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Abstract—The field of wearable sensors has witnessed remark-
able progress in recent years, enabling real-time monitoring of
musculoskeletal biomechanics. Musculoskeletal injuries require
long-term management through medications and physical ther-
apy to ensure a smooth recovery. Assessment of a patient’s
range of motion (ROM) is an essential component of physical
therapy. However, existing methods for measuring ROM are
either analog or require expensive equipment. In this work,
we present ElboSense, a smart textile-based sensing solution to
monitor elbow motion precisely. ElboSense is embedded with
a novel yarn-like capacitive strain sensor made with braided
composite structures of multiple filament strands in a helical
pattern. We seamlessly integrated the sensor into an elbow brace
and developed an embedded system for data acquisition. The
work conducted a study with eight healthy adult participants
who performed a regulated elbow movement exercise (flexion
and extension) 10 times. We validated the sensor measurements
against a reliable optical motion-capture system. The average
cross-correlation was found to be 0.91. Pearson’s correlation coef-
ficient analysis showed 0.95 for peak-to-peak and 0.98 for valley-
to-valley. All the preliminary results indicate a good agreement
and reliability as a potential sensing solution to monitor the range
of motion during elbow exercises.

Index Terms—Smart Textile, Elbow Brace, Flexion-Extension,
Musculoskeletal injuries, Capacitive Strain Sensor, Composite
Braided Filament.

I. INTRODUCTION

Musculoskeletal injuries encompass a wide range of con-
ditions affecting the muscles, bones, ligaments, and other
structures crucial for body movement [1], [2]. These injuries
often require long-term management involving medication and
physical therapy to ensure adequate recovery. Within the realm
of physical therapy, a key aspect is assessing a patient’s range
of motion (ROM) in synovial joints, which plays a vital role in
progress monitoring and devising appropriate treatment plans
[3]. Restricted or abnormal ROM in flexion and extension can
serve as an indicator of various musculoskeletal conditions,
including joint stiffness, ligament injuries, arthritis, or joint
degeneration. The existing solution includes Goniometers [4],
[5], Optical tracking [6], and Inertial wearable devices [7]
that are often used to evaluate the flexion and extension
performance of the elbow after injury. Table I shows the ad-
vantages and limitations associated with each solution. Flexion
involves bending the elbow joint, reducing the angle between
the forearm and upper arm. Conversely, extension refers to
straightening the elbow joint, moving the forearm away from
the upper arm.

In recent years, researchers have been exploring various
methods to incorporate soft sensors into textiles to monitor

joint movement. Textiles offer several advantages, as they are
commonly used in rehabilitation applications such as elbow
braces, pads, and cuffs. Previous studies have focused on
integrating fiber optic sensors [8] and inertial measurement
sensors [9], [10] into elbow pads. These systems require
additional components, wiring, and support structures, which
can be cumbersome. An alternative approach involves using
conductive knit fabric structures that exhibit changes in re-
sistance during joint extension [11], [12]. Conversely, these
sensors have limited repeatability and significant hysteresis ef-
fects. To overcome these limitations, researchers have explored
the combination of piezoresistive materials and composite
materials, resulting in improved scalability and sensitivity
of the sensors [13]. However, integrating these sensors into
textiles requires a complex integration process.

In this research paper, we presented the integration of a
novel yarn-like capacitive strain sensor into textiles and con-
ducted an elbow range of motion test involving eight healthy
participants. The sensor was seamlessly integrated into the
textile material, ensuring a cohesive and comfortable interface.
We developed our bio-instrumentation and embedded system
for data acquisition to measure the capacitance changes. Fur-
thermore, we compared our integrated sensor system with the
widely recognized motion-capturing module, OptiTrack, as a
gold standard.

TABLE I
EXISTING SOLUTIONS TO MEASURE THE RANGE OF MOTIONS.
Method Advantages Limitations
-Inexpensive -No logging/wireless.
Goniometer | -Analog -Discrete measurements.
-Hard to use for patients.
-Accurate -Expensive.
Optical -3d pose -Accurate marker placement.
Tracking -High resolution -Unavailable for personal use.
-Continuous
Inertial -High resolution -Pose models need processing.
Wearables -Continuous -Rigid body reduces the comfort.
-In-home logging

II. MATERIALS AND METHODS
A. Capacitive Strain Sensor Structure

We used a new yarn-like capacitive strain sensor developed
by Nautilus Defense [14] and characterized by our lab. The
sensor is a braided composite structure made with polyamide
coated Copper wire, Kevlar, and Spandex filament (Figure
1). Braided is a weaving technique that involves interlacing
multiple strands of yarn strips in a diagonal or helical pattern.
The straight Spandex filament introduces stretchability, and the
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Fig. 1. Development process of ElboSense (sensor structure, integration).

