at higher concentration than corticosterone for these two whales,
corticosterone was not assayed for the other baleen specimens (see Re-
sults). We assayed all other hormones (progesterone, testosterone, T3)
for all samples from all whales.

2.6. Statistical analysis

2.6.1. Hormones

All hormone data were log-transformed for data visualization and
analyses due to non-normal distribution. We estimated hormone base-
lines for each gray whale using an iterative process that excludes all data
points greater than the mean + two standard deviations until no points
exceed this maximum value, following methods from (Brown et al.,
1988). To test for differences in concentrations of reproductive hor-
mones between sexes, we fit a linear mixed-effects model with random
intercepts using the lme4 R package. To assess the linear relationships
between the hormone variables, we performed a Pearson’s correlation
(Supplementary material Fig. S2). Statistical analyses were computed
using R (R Development Core Team 2023).

2.6.2. Stable isotope analysis

We gauged §'3C and §'°N fluctuations in baleen plates with a
generalized additive model (GAM) utilizing the Restricted Maximum
Likelihood method (method = 'REML’), and fitting a semi-parametric
regression with smoothing by cross-validation, the smoothing process

was tailored to each ID, allowing the smoothing parameter to vary
independently for different whales, using the “mgcv” R package. We
estimated the phenology phase of each individual whale at each sam-
pling point inferred from both the 5'°N values and the date assigned to
each point (see Supp. Material Table S2) and used an ANOVA analysis to
test differences in the 6'C and 5!°N values between the phenological
phases (wintering vs. summer foraging) with the “aov” function from the
stats R package. To visualize the isotopic values for each individual at
each phenology phase, we utilized ggplot (Fig. 3) to generate a biplot of
both isotopes and ellipses at 95 %. We then calculated the niche region
size of each phenology phase per individual and the pairwise niche
overlap between phonology phases using the method developed by
Swanson et al. (2015), available as the R package ‘nicheROVER’ (Lysy
et al., 2014), which uses a Bayesian framework to quantify probabilistic
metrics in niche space (Swanson et al., 2015). For each Bayesian model,
we used 10.000 Markov chain Monte Carlo (MCMC) iterations with the
default burn-in of 100 to characterize the posterior distributions for
isotope values of each group (mean p and variance—covariance matrix X)
using an uninformative Normal-Inverse-Wishart prior (Lysy et al.,
2014). We defined the niche size as the niche region for each group (e.g.,
summer foraging in individual Er1; wintering in individual Erl) with a
95 % probability of finding that group, and this was estimated by
calculating a point estimate of the mean niche size across posterior
sample of mean p and covariance X (Swanson et al., 2015) and reported
as %o2. We reported the uncertainty in niche overlap as the posterior
distribution of the overlap percentage, and we then calculated the
Bayesian 95 % credible intervals for each pairwise comparison. To
calculate overlap, the alpha value was set as 0.95, as this provides the 95
% probability region of the two-dimensional isotopic niche (Swanson
et al., 2015). Results are reported as mean =+ standard deviation (SD)
unless otherwise stated. All statistical analyses were computed using R
(R Development Core Team 2023).


https://www.arborassays.com

A. Ferndndez Ajo et al.

Older Baleen H Newer Baleen

Er1
T4
<]
£
g’ 2
= e s S e R
of T
12 11 10 9 8
Summer Fall Winter Spring
[ 2018 2019 |
Er 2
B4 °
2 o
£ ‘o ®
®? B N
o] .-& ()
ol .-1-."..—4‘7..-‘“ L Yo R et il e e it
26252423222120191817161514131211109 8 7 6 5 4 3 2 1 X
cm
Fall Winter Spring Summer Fall Winter Spring
[ 2018 2019 |
Er3
T4
[
g 2 N .. .
| " P}
o i T A e
2019 1817 16 151413121110 9 8 7 6 5 4 3 2 1 X
cm
Spring Summer Fall Winter Spring
[ 2019 2020 |
Er4
T4
<]
s !
g . -
0. g-0 . @ -0
___‘_._‘_.,..______q.a_.’__;/d":&:_ =
ol eV ey e
25242322212019181716151413121110 9 8 7 6 5 4 3 2 1 X
cm
Winter Spring Summer Fall Winter Spring
[ 2019] 2020 2021 |
Er 5
D4
<]
£
o 2
S o
®_ o 0% _ o e, gt 2
Of — oo - T.g-— -0 00 _0-9-00 0000 ————— -
2726252423222120191817161514131211109 8 7 6 5 4 3 2 1 X
cm
Summer Fall Winter Spring Summer
[ 2020 [ 2021 |
/ Baleen incomplete X Death —+ Log_Corticosterone ® Log_Cortisol

