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Abstract— The exploding deployment of distributed en-
ergy resources (DERs) brings unprecedented challenges to
the optimization of large-scale power distribution networks
– numerous grid-tied devices pose severe control scalabil-
ity crises. Besides, the exposure of private DER data, such
as energy generation and consumption profiles, is leading
to prevalent customer privacy breaches. Despite the impor-
tance, research on privacy-preserving DER control in a fully
scalable manner is still lacking. To fill the gap, in this paper,
a hierarchical DER aggregation and control framework is
first developed to achieve scalability over the large DER
population and ensure capability for privacy preservation
integration. Second, a novel privacy-preserving optimiza-
tion algorithm is proposed for the developed DER aggre-
gation and control framework based on the secret shar-
ing technique. Finally, privacy preservation guarantees of
the developed algorithm are designed against honest-but-
curious adversaries and external eavesdroppers. Simula-
tions on a 13-bus test feeder demonstrate the efficacy of
the proposed approach in preserving the private DER data
within power distribution networks.

Index Terms— Decentralized optimization, distributed
energy resources, privacy preservation, secret sharing

I. INTRODUCTION

A. Background and Related Works

CONTROL of distributed energy resources (DERs) in
power distribution networks has proven efficacy in low-

ering carbon emissions and offering grid-edge services such
as voltage control, load shaping, and backup power supply
[1]. DERs, including energy storage systems (ESSs), solar
photovoltaics (PVs), and electric vehicles (EVs), along with
other monitoring and controllable devices, are revolutionizing
the operation of power distribution networks towards a more
cost-effective fashion [2]. Though integrating DERs into power
distribution networks can offer multifarious benefits, scalabil-
ity issues and privacy concerns hinder the implementation of
existing DER control strategies [3].

To address scalability, distributed and decentralized strate-
gies are drawing surging attention owing to their paralleled
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computing structure. For example, a distributed coordination
method based on local droop and consensus control is designed
in [4] to deal with the voltage rise problem caused by the
high penetration of solar PVs. To reduce the communication
burden, a distributed low-communication algorithm is pro-
posed in [5] to control islanded PV-battery-hybrid systems.
Compared to distributed methods, decentralized strategies
eliminate the massive peer-to-peer communications. Navidi et
al. [6] develop a two-layer decentralized DER coordination
architecture that can provide scalable solutions with extensive
parallelization and eliminate direct communications between
local controllers. In [7], a decentralized shrunken primal-multi-
dual subgradient algorithm with network dimension reduction
is developed to achieve scalability w.r.t. both agent popula-
tion size and network dimension. Lin and Bitar [8] propose
a decentralized stochastic control strategy for radial power
distribution systems with controllable PVs and ESSs to cut
down the demand balancing cost.

Despite the outstanding scalability and efficiency, the imple-
mentation of both distributed and decentralized DER control
strategies relies heavily on mandatory communications that
can disclose customers’ sensitive information. Differential
privacy (DP) has been a de facto standard in addressing
privacy concerns owing to its rigorous privacy definition [9].
DP-based methods achieve privacy preservation by adding
well-calibrated noise into the computing process, obscuring
the attributes of any single individual’s data. This ensures
that privacy is preserved regardless of the combination of
computations performed on the dataset, providing strong pri-
vacy guarantees against arbitrary adversaries, e.g., any re-
identification attack [10]. A centralized differentially private
optimal power flow mechanism is developed in [11]. However,
centralized structures generically suffer from poor scalability
compared to distributed or decentralized ones. Dvorkin et
al. [12] develop an adversarial inference model based on
DP that first questions the privacy properties of distributed
optimal power flow. Subsequently, the authors develop a
differentially private variant of the alternating direction method
of multipliers to ensure information privacy during neighbor
exchanges. This model is later extended in [13] for the
distributed optimization of AC power flow problems. In [14],
a DP-based aggregation algorithm is proposed to compensate
for solar power fluctuations and protect customers’ personal
information. Han et al. [15] develop a distributed privacy-
preserving optimization algorithm based on DP to preserve

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3462536

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on January 24,2025 at 04:38:12 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

the privacy of the participating agents in constrained optimiza-
tions. Despite the success in privacy preservation, DP-based
methods invariably suffer from accuracy loss due to the added
perturbations.

In contrast, encryption-based strategies can achieve high-
accuracy privacy preservation by encrypting the sensitive data
into ciphertexts, and only those holding private keys can de-
crypt the ciphertexts. Despite the high accuracy, the spectrum
of adversaries in encryption-based strategies is more specific
and can be proven from the secure multi-party computing
(SMC) perspective against certain internal adversaries, e.g.,
honest-but-curious agents, the system operator, and particular
external adversaries, e.g., eavesdroppers [16]–[18]. Central-
ized privacy-preserving energy control systems have been
established based on homomorphic encryption (HE), e.g., the
Paillier cryptosystem [16], [19]. They are easy to implement
but lack scalability. In [17], a decentralized privacy-preserving
approach is developed by combining partially HE with de-
centralized optimization. Similarly, Wu et al. [18] develop a
privacy-preserving distributed optimal power flow algorithm
based on partially HE to preserve the private voltage and cur-
rent measurements. Despite the high accuracy, the drawback
of encryption-based methods lies in the computing overhead
caused by the frequent encryption and decryption operations.
Other hardware-integrated privacy-preserving techniques, e.g.,
garbled circuit [20], [21], lack flexibility and are uneconomic
due to the hardware cost.

Secret sharing (SS) [22] is a lightweight cryptographic
method that can securely distribute a secret among a group of
participants. Adopting SS, Nabil et al. [23] design a privacy-
preserving detection scheme to identify electricity theft from
malicious consumers, where only masked meter readings from
the consumers are collected to prevent privacy infringement.
In [24], a novel cloud storage system is proposed based on
SS to protect sensitive electronic health records. Compared
to encryption-based strategies, SS-based methods can pre-
serve privacy while avoiding computing overhead. Despite
the superiority, integrating SS into large-scale optimization
algorithms is challenging due to the highly complex network
structure, large agent population size, and lack of theoretical
foundations. To close these gaps, this paper designs a novel
SS-based privacy-preserving algorithm to achieve secure col-
lection, computing, and sharing of DER data among different
stakeholders. From the SMC perspective, we focus on pre-
serving privacy against stealthy attack vectors, i.e., honest-
but-curious agents and external eavesdroppers, that exhibit
minimally intrusive attack behaviors.

B. Statement of Contributions

The contributions of this paper are three-fold: 1) We propose
a novel decentralized privacy-preserving algorithm that offers
efficient, accurate, and scalable solutions for the optimization
of DERs in power distribution networks. To the best of our
knowledge, this is the first paper that proposes a decentralized
SS-based algorithm for DER privacy preservation in a hierar-
chical DER control framework; 2) The proposed algorithm
eliminates the need for a trustworthy central operator and

guarantees secure computation for aggregators at different
scales; 3) The developed DER control algorithm achieves
lower computational overhead compared with encryption-
oriented approaches and ensures high accuracy as the non-
privacy-concerned algorithms.

The rest of this paper is organized as follows: In Section
II, we introduce the models of power distribution networks,
PVs, and ESSs, then formulate the DER control problem into
a constrained optimization problem. Section III develops two
decentralized DER aggregation and control strategies based
on the projected gradient method. The SS-based privacy-
preserving DER control algorithm and privacy analyses are
given in Section IV. We give simulation results and analyses
in Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Branch Flow Model

For an n-bus radial distribution network, let B =
{0, 1, . . . , n} denote the set of buses and Hj denote the set of
bus j’s child buses. Let lij denote the line segment connecting
bus i and bus j. Let I = {1, . . . , h} denote the set of lines.
Let Vj denote the voltage magnitude at bus j, Pij and Qij
denote the active and reactive power flows from bus i to bus
j, respectively, and rij and xij be the resistance and reactance
of line lij , respectively. For the jth bus, let pcj and qcj denote
the active and reactive power consumptions, respectively, and
pgj and qgj denote its active and reactive power generations,
respectively. Therefore, the single-phase power flows in a
radial distribution network can be represented by the linear
model as [25]:

Pij −
∑

u∈Hj
Pju = pcj − pgj , (1a)

Qij −
∑

u∈Hj
Qju = qcj − qgj , (1b)

V 2
i − V 2

j = 2 (rijPij + xijQij) . (1c)

Fig. 1 shows a single-phase radial 13-bus distribution net-
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Fig. 1: A radial 13-bus distribution network connected with
rooftop solar PVs and ESSs.

work connected with residential houses, rooftop solar PVs,
and ESSs. This paper aims to ensure customer privacy in
the optimization and control of DERs while providing grid
services for power distribution networks.
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One grid service objective is to minimize the power loss of
the distribution network, which can be calculated by:

f1(pg1, . . . ,p
g
n) =

∑

lij∈I
rij

(‖Pij‖22 + ‖Qij‖22
V 2

0

)
, (2)

where V0 denotes the nominal voltage magnitude, pgj , Pij , and
Qij ∈ RT are augmented vectors of pgj , Pij , and Qij across T
time intervals, respectively. Note that only active power loss
is primarily considered as it can directly lead to energy cost
savings for utilities and consumers.