helical Kevlar filament maintains the strength of the sensor by
adjusting similar expansion of copper wire during the stretch.
The sensor works with the same principle as a parallel plate
capacitor, where the capacitance changes with the variation in
the distance between its two electrodes (Equation 1). In this
sensor, we assume the dielectric value (g¢) and area (A) as
constants.

g0 A 1
] ey
The mutual capacitance between any two conductors in

these yarns increases linearly as the yarn undergoes axial

tension and resultant elongation or through-thickness compres-
sion (Figure 2). As the yarn is relaxed, the mutual capacitance

between conductor pairs decreases back to the baseline mutual
capacitance. The sensor integration process consists of two
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Fig. 2. Capacitive strain sensor’s working principle as a parallel plate
capacitor.

steps: first, integrating the sensor with the base fabric, and
second, insulating the sensor layer to avoid any mechanical
abrasion (Figure 1). We used polyvinyl acetate (PVA) based
fabric glue to place the sensor. After drying, we applied a
silicon rubber [15] layer (Imm) on top of the sensor.

B. Embedded System

Measurements from the capacitive sensing thread are
acquired using a 28-bit Capacitive to Digital convertor
(FDC2212), which utilizes an LC (inductor-capacitor) res-
onator to register the frequency shifts associated with capac-
itance change in comparison to a 40MHz reference crystal
clock. The module connects using the magnetic Pogo pin
with the sensor interface. The FDC2212 capacitance converter
interfaces over I2C to a miniature wireless data acquisition

system based on the XIAO BLE nRF52840 board powered by
a rechargeable 400mAh lipo battery. In order to synchronize
the start of the OptiTrack system with our sensing brace, the
SYNC trigger from the OptiTrack system is connected to a
digital interrupt pin on the nRF52840 board (Figure 3).

The change in logic level (High-Low) of the SYNC trigger,
when measured by the DAQ board, initiates data transmis-
sion over Bluetooth Low Energy (BLE) simultaneously. The
Nordic UART BLE GATT profile is utilized to transmit sensor
payloads to a receiving computer. In the test environment, the
receiver computer connects to the elbow brace before data
collection and listens to incoming BLE messages (sampling
rate- 100 Hz) using the BLE-serial command-line tool, which
bridges BLE UART payloads to a local serial port. The data is
logged using the CoolTerm serial manager tool to CSV files.
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Fig. 3. Data acquisition module of ElboSense.

C. Testing Protocol

A human study was conducted involving eight healthy
participants. Before testing, the OptiTrack cameras were cal-
ibrated to eliminate external vibrations or interference that
could bias the data. The testing protocol involved instructing
participants to wear the Elbow brace and adjust it according
to their comfort. The subject inclusion criteria were based
on the ease of right elbow-joint movement. A demonstration
was given to illustrate the desired movement, which involved
flexing the elbow from a 0° position (lying straight on the
table) to approximately a 120° angle (as shown in Figure 4).
Each participant performed ten repetitions of the flexion and
extension movement. It is important to note that the testing
protocol was not time-sensitive, resulting in variations in the
total time taken by each participant. Data acquisition was car-
ried out simultaneously using both the OptiTrack system and
ElboSense. The study was approved by Institutional Review
Board at the University of Rhode Island (1785106-7), and all
participants provided signed consent to participate.

ITII. RESULTS AND DISCUSSIONS

We have collected capacitance data from ElboSense and
distance from OptiTrack data. For analyzing the data, we
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have re-sampled both the signals to the same sampling rate
and converted them to the same time scale. Both data were
collected in a time-synchronized manner with the help of the
embedded system.

OptiTrack
Camera

Fig. 4. Healthy adult human testing protocol.

A. Elbow Flexion-Extension Test

The integrated sensor undergoes changes in capacitance
when subjected to external axial tension or compression.
During elbow flexion, the elbow brace applies longitudi-
nal stress externally, leading to an increase in capacitance.
Conversely, during elbow extension, the sensor relaxes, re-
sulting in a decrease in capacitance. During the test, the
elbow moves between 0° (extension) to the maximum angle
of 120° (flexion). We measured the angular changes using
the three-point motion-imaging techniques of OptiTrack. The
measured capacitance (pF) value was plotted together against
the joint angle variations. Figure 5 shows the comparison
of performance characteristics of ElboSense and OptiTrack
(Participant-8). Both data show similar peaks and valleys,
which indicate a consistent pattern in the range of motion
measurements. The consistent alignment of the data highlights
the reliability and consistency of the measurements obtained
from both systems. This reinforces the accuracy and precision
of the measurement techniques employed in capturing the joint
angle change and capacitance values.
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Fig. 5. Comparison of Joint angle change (OptiTrack) and Capacitance

variation (ElboSense).

