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ABSTRACT Networks have exceedingly low latency requirements. Verifying network latency is crucial for
identifying any bottlenecks that may negatively impact user experience and swiftness of business operations.
Network operators today heavily rely on high-fidelity simulators to validate latency requirements. Alas,
detailed simulators are slow and subsequently not scalable. Alternatively, network verifiers are emerging
as powerful validation means. Network verifiers provide an abstract model of the network behavior. Albeit
faster than their current simulation-based counterparts, abstracting the details of networks comes at a cost:
the state-of-the-art verifiers have major limitations such as not modeling failures or latency that prevent
them from reliably verifying latency. This paper bridges this gap by proposing a scalable latency verification
method, Tempus, that decomposes latency verification into two phases (functional and temporal verification)
and refines advanced abstract network models to enable fast temporal verification. Concretely, given a source
and destination pair and the empirical latency measurements of network components (e.g., the queueing
delay), Tempus returns the probability of reaching the destination from the source within a time frame under
all failure scenarios. We evaluate Tempus under both wide area and datacenter networks and show that it is
fast and scalable. For instance, Parsimon, a state-of-the-art fast network simulator, requires more than one
month to simulate all failure scenarios of an 8-ary fat-tree network with 100 Gbps links under 25% load.
Tempus, in contrast, verifies the latency of the same network among all (source, destination) pairs and under
all failure scenarios in only 8 minutes and 32 seconds, a speedup of three orders of magnitude. We also
demonstrate that Tempus accurately approximates network latency under various degrees of load.

INDEX TERMS Delay estimation, system verification, performance evaluation, system performance.

I. INTRODUCTION

Catering to modern applications’ increasingly low latency
requirements pushes network operators to optimize every
aspect of their network and set tight latency goals in
their Service Level Agreements (SLAs) [1], [2], [3], [4],
[51, 161, [7], [8]. For instance, Verizon’s, AT&T’s, and
COMCAST’s SLAs necessitate average Round-Trip Times
(RTTs) of 45, 40, and 55 milliseconds, respectively [1],
[2], and [3]. Verifying that the network complies with
these increasingly strict latency requirements is crucial [9],
[10], [11], [12]. High-fidelity packet-level simulators (e.g.,
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approving it for publication was Byung-Gyu Kim.

OMNeT+H+ [13], NS-3 [14], and DONS [15]) have emerged
as the de facto latency estimation tools and are extensively
used for testing various latency properties such as RTTs
and flow completion times [7], [8], [16], [17], [18], [19],
[20]. To ensure performance fidelity, these simulators try to
accurately mimic fine-grained details of the network. This
improves accuracy but comes with a great computational
cost: The state-of-the-art network simulators are quite slow
for verifying latency under numerous network states. For
instance, using DONS [15], a recent parallel packet-level
simulator optimized for speed, simulating a one-second run
of a single state 8-ary fat-tree network (one with a single set
of link failures) with 100 Gbps links under 25% load on a
machine with 12 logical processors running up to 3.5 GHz
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takes approximately 3 days.! Since an 8-arry fat-tree has
256 links, simulating all 22°° possible link failure scenarios
would require more than 9.6 x 1074 years!

Network verifiers [4], [11], [12], [21], [22], [23], [24], [25],
(261, [27], [28], [29], [30], [311, [32], [33], [34], [35], [36],
[371, [38], [39], [40], [41], [42], [43] provide an alternative
approach that strives to test all reachable states of an abstract
model of the network compared to a few simulated ones.
Alas, existing proposals on network latency verification have
some key limitations: (i) They cannot model and verify
latency under all failure scenarios [12], [44], [45], (ii) they
are not general and only verify limited sources of delay
such as network functions [10], [38], [46], smart NICs [47],
or queueing delay [11], and (iii) they are coarse-grained and
only support flow-level latency analysis [12], [39] which is
not sufficient for increasing common packet-level round-trip
time SLAs [1], [2], [3].

To address this gap, we introduce Tempus, a general and
packet-level probabilistic temporal verification framework
designed to verify the latency of packets as they traverse the
network under various load balancing paradigms and across
all failure scenarios. Given the network graph, the source
and destination node, and a time threshold (latency bound),
Tempus returns the time-bounded reachability probability,
i.e., the probability of the destination node being reachable
from the source within the time threshold under all link failure
scenarios. Tempus decomposes the latency verification task
into two phases: (i) functional verification, in which Tempus
computes the probability of two nodes being reachable
under various network states, and (ii) temporal verification,
in which Tempus calculates the probability of reaching a node
from another one below the user-specified latency bound.

In the functional verification phase, to obtain the func-
tional probability, Tempus refines the mathematical model
of NetDice [23], a state-of-the-art qualitative verification
framework, to explore all failure scenarios at scale. NetDice’s
key insight is identifying hot edges, i.e., links in the network
whose failure lead to changes in the paths between two nodes
chosen by the routing protocol and load balancer. Recursively
exploring reachable states by failing only hot edges enables
NetDice to scale without compromising accuracy. The
key distinction between Tempus’s first phase and NetDice
is that Tempus refines NetDice’s model by augmenting
every state with information about potential paths between
the source and destination node, given the failed links.
This information is crucial for calculating time-bounded
reachability probability in the second phase.

After computing each state’s functional probability, Tem-
pus enters the second phase, temporal verification. It iter-
atively computes the temporal properties of each state by
mapping delay distributions to every link’s empirical latency
measurements such as queueing, link propagation, and link

INote that this is a significant speedup compared to pervasive simulators
such as NS3 [14] and OMNeT [13]. Simulating the same scenario with
OMNeT, for example, requires almost a week.
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transmission delays, obtained from measuring real networks,
e.g., [8], [48] and [49]. Tempus then applies numerical
convolution [50] on these distributions to obtain the latency
distribution of the hot edges and convolves the edge latency
distributions, using the path information added to every
network state in the previous phase, to obtain the potential
paths’ end-to-end latency distributions. After acquiring
the latency distribution of each potential path, Tempus
leverages its Cumulative Distribution Function (CDF) and
the given time threshold to compute the time-bounded
reachability probability of the path and averages over the
path probabilities to calculate the network state’s temporal
probability. The final output is then generated by multi-
plying every state’s temporal probability by its functional
probability and summing over the results for all network
states.

In addition to enabling latency verification, Tempus’s
second contribution is novel caching mechanisms that speed
up the verification process. We observe that the set of
potential paths for various network states is not mutually
exclusive, i.e., some paths can be shared between multiple
states. We harness this property to optimize Tempus’s
verification time. We store the latency of each path and
the latency corresponding to each set of paths and use
the stored values instead of recalculating a path’s or a
set’s latency in case they were observed again during
the exploration. In §IV, we show that these optimizations
considerably improve Tempus’s temporal verification time,
e.g., these optimizations reduce Tempus’s verification time
by 316x in an 8-ary fat-tree. Additionally, we illustrate that
while caching information imposes some memory overhead,
it reduces the RAM overhead of state-keeping by preventing
repetitive computations. For instance, in an 8-ary fat-tree,
while our caching mechanisms store ~ 8 KB of data in the
memory, they reduce the number of required convolutions by
87x and result in a 21% reduction in Tempus’s overall RAM
consumption.

