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Abstract—The electric vehicle (EV) industry is rapidly
evolving owing to advancements in smart grid technologies
and charging control strategies. While EVs are promising in
decarbonizing the transportation system and providing grid
services, their widespread adoption has led to notable and
erratic load injections that can disrupt the normal operation
of power grid. Additionally, the unprotected collection and
utilization of personal information during the EV charging
process cause prevalent privacy issues. To address the scal-
ability and data confidentiality in large-scale EV charging
control, we propose a novel decentralized privacy-preserving
EV charging control algorithm via state obfuscation that 1)
is scalable w.r.t. the number of EVs and ensures optimal EV
charging solutions; 2) achieves privacy preservation in the
presence of honest-but-curious adversaries and eavesdroppers;
and 3) is applicable to eliminate privacy concerns for general
multi-agent optimization problems in large-scale cyber-physical
systems. The EV charging control is structured as a constrained
optimization problem with coupled objectives and constraints,
then solved in a decentralized fashion. Privacy analyses and
simulations demonstrate the efficiency and efficacy of the
proposed approach.

I. INTRODUCTION

The ongoing advancements in electric vehicle (EV) tech-
nologies have accelerated the development of a sustainable
power grid, owing to the EVs’ green credentials and flexible
charging options. Despite the multifarious benefits, the occur-
rence of plug-and-play EV charging events, especially those
involving a significant number of EVs, can cause several
negative impacts on the power grid, such as load profile
fluctuations, voltage deviations, and increased power loss [1].
Therefore, advancing scalable EV charging coordination and
control strategies is of paramount importance to alleviate the
strain on the power grid and ultimately provide synergistic
grid-edge services, such as valley-filling, peak-shaving, and
frequency regulation.

In enabling such synergy between EVs and the power grid,
the EV charging control problem can be framed as a con-
strained optimization problem. Let x; = [z;(1), ... ,a:;(T)]T
denote the charging profile of EV 7 during T consecutive
time slots, X; denote the local feasible set that contains the
charging requirements of EV i, and function g(-) denote the
networked constraint function. Then, the EV charging control
problem can be formulated into a constrained optimization
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problem as

min  J({z;}i_,) = F (py, 21 ..., 25)
st. x; e, Vi=1,2,...,n P11
g(x) <0

where the cost function F(-) : RT + R is assumed convex
and differentiable, p;, € RT captures the baseline load of the
network, © = [sz, ce a:l] , and 7 denotes the total number
of EVs.

The use of scalable optimization methods, such as dis-
tributed and decentralized approaches, has gained popularity
in solving (P1). In [2], a distributed multi-agent EV charging
control method was developed based on the Nash certainty
equivalence principle to account for network impacts. Gan
et al. in [3] proposed a decentralized EV charging control
algorithm with the objective of addressing the valley-filling
problem using EVs’ charging loads. To scale with the EV
fleet size and the length of control periods, decentralized
EV charging protocols were developed in [4] for network-
constrained EV charging problems. In [5], a decentralized
EV charging control scheme was developed to achieve valley
filling, meanwhile accommodating individual charging needs
and distribution network constraints. To further improve
the scalability, a distributed optimization framework was
proposed in [6] to offer two-facet scalability over both the
agent population size and network dimension.

Besides scalability, the increased risk of privacy expo-
sure is another major obstacle in deploying large-scale EV
charging control strategies. To address the pressing need
for privacy preservation in both EV charging control and
generic multi-agent systems, one potential solution is using
differential privacy (DP). Fiore and Russo in [7] designed
a DP-based consensus algorithm for multi-agent systems
where a subset of agents are adversaries. In [8], a distributed
functional perturbation framework was developed based on
DP to protect each agent’s private objective function. In [9],
DP-based distributed algorithms were designed to preserve
privacy in finding the Nash equilibrium of stochastic ag-
gregative games. Although DP-based methods are commonly
adopted for privacy preservation, the inevitable trade-off
between accuracy and privacy remains a major challenge in
practical implementation.

