Reliable Network Performance for Edge Networks
with QoS-Aware Adaptive Routing

Osama Abu Hamdan
Department of Computer Science and Engineering
University of Texas at Arlington
oma8085 @mavs.uta.edu

Abstract—Edge networks are commonly used to collect data
from remote areas with limited accessibility such as deserts and
mountaintops. They rely on wireless communication to stream
the collected data to data centers, which makes them susceptible
to bandwidth fluctuations due to extreme weather conditions
such as snowstorms. Although these networks are designed to
have alternate routes to recover from link failures, existing rigid
network management solutions (i.e., OSPF) make it difficult to
utilize alternate routes when the bandwidth of wireless links
degrades. This paper proposes an adaptive routing algorithm,
RENET, to quickly detect bandwidth fluctuations and re-adjust
flow paths to increase the utilization of available links. RENET in-
troduces a novel delay-based measurement technique to quickly
detect bandwidth fluctuations in wireless links. Experimental
results collected in real-world and emulated networks show that
RENET offers a robust solution to bandwidth fluctuations and
outperforms the state-of-the-art solutions by more than 30% in
terms of QoS satisfaction rate. Moreover, RENET increases the
quality of adaptive video streams by up to 54%.

Index Terms—Adaptive routing, wireless link bandwidth
changes, Software Defined Networking, traffic engineering.

I. INTRODUCTION

The adoption of the Internet of Things (IoT) phenomenon
across many science and engineering fields has led to the wide-
area deployment of sensor devices such as public safety cam-
eras, LiDAR sensors, and advanced atmospheric monitoring
devices. In these networks, edge devices communicate (via
wireless or wired ethernet) with a set of middle aggregation
points, which are in turn connected by fiber or high-speed
microwave backhaul links to form an interconnected infras-
tructure leading to private data centers or cloud services as
illustrated in Fig. [T} Since edge networks heavily rely on long-
distance wireless links both at the edge and aggregation sites,
the resulting end-to-end network topology is highly variable in
terms of availability and capacity over space and time due to
conditions outside engineering control such as weather, radio
interference, or physical disturbance.

Current network management practices for edge networks
rely on static routing technologies, such as Open Shortest
Path First (OSPF) and Multiprotocol Label Switching (MPLS),
that are manually configured by experienced network ad-
ministrators across the physical and virtual WANs. Although
traditional distributed routing algorithms work well for uncon-
gested networks (30% or less utilization), they require highly
skilled network managers to frequently tune link weights

Engin Arslan
Department of Computer Science and Engineering
University of Texas at Arlington
engin.arslan@uta.edu

Regional WAN

Fire/Hazard
Routing

Ethernet
Cameras

Wireless

Commercial Cloud

_ 1-100G . -
AL Optical ™1
i

Field Station

On-Prem
Dtacenter

Wireless

Weather/Climate
Stations
Wireless

10-80M
Wireless

Smart Traffic
Infrastructure

Regional WAN
Routing

S—n

Off-Prem
Optical Datacenter

> (oo | ——> [

Fig. 1: An edge network infrastructure used by the University of
Nevada, Reno researchers to stream data from remote sensors to data
centers.

Wireless

...... w - " 50-200M

....... @. & 3 110G

1G
Optical

Edge Acquisition

when link capacity, network demand, and QoS metrics are
exceedingly dynamic. While researchers proposed Software
Defined Network (SDN) based traffic engineering solutions to
optimize network routing to mitigate congestion in dynamic
environments [1]-[8]], they assume the bandwidth of links to
be static. However, edge networks frequently face bandwidth
fluctuations in wireless links due to environmental conditions
such as icing on the antenna, necessitating an effective way
of measuring link capacities in real time to adapt to changing
conditions.

In this paper, we propose an SDN-based adaptive routing
solution for edge networks, RENET, to minimize the impact
of link capacity changes on the performance of applications.
RENET introduces a lightweight probing approach to detect
bandwidth fluctuations. The probing method conducts delay
measurements for each link to identify congested links. It
then reroutes flows to alternate paths to better utilize avail-
able network resources and minimize congestion. Moreover,
RENET allows (does not mandate) applications to specify
their bandwidth requirements such that it will assign them
to paths that can meet their demand. Experimental results
collected in both real-world and emulated networks show
that RENET enhances the quality of service for bandwidth-
sensitive flows by more than 30% compared to the state-of-
the-art solutions. Moreover, it improves the quality of adaptive
video streams by up to 54%. In summary, this work makes the

following contributions:

o We propose a delay-based congestion detection method
to identify link capacity drops in wireless channels under
extreme weather conditions. This lightweight probing
solution can quickly detect congested links without re-
quiring access to port statistics from wireless devices.

o We introduce a heuristic model to find optimal routes
for new and existing flows. The model allows RENET to
reserve sufficient capacity for future flows while satisfy-
ing the Quality of Service (QoS) metrics of current flows
with specific bandwidth demands.

o We conduct experiments using both physical and virtual
(i.e., Mininet) networks and show that RENET improves
application QoS by more than 30% compared to the
state-of-the-art solutions. Moreover, RENET improves the
quality of adaptive video streams by up to 54%.

II. RELATED WORK

Previous studies showed that SDN improves Quality of
Service [1]-[4] and facilitates network monitoring [9]—[11]].

Network Monitoring and Measurement: Researchers devel-
oped many network-monitoring techniques for SDN using
OpenFlow. For example, OpenTM [12] proposes a heuristic
solution to choose a set of switches to monitor in an SDN
network to accurately capture the traffic matrix. PayLess [[13]]
takes advantage of OpenTM to identify and monitor the
most important switches and adapt the probing frequency.
FlowSense [14]] presents a passive push-based monitoring
technique to estimate per-flow link consumption. Although
FlowSense’s communication overhead is minimal, it only
performs well when the network has many short flows.

OpenNetMon [15] uses an adjustable polling rate to poll
data from switches, which minimizes its resource overhead.
LLDP-looping [16] uses agents installed on switches and
controller modules to monitor the latency of links. The agents
initially require each probe packet to circle a connection three
times before calculating their RTT to track delay. IPro [8] uses
reinforcement learning to minimize probing intervals, leading
to precise monitoring with low control-channel overhead.

Quality of Service: Several well-known methods have been
suggested to enhance QoS in legacy networks, including
integrated services (IntServ) [17]], differentiated services (Dift-
Serv) [18]], and multi-protocol label switching (MPLS) [19].
However, these decentralized solutions cannot completely cap-
ture the network conditions; hence, they fail to offer optimal
solutions in all scenarios.

