

1 Bis(monoacylglycero)phosphate Promotes Membrane
2 Fusion Facilitated by the SARS-CoV-2 Fusion Domain

3 Daniel Birtles, Wafa Abbas, Jinwoo Lee*

4 Department of Chemistry and Biochemistry, University of Maryland, College Park 20742,
5 Maryland, USA

6 *Email: jinwoo@umd.edu

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by
25 the spike glycoprotein and can take place via either the plasma membrane or endocytic pathway. The fusion
26 domain (FD), which is found within the spike glycoprotein is primarily responsible for the initiation of
27 fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low
28 pH akin to the environment of endocytic pathway has already been established, however, the impact of the
29 target cell's lipid composition on the FD has yet to be explored. Here we have shown that the SARS-CoV-
30 2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, based upon
31 lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane
32 (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) and endosomal membrane (BMP:
33 bis(monoacylglycerol)phosphate) was established, with a large preference demonstrated for the latter. When
34 comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids,
35 little deviation was evident whilst the charge was maintained. However, it was discovered that BMP had a
36 subtle, negative impact on lipid packing in comparison to POPS. Furthermore, an inverse relationship
37 between lipid packing and the fusogenicity of the SARS-CoV-2 FD was witnessed. In conclusion, the
38 SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal
39 compartment, predominately due to the presence of BMP and its impact on lipid packing.

40

41

42

43

44

45

46

47

48 **Introduction**

49 To combat present and emerging viruses we must first understand how they survive on a molecular level.
50 Since the start of the SARS-CoV-2 pandemic, an abundance of research has taken place to enhance our
51 knowledge surrounding the viral lifecycle. This ultimately allowed the rapid innovation of several
52 successful vaccines that eased the global health emergency caused by coronavirus disease 2019 (COVID-
53 19). However, there is still much to learn regarding the underlying molecular mechanisms that make SARS-
54 CoV-2 the extremely infectious virus that it is. One area that is severely lacking is the impact of the target
55 cell's lipid membrane on viral infection, specifically within the process of membrane fusion.

56 Infection, also referred to as viral entry, begins with receptor binding followed by membrane fusion,
57 with the ultimate goal being the delivery of the viral genome into the target cell. For SARS-CoV-2 this
58 process is facilitated by the spike glycoprotein which consists of two subunits: S1 and S2, responsible for
59 receptor binding and membrane fusion respectively.(1, 2) Initially synthesized as a single precursor, the
60 subunits are cleaved at the S1/S2 site during maturation.(3) This produces the mature spike protein with S1
61 and S2 held together through non-covalent interactions, ultimately forming a trimeric glycoprotein on the
62 virion surface. To initiate infection, S1 binds the angiotensin converting enzyme 2 (ACE2) receptor on the
63 target cell, leading to S2 being cleaved at a second site (S2') by transmembrane serine protease 2
64 (TMPRSS2) to enter the cell through the plasma membrane,(4, 5) or endocytosed and later cleaved by
65 cathepsin L.(6, 7) This cleavage event releases the fusion domain (FD; 816-855) at the N-terminus of S2',
66 which embeds itself within the target cells lipid bilayer, perturbing the local membrane environment.(8)
67 Similar roles are thought to be simultaneously carried out by heptad repeat 1 (HR1) and heptad repeat 2
68 (HR2), on the target and viral membranes respectively.(9) The S2' subunit then refolds into a hairpin-like
69 structure, driven by the formation of the six-helix bundle, with the two membranes pulled into proximity
70 by the anchoring FD and transmembrane domain (TM). During this process, it is thought that the internal
71 fusion peptide (IFP; 867-909) also embeds within the membrane, interacting with both the FD and the TM
72 to complete the fusion process.(10, 11)

73 Whilst several fusogenic domains in the S2 subunit are integral to the SARS-CoV-2 fusion
74 mechanism, the FD can be considered one of the most crucial membrane-interacting regions. The primary
75 role of a viral FD is to anchor within and perturb the target cell's membrane, serving to initiate the
76 membrane fusion process. Coronaviruses contain a unique FD with two structurally distinct regions that
77 are both required for efficient fusion, implying a novel molecular mechanism.(12-14) The N-terminal
78 portion (S^{816} - F^{833}) is referred to as the fusion peptide (FP) and the C-terminal portion (I^{834} - F^{855}) as the fusion
79 loop (FL), due to their similarity to already established fusogenic regions found in HIV, Influenza and
80 Ebola.(15-17) The importance of the FD to the SARS-CoV-2 lifecycle is further established by the fact that
81 it is 100% conserved across all known variants that have arisen during the pandemic.(18) Combined with
82 high sequence conservation throughout the viral family, these characteristics make the FD a strong
83 therapeutic target for pan-coronavirus inhibition, with several broadly neutralizing antibodies having
84 already been identified.(19, 20)