We implement Tempus (in Julia [51]) and evaluate it
under various scales of datacenter and wide area networks.
We observe that Tempus is scalable and provides a short
verification time compared to high-fidelity simulation tools,
e.g., Tempus’s verification time for a 16-ary fat-tree topology
is 935, 179x and 103,206x smaller compared to the time
required by DONS [15] and Parsimon [52], respectively, for
simulating the network states corresponding to all failure
scenarios. We also evaluate Tempus’s accuracy by comparing
its estimation of the 99" percentile packet-level latency to
the tail end-to-end latency we observe from simulating a two-
tier leaf-spine topology with 2 spines, 3 leafs, and 10 servers
connected to each leaf. Our findings show that Tempus’s
approximation is precise irrespective of the network load.
Specifically, as we increase the degree of load from 10%
to 70%, Tempus accurately obtains the upper bound on the
tail latency. In the rest of the paper, we explain the details
of Tempus’s design (§1I) and optimizations (§III), describe
our experiments and their results (§1V), and outline the
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future directions (§V). We also discuss the related work and
highlight the limitations of existing latency verifiers (§VI).

Il. TEMPUS: PACKET-LEVEL LATENCY VERIFICATION

We present the design of Tempus, a framework that verifies
network latency, i.e., the latency imposed to packets while
traversing through various components at the core of the
network, under random link failures. In particular, given
the source and destination nodes, the network topology
graph, the components’ empirical delay measurements, e.g.,
the queueing delay, and a time threshold (latency bound),
Tempus returns the time-bounded reachability probability,
i.e., the probability of reaching from the source node to the
destination node below the time threshold, under all failure
scenarios.

Pr: Reachability probability
Pr: Bounded Reachability Probability

7. Exploration Tree
EC: Equivalence Class

Inputs Tempus
Empirical (" Functional Verification h Temporal Verification
delay Measuring component
measurements latency distribution
Transference delay P
Latency P
bound Queueing delay
2
@&@ Measuring path latency
v distribution
Network graph. ‘ Measuring EC latency ‘

FIGURE 1. Tempus's architecture.

Tempus breaks the verification task into two phases:
1) functional verification phase, i.e., verifying the reachabil-
ity between two nodes under all link failure conditions, and
2) the temporal verification phase, i.e., verifying that two
nodes are reachable below the latency bound. Note that switch
and router failures can be modeled as grouped link failures
in which the group of links corresponding to the failed node
are simultaneously considered down. We further discuss this
in §V.

Figure 1 illustrates the general workflow of Tempus.
During the functional verification phase (§II-A), given the
network graph and a source and destination node, @ and
@ , respectively, Tempus computes the probability that the
destination is reachable from the source under various link
failure scenarios. Specifically, given the routing protocol and
the load balancing scheme which indicate the potential paths
between source and destination, Tempus uses the network
graph to obtain the exploration tree (7), i.e., a tree structure
that represents the state of the network with regards to the
potential paths between the source and the destination under
all possible link failure scenarios, and uses the exploration
tree to compute the reachability probability (Pr) between @
and @ in each state.

In the temporal verification phase (§1I-B), Tempus incor-
porates time into the verification process by mapping a
latency distribution to every link on the potential paths from
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source to destination. To this end, Tempus uses existing
empirical latency measurements, e.g., those obtained from
measuring production networks [8], [48], [49], to map
distributions to every link’s queueing, propagation, and
transmission delays and applies numerical convolution [50]
on them to obtain the link’s overall latency distribution.
Next, Tempus exploits the link delay distributions to obtain
the latency distribution of every potential path between the
source and destination nodes. Lastly, using the path latency
distributions, Tempus computes the probability of time-
bounded reachability (Pt) between source and destination,
ie., @ being reachable from @ under the input latency
bound. In this work, we focus on two main sources of delay
at the network core, queueing delay and the link transference
delay, i.e., the sum of the link’s propagation and transmission
delay. However, as we discuss in V, Tempus’s method is
general and can be extended to cover various sources of
latency on packets’ paths such as the extra latency imposed
by network functions like firewalls or different layers of the
hosts’ networking stack. Next, we will discuss the details of
Tempus’s functional and temporal verification phases.

A. FUNCTIONAL VERIFICATION

To verify the functional property, inspired by NetDice [23],
we probabilistically verify the reachability between source
and destination nodes under various link failure scenarios.
In this section, we first provide a graph representation of the
network and then describe how we use and expand NetDice’s
design to explore various network states and compute the
reachability probability between two nodes in each state.

1) NETWORK GRAPH REPRESENTATION

We encode the network as an edge-labeled directed graph
G = (V,E), such as the one presented in Figure 2, where
V represents the nodes in the network, e.g., routers, and E
represents the directed connections between the nodes. In this
representation, a physical link (e;) is represented as a pair of
symmetrical edges that share the same end nodes but with
opposite directions, e.g., @ & @ To model random link
failures, we label each edge in E with a failure rate r:

riE—-{xeR|0<x<1)} (D

2) NETWORK STATE EXPLORATION

Given that every edge can be either up (working) or down
(failed), we must consider 2/E! cases to visit all failure
scenarios. Accordingly, a brute-force scheme to assess the
reachability property between two network nodes does
not scale [23]. To avoid this state exploration overhead,
NetDice [23] introduces hot edges whose failure alters the
paths selected between two nodes by the routing and the
load balancing schemes. NetDice then merges various failure
scenarios that have the same set of hot edges into one network
state. We refer to these states as Equivalence Classes (ECs)
for the rest of the paper. Since all the cases grouped in one
EC have the same set of potential paths between source
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FIGURE 2. Tempus creates an exploration tree form the network graph in the functional verification phase, every node being an EC, and

augments it with path information to perform temporal verification.

and destination, they are considered the same regarding the
reachability property. Therefore, NetDice iterates over ECs
instead of single failure scenarios to shrink the exploration
space.

To explore all the equivalence classes, NetDice creates an
exploration tree by starting from the EC with no link failure
and recursively failing certain hot edges to explore other
ECs. NetDice’s main goal is to verify qualitative properties
such as reachability. Therefore, it defines ECs based on only
the set of hot edges. In contrast, Tempus aims to verify
latency, a quantitative property. Thus, to be able to reason
about latency, Tempus expands NetDice’s state exploration
algorithm by augmenting every EC with the set of potential
paths between source and destination given the failed links
set.” Specifically, we define an Equivalence Class (&) as a
3-tuple (U;, D;, paths;) in which Uj;, D;, and paths; refer to
the set of hot edges that are up, the set of hot edges that
are down, and the potential paths between the source and
destination node, respectively.® Here, i is the index we use
to refer to distinct ECs and their corresponding link status
and path information. Using this new notion of EC, we then
form the exploration tree (7). We put the EC that corresponds
to the network with no hot edge failure, i.e., Dy = @, as the
root of the tree. To generate the rest of the tree, we recursively
create children nodes by failing one of the hot edges of their
corresponding parent node. We make sure not to generate the
same equivalence class multiple times. Specifically, similar to
NetDice, when exploring a node’s children, we lock the hot
edges that have been considered failed in previously explored
children (Figure 2). While exploring a node, Tempus avoids
generating an EC twice by refraining from failing locked
edges.