The active power flows are constrained by:

0 ≤ Pij ≤ P ij , (3)

where P ij denotes the maximum active power flow limit.

B. Solar Photovoltaic
Let V denote the set of solar PVs. During T time intervals

of a day, the active power injection p̃ν ∈ RT from the νth PV
inverter should satisfy:

0 ≤ p̃ν ≤ pvν , (4)

where pvν denotes the maximum active power injection that
is obtained by the solar forecast. We assume the solar power
generation can be forecasted when designing the algorithm.
The curtailment cost occurs when solar PVs generate more
electricity than the electricity demand, which can lead to
financial losses. To minimize the curtailment cost, the solar
PV’s objective is formulated as follows [26]:

f2(p̃ν) = ‖p̃ν − pvν‖22. (5)

C. Energy Storage System
Let S denote the set of ESSs. The charging/discharging

power p̂σ ∈ RT of the σth ESS is constrained by:

−ps
σ
≤ p̂σ ≤ psσ, (6)

where ps
σ

and psσ denote the maximum discharging and
charging power, respectively. Let s0

σ denote the initial state of
charge (SoC) of the σth ESS and Hσ = [s0

σ, . . . , s
0
σ]T ∈ RT .

By aggregating p̂σ across each time slot, the SoC of the σth
ESS is constrained by:

pa
σ
≤Hσ +Ap̂σ∆T ≤ paσ, (7)

where pa
σ

and paσ denote its lower and upper capacity bounds,
respectively, ∆T denotes the sampling time, and the aggrega-
tion matrix A is lower triangular consisting of only ones and
zeros, i.e., element Aı̂,̂ = 1 if ı̂ ≥ ̂, element Aı̂,̂ = 0 if ı̂ < ̂,
ı̂, ̂ = 1, . . . , T .

Furthermore, the ESS’s degradation cost is minimized by
reducing the fluctuations during charging and discharging, and
decreasing the charging mode switch frequency through [27]:

f3(p̂σ) = ‖Bp̂σ‖22, (8)

where the matrix B calculates discharging and charging
differences between adjacent times, i.e., element Bı̂,̂ı = 1,
ı̂ = 1, . . . , T , element Bı̂,̂ı+1 = −1, ı̂ = 1, . . . , T − 1, and all
other elements of B are zeros.

III. DECENTRALIZED OPTIMIZATION

A. Projected Gradient Method

The DER control in power distribution networks is formu-
lated into a constrained optimization problem. Specifically, the
objective function minimizes the active power loss, solar cur-
tailment cost, and ESS degradation cost, while the constraints
include the power flow limit and DERs’ local constraints. The
optimization problem is written into:

min
p̃, p̂

δ1f1(pg) +
∑

ν∈V
δ2f2(p̃ν) +

∑

σ∈S
δ3f3(p̂σ),

s. t. (1a), (3), (4), (6), (7),
(P1)

where pg = [pg1
T
, . . . ,pgn

T]T, and δα denotes the constant
cost coefficients that can adjust the weights on objective
functions and regulate different units. Problem (P1) aims
to exemplify a general coupled convex problem formulation
that includes both objectives and constraints associated with
power distribution networks and DERs. The integration of
nonlinear and nonconvex components, such as discrete loads
and nonlinear ESS dynamics, would require more theoretical
tools. Gradient-based methods are widely used to solve (P1)
by decomposing the centralized optimization problem into
local optimizations at agents. We adopt the projected gradient
method (PGM) to solve (P1) in a decentralized fashion where
each agent owns a local feasible set for projection.

Let M = {1, . . . ,m} denote the set of agents, e.g.,
aggregators or DERs, who work cooperatively to solve (P1).
In this setting, the κth agent updates its decision variable xκ
using PGM by [28]:

x(`+1)
κ = ΠXκ

(
x(`)
κ − γ(`)

κ Φκ(x(`))
)
, (9)

where ` denotes the iteration number, x(`) =

[x
(`)
1

T
, . . . ,x

(`)
m

T
]T denotes the vector of all decision

variables, i.e., p̃ν and p̂σ in (P1), γ(`)
κ denotes the primal step

size, Φκ(·) denotes the gradient of the Lagrangian w.r.t. x(`)
κ ,

and ΠXκ(·) denotes the projection operation onto set Xκ.
The local constraints of the νth PV and the σth ESS can be

represented by two feasible sets Pvν and Peσ , respectively:

Pvν , {p̃ν | (4)} , (10a)

Peσ , {p̂σ| (6), (7)} . (10b)

B. DER Aggregation and Control Framework

In PGM, DER aggregation is mandatory because the ith
agent needs to calculate Φi(x

`) in (9) where the decision
variables contain xi’s from all other agents. When DER acts
as an independent agent, regarded as self-governed control
(SGC), it receives all decision variables of other DERs to
execute the PGM updates in a distributed way. SGC is more
suitable for small-scale networks and can suffer from massive
data exchange due to the numerous DERs in large-scale
distribution networks.

In contrast, DERs’ decision variables can be updated via
bus-delegated aggregation and control (BDAC) by aggregators
in a decentralized way based on the distribution network

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3462536

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on January 24,2025 at 04:38:12 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

topology. Specifically, the ith bus acts as an agent whose
decision variables are aggregated by an aggregator. In BDAC,
aggregators communicate with each other on aggregated bus
information, i.e., power generation, consumption, and network
topology, for the PGM updates. The comparison of SGC and
BDAC methods is presented in Fig. 2.

Each individual PV or ESS holds
decision variable     or       p̃ν p̂σ

Each bus aggregates the decision 
variables                   

Exchange decision variables with 
other DERs to obtain 

                   

Each bus performs the primal-dual 
updates for all the DERs

Each DER performs the primal-
dual updates

End iteration: Convergence of DERs’ decision variables 

Aim: Calculate the subgradients               and               for PGM ∇p̃ν
L(·) ∇p̂σ

L(·)

Exchange decision variables with 
other buses to obtain 

∇p̃ν
L(·) ∇p̂σ

L(·)

An individual DER acts an agent to 
calculate subgradients 

and               ∇p̃ν
L(·) ∇p̂σ

L(·)

An individual bus acts an agent to 
calculate subgradients 

and               

SGC BDAC

p̃i=
∑

ν∈V
p̃ν , p̂i=

∑
σ∈E

p̂σ,

p̃i=
∑

ν∈V
p̃ν , p̂i=

∑
σ∈E

p̂σ

p̂i, p̃i,∀i ∈ B ∀i ∈ B

Fig. 2: Aggregation and control of DERs via DER-governed
and bus-delegated architectures.

Despite the realization of scalability, both SGC and BDAC
methods suffer from privacy breaches in information exchange,
i.e., the exposure of DERs’ decision variables that can reveal
sensitive business information and customers’ daily routines
[29], [30]. To eliminate the privacy concern, we first design
a decentralized DER optimization scheme within the BDAC
framework. Then, a novel SS-based algorithm will be syn-
thesized with cloud computing to achieve privacy-preserving
information exchange. Apart from PGM, the proposed privacy
preservation technique can also handle asynchronous multiple-
step approaches [7], [31], and can be extended to other
gradient-based methods such as the regularized primal-dual
subgradient [32] and multi-objective learning [33].

The aggregated active power injection pi at the ith bus can
be obtained by an aggregator as:

pi = p̃i − p̂i − pci , (11)

where Vi and Ei denote the sets of PVs and ESSs connected
at bus i, respectively, p̃i =

∑
ν∈Vi p̃ν and p̂i =

∑
σ∈Ei p̂σ

denote the aggregated active power of all PVs and ESSs at
bus i, respectively.