85 The exact mechanism by which the SARS-CoV-2 FD initiates membrane fusion becomes even
86 more intriguing when considering that it can utilize both plasma and endosomal membrane pathways for
87 fusion.(21) This is a rather uncommon characteristic for a virus, likely improving the overall success rate
88 of infection. As a result, the FD is expected to embed within two different lipid environments, given that
89 the plasma membrane and endosomal membrane lipid compositions are distinct from one another. In the
90 plasma membrane the predominant lipids are POPC:POPE:POPS:CHOL:SM at an approx. molar ratio of
91 30:15:5:30:15, whilst the late endosomal membrane contains POPC:POPE:BMP:CHOL:SM at approx.
92 45:15:20:10:5 (Figure 1A).(22) The remaining 5mol% of both membranes is attributed to 'other' lipids, as
93 a diverse array can be present in the membrane dependent on several environmental factors such as cell
94 type and stress.(23) POPS and BMP are anionic lipids that both contain a single negative charge within
95 their phosphate headgroup. However, due to the rising concentration of BMP as the endocytic pathway
96 progresses, a substantial difference in abundance is present, equating to an approx. four-fold increase in
97 negative charge in the late endosomal membrane when compared to the plasma membrane.(24-26) With
98 this in mind, it comes as no surprise that BMP has been more heavily implicated than POPS in viral fusion,

99 particularly with viruses that fuse through the endocytic pathway such as Influenza,(27) Lassa Virus
100 (LASV),(28) and Vesicular Stomatitis Virus (VSV).(29) It should be noted that the exact concentration of
101 BMP throughout the endocytic pathway is not certain, though it is established to increase as the pathway
102 progresses, reaching a high of 15-20% in the late endosomal membrane.(22, 24) Another notable difference
103 in the two membrane's lipid compositions is the cholesterol and sphingomyelin content, with both
104 concentrations higher in the plasma membrane.(22) These two lipids are the major constituents of lipid
105 rafts, which are often involved with viral fusion due to receptor localization, however specific impacts on
106 viral FD's have been noted previously.(22, 30-33) Despite the proteins involved in SARS-CoV-2 membrane
107 fusion already having a plethora of research compiled, it is long overdue that the impact of membrane lipids
108 is further investigated to fully understand the fusion process.

109 In this paper, we found that the SARS-CoV-2 FD more readily elicits fusion with a lipid
110 composition resembling that of the endosomal membrane when compared to the plasma membrane.
111 Moreover, an anionic lipid dependence for FD mediated fusion was discovered, with a significant
112 preference for the endosomal specific lipid BMP. To greater understand the molecular intricacies associated
113 with this preference we carried out a biophysical analysis of how the anionic lipids properties may impact
114 fusion. Despite little variation in binding affinity and secondary structure of the FD amongst different
115 anionic lipids, BMP was discovered to negatively impact lipid packing when compared to POPS. This effect
116 on lipid packing appears to be the main deviation between the two lipids, and due to a negative relationship
117 with the fusogenicity of the FD, could account for the preference for BMP witnessed. Together, the data
118 suggests that the SARS-CoV-2 FD preferentially initiates fusion with a membrane representing the late
119 endosomal membrane, due to the properties conferred by BMP on to the lipid bilayer.

120

121 **Materials and Methods**

122 ***Materials***

123 All lipids were acquired from Avanti Polar Lipids in chloroform and their complete chemical names are
124 provided below. POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, POPG: 1-palmitoyl-2-oleoyl-sn-
125 glycero-3-phospho-(1'-rac-glycerol), POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine, POPE:
126 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, SM: Sphingomyelin, BMP:
127 bis(monooleoylglycerol)phosphate (S,R Isomer), DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine,
128 DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine, LissRhod-PE: 1,2-dioleoyl-sn-glycero-3-
129 phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) and NBD-PE: 1,2-dioleoyl-sn-glycero-3-
130 phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl). Cholesterol (Chol) was purchased from
131 Anatrace in powder form, then later dissolved with chloroform and aliquoted when needed. C-Laurdan was
132 acquired from Tocris Bioscience, dissolved in DMSO and stored at -80°C.