2In its temporal verification phase, Tempus exploits the path information
added to each EC to approximate the latency experienced by packets as they
traverse various paths from the source to the destination under distinct ECs.
3The control plane generates paths; based on U; and D;.
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3) FUNCTIONAL PROBABILITY CALCULATION

The exploration tree provides the set of all equivalence
classes, represented as tree nodes, that should be considered
while assessing both the functional and temporal properties.
To compute the functional probability, i.e., the probability of
the destination being reachable from the source under distinct
failure scenarios, we calculate the probability of each tree
node (&;) by multiplying the probability of all the edges in U;
being up, the probability of all the edges in D; being down,
and the probability of the locked edges, that are not already
included in U;, being up. Unlike NetDice which computes the
final reachability probability by summing up the probability
of all equivalence classes, we use the functional probability of
individual ECs (Pr(&;)) to compute the bounded reachability
probability.

Hllustrative Example: Figure 2 illustrates the exploration
tree generated by Tempus while performing functional
verification between @ and @ in an example
network graph. In this example, we use Open Shortest Path
First (OSPF) and Equal Cost Multiple Path (ECMP), two
techniques that are widely deployed in modern networks,
as the IP routing protocol and load balancing mechanism,
respectively. We assume that the failure rate for every link
(r) is 10%* and the weight for all the links is set to
1 while deploying OSPF. We want to compute the reachability
probability from @ to @ under various failure scenarios.
At the root of the tree, i.e., the equivalence class with no
hot edge failure (&), OSPF produces SD as the shortest
path between @ and @ . As explained previously,
every EC represents all failure scenarios in which the paths
selected between source and destination by the routing and
load balancing schemes, i.e., the set of hot edges, are the
same. For instance, in &y, only SD is considered a hot edge

4The 10% failure rate in this illustrative example is used for ease of
exposition. For our evaluations in §1V, we use the failure rates reported from
production networks in [23].
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since the packets are forwarded through SD as long as it is
up. Thus, & represents all the failure scenarios shown in Sg,.
The probability of @ being reachable from @ in this
equivalence class (Pr(&p)) is calculated as the probability of
all failure scenarios in which SD is up. Since the failure rate
of each link is 10%, this probability is 1 — 0.1 = 0.9.

For &), we assume that the load balancing and routing
techniques may send the packets via (eq, e2) and (e4, e5).
Thus, Pr(&1) is the probability of reaching &£ and @
and @ being reachable, i.e., the probability of all failure
scenarios in which SD is down and all other links are up.

Pr(&1) = 0.1 x (0.9)* = 0.06561 2)

Similarly, the reachability probability of & is 0.0081.
Since SA is considered locked in &3, Pr(&3) is the probability
of reaching state £3 and @ being reachable from @ , Le.,
the probability of SA, SB, and BD being up and SD and AD
being down.

Pr(&3) = (0.1)? x (0.9)° = 0.00729 (3)

Using the same computation, Pr(€4) and Pr(E5) are equal
to 0.0081 and 0.00729, respectively. For cases, such as &4 and
&s, in which there is an overlap between U; and the set of
locked edges, we make sure not to double count a link while
computing the functional probability. For instance, while
calculating the probability of locked edges being up in E&s,
we only consider SB since SA and AD are already covered in
Us. In &, &7, &g, & the functional property does not hold
since @ is not reachable from @ .

Next, Tempus uses the reachability probability of each
equivalence class to perform its temporal verification phase
and obtain the bounded reachability probability (Pr).

B. TEMPORAL VERIFICATION

In the temporal verification phase, Tempus answers this
question: What is the probability of bounded reachability
(Pr), i.e., the destination being reachable from the source
within the given latency bound under various link fail-
ure scenarios? To this end, Tempus uses empirical delay
measurements, e.g., [8], [48], and [49], to map latency
distributions to all the links in all potential paths between
a source and destination pair. Then, it applies convolution
on the acquired link latency distributions to obtain every
path’s latency distribution. After achieving a path’s latency
distribution, Tempus uses the distribution’s CDF to compute
the bounded reachability probability of the path (Pr(p)), i.e.,
the probability of a packet traversing the path below the
latency bound. Lastly, Tempus calculates each EC’s bounded
reachability probability (P7(&;)) by running a weighted
average over its potential paths’ probabilities, based on the
routing and load balancing algorithms, and multiplying the
result by the EC’s functional probability (Pr(&;)). The final
temporal probability (P7) is calculated as the sum of the
bounded reachability probabilities of all ECs.

169900

1) MODELING LATENCY FOR INDIVIDUAL COMPONENTS

To measure the latency distribution of a component at the
core of the network, we label each edge in the network graph
with various sources of delay such as link transference delay
(l;), i.e., the time taken for a packet to be transmitted to
the link and propagated through it, and queueing delay (I,),
i.e., the time a packet spends in a node’s queue before being
transmitted.

To obtain the transference and queueing delay distri-
butions, we map univariate distributions, each involving
only one random variable, to empirically measured delays.
Specifically, to encode transference delay, we define a
function /; : E — D where D is a continuous univariate
distribution with non-negative values. Since each physical
link has the same transference delay in both directions,
two symmetrical edges share the same transference delay
distribution. We model queueing delay as [, : E — D. Unlike
transference delay, two symmetrical edges might have two
different queueing delay distributions since they represent
two different queues.

While designing Tempus, we assume that /; and [, are
independent and identically distributed (i.i.d.) for every edge.
Accordingly, after measuring /; and /; of an edge, Tempus
uses convolution, i.e., a technique for calculating a random
variable whose distribution is obtained from the summation
of multiple independent random variables, to obtain the
latency distribution of the edge.> Specifically, for every hot
edge (h;) in an equivalence class, Tempus computes its
latency distribution I(k;) as follows:

I(hi) = l;(hi) * Ly(hi) “

Tempus relies on real-world empirical data to obtain
latency distributions for each component and uses convolu-
tion to derive the latency distributions. However, a closed-
form solution of a convolution is usually only available for
two distributions of the same type. Specifically, while it is
generally possible to convolve two exponential distributions
using analytical expressions, doing the same is impractical
when dealing with empirical distributions derived from
real-world data due to the lack of a well-defined mathematical
expression. Therefore, we cannot use analytical expressions
to convolve the empirical delay measurements’ distributions.

