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Abstract— Among many advancements in wearable
technology, there is a strong demand to develop wearable
smart textiles for monitoring respiration in daily life settings.
The existing methods for respiration monitoring are not
sufficient to monitor the respiration events continuously in
real-life settings and are not validated extensively. Motivated
by this need, we developed a wearable multi-sensory smart-
textile system called “RespWear” for accurate and reliable
respiration monitoring in daily life settings. RespWear
consists of a textile pressure sensor belt (to monitor the chest
movements related to breathing) and a wearable data
acquisition system. The wearable data acquisition system
supports wireless communication to offer unobtrusive
monitoring of respiration. The data collected from the sensor
belt was sent to a recording device via ESP-Now respiration
rate analysis. We recruited 4 participants (2 female and 2
male) to validate the RespWear for monitoring different
respiration rates (number of breaths per minute) and
different postures (standing, sitting, and bending). An
OptiTrack IR camera system was used as a gold standard to
validate RespWear performance. Results showed that
RespWear had an excellent correlation (r-value = 0.836) with
the data collected using OptiTrack camera system for the
respiration rate calculation. These findings showed that the
RespWear can be a good candidate for being a wireless,
wearable respiration monitoring system in daily life settings.
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L INTRODUCTION

Recent technological advancements enable noninvasive
monitoring of health in real-life settings, allowing insights
into diurnal health changes. Monitoring physiological
parameters such as heart rate, blood oxygen level, and
respiration is gaining popularity for maintaining good
health and wellbeing, especially after the COVID
pandemic. Among these physiological parameters,
respiration monitoring is under-recognized despite the fact
that it could be used to evaluate various health conditions
such as asthma, apnea, bronchitis, and emphysema, along
with complications that affect the critical systems such as
the nervous system, excretory system, and cardiovascular
system [1-4]. Monitoring respiration can be useful to
diagnose the disease as well as monitor the effects of the
treatment/interventions on the patients.

Reports indicate that respiration can be linked to
emotions such as happiness, surprise, sadness, anger, stress,
and fear [5-8]. This link between respiration and human
emotions can be useful to prevent mental disease and
improve the mental health of the patients [9]. Also, human
emotion recognition can be useful in psychological studies
such as investigating consumer and social trends [10].

Besides, emotions are also used to study driver safety [7]. It
can also be useful in virtual reality-based clinical
interventions [11-13] and in investigating cognitive and
learning processes [14]. Further, respiration is widely used
to train athletes and improve their performance [15].

There are several methods to monitor respiration. These
methods can be divided into two main categories, namely,
contact-based and noncontact-based methods. Contact-
based methods involve acoustic-based methods [16-18],
Airflow-based  methods [19-22], Chest/Abdominal
movement detection [23-26], Oximetry Probe (SpO.) based

method [27-28], and ECG-based method [29-33].
Noncontact-based methods involve Radar Based
Respiration Rate Monitoring [34-36], Optical Based

Respiration Rate Monitoring [37-40], Thermal sensors, and
thermal imaging-based respiration monitoring [41]. Non-
contact methods offer the opportunity for monitoring the
user’s respiration events without hindering their
movements. However, these non-contact methods are
limited to lab-based setup. Besides, it raises concerns
related to patient safety, electromagnetic interference with
medical equipment, etc. On the other hand, contact-based
methods are more reliable and can be used in daily life
settings. However, there is a tradeoff between the type of
the sensors, the application area (clinical or experimental),
and the wearability aspect. The existing methods are not
sufficient to monitor respiration and related events
continuously in real-life settings and are not validated
extensively. Motivated by this, we propose to develop and
validate a smart-textile-based respiration monitoring system
comprising of textile-based sensors and a data acquisition
module. We conducted a validation experiment using the
gold standard motion capture system.

In our current work, a smart textile pressure sensor was
designed with an industrial embroidery machine to monitor
chest movements. The pressure sensor pads were carefully
integrated into a chest belt to cover both the upper and
lower chest area. The presented system also comprises a
wearable wireless data acquisition system. The system was
validated for different breathing rates and for different
postures (standing, sitting, bending). The effect of postures
on the efficacy to monitor respiration rate was analyzed.
The system was compared with data collected using an IR
motion camera system. Our findings suggest that the
proposed system can be a reliable respiration monitoring
solution for in-home, clinical, and research settings.