By aggregating the active power generation and consump-
tion of each bus according to BDAC, problem (P1) can be
written into a compact form of:

min
p̃, p̂

δ1f1(pg)+
∑

i∈B

(∑

ν∈Vi
δ2f2(p̃ν)+

∑

σ∈Ei
δ3f3(p̂σ)

)
,

s. t. pν ∈ Pvν , ∀ν ∈ V ,
pσ ∈ Peσ, ∀σ ∈ S,
0 ≤ Z̃ιP̃ ≤ P ι, ∀ι ∈ I,

(P2)

where p̃ = [p̃T1 , . . . , p̃
T
n]T, p̂ = [p̂T1 , . . . , p̂

T
n]T, P̃ ∈ RnT

denotes the augmented active power generation and Z̃ ∈
RnT×nT denotes the augmented adjacency matrix. While

only power flow limits are included as global constraints to
avoid over-complicating the problem formulation, integrating
additional global constraints, e.g., voltage bounds, can be
readily achieved without affecting the algorithm design.

The detailed formulation of (P2) based on the network
topology can be found in APPENDIX I.

The optimization problem in (P2) seeks to find the optimal
decision variables, i.e., charging and discharging power p̃σ’s
of the ESSs and the active power injection p̂ν’s of the PVs.
In what follows, we focus on solving (P2) in a decentralized
fashion. The relaxed Lagrangian of (P2) is:

I(p̃, p̂,µl,µu)

= δ1f1(pg) +
∑

i∈B

( ∑

ν∈Vi
δ2f2(p̃ν) +

∑

σ∈Ei
δ3f3(p̂σ)

)

+
∑

ι∈I

(
µT
uι(Z̃ιP̃ − P ι)− µT

lιZ̃ιP̃
)
, (12)

where µl = [µT
l1, . . . ,µ

T
lL]T and µu = [µT

u1, . . . ,µ
T
uL]T, µlι

and µuι denote the dual variables associated with lower and
upper power flow limits of the ιth line, respectively.

Without loss of generality, suppose the νth PV and σth ESS
are connected at bus i. Take the subgradients of (12) w.r.t. the
primal variables p̃ν and p̂σ , respectively, we have:

∇p̃νL(·) = 2δ2(p̃ν − pvν) +
2δ1
V 2

0

∑

ι∈I
rι(Z̃ι∆i)

T(Z̃ιP̃ )

+
∑

ι∈I
(Z̃ι∆i)

T(µuι − µlι), (13a)

∇p̂σL(·) = 2δ3p̂σ −
2δ1
V 2

0

∑

ι∈I
rι(Z̃ι∆i)

T(Z̃ιP̃ )

−
∑

ι∈I
(Z̃ι∆i)

T(µuι − µlι). (13b)

For the simplicity of presentation, we further assume all
power lines have the same resistance r̄, herein (13) becomes:

∇p̃νL(·) = 2δ2(p̃ν − pvν) + δ̄1πiP̃ +ψi(µu − µl), (14a)

∇p̂σL(·) = 2δ3p̂σ − δ̄1πiP̃ −ψi(µu − µl), (14b)

where δ̄1 = 2δ1
V 2
0
r̄, πi =

∑
ι∈I(Z̃ι∆i)

TZ̃ι, and ψi denotes the

ith column block of Z̃.
Therefore, with the subgradients in (13), the νth PV and the

σth ESS update their decision variables by:

p̃(`+1)
ν = ΠPvν

(
p̃(`)
ν − γvν,`∇p̃νL(`) (·)

)
, (15a)

p̂(`+1)
σ = ΠPeσ

(
p̂(`)
σ − γeσ,`∇p̂σL(`) (·)

)
, (15b)

where γvν,` and γeσ,` denote the primal step sizes of the νth PV
and the σth ESS, respectively, L(`) (·) denotes the Lagrangian
function at the `th iteration.

As indicated in (14), calculating subgradients ∇p̃νL(·) and
∇p̂σL(·) indeed requires the decision variables P̃ from all the
buses. Specifically, the calculation of subgradients in (14a) and
(14b) are coupled through:

Di = δ̄1πiP̃︸ ︷︷ ︸
primal variables

+ψi (µu − µl)︸ ︷︷ ︸
dual variables

. (16)

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3462536

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on January 24,2025 at 04:38:12 UTC from IEEE Xplore.  Restrictions apply. 



HUO AND LIU: ON PRIVACY PRESERVATION OF DISTRIBUTED ENERGY RESOURCE OPTIMIZATION IN POWER DISTRIBUTION NETWORKS 5

For example, suppose PV ν̂ is connected at bus 2, then its
primal update is coupled through δ̄1π2P̃ =

∑n
i=1 pi+p2+p3

that contains the active power generations pi, i ∈ B from all
buses. The dual variables simply represent penalties for the
violation of constraints. Therefore, the update of PV ν̂ requires
the decision variables of all other DERs in the distribution
network. By adopting the developed BDAC structure, only
bus-to-bus communications are required, leading to reduced
computing and communicating costs for local controllers.
Finally, the ν̂th PV can update p̃ν̂ using (15a). This paper
spearheads the transition of plaintext optimization to the secret
space, focusing on basic subgradient calculations, i.e., only ad-
dition and multiplication. It sets the groundwork for exploring
more complex gradient computations, such as projection, set
operators, and other intricate operators that do not rely on
addition and multiplication.

The detailed derivation of the PGM updates for BDAC can
be found in the APPENDIX II.

IV. SS-BASED PRIVACY-PRESERVING DER CONTROL

A. Real Number to Integer Quantization
Note that the SS scheme requires integer arithmetic instead

of real arithmetic. However, decentralized optimization genet-
ically involves real number calculations, including decision
variables and regulation parameters. Therefore, a real num-
ber to integer transformation is needed to integrate SS into
decentralized optimization. We adopt the fixed-point number
quantization [34] to map the real numbers onto the integer
space. The fixed-point real-number set is defined as:

Qθ,γ,ζ=
{
−θγ ,−θγ + θ−ζ , . . . , θγ − 2θ−ζ , θγ − θ−ζ

}
,
(17)

where θ ∈ N1+ denotes the basis, γ ∈ N denotes the
magnitude, and ζ ∈ N denotes the resolution. Therefore, by
defining a surjective mapping m(·) : R 7→ Qθ,γ,ζ , a real
number can be mapped to the closest point in Qθ,γ,ζ . To limit
the quantization error, the mapping m(·) needs to satisfy:

|ϕ̌− ϕ| ≤ θ−ζ , ∀ϕ ∈ [−θγ , θγ ] , (18)

where ϕ̌ = m(ϕ) and the quantization error is restricted by
the resolution within the range of Qθ,γ,ζ .

To map the real-number set onto the integer set Z , Qθ,γ,ζ
is scaled by θζ as:

Zθ,γ,ζ =
{
−θγ+ζ ,−θγ+ζ+1, . . . , θγ+ζ−1

}
, (19)

where Zθ,γ,ζ ⊆ Z denotes the fixed-point set in the integer
field. Moreover, SS requires the inputs to be within the field
E , [0, e) where e denotes a prime number. We further map
the elements in Zθ,γ,ζ onto E by the modular operation:

ẑ = z mod e. (20)

Note that z ∈ Zθ,γ,ζ can be any negative integer, and the
modular operation in (20) will change the sign of a negative
input, i.e., g(z−) = z−+ e, ∀z− < 0. To address the negative
integer operation, we introduce the partial inverse of g(·) as

ψ(ẑ) =

{
ẑ − e if z ≥ e

2 ,
ẑ otherwise. (21)

Therefore, we have z = ψ(ẑ), ∀ẑ ∈ E.
Since the quantization error can be made arbitrarily small,

the algorithm convergence can always be guaranteed by reduc-
ing the quantization error at the cost of computational load.
Therefore, the optimality of the proposed privacy-preserving
algorithm is preserved under the additional SS-based privacy
preservation measures. This property is given by Theorem 2
and Proposition 1.