To address this, we use DIRECT [50], a method that
numerically approximates the mixture of two distributions
that cannot be convolved otherwise. We chose DIRECT due
to its bounded error property, i.e.,, guaranteeing that the
computed distribution and the correct theoretical distribution
have an error rate below a certain bound.

2) OBTAINING THE TEMPORAL PROBABILITY

We also use convolution on the latency information of all
edges in a path to obtain the latency distribution of the
path. For instance, given a path (p) containing n edges
({h1, ha, ..., hy}), we calculate its latency distribution (£,)

5Convolution operation is denoted with the asterisk symbol ().
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as follows:
Lo =1(h) *1l(ha) * ... x1(hy) (@)

Similar to the previous step, Tempus relies on DIRECT for
applying convolution on the edge latency distributions. After
deriving the latency distribution of a path, its time-bounded
reachability probability (P7(p)) is calculated as cdf (L), t),
i.e.,, the CDF of the path’s latency distribution at time ¢,
t being the latency bound. To compute the probability of
bounded reachability for an equivalence class, we average
over the bounded reachability probability of all the paths in
that EC and multiply the result by the EC’s functional reach-
ability probability (Pr(&;)). To compute the average of path
probabilities, we assign a weight to every path in the EC based
on the routing and load-balancing paradigms and apply a
weighted average over their probabilities. Finally, to compute
the overall bounded reachability probability between two
nodes, Tempus sums up the calculated probabilities obtained
from performing the algorithm above over all ECs.

Example: Assume that we want to compute the bounded
reachability probability between @ and @ in Figure 2
and Pr(p) of all the paths, acquired from their corresponding
latency distributions’ CDF, is 0.3. We first have to calculate
Pr(&;) for all equivalence classes. Assuming that the weights
of all the paths are equal, the bounded reachability probability
of & is calculated as in Equation 6.

Pr(&) = Pp(&)) x [0.5 x Pr(SAD) + 0.5 x Pr(SBD)]
= Pr(&)) x [0.5 x 0.3+ 0.5 x 0.3]
= 0.06561 x 0.3 = 0.019683 (6)

Similarly, Pr (&), Pr(&2), Pr(&3), Pr(&4), and Pr(Es) are
0.27, 0.00243, 0.002187, 0.00243, and 0.002187. Accord-
ingly, Pt is computed as in Equation 7:

Pr =0.27 4 0.019683 4 2 x (0.00243) 4+ 2 x (0.002187)
= 0.298917 @)

To summarize, in this section, we presented the design
of Tempus, a framework that probabilistically verifies the
time-bounded reachability between two nodes. While per-
forming verification, Tempus keeps the exploration overhead
low by only iterating over the equivalence classes. In the next
section, we propose two optimization techniques to further
reduce the verification time.

Ill. REDUCING VERIFICATION TIME WITH CACHING
We make two observations while designing the temporal
verification phase of Tempus:
1) Multiple ECs in the exploration tree might have the
same set of potential paths, i.e., there might exists some
i,j € Z>o in a way that i # j and paths; = paths; (i
and j being indexes of the equivalence classes to which
paths; and paths; correspond, respectively).
2) The ECs’ sets of potential paths are not necessarily
mutually exclusive, i.e., there might exists some i, j €
Zx such that i # j and paths; N paths; # (.
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Based on these observations, we deploy two caching mech-
anisms to reduce Tempus’s verification times. In particular,
we cache the latency of each path the first time it is observed
while iterating through the exploration tree and use the
cached data if the path is observed again. Similarly, we also
cache the latency of the paths set corresponding to every
EC and use the cached data if the same set is observed in
another EC. These caching mechanisms create extra memory
overhead. However, in §IV, we show that by preventing
repetitive tasks, such as re-computing the latency of a path
shared between various ECs, and the state-keeping required
for them, these optimization mechanisms might eventually
improve Tempus’s overall RAM consumption. For instance,
in an 8-ary fat-tree, Tempus’s memory consumption improves
by 21% due to the optimization techniques explained below
as they reduce the number of convolutions by 87 x.

A. CACHING PATH LATENCY

Depending on the routing protocol and load balancing
scheme, a set of potential paths (paths;) is assigned to each
equivalence class (&;). Considering that the path sets for
various ECs are not mutually exclusive, e.g., paths; and
pathsy in Figure 2 share SB and BD, we can reduce the
exploration time by caching each path’s latency and using the
cached value the next time the path is observed as we iterate
over other ECs. For this purpose, we store every path between
source and destination and its corresponding latency in a hash
map data structure due to its fast search mechanism.

Tempus applies a weighted average on the latency of
potential paths in an EC to compute its latency. The weight
assigned to a path depend on the routing and load-balancing
mechanisms and might be different from one EC to the other.
Therefore, we store a path’s latency irrespective of its weight
and apply weights on the stored value based on the EC for
which we are computing the latency. In §IV, we observe that
caching the paths’ latencies improves the exploration time by
315x in an 8-ary fat-tree.

B. CACHING EQUIVALENCE CLASS LATENCY

In the exploration tree, multiple ECs may have the same paths
set, e.g., & and &3 in Figure 2. Accordingly, to further reduce
the exploration time, we cache the paths set as we iterate
over an EC. This way, while iterating over an equivalence
class whose paths has already been cached, Tempus uses the
cached data instead of re-computing the EC’s latency. Similar
to caching path latency, we use a hash map data structure
for this purpose. We show in §IV that, in an 8-ary fat-tree,
caching the latency of the potential paths sets corresponding
to different equivalence classes reduces the exploration time
of Tempus by 4 x.

IV. EVALUATION

We implement Tempus in 600 lines of Julia code [51].6
Given the topology, a source and destination node, the
queueing and transference delay measurements, and a time

6Tempus’s codebase is available at https://github.com/hopnets/Tempus
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threshold (latency bound), our prototype outputs the temporal
probability, i.e., the time-bounded reachability probability,
under various failure scenarios. In this section, we use the
term “Tempus” to refer to our design with the proposed
caching mechanisms, and explicitly mention whenever we
are referring to Tempus without any of the optimization
schemes. We run our prototype on a machine with 70 GB
of RAM and a 6-core CPU (12 logical processors). Unless
stated otherwise, we report the results for cases in which
Tempus is running on one logical processor. In summary,
our findings show that Tempus is accurate and scalable.
Specifically, Tempus precisely captures the upper bound
on the 99 percentile end-to-end latency under various
degrees of load. Furthermore, Tempus verifies the bounded
reachability between all (source, destination) pairs in an
8-ary fat-tree with 100 Gbps links in 8 minutes and
32 seconds. In comparison, simulating all failure scenarios
(all possible ECs) in an 8-ary fat-tree on the same machine
using Parsimon [52], a state-of-the-art parallel network
simulator, takes three orders of magnitude longer.

