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Abstract— Among many advancements in wearable 
technology, there is a strong demand to develop wearable 
smart textiles for monitoring respiration in daily life settings. 
The existing methods for respiration monitoring are not 
sufficient to monitor the respiration events continuously in 
real-life settings and are not validated extensively. Motivated 
by this need, we developed a wearable multi-sensory smart-
textile system called “RespWear” for accurate and reliable 
respiration monitoring in daily life settings. RespWear 
consists of a textile pressure sensor belt (to monitor the chest 
movements related to breathing) and a wearable data 
acquisition system. The wearable data acquisition system 
supports wireless communication to offer unobtrusive 
monitoring of respiration. The data collected from the sensor 
belt was sent to a recording device via ESP-Now respiration 
rate analysis. We recruited 4 participants (2 female and 2 
male) to validate the RespWear for monitoring different 
respiration rates (number of breaths per minute) and 
different postures (standing, sitting, and bending). An 
OptiTrack IR camera system was used as a gold standard to 
validate RespWear performance. Results showed that 
RespWear had an excellent correlation (r-value = 0.836) with 
the data collected using OptiTrack camera system for the 
respiration rate calculation. These findings showed that the 
RespWear can be a good candidate for being a wireless, 
wearable respiration monitoring system in daily life settings. 
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I. INTRODUCTION 

Recent technological advancements enable noninvasive 
monitoring of health in real-life settings, allowing insights 
into diurnal health changes. Monitoring physiological 
parameters such as heart rate, blood oxygen level, and 
respiration is gaining popularity for maintaining good 
health and wellbeing, especially after the COVID 
pandemic. Among these physiological parameters, 
respiration monitoring is under-recognized despite the fact 
that it could be used to evaluate various health conditions 
such as asthma, apnea, bronchitis, and emphysema, along 
with complications that affect the critical systems such as 
the nervous system, excretory system, and cardiovascular 
system [1-4]. Monitoring respiration can be useful to 
diagnose the disease as well as monitor the effects of the 
treatment/interventions on the patients.  

Reports indicate that respiration can be linked to 
emotions such as happiness, surprise, sadness, anger, stress, 
and fear [5-8]. This link between respiration and human 
emotions can be useful to prevent mental disease and 
improve the mental health of the patients [9]. Also, human 
emotion recognition can be useful in psychological studies 
such as investigating consumer and social trends [10]. 

Besides, emotions are also used to study driver safety [7]. It 
can also be useful in virtual reality-based clinical 
interventions [11-13] and in investigating cognitive and 
learning processes [14]. Further, respiration is widely used 
to train athletes and improve their performance [15].  

There are several methods to monitor respiration. These 
methods can be divided into two main categories, namely, 
contact-based and noncontact-based methods. Contact-
based methods involve acoustic-based methods [16-18], 
Airflow-based methods [19-22], Chest/Abdominal 
movement detection [23-26], Oximetry Probe (SpO2) based 
method [27-28], and ECG-based method [29-33]. 
Noncontact-based methods involve Radar Based 
Respiration Rate Monitoring [34-36], Optical Based 
Respiration Rate Monitoring [37-40], Thermal sensors, and 
thermal imaging-based respiration monitoring [41]. Non-
contact methods offer the opportunity for monitoring the 
user’s respiration events without hindering their 
movements. However, these non-contact methods are 
limited to lab-based setup. Besides, it raises concerns 
related to patient safety, electromagnetic interference with 
medical equipment, etc. On the other hand, contact-based 
methods are more reliable and can be used in daily life 
settings. However, there is a tradeoff between the type of 
the sensors, the application area (clinical or experimental), 
and the wearability aspect. The existing methods are not 
sufficient to monitor respiration and related events 
continuously in real-life settings and are not validated 
extensively. Motivated by this, we propose to develop and 
validate a smart-textile-based respiration monitoring system 
comprising of textile-based sensors and a data acquisition 
module. We conducted a validation experiment using the 
gold standard motion capture system. 

In our current work, a smart textile pressure sensor was 
designed with an industrial embroidery machine to monitor 
chest movements. The pressure sensor pads were carefully 
integrated into a chest belt to cover both the upper and 
lower chest area. The presented system also comprises a 
wearable wireless data acquisition system. The system was 
validated for different breathing rates and for different 
postures (standing, sitting, bending). The effect of postures 
on the efficacy to monitor respiration rate was analyzed. 
The system was compared with data collected using an IR 
motion camera system. Our findings suggest that the 
proposed system can be a reliable respiration monitoring 
solution for in-home, clinical, and research settings. 