B. SS-based Privacy-Preserving Algorithm

1) Shamir’s secret sharing scheme: Before introducing the
privacy-preserving algorithm design, we first briefly introduce
Shamir’s SS scheme [22]. Shamir’s SS has an efficient and
lightweight private information distribution structure. Suppose
a secret holder (manager) seeks to distribute a secret ω to
certain agents and requires the cooperation of at least d agents
to retrieve the secret. In such needs, Shamir’s SS is grounded
on the following Lagrange interpolation theory:
Theorem 1 (Polynomial interpolation [35]). Let {(ς1, y1), . . . ,
(ςd, yd)} ⊆ R2 be a set of points whose values of ςı, ı̂ =
1, . . . , d are all distinct. Then there exists a unique polynomial
z of degree d− 1 that satisfies yı̂ = z(ςı̂). �

In SS-based schemes, the manager first constructs a random
polynomial of degree d− 1 as:

y(z) = ω + a1z + · · ·+ ad−1z
d−1, (22)

where ω denotes an integer secret, a1, . . . , ad−1 denote ran-
dom coefficients that are uniformly distributed in the field
E , [0, e), and e denotes a prime number that is larger than
both ω and z. Secondly, the manager calculates the outputs of
(22) using non-zero integer inputs, e.g., setting τ = 1, . . . , n to
retrieve (τ, y(τ)). Then the manager distributes the share y(τ)
to the τ th agent. According to Theorem 1, at least d agents
with d shares can reconstruct (22). Therefore, the secret can
be retrieved by:

ω =
d∑

τ=1

y(τ)
d∏

υ=0
υ 6=τ

υ

υ − τ . (23)

2) Proposed privacy-preserving DER control algorithm: We
next propose a hierarchical privacy-preserving DER control
framework as shown in Fig. 3. In this framework, 1) the
power grid operation center monitors the overall grid statuses,
service provision, and grid operational constraints; 2) The
aggregators aggregate and control one or more DER clusters
or directly controlling customer-side DERs; and 3) the DER
control platform coordinates the private DER data transmission
between the aggregators in a privacy-preserving fashion.

The developed hierarchical DER control framework
achieves scalability by enabling decentralized optimization
of DER clusters and ensures the integratability of privacy
preservation techniques for computing DER data. In the afore-
mentioned framework, both SGC and BDAC schemes can be
utilized to aggregate and control the DERs’ decision variables.
We next present the detailed procedures for integrating SS into
the proposed privacy-preserving DER control framework via
BDAC.
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Fig. 3: Privacy-preserving DER control in a hierarchical
framework.

Assumption 1. The cloud computing platform has access to
the network topology. �

The network topology can be described by an adjacency
matrix Z that contains no private information about the DERs.
Details of Z can be found in the APPENDIX I.

Let C denote the set of clouds and c ≥ 2 denote the
cloud number. Each bus is delegated by an aggregator to
control the DERs connected to it. Note that it is equally
applicable for a single aggregator to oversee a group of buses.
The computing and communication between aggregators are
powered by cloud servers. For the ith bus, an aggregator is
responsible for obfuscating its private input by generating a
random polynomial of order d− 1 as:

y
(`)
i (z) = p̌

(`)
i (t) + a

(`)
i,1z + · · ·+ a

(`)
i,d−1z

d−1, (24)

where 2 ≤ d ≤ c, p̌(`)
i (t) denotes the active power in-

jection at bus i after the real-to-integer transformation and
a

(`)
i,1 , . . . , a

(`)
i,d−1 denote random coefficients. Note that for any

real vector secret, such as pi, the real-to-integer transformation
can be performed elementwisely.

At the `th iteration, the uth cloud firstly generates a random
integer α(`)

u that contains no private information of the DERs,
then it broadcasts α(`)

u to all the buses. Subsequently, the buses
adopt α(`)

u , u = 1, . . . , c as random inputs of its polynomial.
Therefore, the ith bus can generate shares of y(`)

i (α
(`)
u ), u =

1, . . . , c. Note that the coupling term πiP̃ in (16) is a linear
combination of pi’s that requires the private power generation
and consumption data from DERs at all buses. Therefore, a
secure computing framework for πiP̃ ’s is required to preserve
the privacy of buses and DER owners.

To achieve privacy preservation, each bus first sends
y

(`)
i (α

(`)
u ) to the uth cloud. Consequently, the uth cloud

receives y(`)
i (α

(`)
u ), i ∈ B. Then the uth cloud multiplies the

received outputs y(`)
i (α

(`)
u ), i ∈ B, utilizing the coefficients of

πi to obtain a new set of outputs:
{
πi(1)y

(`)
1 (α(`)

u ), . . . , πi(n)y(`)
n (α(`)

u )
}
. (25)

Accordingly, the uth cloud can obtain a new input-output
pair for the ith bus as:

Āu,i =

{
α(`)
u ,

n∑

ı̂=1

πi(̂ı) y
(`)
ı̂ (α(`)

u )

}
. (26)

Finally, the uth cloud sends the new input-output share Āu,i
back to the ith bus. As a result, after receiving Āu,i’s from in

total c clouds servers, the ith bus now has access to:

Ãi =

{
α

(`)
̂ ,

n∑

ı̂=1

πi(̂ı) y
(`)
ı̂ (α

(`)
̂ ), ̂ ∈ C

}
, (27)

indicating that all clouds’ output data has been aggregated for
the ith bus.

Lastly, a total of c shares are contained in Ãi, which can
be used to construct a new polynomial of the form:

ỹ
(`)
i (z) = πiP̃ (t) + ã

(`)
i,1z + · · ·+ ã

(`)
i,d−1z

d−1, (28)

whose constant term is exactly the aggregated decision vari-
ables. The ith bus is thus ready to perform primal updates.

The information exchange structure of the proposed privacy-
preserving DER control framework via BDAC is shown in
Fig. 4. In the proposed structure, the ith bus can only access

Fig. 4: Information exchange structure for BDAC using cloud
servers (messages sent from bus 3 and cloud 1 are labeled).

DERs that are within its jurisdiction, e.g., decision variables of
connected DERs. The uth cloud only receives a single share
of each bus so it is incapable of reconstructing the secret
solely based on the received shares. Therefore, the multi-server
information exchange structure allows the privacy-preserving
generation, aggregation, and broadcasting of shares for all
buses. The secret retrieval process distributes the aggregation
task to multiple clouds to ensure that a single cloud cannot
retrieve any secrets. The detailed procedures of the proposed
method are presented via Algorithm 1.

Algorithm 1 can achieve privacy preservation while main-
taining exact solutions as non-privacy PGM-based methods.
The decision variables will be continuously updated till the
convergence errors ε(`)ν , ‖p̃(`)

ν − p̃(`−1)
ν ‖22 and ε(`)σ , ‖p̂(`)

σ −
p̂

(`−1)
σ ‖22 are smaller than the threshold ε0. The correctness of

Algorithm 1 is presented by the following theorem.
Theorem 2 (Correctness). Let E denote the domain of the
input secrets ω̂1, . . . , ω̂n, and Oi denote the desired outputs.
Then, Algorithm 1 satisfies:

Pr
[
∀c ≥ d,Rec

(
A,E,Z, δ̄1, θ, γ, ζ

)
= Oi

]
= 1, (29)

where A = {Ã1, . . . , Ãc} denotes the set of shares from
agents, Pr[·] denotes probability, and Rec(·) denotes the secret
reconstruction operation. �

Proof : To prove the correctness, we show that the proposed
method has the exact primal solutions as the non-privacy PGM.
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Algorithm 1 Decentralized privacy-preserving DER control
via BDAC.

1: Agents initialize decision variables, basis θ, magnitude γ,
resolution ζ, tolerance ε0, iteration counter ` = 0, and
maximum iteration `max.

2: while ε
(`)
ν(σ) > ε0 and ` < `max do

3: Each bus performs real-to-integer transformation using
(17)-(20), then obtains the integer secret ω̂(`)

i .
4: The uth cloud generates a random integer α(`)

u , then
it broadcasts α(`)

u to all the buses.
5: The ith bus generates a random polynomials y(`)

i (z),
with ω̂(`)

i as the constant term.
6: Each bus calculates the polynomial outputs using α(`)

1 ,

. . . , α
(`)
c to obtain ŷ(`)

i (α
(`)
1 ), . . . , ŷ

(`)
i (α

(`)
c ), then sends

ŷ
(`)
i (α

(`)
u ) to the uth cloud.

7: The uth cloud forms Ā(`)
u,i and sends it to the ith bus.