A. EXPERIMENT SETUP

1) TOPOLOGY

Table 1 presents the topologies used in our experiments.
We test Tempus on various scales of Wide Area Networks
(WAN) and datacenter networks. In particular, for WAN
topologies, we select Latnet, Highwinds, AT&T, Uninett, and
GtsCe from Topology Zoo [53]. For datacenter networks,
we implement a 2 x 3 two-tier leaf-spine topology, i.e.,
two spine routers connected to three leaf routers, and various
scales of the fat-tree [54] topology. A k-ary fat-tree datacenter
topology is a three-tiered network with % core routers
connected to k pods each containing % aggregate routers and
% edge routers. The edge routers are connected to servers and
the aggregate routers are connected to both core and edge
routers.

TABLE 1. List of topologies on which Tempus is tested.

Type Topology # of routers | # of links
2% 3 leaf-spine 5 6
Fat-tree (k = 4) 20 32
Datacenter networks Fat-tree (k = 8) 80 256
Fat-tree (k = 16) 320 2048
Fat-tree (k = 32) 1280 16384
Latnet 69 74
Highwinds 18 31
WAN AT&T 25 56
Uninett 74 101
GtsCe 149 193

2) EXPLOITING EMPIRICAL QUEUEING AND TRANSFERENCE
DELAY MEASUREMENTS

In our experiments, unless stated otherwise, we assume that
the link bandwidths are 100 Gbps [17], [55], [56], [57], [58],
[59]. Accordingly, to model the queueing delay, we scale
the TCP and DCTCP queueing delay measurements reported
in [8] based on the link rate. To model the transference
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TABLE 2. For our evaluations, we map univariate distributions to the data
provided in [8], [48], and [49] to generate queueing, WAN transference,
and DC transference delay distributions, respectively.

50th 99th
Category | Mean ‘ percentile | percentile
DC transference (ns) [48] 385 321 853
WAN transference (ns) [49] | 2870575 2775120 6319120
TCP queueing (ns) [8] 35380 35137 45352
DCTCP queueing (ns) [8] 2152 2244 2413

delay of the datacenter and wide area networks, we use
the propagation delay measurements in [48] and [49],
respectively, and increase them by the transmission delay of
one MTU (1500 bytes).” Table 2 provides details about the
mapped queueing and transference delay distributions. Note
that Tempus’s design makes no assumption about the shapes
and characteristics of these distributions. Accordingly, the
queueing and transference distributions can be tuned by the
operators based on their traffic characteristics. To show this,
in §1V-B, we also test Tempus with uniformly distributed
transference delays and queueing delays obtained from
network simulations.

3) EVALUATED METRICS

We report the functional verification time, the temporal
verification time, and the temporal probability (i.e., time-
bounded reachability probability) as the main evaluation
metrics for Tempus. We also record more fine-grained metrics
such as the number of convolutions required in the temporal
verification phase.

4) PARAMETER SETTINGS

In our experiments, we deploy Open Shortest Path First
(OSPF) as the routing protocol and Equal Cost Multiple
Path (ECMP) as the load-balancing paradigm. Since the
main focus of Tempus’s design is temporal verification,
for simplicity of this section’s experiments and similar to
previous work [23], we set the failure rate of every edge
in the network graph to 0.1% and set all link weights to
1 for OSPF routing. We set the source and destination nodes
to two randomly selected edge routers and use two cutoff
thresholds while running the experiments, i.e., the accuracy
level (1 — 107?%) and the timeout threshold (vy). We terminate
an experiment if the total run time exceeds . Additionally,
while performing functional verification, if the reachability
probability of a node falls below 10~%, we refrain from further
exploring its children in the exploration tree. Unless stated
otherwise, we set v and § to two hours and 6, respectively.

B. EXPERIMENT RESULTS

We compare Tempus’s verification time with state-of-the-
art network simulators, validate its accuracy, and evaluate it
under various network scales and latency distributions.

"In a 100 Gbps network, transmitting 1500 bytes to the link takes
120 nanoseconds.
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TABLE 3. State-of-the-art network simulators are not suitable for verifying latency under all failure scenarios. “ay gmo ~d 5h ymin ks"” represents o

years, g months, v days, § hours, n minutes, and « seconds.

Tool —

Fat-tree scale (k) | Tempus OMNeT++ [13] Parsimon [52] DONS [15]
4 min 29d 20h.55min 10s 4h %5min 11s 14d 11h‘38min 57s
(21, 508 x improvement) (128 x improvement) (10,430 x improvement)
] Qmin 32s 15y 2mo 18d 12h 13min 20s 1mo 5d 5h 9min 40s Ty 8d 5h 46min
(924, 498 x improvement) (5,942 X improvement) (426,641 x improvement)
16 1h 53min 36s 1820y Tmo 5d _2h ATmin 23s 22y 1mo 16_h 17min 31s 200y 1mo 13d_ 10k 48min 32s
(8,507, 792 x improvement) (103,206 x improvement) (935, 179 x improvement)
. 176641y 3mo 26d 14h 20min 351y 1d 2h 15min 37s 5233y 6mo 8d 5h 21min 28s
32 18d 22h 49min 355 (3, 355?522>< improvement) (6, 6)(}38>< improvement) (99),}417>< improvement)

1) TEMPUS'S VERIFICATION TIME IS SIGNIFICANTLY LOWER
THAN THE STATE-OF-THE-ART NETWORK SIMULATORS
To evaluate Tempus, as the first experiment, we run it on
various scales of k-ary fat-tree topology with 100 Gbps
links under 25% load and compare the verification time
with the time taken for simulating all failure scenarios
using the state-of-the-art network simulators [13], [15], [52].
For this purpose, we use OMNeT++ [13], a non-parallel
packet-level network simulator, Parsimon [52], a parallel
flow-level simulator, and DONS [15], a parallel packet-level
simulator. Tempus and OMNeT use one logical processor and
Parsimon and DONS exploit all 12 processors. Even with fast
network simulators, it takes a long time to simulate all failure
scenarios in large networks. Accordingly, in these experi-
ments, we estimate the total simulation time for OMNeT,
Parsimon, and DONS by simulating one failure scenario and
multiplying the simulation time by the number of ECs in each
topology. To provide a fair comparison, considering that these
simulators simultaneously measure latency between every
(source, destination) pair in the network graph, we scale
Tempus’s verification time to approximate the time it requires
to verify latency between all (source, destination) pair of
nodes. To this end, for each topology, we run Tempus for one
(source, destination) pair and multiply the verification time
by (3) (N is the number of edge routers to which the servers
are connected).®

The results, presented in Table 3, illustrate that even with
the state-of-the-art fast and parallel simulators, verifying
latency at scale and under all failure scenarios is impractically
slow. Tempus enables this critical network management
task by accelerating it, e.g., in an 8-ary fat-tree topology,
Tempus only requires 8 minutes and 32 seconds, compared
with approximately 15 years, one month, and 7 years (!)
required for OMNeT, Parsimon, and DONS, respectively.9
That is, Tempus’s verification time is 924, 498 x, 5, 942 x,
and 426, 641 x lower than OMNEeT, Parsimon, and DONS,
respectively. Tempus’s speedup over these simulators is due
to the fact that simulating all the entities in a network and
every packet’s/flow’s life cycle consumes considerably more
time than computing the distribution of the extra latency

2
8A k-ary fat-tree network has % edge routers.
9Note that, despite being faster than DONS, Parsimon only estimates flow
tail latency and does not cover packet-level latency metrics such as average
RTTs.
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imposed by various network components and aggregating
them.
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FIGURE 3. Tempus accurately approximates the 99t percentile delay. The
box and whisker plots represent distinct tail latencies recorded as we
repeat the simulations multiple times.