B. Feature Analysis

For feature extraction, ElboSense and OptiTrack data are
normalized, peaks and valleys are identified using the find
peaks algorithm, and the average peak to peak, valley to-
valley distances are calculated. This analysis measures the

total variation signal distance. It helps determine the difference
between the peaks and the valley in a waveform, which can
be useful in characterizing the overall magnitude of a signal
or identifying any irregularities or anomalies. Both variations
were calculated for time-synchronized data. Figure 6 shows the
peak-to-peak (top) and valley-to-valley (bottom) analyses. For
peak-to-peak (P2P) and valley-to-valley (V2V) analysis, we
normalized both the ElboSense and OptiTrack data sets. For
P2P, we measured the average time-based distance between
two successive peaks, and for V2V, we calculated the sample
distance between two consecutive valleys. Sample distance
is mapped to time series data. Both analyses show a clean
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Fig. 6. Normalized P2P (top) and V2V (bottom) analysis.
cohesiveness of both signals. Although participants 2 and 5
showed a negligible amount of discrepancy for both P2P and
V2V analysis. It can happen for multiple reasons, for instance,
loose fit or irregular flexion distance. We performed Pearson’s
correlation coefficient analysis, which ranges from -1 to 1,
where 1 represents a perfect positive correlation, -1 represents
a perfect negative correlation, and O represents no correlation.
In our case, Pearson’s correlation coefficient analysis revealed
a coefficient of 0.95 for P2P (Point-to-Point) and 0.98 for V2V
(Vehicle-to-Vehicle). These coefficients indicate a very strong

positive correlation between the respective variables.
C. Capacitance Variation During Human Test

Figure 7 displays the average capacitance variation of all
eight participants during the flexion-extension test. The ca-
pacitance range during flexion was found to be 45-55 pF; for
extension, it was 30-35 pF, which shows reliable repeatability
of the sensor performance. The mean capacitance during
flexion (52.83) pF is higher than during extension (33.53)
pF, indicating that there is an overall increase in capacitance
during flexion and a decrease during extension. The paired t-
test shows a highly significant difference between the flexion
and extension measurements (p j 0.001). The average differ-
ence between flexion and extension of the capacitive sensor is
18.59, and the standard deviation is 3.13. Major capacitance
difference and SD signifies that the capacitive sensor performs
effective differences to classify the major events in the elbow
movement test. This indicates that as the capacitance increases
during flexion, it tends to decrease during extension and vice
versa.
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Fig. 7. Average capacitance changes due to the Extension-Flexion test.

D. Cross-Correlation and Lag Analysis

Figure 8 displays a graphical representation of cross corre-
lation (CC) and lag across eight participants. CC is a measure
of similarity between two waveforms as a function of the time
lag applied to one of them. The lag in this context refers to the
time delay in sample index numbers between the two signals
being compared. The change of the trigger pin (to change
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Fig. 8. Cross-Correlation and Lag plot analysis.

logic level- high,low) maintains the data synchronization and
generates the minimum lag. The high value of mean cross-
correlation 0.907 implies that there is a strong correlation
between the elbow tracking and OptiTrack measurements,
further confirming the consistency and reliability of ElboSense
for tracking elbow flexion-extension movements.

IV. CONCLUSIONS AND FUTURE WORK

This work introduced ElboSense, where we demonstrated
the structure and integration process of a novel capacitive
strain sensor to measure elbows’ flexion and extension. The
work conducted a human test consisting of ten healthy par-
ticipants. For verification, we utilized the motion-capturing
module OptiTrack as a reference. We used our own data
acquisition module to measure capacitance changes in the
sensor. Number The findings from the study indicate that
capacitance sensors can detect elbow flexion-extension angles
similar to optical markers. Cross-correlation analysis between
raw capacitance signals and OptiTrack indicates that they are

highly correlated (Average CC: 0.91). This data consistency
reinforces the ElboSense system’s potential as a viable alter-
native for measuring the elbow’s range of motion.

However, this work has some limitations; we evaluated only
one type of motion analysis. Future work will expand on
this by integrating IMU data and capacitive stretch sensors
to construct multiple angular motion models. Another pos-
sible research prospect is to check the external interference
on the sensor, for instance, motion artifacts, humidity, and
perspiration. The directional dependencies (stretch) and ESD
(electrostatic discharge) phenomenon also need to be evaluated
to get the overall characteristics of the sensor.

Future iterations will incorporate a single modular design
that enables plug-and-play functionality. The wireless system
will intuitively measure and facilitate the range of motion
exercises for patients with musculoskeletal injuries.
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