Another frequently utilized method for preserving pri-
vacy involves cryptographic techniques, such as the Paillier
cryptosystem and Shamir’s secret sharing (SSS). In [10],
a Paillier-based privacy-preserving algorithm was proposed
for securing the average consensus of networked systems
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with high-order dynamics. Zhang et al. in [11] developed
a privacy-preserving power exchange service system that
uses data encryption to protect EV users’ privacy. In [12],
a decentralized privacy-preserving multi-agent cooperative
optimization paradigm was designed based on cryptography
for large-scale industrial cyber-physical systems. In [13],
a novel decentralized privacy preservation approach was
designed by integrating a partially homomorphic cryptosys-
tem into the decentralized optimization architecture. Com-
pared to encryption-based methods that rely on large integer
calculations, SSS-based privacy-preserving approaches are
more efficient in the computation of shares while offer-
ing information-theoretical security [14]. In [15], an SSS-
based privacy-preserving algorithm was developed to solve
the consensus problem while concurrently protecting each
individual’s private information. Rottondi et al. in [16]
designed a privacy-preserving vehicle-to-grid architecture
based on SSS to ensure the confidentiality of the private
information of EV owners from aggregators. Huo and Liu in
[17] proposed an SSS-based privacy-preserving EV charging
control protocol, which eliminates the need for a system
operator (SO) in achieving overnight valley filling. While
cryptographic methods effectively achieve high levels of ac-
curacy and privacy, the accompanying increased computation
and communication complexity become the bottleneck in
their practical use. Non-cryptographic approaches like state
decomposition (SD) decompose the true state into two sub-
states, and only one sub-state is visible to others, therefore
protecting the true value of the original state. However, state-
of-the-art SD-based strategies are not applicable to solve (P1)
as they mainly focus on consensus problems [18], [19].

This paper aims to design a decentralized privacy-
preserving optimization algorithm, which is scalable and low
in complexity, suitable for large-scale multi-agent optimiza-
tion, specifically for EV charging control. The contributions
of this paper are three-fold: 1) the proposed decentralized
privacy-preserving algorithm can scale with the number of
EVs and provide optimal decentralized EV charging solu-
tions; 2) privacy preservation is achieved in the presence
of honest-but-curious adversaries and external eavesdrop-
pers; and 3) the proposed approach has low computing
and communication overhead, making it widely applicable
for preserving privacy in coupled multi-agent optimization
problems in cyber-physical systems.

II. PROBLEM FORMULATION

A. Distribution Network Model

In a radial distribution network, the power flow can be
represented by DistFlow branch equations that consist of
the real power, reactive power, and voltage magnitude [20].
Consider a re-indexed radial distribution network and define
N={i|i=1,...,n} as the set of downstream buses. Let
|V;(t)| denote the voltage magnitude of bus ¢ at time ¢, |Vp|
denote the voltage magnitude of the slack bus, and p;(¢) and
qi(t) denote the active and reactive loads of bus ¢ at time t.

Following the linear DistFlow branch equations [20], the

squared voltage magnitude at node ¢ is

Vi=Vo-2) Riyp; -2 Xiq (1)

j=1 j=1
where Vi = V(D). Vi(T)|T € RT, V=
Vo, .., [VolI"IT € RY, p; = [pi(1),...,pi(T)]" € RY,
@ = [g:(1),...,q(T)]" € RT, and the adjacency matrices

R and X are defined as

ReR™™ Ry= > 3
(3,5)EE;NE;

X eR™™ Xy= > ay
(2,7)€E;NE,;

where r;; and x;; denote the resistance and reactance from
bus 7 to bus j, respectively. The sets of line segments that
connect the slack bus to bus ¢ and bus j are denoted by E;
and IE;, respectively. In this paper, we focus on the charging
control of plug-in EVs on radial distribution networks. A
13-bus distribution network with charging stations situated
at different nodes is shown in Fig. 1.
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Fig. 1: A 13-bus distribution network connected with EVs.

B. EV Charging Model

Let 7; € R” denote the piece-wise constant charging
power of the ith EV during T time intervals, and 7r; is
constrained by

0<mr <7 2

<)

where 7; = [F;, . .. ,Fi]T € RT and 7; denotes the maximum
charging power.