II.  SYSTEM DESIGN

We designed the RespWear system which consisted of (A)
In-house developed textile-based pressure sensors, (B) A
chest belt, housing the pressure sensors, and a wearable data
acquisition unit to record respiration data wirelessly.

A. Design of the Pressure Sensors

The respiratory cycle (inhalation and exhalation) causes
movement in the entire chest area. The magnitude of
movement varies from person to person including the
differences in gender, body dimensions, height, and
structure. Therefore, to achieve accurate respiration
detection, the entire chest area needs to be monitored. The
embroidered pressure sensors were created using Velostat
material (that changes its resistance when pressure is
applied to it) and conductive thread. Breathing causes
movement of the chest which can be used to create pressure
on the Velostat material using a chest belt. This pressure
changes the resistance of the Velostate material. To record
the resistance changes, a silver-coated conductive thread
was embroidered on a denim fabric using an industrial
technical embroidery machine (ZSK Embroidery
Machines). The Velostat material was sandwiched between
the two pieces of denim fabrics (Fig. 1). Six sensor pads
were created to monitor respiration.

B. Design of the chest belt

The chest belt consisted of two major elements
involving (i) the sensor-integrated smart textile belt and (ii)
the wireless embedded system to collect data from the
sensors. Both elements are discussed below.

1) Integration of the pressure sensors

We have created a chest belt housing a total of six
pressure sensors covering almost the entire chest region. A
set of three sensors was placed around the upper chest area
and another set was placed around the lower chest area. The
sensors were placed at the center and on both sides of the
chest. To integrate the sensors into the chest belt, we
stitched a piece of fabric connecting the sensors. A non-
elastic fabric was chosen to provide the tightness of the belt
and make it fit the body. For the back side of the belt, a
Velcro strap was used to adjust the fitting. It was important
to accommodate different chest sizes and ensure proper
sensor positioning to collect reliable data. For this, the chest
belt was created based on the largest size, then the fabric
between the sensor pads was folded and clipped using
fabric clips according to the smaller sizes such as medium,
small, and extra small. These adjustments allowed the chest
belt to be used on both females and males with different
chest sizes.

2) Wearable Data Acquisition System

The RespWear was designed to be used in day-to-day
life. Thus, it was important to collect data from the system
which does not hinder one’s movements. To achieve this a
wearable data acquisition system (W-DAQ) was developed
which could collect the data from the pressure sensors and
send the data wirelessly to the computing device. The W-
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Figure 1: Overview of the RespWear System

DAQ consisted of an ESP-32-based microcontroller, a 16-
bit analog-to-digital converter (ADC), a battery monitor
module, and a 3.7V Li-Po battery. The sensor data was
sampled at 64 Hz using W-DAQ. All components were
combined on a PCB and connected to the chest belt using
wires. Fig. 1 shows the chest belt with the W-DAQ.

Wireless data acquisition was performed over the ESP-
Now, a 2.4GHz protocol. A laptop running Windows 10
was used to collect data wirelessly. The CoolTerm program
was used to log the data to a CSV file.

III.  EXPERIMENT AND METHODS

A. Participants

We recruited four participants (2 female and 2 male,
average age = 27.2y) for this study. Females used the small
size belt and males used the large size. Signed and informed
consent was collected from participants. The study protocol
was approved by the University of Rhode Island
Institutional Review Board (protocol #1785106-6).

B. Setup and Procedure

The chest belt was placed on the participants’ chest and
adjusted according to different body sizes. In addition,
OptiTrack marker-based motion capture was used as the
ground truth for measuring the precise movement of
different points on the chest associated with breathing. The
OptiTrack motion tracking system used in this study
acquires live video streams at 100 frames per second from
multiple infrared cameras with IR LED light source.
Reflective markers were placed on the belt, next to the
sensors. Synchronization between the chest belt sensors and
OptiTrack system is enabled through the use of the External
Device Sync connector. The data from IR cameras and our
system were captured in an interrupt-triggered time-
synchronized manner.

The chest-belt sizes were determined according to the
measurements taken from different people. Participants
were asked to perform standing, sitting, and bending
postures in between the camera setup as shown in Fig. 2.
The experimental protocol is summarized in Table 1.

IV. RESULTS AND DISCUSSION

We aimed to validate the performance of the RespWear
system. For this, we collected data from RespWear and the
gold standard, OptiTrack, system in a time-synchronized
manner. We present our comparative analysis of the data
collected using these systems in this section.