On the other hand, several SDN-based QoS enhancement
mechanisms have been proposed in the literature. Egilmez
et al. proposed a multimedia controller to offer dynamic
end-to-end routing [5]]. The controller designates a path for
multimedia streaming data flow to enhance the delivered video
quality. In another work, HiQoS divides user traffic into three
categories video stream, interactive audio/video, and best-
effort [6]]. Then it uses a modified version of the Dijkstra
algorithm to choose the routes with a maximum available
bandwidth for new flows. HiQoS preemptively addresses link

failures by computing multiple backup paths for each flow.
The routing engine in [7] calculates the least-loaded shortest
paths between end host pairs using statistics it collects from
OpenFlow switches. Upon congestion, the engine re-routes
large flows to alternate paths, ensuring no congestion on those
paths.

DICES [20] is a dynamic, adaptive Search-Based Software
Engineering (SBSE) approach for IoT environments. It moni-
tors the network in real time to detect congestion which is then
alleviated by changing the route of some flows. It adopts multi-
objective search algorithm Non-dominated Sorting Genetic
Algorithm II (NSGA-II) to find routes that optimizes network
utilization, minimizes transmission delay, and require minimal
reconfiguration.

BACAR [21]] aims to dynamically adjust network routes
based on real-time bandwidth and congestion measurements.
It utilizes lightweight active delay measurements to detect
link congestion and real-time bandwidth fluctuations. Upon
detecting potential congestion due to high traffic rates or a
bandwidth drop, BACAR uses delay measurements to identify
links that experience capacity drop. If bandwidth drops leads
to congestion, BACAR moves large flows to alternate paths to
mitigate the congestion.

Different from existing work, RENET is designed to capture
transient bandwidth drops that can affect wireless connections
due to extreme weather conditions. RENET uses a novel
delay-based mechanism to identify and detect the capacity
of wireless links experiencing bandwidth fluctuations. It then
recalculates optimal routes for flows on congested links to
divert them to alternate paths, thereby maximizing network
utilization and increasing application QoS.

III. MOTIVATION

The available network capacity of radio channels can be
affected by environmental conditions. In particular, winter con-
ditions such as heavy snowfall can lower the effective trans-
mission rate of long-distance directional radio links as they
can increase the signal-to-noise ratio by disturbing antenna
orientation, damaging the antenna dish, and causing moisture
in the coaxial cable. In addition to extreme weather conditions,
interference is also a common problem when using unlicensed
frequencies, which can adversely affect the transmission rate
of wireless links. Consequently, the bandwidth of wireless
links exhibits a highly fluctuating behavior in production wide-
area edge networks.

As an example, Fig.[2| shows the capacity of one of the wire-
less links used in The Nevada Climate-ecohydrological As-
sessment Network (NevCan) and Alert-Wildfire projects [22]],
[23] over six weeks. Each data point marks the average
link capacity for 30 minutes. The figure shows that path
capacity exhibits drastic changes as snowstorms cause icing
and disorientation on the antenna. While the capacity is
around 40 Mbps during the first week, it reaches 80 Mbps in
the second week. However, capacity fluctuations continue to
happen consistently in the following weeks. While the capacity
remains mostly between 60 — 80 Mbps, it falls to around 40

80 Ty it

’2;70 Wi H M”d'ﬂ

260 o
£50 &
g
G40 a0
30 30 o130 %emseo 11:30
Week 1 Week 2 Week 3 b \{Veek 4 Week 5 Week 6
ate

Fig. 2: Example of bandwidth fluctuations in a wireless link used
in The Nevada Climate-ecohydrological Assessment Network (Nev-
CAN) project [22]. Extreme weather conditions lead to a more than
50% reduction in transmission rate.

Mbps occasionally, likely as a result of weather conditions.
While it may be possible to capture the signal-to-noise ratio
on wireless interfaces to detect such bandwidth degradation,
it is not always easily accessible to network administrators
and, therefore, requires a manual process of examining system
behavior to detect such changes. Although there are backup
links that can be used in the event of primary link failures,
bandwidth degradation events typically do not trigger route
changes as primary links are still functional. This in turn can
cause applications to experience congestion while alternate
links go unused.

SDN offers a great opportunity to take advantage of avail-
able links, as it allows us to centrally monitor and control all
switches in the network. However, existing solutions in this
domain assume that link bandwidth does not change over time,
so they solely focus on detecting congestion and mitigating
it by choosing custom routes to improve network utilization.
As a result, they fail to resolve network congestion caused
by link performance degradation events in wireless links. We,
therefore, introduce RENET to detect bandwidth fluctuations
in wireless links and adapt to them by rerouting some of the
flow to underutilized links.

IV. SYSTEM DESIGN

We implemented RENET by extending the ONOS con-
troller. RENET uses two data stores and three services to
keep track of network status and make routing decisions as
illustrated in Fig. 3] We parse OpenFlow stats using Stats
Parser service and save flow and link-level information in
respective data stores. We call the Path Selection algorithm
when a new flow arrives, an existing flow terminates, or
congestion is detected in any of the links to find alternative
routes. Finally, Bandwidth Tracking service plays a key role in
detecting bandwidth changes due to environmental conditions.
It supports two approaches to detecting the current capacity of
a link. The first and preferred approach uses SNMP metrics
sent from wireless bridges which include current throughput
as well as capacity. However, if SNMP data is not available,
either due to access limitations or lack of support by the
wireless device, we utilize the Bandwidth Tracking service
with the information stored in the Link Store to detect link
capacity changes. We next explain each of these services and
data stores in detail.

‘ Stats Parser Bandwidth

‘ Path Selection

Service Service Tracking Service
OpenFlow Routing Delay SNMP
Stats Rules Measurement
V==

=

Fig. 3: RENET utilizes two stores to keep track of link and flow
statistics. It also implements three services to monitor the network,
detect bandwidth fluctuations, and make routing decisions.

A. Stats Parser Service

This service is responsible for capturing and processing
OpenFlow stats the network devices send periodically. This
allows RENET to make informed routing decisions, thereby
maximizing network utilization and improving the quality of
service for the active flows. OpenFlow stats include both
port statistics and flow statistics. Port statistics are utilized in
measuring link congestion, and flow statistics in the calculation
of individual flow throughput. Estimating an individual flow
throughput benefits in satisfying the demands of bandwidth-
sensitive applications, by measuring the distance between
the current throughput and the demanded bandwidth of that
application.