Let 6; denote the sampling period and [1 : T'§;] denote the
charging duration. To ensure EVs are charged to the desired
energy levels by the end of the charging period, the total

energy charged for the ith EV should satisfy
Gri=d; 3)
where G=[6), ..., 5;n]€ER*T denotes the aggregation vec-

tor, 7 denotes the charging efficiency, and d; denotes the
charging demand request of the ith EV.
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C. Valley-Filling Optimization Problem

The valley-filling problem aims at filling the aggregated
load valley and smoothing the aggregated load profile of
the entire distribution network. This service is typically
provisioned during the late evening and early morning when
significant energy use reduction occurs. In this paper, the
controllable charging loads of EVs, e.g., from community
overnight parking and charging lot, are scheduled and shifted
to flatten the valley in the power load profile. To this end,
the valley-filling problem is formulated as a constrained
optimization problem at the grid scale aiming at determining
the optimal charging schedules of all EVs.

Suppose in total 7 EVs need to be fully charged during
the time period [1 : T'd;]. This paper takes the nodal voltage
constraint, which manifests as the global constraint, for
example, to illustrate the impacts of EV charging on the
distribution network as

V<V,<V,Vi=12,...,n (4)

where V=[V,... . V]TeRT, V=[V,...,V|TeRT, V and V
denote the lower and upper voltage bounds, respectively.

The optimal EV charging control problem is then formu-
lated into a quadratic programming problem as

n
pb+z7'i

=1
st. mEeR;, Vi=1,2,....n

V<V, <V,Vi=12,...,n

where p, denotes the aggregated baseline load and R;
denotes the local feasible set of EV i that is defined by

Ri = {ri| 0 < r; <73, Gr; = d;}. (3)

2
. A 1
min J({ri}) = &

2 P2)

Note that (2) and (3) are basic constraints that describe the
EV charging process, additional constraints that introduce
EVs’ local characteristics can be included in the feasible set
‘R; without affecting the algorithm design.

III. MAIN RESULTS
A. Decentralized PGM

To solve the constrained optimization problem in (P2) via
a decentralized manner, EVs (agents) can work cooperatively
by adopting the projected gradient method (PGM) [21]. In
PGM, the ith EV can update its decision variable (primal
variable) by

Y =g, [ — 400 (r )] (©6)
WherTe Y4 de%lotes the iteration index, 7 =
[rga ,...,frg) 17, %(f) denotes the primal update step

size of EV i, <I>§€)(~) denotes the first-order gradient of
the Lagrangian function w.r.t. 'ri(e), and IIg,[] denotes the
Euclidean projection operation onto R;.

The relaxed Lagrangian of (P2) can be derived as

i
Py + Z i
i=1

2
L) :% +ATWV-V) @
=1

2

where A = [A], ..., AT]T and \; denotes the dual variable
associated with the ¢th inequality constraint. Note that the
Lagrangian in (7) is relaxed by moving EVs’ local constraints
into R;. Only the lower bound constraint on the bus voltage
magnitudes is considered, as the charging loads of EVs are
the only active power consumption within the distribution
network.
The subgradients of £(r, A) w.r.t. v; and A; are

Ve L A)=py+ > 1= Y Ve (ATV)  (8a)
=1 i=1
VaL(rA) =V -V, (8b)

Substitute the linear DistFlow branch equation (1) into (8),
we have

Ve L(r,A)=py+ Y _pi— 4 (%)
i=1
VaLr,A) = V+2ZRijpj (9b)

j=1

where §; = >, V... (A V), V=V-V,p = S T
and n; denotes the number of EVs connected at bus i. Note
that the exact form of §; is decided based on the bus location
of the 7th EV, e.g., if the ith EV is connected at bus &, then
8 =23 R\

Based on the subgradients in (9), the primal and dual
variables can be updated through the PGM by

Tz(Hl) _ (Ta(é) iV L (T(e)’ A(z))) (10a)
/\Z(_Z+1) — IIp, (/\Z(_z) 4 BVAL (T(z)7 ,\“))) (10b)

where D; = {\; | A; > 0} denotes the feasible set of \;
and (; denotes the associated dual update step size.

The PGM update in (10) is scalable w.x.t. the number of
EVs owing to the parallel computing structure. However, due
to the couplings of decision variables in both the objective
function and the global voltage constraint, the primal and
dual updates require the exchange of decision variables
between all EVs, e.g., calculating the subgradient in (9a)
requires 7;’s from all EVs. Therefore, without appropriate
privacy preservation measures, the inevitable and frequent
information exchange can put EVs’ private data at breaching
risks. To address this concern, we aim to develop a privacy-
preserving EV charging control framework via state obfus-
cation to protect EVs’ true decision variables.