II. SYSTEM DESIGN 

We designed the RespWear system which consisted of (A) 
In-house developed textile-based pressure sensors, (B) A 
chest belt, housing the pressure sensors, and a wearable data 
acquisition unit to record respiration data wirelessly.  

A. Design of the Pressure Sensors 

The respiratory cycle (inhalation and exhalation) causes 
movement in the entire chest area. The magnitude of 
movement varies from person to person including the 
differences in gender, body dimensions, height, and 
structure. Therefore, to achieve accurate respiration 
detection, the entire chest area needs to be monitored. The 
embroidered pressure sensors were created using Velostat 
material (that changes its resistance when pressure is 
applied to it) and conductive thread. Breathing causes 
movement of the chest which can be used to create pressure 
on the Velostat material using a chest belt. This pressure 
changes the resistance of the Velostate material. To record 
the resistance changes, a silver-coated conductive thread 
was embroidered on a denim fabric using an industrial 
technical embroidery machine (ZSK Embroidery 
Machines). The Velostat material was sandwiched between 
the two pieces of denim fabrics (Fig. 1). Six sensor pads 
were created to monitor respiration. 

B. Design of the chest belt 

The chest belt consisted of two major elements 
involving (i) the sensor-integrated smart textile belt and (ii) 
the wireless embedded system to collect data from the 
sensors. Both elements are discussed below. 

1) Integration of the pressure sensors 
We have created a chest belt housing a total of six 

pressure sensors covering almost the entire chest region. A 
set of three sensors was placed around the upper chest area 
and another set was placed around the lower chest area. The 
sensors were placed at the center and on both sides of the 
chest. To integrate the sensors into the chest belt, we 
stitched a piece of fabric connecting the sensors. A non-
elastic fabric was chosen to provide the tightness of the belt 
and make it fit the body. For the back side of the belt, a 
Velcro strap was used to adjust the fitting. It was important 
to accommodate different chest sizes and ensure proper 
sensor positioning to collect reliable data. For this, the chest 
belt was created based on the largest size, then the fabric 
between the sensor pads was folded and clipped using 
fabric clips according to the smaller sizes such as medium, 
small, and extra small. These adjustments allowed the chest 
belt to be used on both females and males with different 
chest sizes.  

2) Wearable Data Acquisition System 
The RespWear was designed to be used in day-to-day 

life. Thus, it was important to collect data from the system 
which does not hinder one’s movements. To achieve this a 
wearable data acquisition system (W-DAQ) was developed 
which could collect the data from the pressure sensors and 
send the data wirelessly to the computing device. The W- 

DAQ consisted of an ESP-32-based microcontroller, a 16-
bit analog-to-digital converter (ADC), a battery monitor 
module, and a 3.7V Li-Po battery. The sensor data was 
sampled at 64 Hz using W-DAQ. All components were 
combined on a PCB and connected to the chest belt using 
wires. Fig. 1 shows the chest belt with the W-DAQ. 

Wireless data acquisition was performed over the ESP-
Now, a 2.4GHz protocol. A laptop running Windows 10 
was used to collect data wirelessly. The CoolTerm program 
was used to log the data to a CSV file. 

III. EXPERIMENT AND METHODS 

A. Participants 

We recruited four participants (2 female and 2 male, 
average age = 27.2y) for this study. Females used the small 
size belt and males used the large size. Signed and informed 
consent was collected from participants. The study protocol 
was approved by the University of Rhode Island 
Institutional Review Board (protocol #1785106-6).  

B. Setup and Procedure 

The chest belt was placed on the participants’ chest and 
adjusted according to different body sizes. In addition, 
OptiTrack marker-based motion capture was used as the 
ground truth for measuring the precise movement of 
different points on the chest associated with breathing. The 
OptiTrack motion tracking system used in this study 
acquires live video streams at 100 frames per second from 
multiple infrared cameras with IR LED light source. 
Reflective markers were placed on the belt, next to the 
sensors. Synchronization between the chest belt sensors and 
OptiTrack system is enabled through the use of the External 
Device Sync connector. The data from IR cameras and our 
system were captured in an interrupt-triggered time-
synchronized manner.  

The chest-belt sizes were determined according to the 
measurements taken from different people. Participants 
were asked to perform standing, sitting, and bending 
postures in between the camera setup as shown in Fig. 2. 
The experimental protocol is summarized in Table 1. 