133

134 ***Preparation of Small and Large Unilamellar Vesicles***

135 Vesicles were assembled from lipid stock solutions in chloroform, with specified amounts added to glass
136 test tubes using Hamilton syringes. The chloroform was then removed by applying a stream of nitrogen
137 whilst gently vortexing the sample to create a lipid film, before being put into a desiccator under vacuum
138 overnight to remove any residual solvent. For large unilamellar vesicles (LUVs), the lipid film was
139 resuspended in 10mM HEPES/MES/Sodium acetate (HMA), 100mM NaCl, pH7.4 buffer through
140 extensive vortexing. When using DPPC, a 5-minute incubation at 55°C prior to vortexing was necessary,
141 due to the lipids transition temperature. The lipid suspensions were then subjected to 10 freeze-thaw cycles
142 between liquid nitrogen and water bath. Liposomes were extruded using a liposofast extrusion kit (Avestin)
143 a total of 21 times through 2 polycarbonate membranes with a 100nm pore size. For small unilamellar
144 vesicles (SUVs), the lipid film was resuspended in the desired buffer and sonicated for 15 mins at 10% duty
145 cycle (1s on/1s off) with the sample sat in ice water, using a Branson ultrasonicator microtip. After
146 sonication the SUVs were centrifuged at 20,000xG for 10mins to remove residual metal particulates. All
147 vesicles were either used immediately or stored for a maximum of 72hrs at 4°C prior to use.

148

149 ***Expression and Purification***

150 The SARS-CoV-2 FD is made up of 40 amino acids
151 (⁸¹⁶SFIEDLLFNKVTLADAGFIKQYGDCLGDIARDLICAQKF⁸⁵⁵) and designed with an N-terminal 6x
152 His-tag, followed by a SUMO tag to aid with solubility and expression. The expression and purification of
153 the SARS-CoV-2 FD has been described in detail previously.(14) Briefly, 8M urea is used to solubilize
154 the cell pellet followed by Ni-NTA affinity chromatography and cleavage via SUMO protease in dialysis.
155 The cleaved FD is then isolated through the use of Ni-NTA affinity chromatography once again and
156 dialyzed to remove reducing agents, ensuring correct formation of the disulfide bond. Following dialysis,
157 the sample is purified further via a Superdex30 size exclusion chromatography (SEC) column with 10mM
158 HMA 100mM NaCl pH7.4 as the mobile phase. Resulting fractions are pooled, concentration determined
159 via A₂₈₀, and stored at 4°C.

160

161 ***Circular Dichroism (CD) Spectroscopy***

162 All CD data was acquired via the Jasco J810 Spectro-Polarimeter using a quartz cuvette with a 2mm path
163 length. Each experiment was carried out at room temperature (~22°C) in 1mM HMA, 10mM NaCl, pH7.4
164 with a protein concentration of ~20μM and a liposome concentration of 800μM. Data was collected from
165 260nm to 190nm with a step size of 1nm at 20nm/min and averaged over three accumulations. Baselines
166 were acquired without any protein present and subtracted from all data.

167

168 ***Lipid Mixing Assay***

169 LUVs composed of specified lipids were mixed with labelled LUVs containing the same lipid composition
170 as well as 1 mol% of the fluorescent labels: LissRhod-PE and NBD-PE. Experiments were carried out at a
171 ratio of 9:1 unlabeled:labeled in Corning Costar black walled, clear bottom 96 well plates with excitation
172 and emission wavelengths at 460nm and 538nm respectively, with a 530nm cut-off. Fluorescence was
173 recorded using a SpectraMax M5 microplate at room temperature (~22°C). Percent fusion was calculated

174 as $\frac{(I_F - I_B)}{(I_{100} - I_B)}$, where I_B is the initial background fluorescence, I_F is fluorescence intensity measured after
175 decreasing the pH, and I_{100} is the 100% fluorescence intensity value gathered after complete vesicle rupture
176 following the addition of 1% Triton X-100. All experiments were carried out at pH5.0 unless stated
177 otherwise and contained a peptide/lipid ratio of 0.05 (5 μ M and 100 μ M). Controls containing no protein
178 were also ran alongside all conditions, subtracted from the final values and errors propagated from the SEM.

179

180 ***Zeta Potential Measurements***

181 Measurements were acquired on a Horiba Scientific nanoPARTICA Nanoparticle Analyzer SZ-100V2 in a
182 glass capillary cell, with a nominal volume of ~400 μ L. Each sample was measured in triplicate and the SD
183 is provided. For all pH measurements, a known amount of 1M HCl was added to LUVs in 10mM HMA
184 100mM NaCl and final values verified via pH meter.