B. Privacy-Preserving EV Charging Control Via State Ob-
fuscation

The goal of privacy preservation is to ensure EV owners’
private information is protected during the charging sched-
ules. Specifically, private data of the ith EV are defined to
include the charging profiles ry) in all iterations, charging
demand d;, and the maximum charging power 7;. The primal
update in (10a) naturally inherits local privacy preservation
owing to the independent projection operation IIz,. This is
because the private data such as the charging demand d; and
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the maximum charging power 7; are exclusive to the ith EV
and only contained in the feasible set R; for implementing
the primal update. Therefore, the local private information
is securely retained within R; and will not be disclosed to
other parties.

Despite the scalability of decentralized EV charging ar-
chitectures, they require frequent exchange of EVs’ charging
profiles through communication channels between EVs and
the SO, making the entire system prone to privacy leakages.
To resolve this issue, we propose a state-obfuscation-based
algorithm that can protect EVs’ charging profiles during any
planned charging window. The basic concept behind state
obfuscation is to obfuscate EVs’ true decision variables by
using the values of random variables drawn from a proba-
bility distribution. Regarding a set of mutually independent
random variables, e.g., drawn from a normal distribution, we
have the following theorem
Theorem 1 [22]: If X;i,...,X, are mutually indepen-
dent normal random variables with means pq,...,u,
and variances o%,...,02, then the linear combina-

2
tion ¥ = Y7 ,¢X; follows the normal distribution
N (o ciris 2oy €ia?). n

To integrate state obfuscation into EV charging control,
we propose a novel communicating architecture, as shown
in Fig. 2, for the privacy-preserving algorithm implementa-
tion. The EVs in the distribution network layer first send

D1 Piofbusd  Ps

..............................

True decision
variables

Normal
distributions

Py’ Py’
Data aggregation -

"
@ >X‘3

The SO layer

W
@ w w)  wl

i ol

Distribution network layer

Fig. 2: Communicating structure of the proposed privacy-
preserving algorithm (the communications of the EVs con-
nected at buses 4 and 5 are given).

the obfuscated charging profiles to the SO, the SO then
aggregates the obfuscated data bus by bus according to EVs’
bus locations. Specifically, suppose the ith EV is connected

at bus ¢. At the /th iteration, the ith EV uses a random
normal variable X; N (i, 02) to generate T random sets
([) {eget)l, ce ”m} vVt = 1,...,T where each set
contams m random elements. For clarlty, we represent Xi(ﬁ)
o (¢ ¢ ‘
by a vector as Xi(,t) [e Et)l, ce ét),m]T

The ith EV then extracts each element from its decision
variable r,z(é) to calculate ry)( )X Lt , vt =1,...,T. Con-
sequently, the ith EV can obtain a total of T new vectors

and reformulate them into Wi(e), defined by

~ T ~ T
w = pPmx9 L Omx T an

Subsequently, instead of sendmg the true decision vari-
ables directly, all EVs send their W s i.e., the obfuscated
states, to the SO. Then the SO computes the sum of the
received obfuscated states using

Z Wi(e)
i=1
for the EVs connected at the ith bus.

As shown in (11), every element in r() is obfuscated
and expanded by m random values. To retrieve the summed
charging profiles for all EVs connected at bus ¢, the SO
needs to calculate the mean of every m elements in Yi(e).
For example, for the first m elements, the SO calculates
>y Y(Z)( ))/m that is equal to ZZ 17'(2)(1)/21 where
A 1s an approximation of y;. Suppose the SO knows the true
mean fi;, the SO can acquire Zl 1 7"( ) 1i;, and further obtain
Tzz 1 r ) where 7 = = [i;/u; denotes the approximation
error. Therefore the SO now has the ag)proximated active
power consumption pi = rZ of bus ¢, and it
repeats the procedure to obtain pl(- ), Vi=1,...,n

Finally, the SO estimates the subgradients in (9) using
the approximated active power consumption, then broadcasts
(9a) to the ith EV while utilizing (9b) to conduct dual
updates. Thereafter, EV ¢ can update its decision variable
ry) in parallel using (10a).

The step-by-step process of the proposed approach is
outlined in Algorithm 1.

Algorithm 1 Decentralized privacy-preserving EV charging

control via state obfuscation

1: EVs initialize decision variables, tolerance ¢g, iteration
counter ¢ = 0, and maximum iteration £,,,.