Summer foraging Wintering

(caption on next column)

General and Comparative Endocrinology 352 (2024) 114492

Fig. 4. Longitudinal profiles of immunoreactive hormone concentrations of
corticosterone (Corticosterone; black crosses and dashed line) and cortisol
(Cortisol; black circles and dotted line) across the length of baleen plates from
five stranded gray whales. The dashed horizontal line indicates the log-
transformed baseline for baleen cortisol. X-axes show the location of each
sample, in cm from base of the baleen plate (i.e., newest baleen = 1 cm) with y-
axes showing concentration of hormone (log-transformed ng of immunoreactive
hormone per g of dried baleen powder). Migration phenology is derived from
5'°N data and the estimated BGR; dark gray indicates summer foraging and
light grey indicates wintering (see Fig. 1), and season of growth at each point on
the plate was estimated from time of death (noted with a red X on the x-axis).
Only the erupted portion of the baleen plate from Er_1 (top) was available,
indicated with two parallel red lines on the x-axis. Blue arrows denote the onset
of cortisol elevation prior to death. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
tAhis article.)

3. Results
3.1. Study animals, body examination and cause of death

All five individuals were in fair to good body condition at necropsy, i.
e., no evidence of emaciation. Further, there was no indication of direct
human interaction as the cause of death. Notably, all individuals had
“rake” mark scars, an indicative of physical interactions with killer
whales, Orcinus orca (Corsi et al., 2022). These scars were primarily
observed on the distal end of the fluke and pectoral fins. One individual,
HMSC21-08-16-Er (Er 5), presented evidence of acute mortality caused
by interactions with killer whales, showing multiple deep and recent
“rake” marks on various body parts, particularly the head and flippers,
along with extensive and severe hemorrhaging on the top of the head.
Cause of death could not be determined for the other four whales.

3.2. Isotopic patterns and baleen growth rates (BGR)

All baleen plates oscillated in 5'°N values along their growth axis
consistent with expected migration phenology (Fig. 1). The growth rate
that best fit the expected oscillations with the migration phenology was
3.2 mm/week for all whales except Er_5, for which the best estimate was
4.7 mm/week (Fig. 1). Excluding Er_1, from which the baleen plate was
incomplete (i.e., the proximal-most portion within the gum was missing)
we estimate that the baleen of these subadult gray whales recorded
around 1.3 years of individual hormone and isotope data (n = 4; 471.5
+ 68.73 days; Mean =+ SD, Table 1).

Mean §'3C values were similar among individuals, ranging from —
15.0 %o to —16.3 %o during the summer foraging and from —15.2 %o to
—16.3 %o during the wintering phenology phase (Table 2). Mean §'3C
values for all subadults individuals during the summer foraging and
wintering period were —15.0 % £ 0.4 %o and —15.2 %o %+ 0.1 %,
respectively (Fig. 2), with no significant differences between these pe-
riods (F (1, gg) = 1.73, p = 0.19). In contrast, mean §'°N values for all
varied among individuals, ranging from 11.9 %o to 12.9 %o during the
summer foraging and from 13.0 %o to 15.1 %o during the wintering
phenology. Mean 5'°N values during the summer foraging and wintering
period for all individuals was 12 %o + 0.4 %o and 15.1 %o + 0.2 %,
respectively (Fig. 2), with a significant difference between these periods
(F (1, 88) = 132,p < 0.001).

The smallest niche sizes for the subadult gray whales were observed
during the wintering phenology (Fig. 3 and Table 2). Er_1, Er 2 and Er_5
showed similar isotopic patterns, in which the niche sizes increased from
the wintering to the summer foraging phenology phases. Er_3 and Er_4
had unique isotopic patterns: while Er_3 had a smaller niche size during
summer foraging when compared to its niche size in the wintering
phenology, Er_4 had the smallest niche sizes when compared to all the
other individuals, with similar niche sizes for both summer foraging and
wintering phenology phases (Fig. 3, Table 2). The isotopic niche overlap
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Table 3

Individual baselines of gray whale baleen immunoreactive hormone concen-
trations (expressed in ng of immunoreactive hormone per g of baleen powder
(ng/g)). Baselines are estimated via an iterative process that excluded all data
points greater than the mean + 2SD until no points exceeded this maximum
value (following Brown et al., 1988). Cortisol = immunoreactive baleen cortisol;
Progesterone = immunoreactive baleen progesterone; Testosterone = immu-
noreactive baleen testosterone; T3 = immunoreactive baleen triiodothyronine.