B. Flow Store

Since RENET aims to improve the QoS for applications, it
keeps track of a few statistics for active flows as shown in Ta-
ble[} Current path is determined by the Path Selection service.
Current rate is an estimation of the real-time throughput of
the flow. The Current rate is calculated using the Stats Parser
service from the OpenFlow stats from the edge switch, which
are collected every 5 seconds by default. The Desired rate
is specified just before the data flow initiates for bandwidth-
sensitive applications. This value is set to -1 for the other
applications, indicating a preference for maximum available
bandwidth without strict adherence. The Update time records
the timestamp of a flow’s route change, ensuring that a flow
will not be rerouted more than once within two consecutive
OpenFlow stats intervals. This promotes stability and allows
all active flows the opportunity to secure improved routes.
Finally, the Stats Parser service sets a flow as Active when
it starts, and switches it to False if the edge switch does not
report new statistics of the flow in two consecutive intervals.
This helps RENET ignoring paused or completed flows when
making scheduling decisions for other flows.

TABLE I: Statistics stored in Flow Store and Link Store for active-
flows and active-links characteristics

Flow Store Metrics [

Source-Destination IP and port information

Src-Dst
Current path The current route of the flow

The current throughput for the flow
The desired throughput for the flow

Timestamp of the last routing decision

Current rate
Desired rate
Update time
Status of the flow (active or not)

Link Store Metrics

Instantaneous traffic rate on the link
Base delay of the link

Currently measured delay of the link
The base capacity of the link

Current measured capacity of the link
Timestamp of the last update to the link

Active

Current throughput
Base delay
Current delay
Base BW

Current BW

Last updated

C. Link Store

Link Store records basic statistics for each link in the
network. It tracks five metrics as in Table [l One of this
work’s contributions is to estimate a link’s effective capacity
and transmission delay, and detect the temporary changes
(delay increase or bandwidth decrease) due to extreme weather
conditions, as shown in Fig. [2| We assume that system admin-
istrators have prior knowledge about the link’s capacity and
the transmission delay under ideal, non-congested conditions.
Bandwidth Tracking service either polls SNMP metrics peri-
odically or executes lightweight probing delay measurements
to identify congested links and update their capacity.

D. Bandwidth Tracking Service

Running active throughput measurements using tools such
as Netperf [24] and iPerf [25] can help estimate the available
throughput between two nodes. However, this approach pro-
duces overhead on the target link, as measurements must be
performed periodically. While some researchers have proposed
lightweight methods [26], [27], these are mainly designed
to estimate end-to-end bandwidth between end hosts, which
doesn’t align with our needs as it necessitates link-level
information.

Another approach to determining if a link is fully utilized in-
volves capturing packet loss information. When a link reaches
full utilization, the receiving switch may encounter a buffer
overflow, leading to packet loss. We calculate packet loss
on a link by comparing the number of packets received by
the receiving switch to those transmitted by the transmitting
switch at each end of the link. Conversely, if a packet loss
occurs in a link, it’s an indication that the link is fully utilized.

We examined this method by simulating data flow between
two nodes: N1 acting as the sender and N2 as the receiver.
The flow passed through an Allied-Telesis SDN switch, de-
noted as S. The bandwidth of the link between N1 and S
is set at 1 Gbps, while the link between S and N2 operates
at 100 Mbps. We captured the difference between the packets
received by S from N1 (RX) and the packets sent by S to
N2 (T'X) in two scenarios: normal operation and congestion.
The graph in Fig. [] illustrates that RX — T'X values show

[9,]

o

o
o)

RX - TX (Packets)
o
X
+
&
+

+ +®+W D Y+

Congested (5s)
o %X Congested (10s)
O O Normal (5s)

&
=)
(@)

0 5 10 15 20 25 30 35 40 45 50
Time (s)
Fig. 4: The difference between received (RX) and sent (TX) packet
counts for a switch port as reported by OpenFlow stats. (RX)—(TX)
cannot be used to infer congestion since both normal and congestion
scenarios produce similar values.

significant fluctuations in both normal and congested scenar-
ios. Although further analysis is necessary to understand why
RX — TX yields nonzero values when the link is not fully
utilized, it is apparent that this method is not feasible for
detecting congestion-related packet loss events.

Alternatively, we employ two approaches to keep track of
the estimated utilization of links. The first and preferred ap-
proach relies on SNMP statistics reported by wireless devices.
Different from wired switches, the SNMP statistics of wireless
bridges include capacity information for wireless connections,
allowing us to quickly detect performance degradation. How-
ever, SNMP data may not always be accessible due to device
support limitations or administrative control issues. Therefore,
we’ve also developed a lightweight delay probing technique
to identify link congestion while not fully utilizing their initial
bandwidth. This helps us detect potential bandwidth drops.

Previous work showed that network delay can be used to
infer congestion as queuing delay on bottleneck links increases
significantly [28]-[30]. Hence, we adopted the one-way-delay
(OWD) measurement technique proposed in [31] to detect
congested links. The technique works as follows: To measure
the one-way delay for the link between Switch-1 (S1) and
Switch-2 (S2) in Fig. 5] we first measure the delay between
the switches and the controller, t5; and tse, using Echo
messages sent from the controller. When a switch receives an
Echo Request message, it responds to it with an Echo Reply
message; thus time duration between the departure of Echo
Request message and the arrival of the Echo Reply is expected
to be equal to the round trip time between the switch and the
controller. Next, we send a packet to loop between S1, S2,
and the controller whose delay is denoted by ts;_so. Finally,
we use the Equation [I] to estimate the one-way delay from S1
to S2:

tsl tsZ
ds —s2 =ts1-s2 — (o . 1
1-s2 1-s2 — (5 T3) (1)

It is expected that the OWD, d41_ 42, Will increase signif-
icantly when the link S1 — 52 is congested due to queue
buildup at S1. To verify this assumption, we conducted delay
measurements using software and hardware switches. We used
the same topology in Fig. 5] and measured the OWD for the
link between S1 and S2. The bandwidth of links between the
source and S1, and S2 and the destination is set to 1 Gbps,

Controller

ts1 s2
»'/I *
g ———— &
Switch 1 Switch 2

Source Destination

Fig. 5: One way delay measurement technique proposed in [31]

whereas the bandwidth between S1 and S2 is set to 100 Mbps.
The base delay (i.e., delay without congestion) is measured as
1ms for the S1 — S2 link and 0.1ms for all other links.

In Fig. we observe the impact of link utilization on
the OWD with virtual switches using Mininet. We set the
buffer size on the egress port of S1 to 100 packets and
use TCP Cubic as the congestion control algorithm. We use
Iperf to create TCP and UDP transfers and set traffic rates
to gather statistics under various utilization conditions. We
measure the delay a hundred times and report the average and
standard deviation values. The OWD remains close to the base
delay until the link utilization reaches 95%, at which point it
increases considerably. When the link utilization hits 100%,
the delay becomes more than 10x of the base delay with TCP
and UDP flows.