8: The ith bus formulates Ã(`)
i , then reconstructs the

aggregated secret using c shares to obtain πiP̃ (`), finally
obtains O(`)

i in (16).
9: The ith bus transforms O(`)

i back to real numbers
using (21), then updates decision variables p̃(`)

ν and p̂(`)
σ

by PGM.
10: Calculate the convergence errors ε(`)ν and ε(`)σ .
11: ` = `+ 1.
12: end while

Recall that the uth cloud multiplies the received n outputs by
the elements of πi according to (25), it yields:




πi(1)y
(`)
1 (α(`)

u ) = πi(1)

(
p̌

(`)
1 (t) +

d−1∑

̂=1

a
(`)
1,̂α

(`)
u

̂
)
,

...

πi(n)y(`)
n (α(`)

u ) = πi(n)

(
p̌(`)
n (t) +

d−1∑

̂=1

a
(`)
n,̂α

(`)
u

̂
)
.

(30)

By summing the left hand side of (30), the aggregated outputs∑n
ı̂=1 πi(̂ı)y

(`)
ı̂ (α

(`)
u ) in (25) can be readily obtained. There-

fore, in total c pairs of shares from all clouds as in (26) can
be seen as the input-output pairs of a polynomial:

ỹ(`)(z) =
n∑

ı̂=1

πi(̂ı)ω̂
(`)
ı̂ + ã

(`)
1 z + · · ·+ ã

(`)
d−1z

d−1, (31)

where ã
(`)
̂ =

∑n
ı̂=1 πi(̂ı)a

(`)
ı̂,̂ , ̂ = 1, . . . , d − 1 and∑n

ı̂=1 πi(̂ı)ω̂
(`)
ı̂ is exactly πiP̃ (`). Therefore, the aggregated

secret πiP̃ (`) can be retrieved by using c pairs of shares since
d ≤ c, as stated by Theorem 1. �
Proposition 1 (Quantization error): Let θ ∈ N1+, γ ∈ N,
and ζ ∈ N. The quantization error for the aggregation of
δ̄1πiP̃

(`)(t) is bounded by δ̄1
∑n
ı̂=1 πi(̂ı)θ

−ζ . �
Proof : For the ı̂th secret w(`)

ı̂ , its quantization error is
bounded by |w̌(`)

ı̂ − w
(`)
ı̂ | ≤ θ−ζ . Following the proof of

Theorem 2, the quantization error during the DER aggre-
gation is δ̄1

∑n
ı̂=1 πi(̂ı)(w̌

(`)
ı̂ − w

(`)
ı̂ ), where δ̄1 > 0 and

πi(̂ı) ≥ 0. Therefore, the quantization error for aggregation
of δ̄1πiP̃ (`)(t) is bounded by δ̄1

∑n
ı̂=1 πi(̂ı)θ

−ζ . �
Remark 1. The scalability of Algorithm 1 is achieved in three
key aspects. First, the scalability of PGM enables paralleled
computing between agents. The developed privacy preserva-
tion technique is a fundamental tool that can be easily extended
to other scalable algorithms [31]–[33]. Second, the scalability
is largely enhanced by the lightweight SS architecture, which
leads to major improvements in algorithm computing and
communication efficiency. Third, the overall structure-wise
scalability. Depending on the application scale, DERs can also
be clustered by household or district units in the framework
of SGC. In such scenarios, Algorithm 1 can adapt to assign
each local cluster with one or more DERs as an autonomous
aggregator, i.e., generating, distributing, and computing on
shares independently. �

C. Privacy Analysis
Algorithm 1 preserves the private decision variables of

DERs against both internal and external stealthy adversaries
who aim to infer private data using only the messages transmit-
ted during the algorithm’s iterations. Specifically, Algorithm 1
achieves privacy preservation against two types of adversaries,
including honest-but-curious agent who follows the algorithm
but may utilize the possessed and received data to infer the pri-
vate information of other agents, and external eavesdroppers
who wiretap and intercept exchanged messages from commu-
nication channels. The developed SS-based privacy-preserving
algorithm can achieve the same security level against both
internal and external adversaries considered in the state-of-
the-art SMC schemes [16]–[18], [23]. Admittedly, other attack
vectors, e.g., direct invasion into the smart meters, can also
obtain customers’ sensitive information. However, we’d like
to note that our paper aims to handle stealthy attack vectors
with minimal intrusions from a secure computing perspective.
The direct invasion is not considered stealthy as their footprint
is more obvious.
Proposition 2. (Secure cloud computing). Any group of clouds
with a number less than d cannot infer any information of the
aggregated decision variables Di. �

Proposition 2 shows the privacy preservation of the pro-
posed algorithm against corrupted clouds. Note that cloud
servers can be provided by single or multiple vendors, but
the collaboration of at least d clouds is required to retrieve
any secret. A brief proof of Proposition 2 is given as follows.

Proof : Under the collusion, d− 1 clouds can construct the
following set of equations:





ỹi(α1) = ω̃ + ãi,1α1 + · · ·+ ãi,d−1α
d−1
1 ,

...

ỹi(αd−1) = ω̃ + ãi,1αd−1 + · · ·+ ãi,d−1α
d−1
d−1,

(32)

where ỹi(z) is defined in (28) and ω̃ = πiP̃ (t). In (32), ãi,̂ı,
ı̂ = 1, . . . , d − 1 and ω̃ are unknown. Consequently, d − 1
clouds can yield in total d− 1 equations yet d unknowns that
lead to underdetermined solutions. Therefore, at least d clouds
are required to retrieve an aggregated secret. �
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Assumption 2. During a single iteration, at least one com-
munication link of an individual bus is safe from external
eavesdroppers. �

Assumption 2 is essential and generically used in SS-
based schemes. Given d pairs of shares sent via different
communication links, i.e., {(ς1, y1), . . . , (ςd, yd)} ⊆ R2, if
an external eavesdropper wiretaps all communication links to
gain access to all the shares, then the secret can simply be
deduced by the Lagrangian interpolation.
Theorem 3 (Privacy preservation against adversaries). Al-
gorithm 1 securely computes the decision variables between
buses in the presence of honest-but-curious buses. Under
Assumption 2, external eavesdroppers learn no private infor-
mation about the buses. �

The privacy preservation of Algorithm 1 can be proved from
the SMC perspective.
Definition 1 (Computational indistinguishability [36]). Let
{Dκ}κ∈N and {Eκ}κ∈N be two distribution ensembles with
security parameter κ. If for any non-uniform probabilistic
polynomial-time algorithm G(·), there exists a negligible func-
tion δ(κ) such that for every κ ∈ N,

∣∣∣∣ Pr
x←Dκ

[G(x) = 1]− Pr
x←Eκ

[G(x) = 1]

∣∣∣∣ ≤ δ(κ), (33)

where ← denotes the sampling operation. We say that
{Dκ}κ∈N and {Eκ}κ∈N are computationally indistinguish-
able, denoted as Dκ

c≡ Eκ . �
Definition 1 states that any polynomial-time algorithm

cannot distinguish two computationally indistinguishable en-
sembles because the outputs of those algorithms do not
significantly differ. That is, any non-uniform probabilistic
polynomial-time algorithm cannot tell apart a sample from
Dκ and Eκ . Based on computational indistinguishability,
Definition 2 presents the standard privacy notion of SMC.
Definition 2 (SMC [37], [38]). Let Π be an n-party protocol
for computing the outputs of function Φ(X ) where X =
{x1, . . . , xn} andM = {m1, . . . ,mn} denote the set of inputs
and parties, respectively. Let Φρ(X ) denote the ρth output of
Φ(X ). The view of the ρth party during the execution of Π
is denoted by VIEWΠ

ρ (X ). We say that Π privately computes
Φρ(X ) if there exists a polynomial-time algorithm z, such
that for every party mρ in M, we have

z(ρ, xρ,Φρ(X ))
c≡ VIEWΠ

ρ (X ). (34)

�
Definition 2 states that the privacy of a n-party protocol can

be evaluated based on computational indistinguishability, i.e.,
the view of any party can be efficiently simulated solely based
on its inputs and outputs. In other words, SMC enables a set
of participants to learn the correct outputs of an agreed-upon
function applied to their private inputs without disclosing any-
thing else. We next prove that Algorithm 1 securely computes
π1P̃ , . . . ,πnP̃ between the buses.