D Hormone Baselines (ng/g) +/- Standard Deviation

Cortisol Progesterone Testosterone T3
Er1 6.46 +/- 8.29 1.73 +/- 0.64 0.51 +/- 0.25 2.51 +/-1.15
Er2 5.19 +/-9.78 1.39 +/- 1.02 0.38 +/-0.21 1.66 +/-1.37
Er 3 4.86 +/-7.85 2.04 +/- 0.66 0.35 +/-0.17 1.77 +/-1.21
Er 4 11.20 +/- 26.66 2.32 +/-1.08 0.56 +/- 0.34 3.46 +/- 1.44
Er5 0.55 +/- 0.75 1.46 +/- 0.68 0.39 +/-0.21 1.88 +/-0.95

between summer foraging and wintering phenology phases within in-
dividuals was also variable: in Er_1, 63 % of the summer foraging
ellipsoid overlapped the wintering ellipsoid, and 1 % of the wintering
ellipsoid overlapped the summer foraging ellipsoid. In Er_2, 50 % of the
summer foraging ellipsoid overlapped the wintering ellipsoid, and 31 %
of the wintering ellipsoid overlapped the summer foraging ellipsoid. In
Er_3, Er_4 and Er_5 there was no overlap between the summer foraging
and wintering ellipsoids (Fig. 3 and Figure S2).

3.3. Baleen glucocorticoids (cortisol and corticosterone)

Both glucocorticoids (cortisol & corticosterone) were detectable
along the full length of the two plates for which both hormones were
assayed (i.e., Er_1 & Er_4; Fig. 4). The longitudinal profiles of the two
hormones exhibit a significant positive correlation (Pearson’s correla-
tion coefficient of r = 0.947, t(35) = 17.464, p < 2.23*16), with cortisol
consistently showing a slightly higher apparent concentration compared
to corticosterone at every sampling point along the baleen longitudinal
axis (Fig. 4; electronic supplementary material, Table S1). Therefore,
only cortisol was analyzed for the other three whales. The baseline
concentration for cortisol in all individuals fell within the range of 0.55
+ 0.75 to 11.20 + 26.66 ng/g (mean + SD; Table 3). Among all in-
dividuals, except for Er_5 (the individual presumed to have died acutely
due to killer whale predation), there were pronounced elevations in the
apparent concentration of cortisol preceding death (Fig. 4). For the three
individuals with unknown cause of death that had complete baleen
length (i.e., excluding both Er_1, missing part of the baleen, and Er_5,
known cause of death), the time elapsed from the onset of the elevation
in cortisol to the time of death was estimated to be 284.37 days (13 cm)
for Er_2, 240.62 days (11 cm) for Er_3, and 262.50 days (12 cm) for Er_4.
On average, this elapsed time was 262.5 days (approximately 0.72
years).

3.4. Triiodothyronine (T3)

Immunoreactive T3 was detectable along the full length of all baleen
plates (Fig. 5; electronic supplementary material, Table S1). The base-
line concentration of T3 ranged from 1.66 + 1.37 to 3.46 + 1.44 ng/g
(mean + SD; Table 3). Similar to the glucocorticoids, the three in-
dividuals with an unknown cause of death that also had a full-length
baleen plate (Er_2, Er_3, and Er_4) all had elevated T3 preceding death
(Fig. 5). The onset of the elevation in T3 prior to death was nearly
coincident with the timing of elevated cortisol (see Results 3.4).

3.5. Reproductive hormones (progesterone and testosterone)

Both progesterone and testosterone were detectable along the full
length of the baleen plates (Fig. 6; electronic supplementary material,
Table S1). The baseline concentration for progesterone in all individuals
fell within the range of 1.39 + 1.02 to 2.32 + 1.08 ng/g (mean =+ SD;
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Table 3), and for testosterone the baseline concentration ranged from
0.35 £ 0.17 to 0.56 + 0.34 ng/g (mean + SD; Table 3). No significant
differences between the two sexes were found in the apparent immu-
noreactive progesterone and testosterone (p = 0.9999).