185

186 ***Isothermal Titration Calorimetry (ITC)***

187 The FD sample was prepared through dialysis against 4L of 10mM Sodium Acetate, 100mM NaCl at pH5.0
188 for 2hrs at 4°C. After this time, the dialysis buffer was used to resuspend the lipid film prior to forming
189 SUVs, with both protein and SUV samples centrifuged at 20,000xG for 10mins, and degassed prior to each
190 experiment. All ITC measurements were taken using a Malvern VP-ITC microcalorimeter with the
191 following experimental parameters in place: initial delay: 2400s, 41 injections (1x2 μ L and 40x6 μ L),
192 spacing: 300s, duration: 14.4s, Stir Speed: 270rpm, ref power: 2 μ cal/sec and temperature: 22°C. The
193 concentration of the protein sample was taken following dialysis via A₂₈₀, and the SUV concentration was
194 known from drying down specific volumes of lipid stocks. All processing was conducted through NITPIC
195 and SEDPHAT, with final figures generated through GUSSI.(34) Errors for the simulated fit were generated
196 via Montecarlo analysis within SEDPHAT, with 10,000 iterations and a confidence interval of 0.68.

197

198 ***C-Laurdan Experiments***

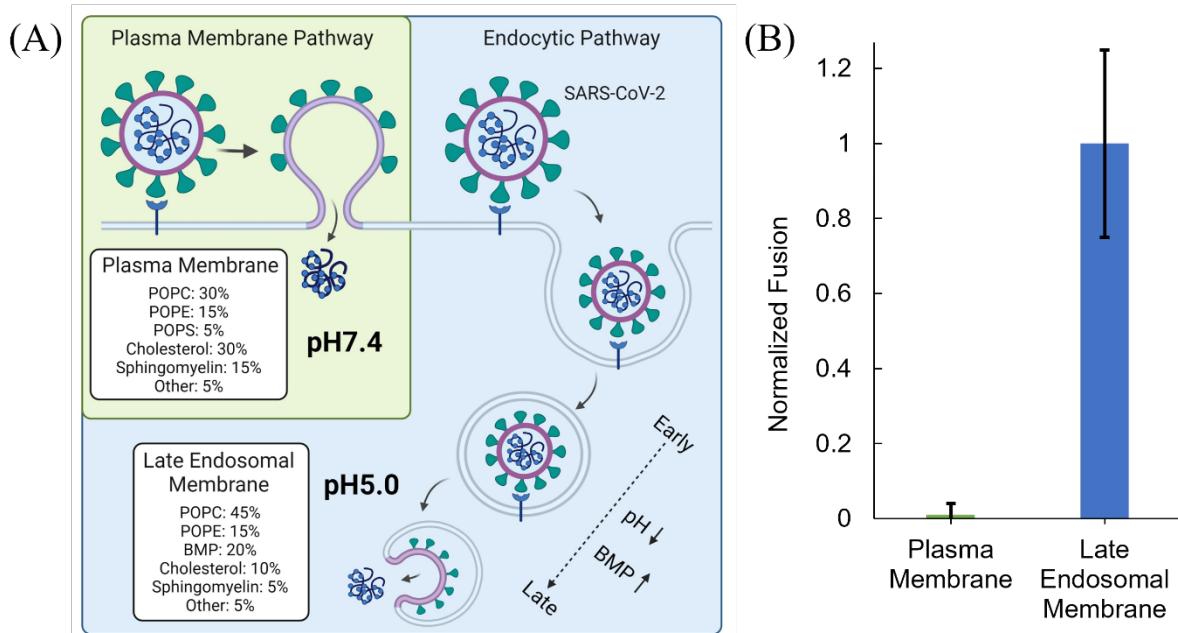


Figure 1: The SARS-CoV-2 FD preferentially initiates fusion with a lipid composition resembling that of the late endosomal membrane. (A) SARS-CoV-2 can enter the target cell via both plasma and endosomal routes. (B) When comparing the fusogenicity of the FD utilizing the respective pH and lipid environments displayed in (A) a clear preference for the late endosomal membrane is observed ($n \leq 4$). The mol% of 'Other' lipids was replaced by POPC in the fusion assay. Created (A) through biorender.com.