Proof : The privacy preservation of Algorithm 1 against an
honest-but-curious bus is proven by showing that any messages
an honest-but-curious bus receives can be efficiently simulated.
Let J = {j | j = 1, . . . , c} denote the index set of j, and

Ji− = {j | j ∈ J , j 6= i} excludes the index i. We drop the
index ` for clarity. Therefore, bus i has a view of:

VIEWAlg1
i = {α1, . . . , αc, θ, γ, ζ,πiP̃ , yi(z),pi, Āi,

Oi, ỹi(αj), j ∈ J }. (35)

Then it is required to prove the existence of a polynomial-
time algorithm, denoted as the simulator z, that can simulate
VIEWAlg1

i from the standpoint of bus i, i.e.,

z(Ξi)
c≡ VIEWAlg1

i , (36)

where Ξi , {α1, . . . , αc, θ, γ, ζ,πiP̃ , yi(z),pi, Āi,Oi, ỹi(αj),
j ∈ J } denotes the set of data that bus i has access to.
Manifesting (36) shows that any message received by bus i
can be efficiently reconstructed based on its own knowledge.
The simulator only needs to generate ỹ′i(αj)’s that satisfy:

ỹ′i(αj)
c≡ ỹi(αj), ∀j ∈ J . (37)

To achieve this goal, the simulator firstly generates secrets
p′j∈Ji− ∈ E of other buses such that:

πiP̃ = pi +
∑

j∈Ji−
p′j . (38)

Then it generates a set of random polynomials to obtain y′j(z),
j ∈ Ji− with p′j as the corresponding constant terms by:

yi(z) = pi(t) + ai,1z + · · ·+ ai,d−1z
d−1, j = i, (39a)

y′j(z) = p′j(t) + a′i,1z + · · ·+ a′i,d−1z
d−1, j ∈ Ji− . (39b)

Consequently, the simulator can use {α1, . . . , αc} as inputs
for (39) to obtain:

Ã′i =

{
α̂, yi(α̂) +

∑

j∈Ji−
y′j(α̂), ̂ ∈ J

}
. (40)

Based on the correctness analysis from Theorem 2, Ã′i is
sufficient to construct a new polynomial of:

ỹ′i(x) = (πiP̃ (t))′ + ã′i,1z + · · ·+ ã′i,d−1z
d−1, (41)

where (πiP̃ (t))′ = πiP̃ (t). Therefore, (36) is proved. Conse-
quently, an honest-but-curious bus cannot retrieve any useful
information from others using the received data, due to the
indistinguishable data outputs. By Definition 2, Algorithm 1
securely computes π1P̃ , . . . ,πnP̃ between the buses.

We next prove the privacy preservation of Algorithm 1
against external eavesdroppers. Under Assumption 2, assume
the communications between Cloud 1 and all buses are safe
from external eavesdroppers. By wiretapping any other com-
munication channels, an external eavesdropper can at most
have access to:

Ξe =
{
α1, . . . , αc, yi(αu), Āu,i, i ∈ B, u ∈ J1−

}
. (42)

However, the accessible information in (42) is insufficient for
any external eavesdropper to infer either yi(z)’s or ỹ′i(z)’s,
by comparing with the required clouds’ output data in (27).
Therefore, the bus’s private information pi’s or the aggregated
message πiP̃ ’s are safe from external eavesdroppers. �
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V. SIMULATION RESULTS

The proposed decentralized privacy-preserving DER control
strategy is verified on a simplified single-phase IEEE 13-
bus test feeder [39]. Without loss of generality, suppose the
distribution network shown in Fig. 1 serves an area where
all customers are situated in the region with identical solar
irradiance. The slack bus voltage magnitude is V0 = 4.16 kV.
Each bus, except the slack bus, is assumed to be connected
with 2 houses, and each house is equipped with an ESS and
5 solar panels that can generate a maximum of 2.5 kW solar
output to meet the daily electricity demand. The maximum
capacity of all residential ESSs is set to be 10 kWh, and the
maximum charging and discharging power of ESSs are ±3
kW, respectively. The initial SoCs of all ESSs are uniformly
set to be 4 kWh and lower-bounded by it for the provision
of emergent backup power supply [40]. The forecasted solar
PV power generation is chosen from 01/01/2021 on a sunny
day with ∆T = 15 mins from California Independent System
Operator (CAISO) [41].

The privacy-preserving DER control platform consists of in
total c = 4 cloud servers. In the SS-based privacy-preserving
algorithm, the degree of all polynomials is uniformly set to
be 3 and the integer field is chosen as E = [0, 231 − 1). For
the fixed-point number quantization, the basis, magnitude, and
resolution are selected to be θ = 2, γ = 27, and ζ = 4,
respectively. In the selected resolution, the quantization error
w.r.t. the real number to integer transformation is θ−ζ = 2−4.
Therefore, the real numbers are mapped onto the integer set
Zθ,γ,ζ = {−231,−231+1, . . . , 231−1}. Finally, the integer set
is mapped onto the integer field E. The primal and dual step
sizes were empirically chosen to be γvν,` = 2.3, γeσ,` = 1.8,
and βµlι,` = 5× 10−4, respectively.

In Fig. 5, the daily baseline loads of the 24 houses connected
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Fig. 5: Baseline loads of the 24 houses (solid lines) and actual
solar power injections from the solar PVs (dashed lines).

to the distribution network are presented by the solid lines
where the load profile of each house is obtained by scaling the
residential load data from CAISO [41]. The actual solar power
injections from the solar PVs are presented in the dashed
lines where the solar power injections remain zero between
5 PM to 7 AM the next day when there is no sunlight. During
the daytime, the solar power generation peaks around 12 PM

and is consumed by the loads and stored in the ESSs. Only
a small amount of solar power is curtailed compared to the
forecasted available solar power. Fig. 6 presents the charging
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Fig. 6: Charging and discharging power from 24 ESSs.
and discharging behaviors of the ESSs. The ESSs charge at the
peak rate around noon to store the solar power and discharge
most of their stored power during peak hours between 5-10
PM. The energy stored in ESSs is extracted to supply in-home
use and compensate for the power loss. The power flows of
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Fig. 7: Power flows of 12 lines in the distribution network.
12 lines are shown in Fig. 7 where no reverse flows occur.
The power flows reach the lower limit during noon time as a
result of the abundant solar power generation, leading to the
balance between active power generation and consumption at
each bus. By solving the optimization problem in (P2) via
the proposed algorithm, the decision variables of DERs are
updated iteratively to the optimal solutions. Both the optimal
primal and dual solutions are achieved concurrently with the
privacy preservation guarantees. Fig. 8 presents the converging
process of all decision variables from the solar PVs in around
50 iterations. Fig. 9 presents the evolution of the dual variable
µlι in 100 iterations. The convergence of the dual variable
reflects that the corresponding lower power flow limits are
actively bounded.

Table I presents the CPU computing and communication
efficiency comparison between the non-privacy PGM [28], the
HE-based secure computing scheme using Paillier cryptosys-
tem [42], and our proposed approach. In updating the PV’s
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Fig. 8: Convergence of solar
PVs’ decision variables p̃ν .

Fig. 9: Convergence of the
dual variable µlι.

decision variable, the non-privacy PGM takes an average of
1.41×10−5s to calculate the subgradient in (14a). In contrast,
due to added privacy measures, the HE-based and proposed
methods take an additional 2.41 × 10−3s and 5.91 × 10−5s,
respectively. The proposed method demonstrates significantly
higher computing efficiency in share generation and secret
reconstruction compared to the encryption and decryption
operations from the Paillier cryptosystem. The PGM calculates
on 32-bit single-precision floating point numbers, while both
the HE-based and proposed methods convert real numbers to
32-bit integers as inputs. However, the Paillier cryptosystem
employs a 1024-bit key pair, resulting in 2048-bit ciphertexts
and significantly higher communication cost, as shown by the
average length of transmitted messages. In a larger network

TABLE I: Comparison of computing and communication effi-
ciency.

HE [42] Proposed PGM

Avg. Time (10−5s) En† 187.68 Ge∗ 2.57 –De? 53.45 Re◦ 3.34
Total Time (10−5s) 241.13 5.91 1.41

Avg. Length (bit) 2048 32 32

†Encryption ?Decryption ∗Share Generation ◦Secret Reconstruction

with more buses and DERs, the communication scalability
between buses and cloud servers is maintained through the
paralleled processing among buses. Additional computing
costs occur only on the high-capacity cloud servers, thus not
straining local resources. However, more DERs will require
increased computing time at the local DER aggregation points.
Experimental results show that aggregating 5, 20, and 100
solar PVs at each bus took on average only 0.59 × 10−5s,
0.86 × 10−5s, and 0.91 × 10−5s, respectively, which are
relatively minimal.