2 while € > ¢y and € < £,,4, do

3: The ith EV connected at bus ¢ generates a normal
random variable X; ~ N(p;,0?) and draws random
elements from X; to obtain Xi(? =le E?l, e g?m]T
Ve=1,...,T. ’ v

4: The ith EV uses the elements of ri(é) to calculate
r6XY vt =1,
EV formulates VNV;Z) and sends it to the SO.

5: The SO calculates the summation Y%w using (12) for
each bus, then calculates the mean of every m elements
in Yi(e), to obtain the approximated f)gz), Vi=1,...,n

6: The SO estimates the subgradient in (9a) and broad-
casts it to the ith EV.

7: The 7th EV updates ri(g) — TZEE'H) by PGM using
(10a), then calculates the error ey).

8: The SO updates the dual variables )\Z@ —
Vi =1,...,n using (10b).

9: {=0+1.

0: end while

>

T elementwisely. Then each

A§e+1)’

—_

Theorem 2: Algorithm 1 has an accuracy level of 7. With
appropriate choices of ¢ and m, the convergence of primal
and dual variables is guaranteed. ]
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Theorem 2 states the correctness and convergence of
the proposed algorithm. By carrying out Algorithm 1, the
subgradients in (9) can be efficiently approximated and
calculated since the mean of Y%w can be used to retrieve
131(-[) that is an estimation of pgf). When determining the
accuracy level, the standard error of the mean (SEM), defined
by SEM,, = o/+/m, can quantify how a larger sample size
produces more precise estimates of the means.

Remark 1 : Without the loss of generality, p; was set
uniformly across all EVs connected at the same bus to avoid
over-complicated algorithm implementation. In a broader
scenario, the mean values of different EVs can be chosen
independently. In other words, the mean value p; serves as
a unique key between the 2th EV and the SO. ]

IV. PRIVACY ANALYSIS
A. Privacy and Attack Models

To preserve EV owner’s privacy, two types of adversaries
are considered: 1) An honest-but-curious adversary is an
agent who adheres to the algorithm but intends to utilize
the accessible data to infer private information of other
participants, and 2) an external eavesdropper is an external
attacker who wiretaps communication links to obtain the
private information of the participants.

B. Privacy Analysis

Algorithm 1 allows EVs to use the values of random
variables drawn from a normal distribution to protect the true
decision variables ri(g) ’s. The privacy preservation properties
of Algorithm 1 are given by the following theorem
Theorem 3: Algorithm 1 preserves the private data of
EV owners against both honest-but-curious adversaries and
external eavesdroppers. |

Proof: Proof of Theorem 3 is approached from the
adversaries’ perspective based on the data they can access.
From the view of an honest-but-curious adversary, suppose
both EV 7; and EV iy are connected at the same bus, and
EV 71 is curious in inferring the charging profiles of EV 1.
At the /(th iteration, EV 7; can have access to the data set
Agf) = {ri(f),ﬁl v iy Riy s iy Vi, L(r©, X)) where 7, ,
di,, Ri,, and ~; are private information of EV 7;, and kept
to EV 2; locally. The local information, therefore, cannot
provide any useful information in inferring ri(f). Besides,
EV i, also has access to the approximated subgradient
Vi, L(rD, A1) that is calculated by the SO. However, the
baseline load p; and the adjacency matrix R are held by the
SO, and therefore remain invisible to any EVs. Therefore,
EV 7 cannot infer the charging profiles r;, of EV 7, based
on its accessible information contained in Agf).

For any external eavesdropper, by wiretapping the com-
munication channels at the ¢th iteration, it can obtain the in-
formation set £ = {W."), V,, L(r0, A®) Vi =1,...,a}.
Suppose an external eavesdropper knows the protocols of
Algorithm 1. To infer ri(é) by using &, it still needs to
know the cardinality m and the mean value p; that is
associated with the random variable X;. Though the ap-
proximated subgradient V,. £(r), X(9)) could potentially

7

reveal the converging direction of the decision variable, the
eavesdropper is still blind from +; and R;, therefore unable
to imitate the primal update in (10a). (|
Remark 2: A trade-off between the level of security and
computing cost exists in Algorithm 1. When a specific ac-
curacy requirement is decided by 7 under a fixed sample size
m, a smaller variance orf will result in a smaller SEM and
therefore require fewer data points to achieve the accuracy
standard. The proposed state obfuscation refines k-anonymity
[23] by introducing randomization of m anonymous random
variables for each true value. Though a smaller variance
would result in less computation and communication cost,
it can also lead to a higher degree of similarity in X i(?, thus
compromising the level of randomization and privacil. ]