2) TEMPUS ACCURATELY APPROXIMATES THE NETWORK
DELAY

As part of its temporal verification phase, Tempus approxi-
mates the delay imposed by network components in all failure
scenarios, i.e., ECs, and uses the approximations to estimate
the overall network delay packets experience as they traverse
from the source to the destination. To evaluate the accuracy
of Tempus’s approximations, we simulate the no-failure
scenario in a two-tier leaf-spine topology using OMNeT++-.
Specifically, we simulate two spine routers, three leaf routers,
and ten machines connected to each leaf and select one
server as the source and one as the destination (the source
and the destination are connected to two distinct leafs). For
one second, while other machines inject various degrees of
load into the network, the soure sends one packet toward
the destination every millisecond. At the receiver, we capture
the packets sent by the source, record the delay they have
experienced while traversing the network, and measure
the tail (99" percentile) packet-level delay. We repeat the
simulations ten times to capture various randomnesses caused
by the simulator. For Tempus, we input the network topology
and the empirical queueing time measurements from our
simulations and record the tail temporal probability estimated
by Tempus for the no-failure scenario. Figure 3 compares
Tempus’s output with the tail latencies observed from the
simulations under various degrees of load. We observe that,
irrespective of the load, Tempus accurately captures the upper
limit for the tail delay. Specifically, with various degrees of
load, the tail delay observed under distinct repetitions does
not surpass Tempus’s approximation of the 99 percentile
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packet-level delay, making Tempus an effective tool for SLA
verification.
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FIGURE 4. Using Tempus, we verify that DCTCP’s latency is much lower
than TCP.

3) TEMPUS'S OUTPUT ILLUSTRATES DCTCP's
PERFORMANCE SUPERIORITY OVER TCP

To further evaluate Tempus’s correctness, we investigate if
its output is consistent with the latency trends of existing
proposals. In [8], Alizadeh et al. design a congestion control
protocol, i.e., DCTCP, that exploits Explicit Congestion
Notification (ECN) to provide a faster reaction to congestion
compared to TCP. They illustrate that DCTCP significantly
improves the latency over TCP. In this experiment, we run
Tempus on a 16-ary fat-tree topology with both TCP’s and
DCTCP’s empirical queueing delay measurements, reported
in [8], and measure the temporal probability under various
input latency bounds. Figure 4 illustrates that Tempus
highlights DCTCP’s superiority over TCP. In particular, with
DCTCP, we achieve the temporal probability of ~ 1.0 for a
latency bound that is 16.7x lower compared to the case with
TCP showing that DCTCP has significantly lower latency
than TCP under all failure scenarios.

4) UNDER SMALL AND LARGE NETWORKS, TEMPUS
DEDICATES MOST OF THE TIME TO TEMPORAL AND
FUNCTIONAL VERIFICATION, RESPECTIVELY

We evaluate Tempus’s functional and temporal verification
time under various scales of WAN and datacenter networks
presented in Table 1. For the rest of the paper, unless
stated otherwise, we report the verification times for running
Tempus once, ie., the times are not scaled to cover
verifying latency for all (source, destination) pairs. The
results, illustrated in Figure 5, show that when the scale of the
network is small, Tempus dedicates most of the verification
time to temporal verification. For instance, in an 8-ary fat-
tree, the time spent on temporal verification is 21x larger
than the time dedicated to functional verification. Under
large networks, on the other hand, the majority of time is
spent on functional verification (e.g., Tempus spends 94%
of its verification time performing functional verification
for a 32-ary fat-tree). The temporal verification time is
mainly influenced by the number of convolutions required
for obtaining the components’ latency distributions. Due
to Tempus’s optimization mechanisms (§II), the temporal
verification time is less affected by the network scale
compared to the functional verification time. Particularly,
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as we move from 4-ary to 32-ary fat-tree in Figures Sc
and 5d, the functional verification time increases by 9, 075 x
while the number of required convolutions and the temporal
verification time only increase by 12 x and 15 x, respectively.

5) TEMPUS'S VERIFICATION TIME INCREASES AS THE
DEGREE OF PATH DIVERSITY RISES

In Figure 5a, we observe that Latnet has a lower verification
time than Highwinds and AT&T networks despite having
3.8x and 2.8x more routers and 2.5x and 32% more
links, respectively. This is because Latnet provides much less
path diversity between edge routers compared to Highwinds
and AT&T and, thus, Tempus iterates through fewer paths
and applies fewer convolutions while verifying Latnet.
Particularly, compared to Highwinds and AT&T, Tempus
iterates through 6x and 11x fewer paths and, as shown
in Figure 5b, applies 6.8x and 8.7x fewer convolutions,
respectively, when verifying the latency in Latnet.

6) TEMPUS ALSO SUPPORTS NETWORK LATENCY
VERIFICATION WITH THEORETICAL DISTRIBUTIONS

In this paper, we mainly exploit empirical results from other
papers [8], [48], [49]. However, our method can be deployed
with theoretical distribution mapping as well. To show
this, we repeat our WAN and fat-tree experiments and set
the link propagation delays to 4/(10us, 100us) [60] and
U(1us, Sus) [61], respectively.lo In Figure 6, we observe
that using different latency distributions affects Tempus’s
temporal verification time as it impacts the time required
for applying numerical convolution on them. For instance,
under 32-ary fat-tree, using uniformly distributed propagation
delays causes 9x larger temporal verification time compared
to using the empirical propagation delays in [48]. However,
despite this increase in the temporal verification time, running
Tempus only takes ~ 77 minutes.

7) TEMPUS'S VERIFICATION TIME IS NOT AFFECTED BY THE
INPUT LATENCY BOUND

So far, we have illustrated that Tempus experiences distinct
verification times with various network graphs and delay
measurements (Figures 5 and 6, respectively). In particular,
increasing the degree of path diversity between source and
destination results in larger verification times. Additionally,
since the time required for applying numerical convolution on
two distributions differs as we change the distributions, using
various transference and queueing delay measurements alters
the temporal verification time.

We also quantify the effects of the third input, i.e.,
latency bound, on Tempus’s verification time. Specifically,
we run Tempus with various latency thresholds on 8-ary,
16-ary, and 32-ary fat-tree topologies. Figure 7 presents the
results. We observe that, unlike the other two inputs, i.e.,
network graph and empirical delay measurements, changing
the latency bound does not impact Tempus’s verification time.