Since delay measurement is highly dependent on the queue
size on S1, we examine the impact of queue size on observed
delay as in Fig. [6b] We varied the queue size on S1 between
10 and 200 packets with Mininet. We ran TCP traffic with
90 Mbps, 95 Mbps, and 100 Mbps rates to represent 90%,
95%, and 100% link utilization scenarios. As expected, the
increasing queue size increases the measured delay as probing
packets wait longer in the queue. However, the rate of increase
depends on the link utilization rate. Specifically, when link
utilization is 90% or 95%, the measured delay ranges between
1 — 7z of the base delay. However, when the link utilization
reaches 100%, the measured delay ranges between 6 — 70z of
the base delay.

On the other hand, we notice that Echo Request/Response
messages (Control Layer Probing) do not work as expected
with physical switches (Allied Telesis IE340-20GP) due to
significant fluctuations in response time to Echo Request
messages by the switches as shown in Fig. [6cl We suppose this
is because Echo Request messages are sent over the control
link between the switch and the controller and handled by
the control port of the switch. As a result, they require the
involvement of a switch CPU, which causes instability in
response time.

To overcome this issue, we developed a delay measurement
that works with the data layer. In this method (Data Layer
Probing), we set the links between the controller and the
switches as “hybrid” links which can carry both control
messages as well as data messages. Then, we send custom

probing packets (crafted with Scapy) from the controller to
switches to be forwarded as data packets. Switches process
these probing packets based on OpenFlow match-action rules,
and the switch CPU is not involved. Now, all three probing
packets (t51 and t49, and ts1_s2) in Equation [I] are processed
in the data layer. To avoid the delay that can be caused
by installing OpenFlow rules to the switches, we install the
routing rules to S1 and S2 before sending the probing packets.

We compared the proposed data-layer delay measurement
approach against [31] and ping methods. We run ping between
source and destination nodes and report half of the measured
round trip time. Since the delays from Source to S1 and
from S2 to Destination are negligible compared to the delay
between S1 and S2, the observed values in ping are expected
to be a close estimation of the link delay. We repeat the
measurements 100 times and report the average and standard
deviation values in Fig. There is no strong correlation
between utilization and measured delay when using Echo
Request/Response messages in the control layer. On the other
hand, both our approach and ping can capture the change in
the delay when utilization hits 100%. Specifically, we can still
observe that the link delay increases by nearly 10z compared
to the base delay.

Based on these experiments, RENET will detect capacity
changes if there is an increase in the OWD even when the
link is still underutilized compared to the Base BW value in
the link store. When this occurs, we adjust the Current BW
of the link to match the Current throughput. This approach
is preferable to conducting active throughput measurements,
as underutilized links are not expected to significantly impact
performance, even if their current bandwidth is less than the
maximum.

Our approach to OWD measurement involves injecting
only three small packets (each less than 100 bytes) per link,
resulting in almost negligible overhead. Additionally, we avoid
executing delay measurements if the estimated capacity of a
link exceeds 90% of its Base BW. RENET resets the Current
BW of a link to its Base BW after a timeout unless a new
delay measurement still indicates low capacity. This timeout
mechanism accounts for the transient nature (lasting from
a few hours to days) of extreme environmental conditions.
However, if the estimated Current BW shows an increase
(possibly due to improved weather conditions) at any point,
RENET immediately adjusts the bandwidth to match the link
utilization to reflect these changes

As we’ll see in the next section, setting a new Current
BW involves invoking the resource-intensive Path Selection
service. Therefore, we only consider changes exceeding 30%
of the Current BW value. Additionally, whenever a change in
link bandwidth is detected via delay measurements or SNMP
reports, we update the Last updated timestamp in the Link
Store. We then ignore any further bandwidth updates in the
next two time intervals, which guarantees stability in the
application

F

P —=— TCP Mean u %70 —=— 90% Utilization Mean > —»— Control Layer Probing
g’ 50{ —e— UDP Mean g 601 —* 95% Utili'z'atio.n Mean = 10 —=— Ping .
o) —»— 100% Utilization Mean £ —e— Data Layer Probing
© 40 v 50 =
8 g z s ;
30 340 v -
7} [
30 > 0

[a] [a]
520 20 = ? I
e o °
210 210 = s -5
s 3 ___—r =
= 0 = 0 —_— e o T 2] -10

0 25 50 75 90 95 100 10 25 50 100 200 0 25 50 75 90 95 100

Utilization (%)

(a) Impact of link utilization on One-way delay
(OWD) - Mininet

Queue Size (Packets)

(b) Impact of queue size on OWD - Mininet

Utilization (%)

(c) OWD measurement - Hardware Switch

Fig. 6: Increased link utilization leads to higher delays for both TCP and UDP traffic as packets spend more time in queues (a). Specifically,
delay increases by more than 10z when link utilization reaches above 95% as long as queue size is larger than 10 packets (b). However,
the use of control-layer messages (i.e., Echo Request/Reply) for delay measurements leads to inconclusive results, thus we introduce a
data-layer-based delay probing method to accurately measure the link delay. Figure (c) shows that data-layer probing returns similar results

as ping for increased link utilization.

E. Path Selection Service

This service finds a new path for existing or new flows to
meet their demand and mitigate network congestion. Algo-
rithm |1 shows the logic of the path selection algorithm. We
utilize getKShortestPath API from ONOS to find the
top K shortest paths between any two endpoints. Although
we used K = 100 in the experiments, Section shows that
smaller K values in around 5 — 10 are sufficient to discover
good alternate routes while minimizing the execution time of
the Algorithm

For each considered alternate path, we find available capac-
ity, pathThr, by going through individual links and estimating
achievable throughput, available BW (lines[I0}23). If a link is
not fully utilized, the target flow may claim the free capacity.
However, the flow’s fair share can be more than the available
bandwidth (especially if the link is already fully utilized);
thus, we also estimate its fair share by dividing the link’s
bandwidth by the number of active flows, m—%gﬂ;ﬂ
We take the maximum of available bandwidth and the flow’s
fair share in a link as an estimated throughput for the flow
on a link. The throughput of a path is calculated as the
throughput of its link with the lowest estimated capacity
(line [T8). Next, we sort the paths in ascending order based
on the estimated throughput and check if the application has
a specific bandwidth request, desiredRate. If it does, we
select a path with the lowest estimated free capacity that
meets the flow’s bandwidth requirement (line 28). Otherwise,
if either the flow has no predefined bandwidth requirement
or none of the paths has sufficiently high free bandwidth to
meet the bandwidth requirement, we assign it to the path
with the highest estimated throughput. The motivation behind
selecting the lowest bandwidth route in the first case is to
leave the paths with a higher capacity to future flows which
may request higher bandwidth. If multiple paths have the same
free capacity, we choose the one with the lowest hop count.