V. SIMULATION RESULTS

The effectiveness of the proposed obfuscation-based
privacy-preserving EV control strategy is verified through
the simplified single-phase IEEE 13-bus test feeder as shown
in Fig. 1. The baseline load profile was taken and scaled
from California Independent System Operator on 09/16/2021
and 09/17/2021 [24]. We consider the penetration level of
7 EVs per bus, and in total 84 EVs are connected to
the distribution network. The charging demands of all EVs
randomly distribute in [10,40] kWh. The maximum charging
power 7;’s are uniformly set to be 6.6 kW based on the level-
2 EV charging standards and the charging efficiency is set
to be n = 0.85. The valley-filling horizon is set to begin
at 19:00 and lasts until 7:00 the next morning. The entire
control horizon is divided into 7' = 48 time slots with 15-
minute resolution. It is required that, by the end of the valley-
filling period, all EVs need to be charged to the desired
energy levels. The primal update step sizes are chosen based
on experience as y; = 4 X 1074, Vi =1,...,n, and the dual
update step sizes are 3; = 2 x 1072, Vi = 1,...,n. Initial
values of ri(o) ’s and AZ(.O) ’s are all set to be zeros. The normal
random variables X;’s generated by EVs connected at bus ¢
follow the nomral distribution X; ~ A/ (ni = 1,02 =0.2).
The cardinality of X;’s is set uniformly to be m = 40.

By applying Algorithm 1, Fig. 3 shows that the baseline

1200 6

1100

r (kW

z —— Bascline load
~ 1000

e

—— Total load

Powe

900

%
s

9:00 22:00 01:00 04:00 07:00 l(") () 22:00 01:00 04:00 07:00
Time Time

Fig. 3: The overnight valley Fig. 4: Optimal charging

filling. profiles of all EVs.

load was flattened by using EVs’ charging load. The optimal
charging profiles of all EVs are shown in Fig. 4. At around
1:00 a.m., when the baseline load reaches its minimum, all
EVs charge at their highest power.

To observe the privacy features, Fig. 5 presents the random
values réu) (t)X&th), vVt =1,...,T that were generated by

EV 8 at the 12th iteration. The true charging profile rém)

6568

Authorized licensed use limited to: The University of Utah. Downloaded on January 24,2025 at 04:45:08 UTC from IEEE Xplore. Restrictions apply.



was obfuscated into rém)(t))zé,lf)(m), Vi=1,...,T,m =
1,...,m. The range of the obfuscated data is shown by
the shaded area, where the obfuscation achieves nearly 50%
randomization of the original data. Fig. 6 shows the nodal

6

. T}(312) Range of rén)(t)jfgf)(ﬂn) [3 ’réu)(f,)xs;z)(l)

o Lald Lo
ItIIIIHtI” I PIIII& B

0 10 20 30 40
Time slot (T=48)

Fig. 5: The true and obfuscated data generated by EV 8 at
the 12th iteration.

—— Lower bound

)

Nodal voltage magnitude (p.u.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]
0.95 [14]
19:00 22:00 01:00 04:00 07:00
Time
. . ) [15]
Fig. 6: Nodal voltage magnitudes of 12 buses under baseline
load (solid lines) and total load (dashed lines).
voltage magnitudes of 12 buses in the distribution network,  [16]
where all voltage magnitudes are above the lower voltage
limit (0.95 p.u., the black line). [17]
VI. CONCLUSION
In this paper, we proposed a novel privacy-preserving [18]
decentralized algorithm to achieve privacy preservation and
scalability in large-scale multi-agent cooperative optimiza-  [19]
tion, particularly in the context of cooperative EV charging
control. The proposed algorithm enables EVs to protect their
decision variables via state obfuscation while facilitating the  [20]
cooperation between EVs and the SO to achieve overnight
valley filling. The privacy guarantees were theoretically an-  [21]
alyzed and evaluated against honest-but-curious adversaries
and external eavesdroppers. Simulations on an EV charging %g%
control problem validated the accuracy, efficiency, and pri-
vacy preservation properties of the proposed approach. 4]
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