Fig. 10 presents normalized random shares generated by Bus
6 using its random polynomial y(`)

6 (z) = ω̂
(`)
6 +a

(`)
1 z+a

(`)
2 z2+

a
(`)
3 z3 where the coefficients a(`)

i , i = 1, 2, 3 are randomized at
each iteration for all time slots. The transmitted messages sent
from Bus 6 are first scaled by 6×109 to better present the ran-
dom distribution, then plotted during six consecutive iterations
for ` = 95, . . . , 100. Moreover, random shares generated by
Bus 6 at a single iteration across different time slots are given
in Fig. 11. Both Fig. 10 and Fig. 11 prove the privacy preserva-
tion of Algorithm 1 against external eavesdroppers. Privacy is
guaranteed because an external eavesdropper can at most have
access to Ξe =

{
α1, . . . , α4, yi(αu), Āu,i, i ∈ B, u ∈ J1−

}
,

that is insufficient for any secret reconstruction. To further

Fig. 10: Random shares gen-
erated by Bus 6 at different
iterations (scaled by 6×109).
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Fig. 11: Random shares gen-
erated by Bus 6 at a single
iteration across different time
slots (scaled by 6× 109).

verify the privacy preservation of Algorithm 1 against honest-
but-curious adversaries, we assume Bus 6 is an honest-but-
curious adversary. In this case, Fig. 12 visualizes the 12
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Fig. 12: Random polynomials generated by the buses in a
polar plot.

random polynomials generated from all the buses at the 100th
iteration. The polynomials are presented in a polar plot format
where all polynomials share an order of 3. Specifically, the
black dashed line represents the polynomial y100

6 (z) that was
generated by the honest-but-curious bus. The magnitudes of
the outputs from random polynomials vary widely given the
phase inputs. From the SMC perspective, Fig. 13 proves the
existence of a simulator z that can generate true polynomial
ỹ100

6 (z) and simulated polynomials ỹ′i(z), i = 1, . . . , 12, i 6= 6,
such that the computational indistinguishability ỹ′6(αj)

c≡
ỹ6(αj), j = 1, . . . , 4 is satisfied at any iteration or time slot.
The ith bus, suppose honest-but-curious, can only access the
information contained in its own view VIEWAlg1

i , resulting in
secure computation of π1P̃ , . . . ,π12P̃ among all buses.

VI. CONCLUSION

This paper developed a novel decentralized and privacy-
preserving DER control algorithm for power distribution net-
works. The decision variables of DERs reached optimum while
minimizing power line loss, PV curtailment cost, and ESS
degradation cost through solving the constrained optimization
problem. The developed approach preserved the privacy of
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Fig. 13: Polynomials simulated by a simulator to achieve
computational indistinguishability among buses.

DER owners’ private data against honest-but-curious adver-
saries and external eavesdroppers. The developed privacy-
preserving DER control framework guaranteed secure infor-
mation exchange by synthesizing SS into decentralized cloud
computing. Simulation results on a modified IEEE 13-bus test
feeder verified the efficacy and efficiency of the proposed ap-
proach. Future work includes extending the developed method
to handle nonlinear and discrete components that can lead to
non-convex problem formulations.

APPENDIX I
PROBLEM REFORMULATION

Let Z ∈ Rn×n denote the adjacency matrix and Zι denote
the ιth row of Z. Let Zι(i) denote the ith element of Zι, and
Zι(i) = 1 if the ιth power flow reaches edge of the network
via bus i, e.g., Z9 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]. Expand Z
across T time slots, we have:

Z̃ =




Z1(1)I Z1(2)I · · · Z1(n)I
...

...
...

Zn(1)I Zn(2)I · · · Zn(n)I


 , (43)

where I∈RT×T denotes the identity matrix and Z̃ ∈ RnT×nT
denotes the augmented adjacency matrix.

In what follows, let P̃ ∈ RnT denote the augmented active
power generations by aggregating pi, i ∈ B, we have:

P̃ =
n∑

i=1

∆i (p̃i − p̂i − pci ) , (44)

where ∆i denotes the aggregation matrix whose ith block is
represented by an identity matrix, and all other blocks are
zeros, e.g., ∆1 = [I,0, . . . ,0]T ∈ RnT×T . Then, the active
power flow of the ιth line can be calculated by:

Pι = Z̃ιP̃ . (45)

where Z̃ι denotes the ιth block of Z̃. Consequently, the power
flow limit constraint in (3) becomes:

0 ≤ Z̃ιP̃ ≤ P ι. (46)

APPENDIX II
DERIVATION OF THE PGM UPDATES

Take the IEEE 13-bus test feeder for example, we give the
PGM updates under BDAC. The power loss objective is:

f1(pg1, . . . ,p
g
n) = δ1

∑

lij∈I
rij

(‖Pij‖22
V 2

0

)
=
δ̄1
2

∑

ι∈I
‖Pι‖22.

(47)

Take (45) into (47), we have:

f1(pg1, . . . ,p
g
n) =

δ̄1
2

∑

ι∈I
‖Z̃ιP̃ ‖22. (48)

Suppose the νth PV is connected at bus i, then its subgra-
dient w.r.t. the power loss objective is:

∇p̃νL(·) = δ1∇p̃νf1(pg1, . . . ,p
g
n) + δ2∇p̃νf2(p̃ν)

+
∑

ι∈I
∇p̃νµ

T
uι(Z̃ιP̃−P ι)−

∑

ι∈I
∇p̃νµ

T
lιZ̃ιP̃ . (49)

Substitute (44) and (47) into the first term of (49), we have:

δ1∇p̃νf1(·) =
δ̄1
2
∇p̃ν

∑

ι∈I
‖Z̃ιP̃ ‖22

= δ̄1
∑

ι∈I

(
Z̃ι∆i

)T (
Z̃ιP̃

)
. (50)

Take the subgradient of (5), the second term in (49) becomes:

δ2∇p̃νf2(p̃ν) = 2δ2 (p̃ν − pvν) . (51)

Then, substitute (44) into the third term of (49) on the right
hand side, we have:

∑

ι∈I
∇p̃νµ

T
uι(Z̃ιP̃ − P ι) =

∑

ι∈I
(Z̃ι∆i)

T
µuι. (52)

Similarly, the last term of (49) can be readily obtained as:

−
∑

ι∈I
∇p̃νµ

T
lι(Z̃ιP̃ ) = −

∑

ι∈I
(Z̃ι∆i)

T
µlι. (53)

Finally, by substituting (50), (51), (52), (53) into (49), (13a)
is readily obtained. The subgradients of p̂σ in (13b) for BDAC
can also be derived similarly.

REFERENCES

[1] J. Campbell, “Ancillary services provided from DER,” Oak Ridge
National Lab, Oak Ridge, TN, United States, Tech. Rep., 2005.

[2] J. R. Aguero, E. Takayesu, D. Novosel, and R. Masiello, “Modernizing
the grid: Challenges and opportunities for a sustainable future,” IEEE
Power and Energy Magazine, vol. 15, no. 3, pp. 74–83, 2017.

[3] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A survey of distributed optimization and
control algorithms for electric power systems,” IEEE Transactions on
Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

[4] M. Zeraati, M. E. H. Golshan, and J. M. Guerrero, “Distributed control
of battery energy storage systems for voltage regulation in distribution
networks with high PV penetration,” IEEE Transactions on Smart Grid,
vol. 9, no. 4, pp. 3582–3593, 2016.

[5] Y. Pan, A. Sangwongwanich, Y. Yang, and F. Blaabjerg, “Distributed
control of islanded series PV-battery-hybrid systems with low communi-
cation burden,” IEEE Transactions on Power Electronics, vol. 36, no. 9,
pp. 10 199–10 213, 2021.

[6] T. Navidi, A. El Gamal, and R. Rajagopal, “A two-layer decentralized
control architecture for DER coordination,” in Proceedings of the IEEE
Conference on Decision and Control, Miami, FL, USA, Dec. 17-29
2018, pp. 6019–6024.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3462536

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on January 24,2025 at 04:38:12 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

[7] X. Huo and M. Liu, “Two-facet scalable cooperative optimization of
multi-agent systems in the networked environment,” IEEE Transactions
on Control Systems Technology, vol. 30, no. 6, pp. 2317–2332, 2022.