The path selection service is triggered by three events (i)
the start of a new flow, (ii) the termination of an existing flow,

and (iii) capacity change in wireless links due to environmental
conditions. In the first case, RENET uses the Algorithm E] to
find a route that fulfills the bandwidth requirements of the new
flow if its bandwidth demand is specified. The second case
is for active flows to benefit from this change, especially if
their demand is not satisfied. Therefore, when the Flow Store
detects that a flow is not active anymore (through missing flow
reports), the path selection service iterates over active flows
(using Flows Store) to find the one(s) that can be rerouted
and runs Algorithm |I| to check if they can be assigned to
a different path for improved performance. Finally, capacity
change events also trigger path selection service to consider
rescheduling flows on the affected link.

Since it will be costly to go through all active flows every
time a flow terminates, the service only evaluates (i) flows with
1 Mbps throughput or more (ii) whose throughput demands are
not satisfied (iii) that have not been rerouted recently (within
the past two monitoring intervals) and (iv) whose Current rate
is below 75% of their Desired rate if applicable. We next
sort the remaining flows in ascending order based on their
satisfaction ratio to prioritize the flows with lower fulfillment
rates. Then, we iterate over the flows and call Algorithm (1| to
check if they can be routed through different paths for better
performance. To implement stability in the network, we apply
route changes only if the new route is expected to offer 25%
or higher throughput compared to the current route.

Managing applications without specific bandwidth require-
ments can be challenging because their flow’s desired rate is
undefined. Initially, we neglect flows where the bottleneck link
in their current path is utilized at 80% or less. This implies they
don’t need additional bandwidth. Then, we invoke Algorithm]
to analyze other possible paths that could offer these flows a
greater bandwidth. To give a fair chance for all flows in the
network, we exclude a recently rerouted flow from rerouting
analyses in the subsequent rounds.

Algorithm 1: The heuristic algorithm in Path Selection
Service to find routes for new and existing flows.

Result: path for a flow between src and dst pair

1 getKShortestPath(nl, n2, K) = Returns K shortest
paths between nodes nl and n2

2 getLowestBWLink (path) = Returns the link with the
lowest free capacity

3 sort(paths) = Sort paths in ascending order based on
their free bandwidth

4 LinkStore = List of links

5 FlowStore = List of active flows

6 flow = Flow to be routed

7 desiredRate = flow.rate

8 paths = getKShortestPath(flow.src, flow.dst, K)

9 pathList = {}

10 foreach path € paths do

11 pathThr = INF

12 foreach link € path.links do

13 flowCount = link. flowCount

14 link.usage = Y1V Link. flows[n).thr
15 avail BW = link.estBW — link.usage

16 fairShare = %

17 expectedThr = max(avail BW, fairShare)
18 if expectedThr < pathThr then

19 ‘ pathThr = expectedT hr

20 end

21 end

22 pathList[path] = pathThr

23 end

24 sort(pathList)
25 if desiredRate # Null then

26 foreach path € pathList do

27 pathThr = pathList[path)

28 if pathThr > desiredRate then
29 ‘ return path

30 end

31 end

32 end

33 else

34 return pathList[—1]

35 end

V. EXPERIMENTAL RESULTS

We evaluate the performance of RENET by testing it in real-
world and emulated networks using multiple network topolo-
gies and traffic patterns. We compare RENET against BACAR
[21], DICES [20], and the reactive forwarding (RFWD) so-
lutions. The RFWD shortest-path algorithm is the built-in
flow-forwarding solution in the ONOS controller. DICES uses
NSGAII to find the optimal routes for new flows as well as
to detect and mitigate network congestion. Unlike RENET,
DICES and RFWD assume that the network bandwidth is
static, so their routing logic is oblivious to bandwidth fluc-

Host-35
|

i’/’ . ’?Switch-3
&
Host-2 /\' |

)/ j=r=7SwKch-4
5\ '\\\' R Host-4
Host-1

Fig. 7: The network topology used in the evaluations.

Switch-1 Switch-2

tuations. Finally, BACAR is the closest work to RENET as it
conducts delay measurements to detect bandwidth variations
in wireless links. Its routing algorithm, however, does not
consider application requirements. As a result, it adopts a best-
effort approach and chooses paths with the highest available
capacity. We present the performance of RENET using both
delay (RENET-D) and SNMP (RENET-S) based capacity de-
tection approaches as described in Section

A. Real-World Experiments

Fig. [/] displays the in-lab topology we used to emulate
the edge network used by the University of Nevada, Reno
researchers for weather sensing and wildfire monitoring [22],
[23]. We used Allied Telesis (AT) IE340-20GP OpenFlow 1.3
compatible low-power, weather-resistant switches. We used
four AT switches connected with 50 Mbps wired links except
for the link between Switch-1 and Switch-3, which uses UISP
airFiber 2.4 GHz wireless bridge, which provides around 50
Mbps throughput.

1) Bandwidth-Sensitive Applications: We first evaluate the
performance of RENET when flows specify their bandwidth
demand before they start. We use Poisson Distribution with
three different mean values (3, 5, and 10 seconds) to create
randomized workloads that lead to varying degrees of network
congestion. Flow rates and sizes are in the 5 — 25 Mbps and
50 — 250 MiB ranges respectively. We selected flow sizes to
emulate video streaming with 144p to 4k resolution for 10—50
seconds under optimal network conditions. Finally, we select
source and destination hosts randomly to simulate data flow
on both ways of the link. Hence, flows last anywhere between
16 — 400 seconds depending on size and rate.

Due to our limited wireless device availability, and to
replicate the fluctuations in link performance experienced in
wireless environments, we temporarily decrease the capacity
of two wired links, namely Switch-1 to Switch-2 and Switch-2
to Switch-3, by 40% —80% for around 250 seconds. After this
period, we restore the links to their original capacity. Since
switch interfaces only support 10/100/1000 Mbps rates, we
limited the capacity of the links by utilizing the Linux traffic
controller (tc). We placed an obstacle between the transmitter
and the receiver for the wireless link (between Switch-1 and

RFWD

50 —<— DICES 50

20 —«— BACAR 20
—=— RENET-D

30 RENET-S 30

Cumulative Number of Flows
()]
o

Cumulative Number of Flows
[e)]
o

=
o
o

90
80
70
60
50

RFWD RFWD

—<— DICES DICES

—e— BACAR 40 BACAR

—=— RENET-D 301, RENET-D
RENET-S 20 RENET-S

Cumulative Number of Flows

100 90 80 70 60 50 40 30 20 10 O
Bandwidth Satisfaction Rate (%)

(a) Light Congestion

100 90 80 70 60 50 40 30
Bandwidth Satisfaction Rate (%)

(b) Medium Congestion

100 90 80 70 60 50 40 30 20 10 O
Bandwidth Satisfaction Rate (%)

20 10 O

(c) Heavy Congestion

Fig. 8: Evaluation of fixed-rate flows in terms of bandwidth satisfaction ratio under different congestion scenarios. BACAR attains competitive
results when the network is lightly congested but falls behind RENET-S and RENET-D by around 10— 30% as network congestion intensifies.