4. Discussion and conclusion

In this study, we analyzed the isotope and hormone profiles in the
baleen of five subadult gray whales. Our isotopic analysis allowed us to
infer baleen growth rates, which generally agreed with prior estimates
for the species (Caraveo-Patino et al., 2007; Sumich, 2001). The hor-
mone analysis provided distinct endocrinology patterns between the
whale that died acutely (killer whale attack) and those whales of un-
known cause of death. Providing the first longitudinal profiles of the
adrenal, thyroidal, and gonadal axes obtained from the baleen of gray
whales in the months leading up to their deaths. Our results demonstrate
the feasibility of this integrated retrospective approach for gaining in-
sights into the foraging ecology, endocrinology, and discriminating
endocrine patterns between chronic illness versus acute cause of death
in gray whales.

Gray whales are assumed to be capital breeders, relying largely on
stored energy reserves acquired during the summer season to cover the
costs of migration and reproduction (Jonsson and Jonsson, 1997). The
fluctuations in §'°N values observed along the subadult gray whale
baleen plates agrees with the anticipated patterns for capital breeders: i)
lower values during the summer foraging phase, that are likely attrib-
uted to the benthic foraging on lower trophic level organisms (Burnham
and Duffus, 2016; Newell and Cowles, 2006; Nelson et al., 2008; Darling
et al., 1998); and ii) higher values during the wintering phase when
whales are primarily catabolizing their own tissues to fuel metabolism
(Fuller et al., 2005; Lee et al., 2012). While these §'°N patterns allowed
us to deduce baleen growth rates that were consistent with previous
estimates (Caraveo-Patino et al., 2007; Sumich, 2001), there were no
regular oscillations in §'3C within the sampled gray whale baleen. The
variable §'°N values between the different individuals during the
wintering phenology phase (see table 2) may suggest some degree of
plasticity in foraging strategies of individual gray whales (Caraveo-
Patino et al., 2007; Durham & Duffus 2018; Gelippi et al., 2022). Er_5,
for example, had the largest range of 5'°N values, with the highest peak
during the wintering phase and the lowest values in the summer
foraging. In addition, this individual had a clear segregation in the iso-
topic niches between phenology phases (Fig. 3). In contrast, Er_2 pre-
sented the lowest 5'°N values for the wintering phase compared to all
individuals, with overlapping isotopic niches between phenology phases
(Fig. 3), suggesting that Er_2 was potentially foraging in the wintering
lagoons and/or across their migratory corridors. Such foraging strategy
has been previously described for gray whales via molecular analysis
(Caraveo-Patino et al., 2007, 2009; Gelippi et al., 2022) and direct ob-
servations (Caraveo-Patino et al., 2007). If we consider the isotopic
composition of potential prey sources for gray whales across their pre-
sumed migratory range (e.g., Alaska, Oregon, California, and Baja Cal-
ifornia), assuming a trophic enrichment factor (AISN = 2 %o), as
established by Caraveo-Patino & Soto (2005) for gray whale baleen
plates; the individual Er_2 will have 513C values that closely resembles
the isotopic composition of Ericthonius brasiliensis in Baja California
(~-18.3 %o, Caraveo-Patino and Soto, 2005). Nevertheless, our low
sample size and the fact that our dataset is composed only of subadult
individuals demand caution in interpretation. To better understand the
isotopic patterns observed in gray whales and how they reflect the en-
ergetic pathways of their summer/winter grounds, we recommend that
future studies complement the bulk isotopic analysis with different
analytical approaches including: the use of isoscapes (i.e., stable isotope
mapping (e.g., Forbes et al., 2023); the use of compound-specific amino
acid analysis to disentangle the relative contributions of trophic and
baseline variation in 8'°C and 5'°N values (e.g., Riekenberg et al., 2021);
and/or integrating isotopic information of prey sources in Bayesian
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Fig. 5. Longitudinal profiles of immunoreactive hormone concentrations of
triiodothyronine (Log_T3; grey rhomboids and dotted line) across the length of
baleen plates from five stranded gray whales. The dashed horizontal line in-
dicates the log-transformed baseline for baleen T3. X-axes show the location of
each sample, in cm from base of the baleen plate (i.e., newest baleen = 1 cm)
with y-axes showing concentration of hormone (log-transformed ng of immu-
noreactive hormone per g of dried baleen powder). Migration phenology is
derived from 5'°N data and the estimated BGR; dark gray indicates summer
foraging and light grey indicates wintering (see Fig. 1), and season of growth at
each point on the plate was estimated from time of death (noted with a red X on
the x-axis). Only the erupted portion of the baleen plate from Er_1 (top) was
available, indicated with two parallel red lines on the x-axis. Blue arrows
denote the onset of T3 elevation prior to death. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version
gf this article.)

mixing models to assess the proportional contribution of each prey
source in their diet (e.g., Gelippi et al., 2022).