[8] W. Lin and E. Bitar, “Decentralized stochastic control of distributed
energy resources,” IEEE Transactions on Power Systems, vol. 33, no. 1,
pp. 888–900, 2017.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proceedings of the Theory of
Cryptography Conference, New York, NY, USA, Mar. 4-7 2006, pp.
265–284.

[10] Y. Zhao and J. Chen, “A survey on differential privacy for unstructured
data content,” ACM Computing Surveys, vol. 54, no. 10s, pp. 1–28, 2022.

[11] V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson, and J. Kazempour,
“Differentially private optimal power flow for distribution grids,” IEEE
Transactions on Power Systems, vol. 36, no. 3, pp. 2186–2196, 2020.

[12] V. Dvorkin, P. Van Hentenryck, J. Kazempour, and P. Pinson, “Differ-
entially private distributed optimal power flow,” in Proceedings of the
IEEE Conference on Decision and Control, Jeju, Korea (South), Dec.
14-18 2020, pp. 2092–2097.

[13] M. Ryu and K. Kim, “A privacy-preserving distributed control of optimal
power flow,” IEEE Transactions on Power Systems, vol. 37, no. 3, pp.
2042–2051, 2021.

[14] J. Dong, T. Kuruganti, S. Djouadi, M. Olama, and Y. Xue, “Privacy-
preserving aggregation of controllable loads to compensate fluctuations
in solar power,” in Proceedings of the IEEE Electronic Power Grid,
Charleston, SC, USA, Nov. 12-14 2018, pp. 1–5.

[15] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50–64, 2016.

[16] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “EPPA: An efficient
and privacy-preserving aggregation scheme for secure smart grid com-
munications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 9, pp. 1621–1631, 2012.

[17] C. Zhang and Y. Wang, “Enabling privacy-preservation in decentralized
optimization,” IEEE Transactions on Control of Network Systems, vol. 6,
no. 2, pp. 679–689, 2018.

[18] T. Wu, C. Zhao, and Y.-J. A. Zhang, “Privacy-preserving distributed
optimal power flow with partially homomorphic encryption,” IEEE
Transactions on Smart Grid, vol. 12, no. 5, pp. 4506–4521, 2021.

[19] Y. Lu, J. Lian, and M. Zhu, “Privacy-preserving transactive energy
system,” in Proceedings of the American Control Conference, Denver,
CO, USA, Jul. 1-3 2020, pp. 3005–3010.

[20] S. Wang, Q. Hu, Y. Sun, and J. Huang, “Privacy preservation in location-
based services,” IEEE Communications Magazine, vol. 56, no. 3, pp.
134–140, 2018.

[21] R. Gilad-Bachrach, K. Laine, K. Lauter, P. Rindal, and M. Rosulek,
“Secure data exchange: A marketplace in the cloud,” in Proceedings of
the ACM SIGSAC Conference on Cloud Computing Security Workshop,
London, UK, Nov. 11 2019, pp. 117–128.

[22] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[23] M. Nabil, M. Ismail, M. M. Mahmoud, W. Alasmary, and E. Serpedin,
“PPETD: Privacy-preserving electricity theft detection scheme with load
monitoring and billing for AMI networks,” IEEE Access, vol. 7, pp.
96 334–96 348, 2019.

[24] H. Zhang, J. Yu, C. Tian, P. Zhao, G. Xu, and J. Lin, “Cloud storage
for electronic health records based on secret sharing with verifiable
reconstruction outsourcing,” IEEE Access, vol. 6, pp. 40 713–40 722,
2018.

[25] M. Baran and F. F. Wu, “Optimal sizing of capacitors placed on a radial
distribution system,” IEEE Transactions on Power Delivery, vol. 4, no. 1,
pp. 735–743, 1989.

[26] J. Li, Z. Xu, J. Zhao, and C. Zhang, “Distributed online voltage
control in active distribution networks considering PV curtailment,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 10, pp. 5519–
5530, 2019.

[27] J. Forman, J. Stein, and H. Fathy, “Optimization of dynamic battery
parameter characterization experiments via differential evolution,” in
Proceedings of the American Control Conference, Washington, DC,
USA, Jun. 17-19 2013, pp. 867–874.

[28] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 2015.

[29] T. Hargreaves, M. Nye, and J. Burgess, “Making energy visible: A
qualitative field study of how householders interact with feedback from
smart energy monitors,” Energy Policy, vol. 38, no. 10, pp. 6111–6119,
2010.

[30] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the
smart grid,” IEEE Security & Privacy, vol. 7, no. 3, pp. 75–77, 2009.
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[32] J. Koshal, A. Nedić, and U. V. Shanbhag, “Multiuser optimization: Dis-
tributed algorithms and error analysis,” SIAM Journal on Optimization,
vol. 21, no. 3, pp. 1046–1081, 2011.

[33] H. D. Fernando, H. Shen, M. Liu, S. Chaudhury, K. Murugesan,
and T. Chen, “Mitigating gradient bias in multi-objective learning: A
provably convergent approach,” in Proceedings of the 11th International
Conference on Learning Representations, Kigali, Rwanda, May 1-5
2023.

[34] M. S. Daru and T. Jager, “Encrypted cloud-based control using secret
sharing with one-time pads,” in Proceedings of the IEEE Conference on
Decision and Control, Nice, France, Dec. 11-13 2019, pp. 7215–7221.

[35] J. Humpherys and T. J. Jarvis, Foundations of Applied Mathematics,
Volume I: Mathematical Analysis. Society for Industrial and Applied
Mathematics, 2020.

[36] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, 2009.

[37] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction
to secure multi-party computation,” Foundations and Trends in Privacy
and Security, vol. 2, no. 2-3, pp. 70–246, 2018.

[38] O. Goldreich, “Secure multi-party computation,” Manuscript. Prelimi-
nary Version, vol. 78, p. 110, 1998.

[39] M. Liu, P. K. Phanivong, Y. Shi, and D. S. Callaway, “Decentralized
charging control of electric vehicles in residential distribution networks,”
IEEE Transactions on Control Systems Technology, vol. 27, no. 1, pp.
266–281, 2019.

[40] National Renewable Energy Laboratory. Residential battery
storage. [Online]. Available: https://atb.nrel.gov/electricity/2021/
residential battery storage

[41] U.S. Energy Information Administration. Electric power annual.
[Online]. Available: https://www.eia.gov/todayinenergy/detail.php?id=
49276

[42] Y. Lu and M. Zhu, “Privacy preserving distributed optimization using
homomorphic encryption,” Automatica, vol. 96, pp. 314–325, 2018.

Xiang Huo (M’20) received the B.S. degree in
automation and the M.S. degree in control sci-
ence and engineering from Harbin Institute of
Technology, Harbin, China, in 2017 and 2019,
respectively, and the Ph.D. degree in electrical
and computer engineering from the University
of Utah, Salt Lake City, UT, USA, in 2024. He
is currently a Postdoctoral Researcher with the
department of electrical and computer engineer-
ing, Texas A&M University, College Station, TX,
USA. His research interests lie in multi-agent

optimization and learning, privacy, and security, with applications to
cyber-physical power systems.

Mingxi Liu (M’14) received the Ph.D. degree
in mechanical engineering from the University
of Victoria, Canada, in 2016. He is currently an
Associate Professor of Electrical and Computer
Engineering at the University of Utah, USA. Be-
fore joining the University of Utah, he was an
NSERC Postdoctoral Fellow with the Energy &
Resources Group, UC Berkeley. His research in-
terests include control and optimization theories
and their applications in power and energy sys-
tems, smart grid, and cyber-physical systems,

focusing on scalability, privacy, and cyber security.
Dr. Liu is an NSF CAREER awardee, class of 2022. He re-

ceived the NSERC Postdoctoral Fellowship and NSERC PostGraduate
Scholarship-Doctoral from the Natural Sciences and Engineering Re-
search Council of Canada in 2016 and 2014, respectively. He is an
Associate Editor of the IEEE Open Journal of the Industrial Electronics
Society and the IEEE Canadian Journal of Electrical and Computer
Engineering. He serves on the IEEE CSS Conference Editorial Board.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2024.3462536

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Utah. Downloaded on January 24,2025 at 04:38:12 UTC from IEEE Xplore.  Restrictions apply. 