Switch-3) to reproduce the bandwidth degradation. We noticed
that its capacity drops from 50 Mbps to around 30 — 40 Mbps
as signal strength drops significantly.

Fig. |8| presents the bandwidth satisfaction rate for all flows.
Since the flow throughput changes during its execution, we
calculated the average rate of the flow during the execution
time. Then, we calculate the “Satisfaction Rate” by comparing
the average rate rate to the Desired rate. We observe that
RENET-D and BACAR perform similarly when network con-
gestion is light (Fig. [8a). This can be attributed to the demand-
agnostic congestion avoidance approach, as implemented by
BACAR, proving to be a sufficient solution when the network
is not congested.

RENET-S attains a slightly better performance. The reason is
that SNMP-based capacity tracking can learn about bandwidth
changes as soon as they happen, so the Path Selection service
will assign only as much as the link’s current capacity, thereby
proactively avoiding congestion. This contrasts with delay-
based capacity tracking in RENET-D and BACAR, which
detects bandwidth changes only after identifying a congested
link. Fig. O] compares the estimated bandwidth using SNMP
and delay-based approach for the wireless link as in the
topology in Fig. [/| Although the link capacity is dropped after
around 70 seconds, the delay-based approach detects it around
15 seconds later.

On the other hand, both DICES and RFWD underperform
BACAR, RENET-S, and RENET-D significantly. Specifically,
while RENET-S achieves 80% satisfaction ratio for 88 of flows,
DICES, and RFWD attain 80% satisfaction for less than 60
and 45 flows respectively. Despite using a robust model to
find optimal routes, DICES fall short of noticing bandwidth
fluctuations. Even worse, it oversubscribes degraded links as
it assumes that they are underutilized. For example, if the
bandwidth of the link drops from 50 Mbps to 20 Mbps
while it is being fully utilized, DICES will assume that it
is 40% utilized and assign more flows to it, exacerbating the
congestion.

As network congestion intensifies as in Fig. [8bl
RENET starts to outperform BACAR by a considerable mar-
gin. For instance, RENET-S is able to offer at least half of the
Desired rate to more than 90 flows, while this value drops to

50{ w=—m—=—!
240
a
230
_B\
'g 20
3 SNMP
010 —=— Delay Probing
0{ BW Drop BW Recovery
0 100 200 300 400
Time (s)

Fig. 9: The impact of antenna misalignment on the capacity of a
wireless link. Although SNMP polling helps to detect bandwidth
changes immediately and accurately, the delay-based approach offers
a reasonable alternative when SNMP metrics are not available

around 85 flows for RENET-D, around 75 flows for BACAR,
and less than 70 flows for DICES and RFWD. Although both
RENET and BACAR can detect bandwidth changes, taking
application demand into account helps RENET to perform
better by routing bandwidth-insensitive flows to less utilized
paths and minimizing environmental-conditions impact on
bandwidth-sensitive flows.

As expected, bandwidth satisfaction worsens as the network
congestion amplifies (Fig. [8c). In this scenario, only 60 flows
got more than 50% of their Desired rate with RENET-S. Yet,
less than 45 flows obtained 50% of their Desired rate with the
other solutions.

Fig. [I0] demonstrates an in-depth view of the network
utilization for the medium congestion scenario. The utilization
is calculated by summing up the throughput on egress ports
of the edge switches. In particular, RFWD and DICES suffer
significantly when the capacity of a link drops. DICES is
severely impacted because it cannot detect drops in bandwidth
and incorrectly considers these links as underutilized. After the
first bandwidth drop, RENET-S and BACAR swiftly detect the
drop and reroute the flows to the other underutilized links,
while avoiding the congested links.

Although RENET-S and BACAR are adversely affected by
the second capacity drop event, they can quickly recover
from that and avoid operating in the affected links. Dur-
ing bandwidth recovery scenarios, RENET-S quickly detects
recovery events by capturing SNMP updates. In contrast,

400 L
350 350 A
300 300 W
250 250 ”,_‘-"\,,
8200 2000/ i
2150 ¥ 1500 [l VI
<100{ / 100{ ;'
5 so0f [f 50
- :
gﬁ - RFWD ---- DICES --- BACAR - RENET-D RENET-S
3 400 400
€350 \ 350
= 300 . A | 300
= i Y oo "
PQ 250 i N 1 L 250 N 'v'
2000 UMW) WS 200{ W
150{ /o S o o 150{ /o o
(o s 9 9] 1~ Vi o o
100 /556 e 100{ /£ & z¢e
50 [B SR ESR s0l /& & 5 &
0 100 200 300 400 500 0 100 00 500
Time (s)

Fig. 10: Overall network utilization comparison under medium net-
work congestion scenario. RENET-S significantly outperforms RFWD
and DICES before and during link-bandwidth drops. RENET-S yields
10% higher utilization compared to BACAR by means of detecting
link-bandwidth degradations and proactively rerouting flows to un-
derutilized links.

BACAR relies on a timeout mechanism to reset the link’s
bandwidth, which is set to 50 seconds in this experiment.
Overall, we observe that BACAR attained 207 Mbps average
network utilization whereas RENET-S achieved 227 Mbps,
almost a 10% improvement.

2) Adaptive Video Streaming: Next, we evaluate the impact
of learning the Desired rate of the adaptive video streaming
applications, whose quality depends on the available network
bandwidth. This is particularly relevant to the research network
used by the University of Nevada, Reno researchers. Their
network carries traffic from multiple wildfire monitoring cam-
eras using an adaptive video streaming application. Avoiding
congested links when routing video flows will allow first
responders to access high-quality video streams from incident
locations.