In the glucocorticoid (GC) analyses, we found that both cortisol and
corticosterone were detectable along the full length of the baleen from
two individuals (Er.1 & Er 4), but cortisol was consistently more
abundant than corticosterone. Furthermore, corticosterone exhibited
similar patterns to cortisol, i.e., corticosterone seemingly did not pro-
vide additional information. This pattern generally aligns with tradi-
tional assumptions of “cortisol dominance” in mysticetes (primarily
based on rare plasma samples from hunted specimens) as well as as-
sumptions that only the more abundant GC need be analyzed, but con-
trasts with recent findings of more corticosterone than cortisol in baleen
of other mysticetes (Fernandez Ajo et al., 2018; Hunt et al., 2017a; Lowe
et al., 2021a). Most mammals produce both glucocorticoids, and some
data indicate the two hormones can respond differently to exogenous
stressors, depending on the type and duration of the stressor (Koren
et al., 2012). Given our small sample size, we encourage future research
on both GCs to further investigate whether they might show species-
specific differences or individual differences in glucocorticoid domi-
nance or might provide differing information for acute vs. chronic
stressors.

Cortisol profiles for the four individuals with unknown cause of
death demonstrated a long-term elevation in cortisol that began an
estimated 8 months before death. In contrast, the individual known to
have died acutely due to killer whale predation (Er_5) had cortisol
concentrations that approximate baseline levels across the span of the
baleen, suggesting that this individual was in good health before its
acute death. These data suggest that the other four individuals experi-
enced a prolonged period of stress. Generally, individual perception of a
stressor activates the HPA-axis, leading to an increase in circulating GC
levels. Short-term elevations in GCs are thought to aid animals in coping
with the stressor (McEwen and Wingfield, 2010; Romero et al., 2009;
Romero and Wingfield, 2016), but if the perturbation is severe and/or
chronic, the individual deviates from its current life-history stage and
enters an “emergency life-history stage”, during which all activities not
essential for immediate survival are suppressed (Romero and Wingfield,
2016; Wingfield, 2005; Wingfield et al., 1998). Consequently, chronic
elevation of GCs can itself have negative effects on long-term health,
through immunosuppression, reduced growth, and inhibition of repro-
duction (Buck et al., 2007; Dhabhar, 2009; Dhabhar et al., 2012;
Kitaysky et al., 1999). Therefore, although the immediate cause of death
remains unknown for these four individuals, it is conceivable that the
prolonged elevation of cortisol may eventually have directly impacted
health and survival, i.e., in addition to any direct negative effects of the
stressor itself (Romero and Wingfield, 2016). The presence of “rake
marks” attributed to killer whale interactions could provide evidence for
increased vulnerability of these individuals. It is plausible that whales
undergoing chronic illness might become more susceptible to predation
and other threats.

T3, like cortisol, tended to show a gradual, months-long increase in
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Fig. 6. Longitudinal profiles of immunoreactive hormone concentrations of
progesterone (Progesterone; black cross-square) and testosterone (Testosterone;
grey solid squares) across the length of baleen plates from five stranded sub-
adult gray whales. The dashed horizontal lines indicate the log-transformed
baseline for baleen progesterone (black) and testosterone (light grey). X-axes
show the location of each sample, in cm from base of the baleen plate (i.e.,
newest baleen = 1 cm) with y-axes showing concentration of hormone (log-
transformed ng of immunoreactive hormone per g of dried baleen powder).
Migration phenology is derived from §'°N data and the estimated BGR; dark
gray indicates summer foraging and light grey indicates wintering (see Fig. 1),
and season of growth at each point on the plate was estimated from time of
death (noted with a red X on the x-axis). Only the erupted portion of the baleen
plate from Er_1 (top) was available, indicated with two parallel red lines on the
x-axis. Blue arrows denote the onset of T3 elevations prior to death. (For
interpretation of the references to colour in this figure legend, the reader is
I;eferred to the web version of this article.)