Figure 2: Experimental Setup

Table 1: Experimental Protocol

Section Breathing Type N]l;?lzf}rls()f (]3:2:1132)
Deep breath 10 ~45
Standing Normal breath 10 ~35
Fast breathe 10 ~15
Deep breathe 10 ~45
Sitting Normal breath 10 ~35
Fast breathe 10 ~15
Bending Deep breathe 10 ~45

A. Characterization of the Pressure Sensors

To analyze the breathing, the raw data coming from the
pressure sensors were filtered using a bandpass filter (0.1-
0.35 Hz). Subsequently, we applied a peak detection
algorithm over the filtered data. We computed the time
interval (T) between each peak (created by the breathing
event) and computed the respiration rate (RR). Fig. 3 shows
the raw and filtered signals collected from the belt. It is
seen that the breathing amplitude and the time difference
between the peaks decreased when the breathing rate
increased. Since fast breathing happens promptly, the
magnitude of expansion and contraction of the chest
becomes condensed and causes a decrement in the
breathing amplitude. The breathing amplitude change
shows that our sensors can capture those small changes.

B. Validation of the Sensor Belt with the Benchmark
System

To validate our sensor belt system, we compared the
data acquired using the sensor belt with the OptiTrack IR
cameras. We computed the correlation coefficient between
the movement-related data captured by the sensor belt and
the OptiTrack system. We observed an excellent agreement
(r-value=>0.9) between the data collected by these two
systems.

We further investigated the data to understand the
agreement between the breathing rate extracted using the
sensor belt data and the breathing rate extracted using the
OptiTrack data. Here, we found that there was an excellent
agreement (r-value = 0.836) between the respiration rate
recorded using our system and the respiration rate recorded
using the OptiTrack camera system at almost zero lag
position which shows that there was a good time
synchronization between systems.
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Figure 3: Raw data, filtered data, breathing rate, and breathing amplitude

of the data collected using the sensor belt during standing

Note: Blue Highlights Deep Breathing; Yellow Highlights Normal

Breathing; Green Highlights Fast Breathing
Table 2: Mean Absolute Error between breathing recorded using

RespWear and OptiTrack System
Note: DB: Deep Breathing; NB: Normal Breathing; FB: Fast Breathing;
AVG: Average; STD: Standard Deviation

Posture Standin Sittin, Bending

Breathingl DB | NB | FB | DB | NB | FB DB
P1 0.05 ] 0.61 | 0.18 | 1.66 | 0.84 | 0.95 | 0.21
P2 0.46 | 0.65 | 0.86 | 0.05 | 529 | 0.94 | 9.25
P3 0.05 | 2.65 | 0.67 | 0.06 | 0.76 | 0.79 | 1.21
P4 0.30 | 0.96 | 0.66 | 0.69 | 091 | 1.85| 2.87
AVG | 0.21 | 1.22 | 0.50 | 0.59 | 1.95 | 0.20 | 3.38
STD [0.20 | 0.97 | 046 | 0.79 | 2.23 | 1.37 | 4.06

C. Different Postures and Accuracy of the System

We also wanted to understand the effects of different
pastures on the breathing rate measured by our system. We
computed the mean absolute error (MAE) in the
measurement of respiration rate done using our system and
the OptiTrack data. Table 2 shows the MAE for each
participant in different positions. It was seen that there were
missing data points for the sitting and bending postures in
the OptiTrack data particularly when the line of sight of the
cameras was obstructed by the posture. This situation
caused an increase in the MAE for the respiration rate for
sitting and bending postures.

V. CONCLUSION

In this paper, we presented a wireless, smart textile-
based respiration monitoring system called RespWear. We
developed textile-based sensors, a sensor belt and a
wearable data acquisition system. We used the OptiTrack
camera system as a benchmark to validate our system. To
evaluate the performance of RespWear, we recruited 4
participants. Our findings showed that RespWear can sense
the different respiration rates (even in different postures)
accurately. This shows the potential of RespWear to be a
reliable candidate for monitoring respiration and related
applications such as pulmonary rehabilitation, COVID
rehabilitation, or apnea monitoring in real-life settings. In
the future, we would like to conduct experiments with more
participants and do a detailed analysis to evaluate the
performance of RespWear. Also, we would like to explore
different benchmarking methods to avoid line-of-sight
issues posed by cameras.
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