We set up an experiment to stream a 300-second long video
from two servers to three clients using the network topology
shown in Fig. [/| Host 2 streamed a video to Host 4 and Host
3 and Host 3 streamed to Host 1. We processed the video file
to generate five different resolutions 144p, 240p, 360p, 480p,
720p, and 1080p. Specifically, the 1080p version is served
when transfer throughput is more than 10 Mbps while the
144p version is served when throughput is below 4 Mbps.
We use the HTTP-Live-Streaming (HLS) protocol to stream
video files with an NGINX server. To congest the network, we
executed 50 TCP flows in the background in a similar pattern
as discussed in Section

Fig. shows the quality of all three video streams when
using RENET-S, RENET-D, BACAR, and RFWD. We again
emulate bandwidth fluctuations by either reducing the link
capacity manually (using tc) or putting an obstacle between
the wireless antennas. We initiate the video streams under light
network load conditions thus they attain a good resolution at
the beginning. However, as soon as the first link bandwidth

1080
720
480
360
240
144

31080
720
480
360
240
144

T O9pPIA

Z O3pPIA

Resolution (p

1080
720
480
360
240
144

—— RFWD

----- BACAR

=== RENET-D
RENET-S

€ O3pIA

150
Time (s)

300

Fig. 11: Performance comparison of RENET, BACAR, and RFWD
algorithms using adaptive video streaming applications. RENET-
S achieves 21% and 54% higher average quality for Video-1 and
Video-3 compared to BACAR while attaining 0.8% lower quality
for Video-2.

drops, the RFWD algorithm struggles to manage the situation,
leading to a fall in video quality across all streams.

Although BACAR handles the issue better than RFWD,
faces challenges in meeting the demand for certain video
streams, primarily Video-1. A lack of information about each
video’s Desired rate leads to a lower quality Video-1 with only
140p for almost 100 seconds. On the other hand, RENET-S and
RENET-D achieve the best overall performance by offering at
least 240p quality for all video streams.

Although RENET-S yields 0.8% lower quality for Video2
compared to BACAR, it obtains 21% and 54% higher quality
for Videol and Video3, respectively. It is important to note that
RENET-S leads to lower fluctuations compared to RENET and
BACAR since it learns about capacity changes immediately
and proactively avoids congesting the affected link as much
as possible.

B. Scalability Analysis

In this section, we examine the scalability of RENET in
terms of handling large-scale networks. Since RENET creates
multiple cache objects (i.e., Link and Flow store), runs delay
measurements to detect bandwidth changes (if SNMP is not
available), and introduces a new route selection algorithm, it
is important to test it with more complex networks to ensure
it does not lead to performance issues. We created a network
topology with 20 switches, 50 hosts, and 100 inter-switch links
using Mininet. We adopted the same traffic generation pattern
as in the real-world experiments.

Fig. illustrates RENET’s ability to assign a single flow
to the best available route within 5ms, utilizing the hardware-
switches topology in Fig. [7/] We observe a linear relationship
between the execution time and the number of flows consid-
ered, which is a good sign for scalability. Specifically, it takes
less than 25ms to evaluate 9 flows. Shifting to a broader scale

5 5800
£20
£
%10 %400
8 s © 200
0 2 4 6 8 0% 5 10 15 20

Number of Evaluated Flows Number of Evaluated Flows

(a) Allied Telesis IE340-20GP (b) OVS - Mininet

Fig. 12: Execution time of RENET’s path selection algorithm using
real-world hardware (a) and software (OVS) (b) switches. It takes
less than 5ms to find a path for one flow with real hardware and less
than 40ms with a software switch. The total execution time increases
almost linearly for increasing number of flows that are considered for
rerouting.

with the Mininet simulated topology, evaluating the optimal
path for a single flow among thousands of paths available
requires approximately 40ms while evaluating 20 flows takes
roughly a second.

In comparison, we noticed that it takes nearly 2 —5 seconds
for DICES to find a solution for each flow when evaluating
20 flows. This is because DICES uses a linear programming-
based solution whose execution time increases drastically as
the number of flows and available paths increases. On the
other hand, RENET uses a heuristic approach to process each
flow independently and keep the execution time low. As we
consider at most 100 flows for rerouting in each interval, the
execution time of the Path Selection service is guaranteed to
stay under 5 seconds, the polling interval of OpenFlow stats.

The Bandwidth Tracking service relies on the data stored
in Link Store to detect congestion and bandwidth change
events. Therefore, it’s essential to keep the execution time
of Algorithm [I] at or below the reporting frequency of the
OpenFlow stats. This enables the Link Store to update its
records before the next execution of Bandwidth Tracking
service, which expects to retrieve the new updates.

We next evaluate the impact of the number of routes that
the Path Selection service considers when rerouting flows (K
in Algorithm [T] line [8). A higher K value means that the K-
Shortest-Path algorithm will return more paths to evaluate,
thereby increasing the execution time of RENET. To assess its
impact on large-scale networks, we created a 5-pod fat-tree
network topology in Mininet using 10 nodes and generated
similar traffic as described in Section [V-Al

We observe that restricting the number of alternate routes
to less than 5 (i.e., K = 2, 3) adversely affects the bandwidth
satisfaction rate as shown in Fig. @ On the other hand,
large K values result in long execution times as shown in
Fig. [I13b] Specifically, K = 100 leads to 1.7s execution time
when handling 40 flows. While this duration is not detrimental
to the performance of RENET, it can be a limiting factor when
handling larger-scale networks with hundreds of active flows.
Thus, setting K values of 5 or 10 appears to be sufficient
to strike a good balance between reducing execution time and
increasing application quality of service (i.e., satisfaction rate).

£200
(=]

i 190
‘6 180
$170
v 160
2 150
T 140
€130
3120

YT
ngatiler
b

U w N

=
o

ARAARAAR
Total Time (log(ms))
H N W A U1 O

I
-
o
o

0 10 20 30 40 50 60
Number of Evaluated Flows

10090 80 70 60 50 40 30 20 10 O
Bandwidth Satisfaction Rate (%)

(a) Bandwidth Satisfaction Rate (b) Path Selection Time

Fig. 13: Evaluation of different K values in the K-shortest-path algo-
rithm regarding path selection time and bandwidth satisfaction rate.
K values of 5 and 10 attain a near-optimal bandwidth satisfaction
rate for flows while lowering the execution time.

C. Limitations

While offering significant QoS improvements for
bandwidth-sensitive flows and adaptive video streaming
applications, the proposed solution makes a few assumptions
about the underlying network architecture. First, it requires
that all switches are OpenFlow-enabled and under the
administration of a single entity to take advantage of
network-wide traffic engineering. If this is not the case, the
proposed solution can still be applied in a small network
segment where link bandwidth fluctuations can occur.
Moreover, the delay-based link capacity detection method
necessitates either a dedicated out-of-band control channel
between the controller and switches or utilizing priority
queues on switches to avoid probing packets affected by
congestion on links other than the target link. As separating
control and data paths is a common practice in production
networks, we believe this is a fair assumption.