the four whales of unknown cause of death (albeit with high individual
variability), but remained relatively stable in the whale with an acute
cause of death. The simultaneous elevation of both cortisol and T3 was
unexpected, as the HPA axis is classically thought to inhibit the HPT axis
(Behringer et al., 2018). In fact, elevated GCs in mammals often directly
downregulate the HPT axis, resulting in decreases in circulating T3
(Charmandari et al., 2005). However, this downregulation can be tem-
porary (Nicoloff et al., 1970). Further, emerging data indicate that in
marine species, T3 may elevate simultaneously with the GCs during
those stressors that require increased energetic output, such as swim-
ming while entangled in fishing gear (Lysiak et al., 2018). In mammals,
T3 can also elevate during thermoregulatory challenges, as elevated T3
directly raises metabolic rate, which elevates body temperature (Beh-
ringer et al., 2018; Williams et al., 2019). Indeed, Lemos et al., 2022b
found that gray whales in poor body condition exhibited higher thyroid
hormone concentrations in feces, compared to whales in good body
condition, suggesting a possible thermoregulatory influence on T3. In
other words, poor body condition in cetaceans entails thinning of the
insulative blubber layer and might therefore require a compensatory
elevation in metabolic rate and thus an elevation in T3. Similarly, fecal
thyroid hormones may reflect changes in food availability (Ayres et al.,
2012). In our study, all five of our study whales died during the current
UME, which generally has been linked to poor nutrition and emaciation
(Christiansen et al., 2021). Though it is tempting to ascribe the gradual
elevation in T3 seen here to the poor body condition reported in gray
whales during the UME generally, the necropsy reports of these five
individuals did not describe severe emaciation. However, it is possible
that these whales were in relatively lower body condition with respect to
the population mean. Overall, we speculate that whales in poor body
condition may elevate T3 in response to thermoregulatory demands.
This hypothesis could be tested with further comparisons of baleen from
stranded whales in poor vs. good body condition, ideally with mea-
surements of body condition, e.g., blubber thickness or body area index
derived from drone-based photogrammetry (Bierlich et al., 2021; Bur-
nett et al., 2019). Finally, T3 also commonly varies across life history
stages (Wilsterman et al., 2015), and thus studies of T3 patterns in the
baleen of juveniles as compared to adults may be informative.

We also quantified reproductive hormones across the baleen’s entire
length in four subadult males and one subadult female. To our knowl-
edge, these are the first longitudinal profiles of reproductive hormones
from gray whales across a full calendar year. As expected for this
reproductive age class (subadults), we did not observe temporal pat-
terns, cyclical trends, or elevated hormone concentrations, suggesting
none of the subadults had yet reached sexual maturity. Nevertheless, our
results add to knowledge about expected baselines of reproductive
hormones in subadults and may thus inform future efforts to identify
onset of sexual maturity. Our results also underscore the potential to
capture at least one year of information from adult gray whale baleen, as
there have been uncertainties about the feasibility of capturing complete
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pregnancies or multiple pregnancies within gray whale baleen (max
baleen length ~ 30 cm), or whether seasonal testosterone cyclicity in
males could be discerned. Our subadult baleen specimens captured an
estimated timeframe of 1.3 years. Further, adult baleen generally cap-
tures a longer timespan than subadult baleen (since subadults not only
might have shorter baleen but also tend to have faster baleen growth
rate); thus, these results suggest that adult gray whale baleen may
capture a sufficient time frame to examine at least one if not two prior
reproductive cycles.

The ENP gray whale population has rebounded from a dramatic
decline attributed to whaling from less than 4,000 by 1900 to a peak
abundance estimated at 26,916 individuals (Stewart and Weller, 2021;
Swartz et al., 2006). However, the ENP gray whale population has
exhibited significant fluctuations, marked by two Unusual Mortality
Events (UMEs) that curtailed population size, underscoring the suscep-
tibility of gray whales to oceanic conditions, resource availability, and
other influences (Stewart et al., 2023; Torres et al., 2022). The occur-
rence of recurrent UMEs with often-unknown causes in the ENP gray
whale population highlights the necessity for innovative methodologies
to investigate and better understand the causes of death and physio-
logical response of individuals to fluctuations in the environment.
Despite the characteristic shorter length of gray whale baleen compared
to other mysticete species, and thus the relatively brief period of lon-
gitudinal data that can be inferred, even subadult gray whale baleen
captures a > 1 year timespan, and adult baleen specimens may capture a
longer timeframe. In sum, baleen analysis in gray whales allows
assessment of physiological status of at least the past year and may
enable inferences as to the cause of death (acute vs. chronic, nutritional
vs. non-nutritional stress). Overall, baleen analysis emerges as a
powerful tool that enables a comprehensive and retrospective assess-
ment of gray whale hormonal and isotopic profiles, including the as-
sessments of the stress response, reproductive status, and foraging
ecology in the months or years leading up to their death.
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