1024(a, B) denotes a uniform distribution between o and S.
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FIGURE 5. Tempus verifies all the topologies from Table 1 in a short time.
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FIGURE 7. Changing the latency bound does not affect Tempus'’s
verification time.

This is because the latency threshold is only used to calculate
a path’s latency, from the CDF of the distribution mapped
to it, in the temporal verification phase. Since the value of
the latency threshold does not affect the run-time of this step,
altering the latency threshold has no effect on the verification
time.
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FIGURE 8. +Path results in a more significant reduction in Tempus’s
verification time compared to EC.

C. TEMPUS DESIGN DEEP-DIVE

1) THE IMPACT OF THE OPTIMIZATION SCHEMES ON
TEMPUS'S VERIFICATION TIME

In §III, we described two caching mechanisms deployed
in Tempus to reduce its verification time. To measure the
extent to which each mechanism reduces the verification
time, we run the WAN and fat-tree experiments under four
scenarios: 1) enabling no caching scheme (Base), 2) only stor-
ing the latency of ECs (4-EC), 3) solely caching path latency

VOLUME 12, 2024

(+Path), and 4) enabling both caching schemes (+Path+EC).
These optimizations exclusively focus on minimizing the
temporal verification time. Accordingly, in Figure 8, we only
report the time Tempus dedicates to temporal verification
under various scenarios. For these experiments, we set the
timeout threshold () to 24 hours. Our findings show that,
while caching the latency corresponding to both ECs and
paths improves the temporal verification time, storing paths’
latency has a more significant impact than storing ECs’
latency. For instance, with a 32-ary fat-tree, both Base and
+EC scenarios hit the 24-hour time threshold. +Path, on the
other hand, results in ~ 5-minute and ~ 56-minute temporal
and total verification times, respectively.

2) THE MEMORY CONSUMPTION OVERHEAD

Storing the path and EC latency information creates memory
footprint. At the same time, caching these information
prevents Tempus from repetitively executing operations,
such as applying convolution, which in turn reduces the
memory overhead. To investigate this trade-off, we report
Tempus’s average and maximum RAM consumption, under
various optimization paradigms and distinct network scales.
Particularly, while running an experiment, we run a process
on another thread that records the VmRSS, i.e., Virtual
memory Resident Set Size, of the experiment every second.
We run this experiment for 4-, 8-, 16-, and 32-ary fat-tree
networks. Figure 9 illustrates Tempus’s mean and maximum
VmRSS under distinct optimization levels. For smaller scales
of networks, caching the path and EC latency information
reduces the memory consumption in addition to decreasing
the verification time. For instance, in an 8-ary fat-tree,
~+Path+EC reduces the mean RAM consumption by 21%
compared to Base due to reducing the number of required
convolutions by 87 x. With large networks, on the other hand,
using caching increases the overall memory consumption.
Specifically, under a 32-ary fat-tree, +Path+EC increases the
average VmRSS by 79% compared to Base. However, the
increase experienced for a 32-ary fat-tree is still quite low
considering the RAM capacity of modern machines and also
compared to the memory overhead of network simulators. For
example, we observe ~ 15 GB maximum RAM consumption
while simulating a 32-ary fat-tree network in DONS which is
~ 2.5x higher than +Path+EC.

3) CUTOFF THRESHOLD ANALYSIS
We set two parameters to ensure low verification time and
resource consumption: 1) the timeout threshold () and 2) the
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FIGURE 10. The temporal probability converges when § passes 3.

accuracy level (1 — 1079). So far, we observed that, with § =
6 and a ~y larger than 2 hours, the timeout threshold is never
hit as long as the optimization schemes are enabled. There
is a trade-off between choosing small and large § values.
Small § values result in inaccuracy in Tempus’s output while,
with large § values, Tempus would iterate over numerous
ECs with minuscule functional and temporal probabilities
and experience high verification times. To analyze the impact
of § on Tempus’s correctness and verification time, we run
our l16-ary fattree experiments while setting v to 2 hours.
We use a large latency threshold (T = 200us) in which the
temporal probability is expected to be ~ 1, i.e., packets are
transmitted below 7 as long as the source and destination are
reachable. Figure 10 illustrates that Tempus’s output, i.e.,
bounded reachability probability, converges to the correct
result as § passes 3. We also observe that, as we increase &
from 3 to 4, the verification time increases by 6.4% while the
temporal probability only grows by 0.06%. This is because
Tempus iterates over more ECs, which have low functional
and temporal probability values, as we increase the accuracy.
Our experiments throughout this paper show that, even with
large & values such as 6, Tempus remains scalable and
provides short verification times.

V. LIMITATIONS AND FUTURE DIRECTIONS

A. FAILING NODES IN ADDITION TO LINKS

In this paper, we assume that link failures are independent.
In practice, however, there are sometimes interdependencies
between failures, e.g., when a router fails. It is possible
to extend our method to model such failures. For example,
to model router failures, in addition to hot edges, we should
also define the concept of hot nodes, i.e., the nodes located
on the paths between source and destination chosen by the
routing protocol and load balancer, and define a network state
as the set of hot edges and hot nodes. Then, to create the
exploration tree, we explore both hot edge failure and hot
node failure scenarios. While failing a hot node, we add the
group of links corresponding to it to the list of failed links.
We leave expanding Tempus’s design to support both link and
node failure to future work.
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B. COVERING OTHER SOURCES OF LATENCY

In this paper, we focus on modeling the queueing, the
propagation, and the transmission delay as the main sources
of latency at the network core. However, Tempus’s design
principles are also applicable to other sources of delay such
as middleboxes and various layers of the host networking
stack. For instance, to encompass the latency imposed by
the host networking stack, it suffices to obtain the latency
distribution of each layer and compute their convolution.
In general, Tempus’s design can support any source of latency
as long as two conditions hold: 1) the availability of either the
empirical delay measurements or the statistical distribution
of the source of latency and 2) the independence of different
sources of latency. We leave designing a latency verifier in
scenarios where either of these conditions are not met for
future work.

C. DYNAMICALLY VERIFYING LATENCY

Tempus targets static network verification, i.e., given the
network graph and delay measurements, it verifies the
latency under various failure scenarios. However, the traffic
characteristic and the shape of delay measurements can alter
from time to time or due to events such as congestion and
component failure which requires Tempus to dynamically
tune its distributions. It is possible to dynamically update
our model by constantly sending probe messages, e.g.,
traceroute, into the network and tuning the delay distributions
accordingly, but this would create an extra overhead on both
the network and the end hosts [12]. We leave tailoring Tem-
pus’s design for dynamic latency verification to future work.

D. VERIFYING MULTIPLE QUANTITATIVE PROPERTIES

In this work, we focus our design on packet-level network
latency verification. However, we believe that Tempus’s
design can be extended to encompass other quantitative prop-
erties such as throughput. Specifically, given the empirical
link utilization measurements, one can extend Tempus to
probabilistically verify the maximum achievable throughput
from a source to a destination node under various failure
conditions. We leave expanding Tempus’s design to verify
multiple quantitative properties to future work.