VI. CONCLUSION

Science projects heavily rely on edge networks to collect
data from remote locations such as mountaintops. However,
extreme environmental conditions such as freezing tempera-
tures and snowstorms can deteriorate the capacity of wireless
links used in these networks, adversely affecting the perfor-
mance of delay-sensitive flows. Although edge networks are
designed to have backup routes to cope with link failures, ex-
isting rigid routing solutions impede the use of these alternate
routes in the event of bandwidth fluctuations.

In this paper, we introduce RENET to detect bandwidth
changes in wireless links and automatically reroute flows
to underutilized routes. Doing so increases overall network
utilization and enhances the quality of service for applications.
Experimental results collected in both emulated and real-
world networks show that RENET improves application QoS
satisfaction rate by more than 30% compared to state-of-the-art
solutions. We further demonstrate that RENET can improve the
quality of adaptive video streams by more than 50%. Finally,
we show that RENET can find a solution for a flow in less
than 5ms by adopting a heuristic path selection algorithm.

REFERENCES

[1]1 S. Khan, F. K. Hussain, and O. K. Hussain, “Guaranteeing end-to-end
qos provisioning in soa based sdn architecture: A survey and open

[2

—

[3]

[4]

[5]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

issues,” Future Generation Computer Systems, vol. 119, pp. 176-187,
2021.

M. Karakus and A. Durresi, “Quality of service (qos) in software
defined networking (sdn): A survey,” Journal of Network and Computer
Applications, vol. 80, pp. 200-218, 2017.

S. K. Keshari, V. Kansal, and S. Kumar, “A systematic review of
quality of services (qos) in software defined networking (sdn),” Wireless
Personal Communications, vol. 116, no. 3, pp. 2593-2614, 2021.

S. Mehraban and R. Yadav, “Quality of services in hybrid sdn (hsdn): A
review,” in 2022 7th International Conference on Communication and
Electronics Systems (ICCES). 1EEE, 2022, pp. 652—658.

H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over openflow networks: An optimization framework
for qos routing,” in 2011 18th IEEE international conference on image
processing. 1EEE, 2011, pp. 2241-2244.

T.-F. Yu, K. Wang, and Y.-H. Hsu, “Adaptive routing for video streaming
with qos support over sdn networks,” in 2015 International Conference
on Information Networking (ICOIN). IEEE, 2015, pp. 318-323.

R. Kanagevlu and K. M. M. Aung, “Sdn controlled local re-routing to
reduce congestion in cloud data center,” in Proceedings of the 2015
International Conference on Cloud Computing Research and Innovation
(ICCCRI), ser. ICCCRI ’15. USA: IEEE Computer Society, 2015, p.
80-88. [Online]. Available: https://doi.org/10.1109/ICCCRI.2015.27

E. F. Castillo, O. M. C. Rendon, A. Ordonez, and L. Zambenedetti
Granville, “Ipro: An approach for intelligent sdn monitoring,”
Computer Networks, vol. 170, p. 107108, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128619304608
A. A. Abushagur, T. S. Chin, R. Kaspin, N. Omar, and A. T. Samsudin,
“Hybrid software-defined network monitoring,” in International Confer-
ence on Internet and Distributed Computing Systems. Springer, 2019,
pp. 234-247.

P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring
in software-defined networking: A review,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3958-3969, 2018.

A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” IEEE
Instrumentation & Measurement Magazine, vol. 18, no. 2, pp. 42-50,
2015.

A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: Traffic matrix
estimator for openflow networks,” in Passive and Active Measurement,
A. Krishnamurthy and B. Plattner, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 201-210.

S. R. Chowdhury, M. E. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost network monitoring framework for software defined net-
works,” in 2014 IEEE Network Operations and Management Symposium
(NOMS), 2014, pp. 1-9.

C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-
hyastha, “Flowsense: Monitoring network utilization with zero mea-
surement cost,” in Passive and Active Measurement, M. Roughan and
R. Chang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp- 31-41.

N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Net-
work monitoring in openflow software-defined networks,” in 2014 IEEE
Network Operations and Management Symposium (NOMS). IEEE,
2014, pp. 1-8.

L. Liao, V. C. M. Leung, and M. Chen, “An efficient and accurate link
latency monitoring method for low-latency software-defined networks,”
IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 2,
pp- 377-391, 2019.

R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture: an overview,” 1994.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” Tech. Rep., 1998.

E. Rosen and Y. Rekhter, “Rfc2547: Bgp/mpls vpns,” 1999.

S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, C. Arora, and
F. Zimmer, “Dynamic adaptation of software-defined networks for iot
systems: A search-based approach,” in Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, 2020, pp. 137-148.

O. A. Hamdan, S. Strachan, and E. Arslan, “Bandwidth and con-
gestion aware routing for wide-area hybrid networks,” in 2022 IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN). IEEE, 2022, pp. 1-6.

(22]

[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

“NevCAN: Nevada Climate-ecohydrological Assessment Network,”
https://nevcan.dri.edu/, 2023.

“ALERTWildfire Project,” https://www.alertwildfire.org/, 2023.
“Netperf - a network performance benchmark,” https://linux.die.net/man/
1/netpert, 2023.

“iPerf,” https://iperf.fr/, 2023.

V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathchirp: Efficient available bandwidth estimation for network paths,”
in Passive and active measurement workshop, 2003.

K. Harfoush, A. Bestavros, and J. Byers, “Measuring capacity bandwidth
of targeted path segments,” IEEE/ACM Transactions on Networking,
vol. 17, no. 1, pp. 80-92, 2008.

K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42-50, 2012.

L. Le, K. Jeffay, and F. D. Smith, “A loss and queuing-delay controller
for router buffer management,” in 26th IEEE International Conference
on Distributed Computing Systems (ICDCS’06). 1EEE, 2006, pp. 4—4.
R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 537-550, 2015.

K. Phemius and M. Bouet, “Monitoring latency with openflow,” in
Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013), 2013, pp. 122-125.

https://doi.org/10.1109/ICCCRI.2015.27
https://www.sciencedirect.com/science/article/pii/S1389128619304608
https://nevcan.dri.edu/
https://www.alertwildfire.org/
https://linux.die.net/man/1/netperf
https://linux.die.net/man/1/netperf
https://iperf.fr/

	Introduction
	Related Work
	Motivation
	System Design
	Stats Parser Service
	Flow Store
	Link Store
	Bandwidth Tracking Service
	Path Selection Service

	Experimental Results
	Real-World Experiments
	Bandwidth-Sensitive Applications
	Adaptive Video Streaming

	Scalability Analysis
	Limitations

	Conclusion
	References