IV. RESULTS AND DISCUSSION 

We aimed to validate the performance of the RespWear 
system. For this, we collected data from RespWear and the 
gold standard, OptiTrack, system in a time-synchronized 
manner. We present our comparative analysis of the data 
collected using these systems in this section. 
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Figure 1: Overview of the RespWear System 

 



 

A. Characterization of the Pressure Sensors 

 To analyze the breathing, the raw data coming from the 
pressure sensors were filtered using a bandpass filter (0.1-
0.35 Hz). Subsequently, we applied a peak detection 
algorithm over the filtered data. We computed the time 
interval (T) between each peak (created by the breathing 
event) and computed the respiration rate (RR). Fig. 3 shows 
the raw and filtered signals collected from the belt. It is 
seen that the breathing amplitude and the time difference 
between the peaks decreased when the breathing rate 
increased. Since fast breathing happens promptly, the 
magnitude of expansion and contraction of the chest 
becomes condensed and causes a decrement in the 
breathing amplitude. The breathing amplitude change 
shows that our sensors can capture those small changes. 

B. Validation of the Sensor Belt with the Benchmark 
System 

To validate our sensor belt system, we compared the 
data acquired using the sensor belt with the OptiTrack IR 
cameras. We computed the correlation coefficient between 
the movement-related data captured by the sensor belt and 
the OptiTrack system. We observed an excellent agreement 
(r-value=>0.9) between the data collected by these two 
systems. 

We further investigated the data to understand the 
agreement between the breathing rate extracted using the 
sensor belt data and the breathing rate extracted using the 
OptiTrack data. Here, we found that there was an excellent 
agreement (r-value = 0.836) between the respiration rate 
recorded using our system and the respiration rate recorded 
using the OptiTrack camera system at almost zero lag 
position which shows that there was a good time 
synchronization between systems.  

 

C. Different Postures and Accuracy of the System 

We also wanted to understand the effects of different 
pastures on the breathing rate measured by our system. We 
computed the mean absolute error (MAE) in the 
measurement of respiration rate done using our system and 
the OptiTrack data. Table 2 shows the MAE for each 
participant in different positions. It was seen that there were 
missing data points for the sitting and bending postures in 
the OptiTrack data particularly when the line of sight of the 
cameras was obstructed by the posture. This situation 
caused an increase in the MAE for the respiration rate for 
sitting and bending postures.  

V. CONCLUSION 

In this paper, we presented a wireless, smart textile-
based respiration monitoring system called RespWear. We 
developed textile-based sensors, a sensor belt and a 
wearable data acquisition system. We used the OptiTrack 
camera system as a benchmark to validate our system. To 
evaluate the performance of RespWear, we recruited 4 
participants. Our findings showed that RespWear can sense 
the different respiration rates (even in different postures) 
accurately. This shows the potential of RespWear to be a 
reliable candidate for monitoring respiration and related 
applications such as pulmonary rehabilitation, COVID 
rehabilitation, or apnea monitoring in real-life settings. In 
the future, we would like to conduct experiments with more 
participants and do a detailed analysis to evaluate the 
performance of RespWear. Also, we would like to explore 
different benchmarking methods to avoid line-of-sight 
issues posed by cameras. 
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Figure 2: Experimental Setup 

Table 1: Experimental Protocol 

Section Breathing Type 
Number of 

Breaths 
Duration 
(seconds) 

Standing 
Deep breath 10 ~45 

Normal breath 10 ~35 
Fast breathe 10 ~15 

Sitting 
Deep breathe 10 ~45 

Normal breath 10 ~35 
Fast breathe 10 ~15 

Bending Deep breathe 10 ~45 

 

Figure 3: Raw data, filtered data, breathing rate, and breathing amplitude 
of the data collected using the sensor belt during standing  
Note: Blue Highlights Deep Breathing; Yellow Highlights Normal
Breathing; Green Highlights Fast Breathing 

 Table 2: Mean Absolute Error between breathing recorded using 
RespWear and OptiTrack System 

Note: DB: Deep Breathing; NB: Normal Breathing; FB: Fast Breathing; 
AVG: Average; STD: Standard Deviation 

Posture Standing Sitting Bending 
Breathing DB NB FB DB NB FB DB 

P1 0.05 0.61 0.18 1.66 0.84 0.95 0.21 
P2 0.46 0.65 0.86 0.05 5.29 0.94 9.25 
P3 0.05 2.65 0.67 0.06 0.76 0.79 1.21 
P4 0.30 0.96 0.66 0.69 0.91 1.85 2.87 

AVG 0.21 1.22 0.50 0.59 1.95 0.20 3.38 
STD 0.20 0.97 0.46 0.79 2.23 1.37 4.06 
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