VI. RELATED WORKS

The proposals on network verification can be broadly
categorized into two groups: 1) Qualitative verifiers that
analyze the network’s functional correctness such as the
reachability between two nodes, and 2) Quantiative verifiers
that assess properties such as bandwidth and latency.

A. QUALITATIVE VERIFICATION

Many proposals in network verification focus on qualitative
verification and answer the following questions: Is node
“A’” reachable from node “B”’? [22], [24], [27], [29], [30],
[31], [32], [33], [40], [41], [42], [43], [62], [63], [64], is a
path between two nodes loop-free? [22], [29], [30], [31],
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[34], [35], [41], [43], [62], [63], [65], is the reachability
preserved under various failure scenarios? [23], [24], [27],
[31], [32], [36], [37], [63], [65], [66], is the first and last hop
of every path in a datacenter an edge switch? [28], are all the
affected hosts eventually identified by the intrusion detection
system? [21], will the route received from a neighboring
router eventually be sent to other neighbors? [26] etc. Such
verifiers are orthogonal to temporal verifiers such as Tempus
that reason about important quantitative properties such as
latency.

B. QUANTITATIVE VERIFICATION

Networks have increasingly strict performance require-
ments [7], [8]. Despite being vastly used, existing network
simulators [13], [14], [15], [52] are slow for verifying
performance under all network states (§IV). Accordingly,
some proposals [4], [S], [9], [10], [11], [12], [38], [39], [44],
[46], [47], [67] have focused on tailoring network verification
frameworks for quantitative reasoning. Such proposals focus
on performance properties such as bandwidth, throughput,
and latency, and try to answer questions like does a server
get overloaded under a certain input load? [9], is the
throughput requirements met given the traffic characteristics?
[12], do datacenter networks suffer from link overload
under various failure scenarios? [5], [68], how severe is the
overload, if any? [69], and what is the probability of the
network being overload-free under various failure scenarios?
[4]. A subset of qualitative verifiers that are closest to Tempus
focus on latency as the quantitative verification property [9],
[10], [11], [12], [38], [39], [44], [45], [46], [47], [70], [71].
These proposals either do not scale well, only verify a
specific aspect of the network, are coarse-grained, or do not
consider link failures. We next summarize their limitations
and distinctions with Tempus.

C. STATIC NETWORK LATENCY VERIFICATION

Many latency verifiers statically model the network and traf-
fic characteristics to investigate if the latency requirements
are met. Unlike Tempus, these verifiers are not general and
are optimized for special purposes by partially modeling
specific aspects of the network [10], [11], [46], [47]. For
instance, LogNIC [47], a framework that uses data flow
modeling [72] to analyze latency, models only smart NICs
and does not take the latency imposed by load balancers and
link failures into consideration. PIX [10], NF-SE [46], and
CBS [38] focus on verifying the performance of network
functions and do not model sources of latency that are
not described as network functions, e.g., queueing delay.
Arashloo et al. [11] use formal methods to reason about
network latency but only focus on the delay imposed by
queues at the core of the network and do not take other
sources of latency such as propagation delay into account.
Additionally, unlike Tempus, their technique is deterministic,
i.e., it returns a yes or no answer to whether a latency
requirement is met given the current topology, and does not
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encompass link failures. Given the probabilistic nature of
networks, our position is that latency requirements can be
better captured probabilistically.

Similar to Tempus, some proposals [12], [39], [44], [70]
statically model the entire in-network latency. QNA [44]
is among the initial works in this area and uses algebraic
frameworks to perform quantitative network verification.
However, QNA does not model link failures. Plus, its
model does not cover statistical distributions [12]. In [39],
Helm et al. use extreme value theory [73] to verify flow tail
latency. Unlike Tempus, their design relies on flow-level
latency measurements and, thus, is considered coarse-grained
for SLAs that focus on packet-level RTTs [1], [2], [3]. SLA-
verifier [12] models the latency imposed to flows by network
components and use it to verify latency. To this end, SLA-
verifier uses the performance counters, e.g., packets/bytes
counts, provided by SDN switches. Their approach has
two limitations: 1) It does not model failures and 2) it
verifies per-flow performance metrics and does not sup-
port packet-level latency verification. Targeting fine-grained
latency verification, Larsen et al. propose WNetKAT [45],
i.e., a weighted version of the NetKAT algebra [74], to verify
latency with packet-level granularity. Alas, WNetKAT is
deterministic and does not verify latency under various
failure scenarios. Tempus, on the other hand, probabilistically
verifies packet-level latency while taking all link failures into
account. Liu et al. [9] target the verification of distributed
control in self-driving systems, their complex and non-
deterministic interactions, and quantitative metrics such as
latency but leave the scaling of their approach to large-scale
networks to future work (e.g., their technique exhausts the
one-hour time budget as the scale of the k-ary fat-tree network
goes beyond k = 8).

D. DYNAMIC NETWORK LATENCY VERIFICATION

Another group of proposals [12], [70], [71] attempt to
dynamically verify network latency. Particularly, these pro-
posals try to verify if latency requirements are met while
tracking the changes in the network and traffic characteristics
through time. In addition to its static verification phase,
SLA-verifier also deploys a dynamic verification phase in
which it uses probe messages, e.g., traceroute, to update its
flow-level performance model. Unfortunately, using probe
messages imposes overhead on both the network and end
hosts [12]. Plus, this method detects latency violations
only after the network is already in an undesirable state.
AalWiNes [70] dynamically verifies latency under multiple
failure scenarios using weighted pushdown automata, i.e.,
a quantitative extension of the classic automata theory.
However, AalWiNes does not cover all failure scenarios,
is deterministic, and is restricted to MPLS networks only.
In [71], Choi et al. use Inband Network Telemetry [75] and
Metric Dynamic Logic [76] to detect SLA violations. Unlike
Tempus, their technique is deterministic and focuses on
detecting latency violations as they happen in run-time rather
than verifying latency under all failure scenarios in advance.
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VII. CONCLUSION

Network verifiers and simulators strike a balance between
expressiveness and speed. On one end of the spectrum, high-
fidelity simulators can accurately model details of networks
and validate latency but are too slow to navigate the entire
state of large networks, and on the opposite end, fast
verifiers comprehensively search the state space but rely
on abstract models that exclude crucial aspects of networks
for latency verification, especially under failure. We design
Tempus, a probabilistic verification framework that analyzes
latency under all failure scenarios. Given the network
topology, statistical latency distributions or empirical delay
measurements, and a latency bound, Tempus returns the
time-bounded reachability probability. We evaluate Tempus
under various network scales and show that it is fast and
scalable. For instance, Tempus verifies the latency between
a source and a destination node in a 16-ary fat-tree network
in only 52 seconds. We also show that Tempus precisely
approximates network latency.
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