199 All experiments were performed with a C-Laurdan concentration of 500nM, and 100 μ M of LUVs of a
 200 known lipid composition for a final ratio of 1:200. Each composition was run in at least triplicate using a
 201 quartz cuvette with a 1cm path length and fluorescence recorded using a SpectraMax M5 microplate at
 202 room temperature ($\sim 22^\circ\text{C}$). Excitation wavelength was set to 385nm with the emission spectrum captured
 203 from 400-600nm in 2nm steps. Unless stated otherwise, the lipid composition utilized in this assay was
 204 80:20mol% (POPC:Anionic lipid).

205

206 **Results**

207 With the effect of pH on SARS-CoV-2 FD initiated fusion already established,(12) the next environmental
 208 factor to assess was that of the target cells lipid membrane composition. Utilizing an *in vitro* FRET-based
 209 fusion assay, the fusogenic ability of the SARS-CoV-2 FD in different physiologically relevant membrane
 210 environments has been determined. When presented with a membrane mimicking the plasma or endosomal
 211 membrane, we observed a clear and substantial preference for the latter. (Figure 1B) Even when the POPS

212 content of the plasma membrane mimic is increased to 20mol% and the pH dropped to 5, creating the same
 213 net anionic charge and pH environment as seen in the late endosomal membrane, the amount of fusion
 214 witnessed is still ~4-fold decreased in comparison. (Figure S1) To better understand this preference, a
 215 bottom-up approach was employed to assess whether individual lipids may contribute towards fusion.
 216 Interestingly, a significant anionic lipid dependence was observed for both POPS (plasma membrane) and
 217 BMP (endosomal membrane), with increasing either lipid resulting in a greater amount of fusion observed
 218 (Figure 2A). The role of the negative charge as the primary reason for this positive relationship is
 219 corroborated further by the same relationship witnessed with the primarily prokaryotic anionic lipid POPG
 220 (Figure S2), as well as two uncharged lipids, POPE and CHOL, having a negative rather than positive
 221 impact on fusion (Figure S3). Alongside this general and positive relationship with negatively charged
 222 lipids, a specificity for BMP is also apparent through the use of a bias plot that aids in identifying bias
 223 towards a given effector molecule (Figure 2B).(35) The graph is generated by plotting the normalized
 224 SARS-CoV-2 FD fusion witnessed in BMP membranes against that in POPS, with anionic lipid
 225 concentration increasing from left to right. Bias is present if the trajectory does not align with the inserted
 226 dashed line and thus, a preference for the FD to initiate fusion with membranes containing BMP over POPS
 227 exists. The concentrations of anionic lipids utilized here approximately mimic the increasing concentrations

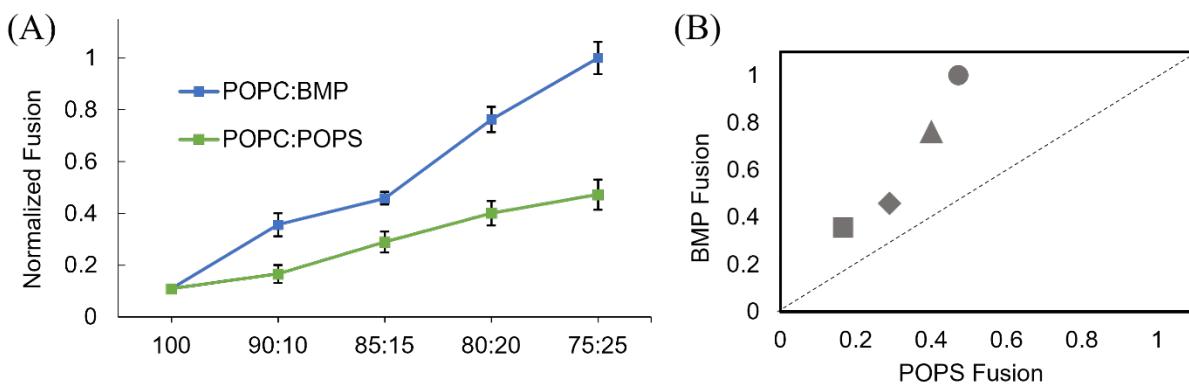


Figure 2: BMP elicits more FD mediated fusion than POPS. (A) When increasing the concentration of anionic lipid present, we observe a positive relationship with fusion for both POPS and BMP, yet more fusion is witnessed for the latter. (B) The bias plot highlights how a specificity for BMP exists and increases alongside anionic lipid concentration. The Y axis represents normalized fusion for BMP, whilst the X axis for POPS. The four data points plotted correspond to the four different anionic lipid concentrations displayed in (A), which are increasing from left to right. ■=10mol%, ♦=15mol%, ▲=20mol%, ●=25mol%. n ≥ 17.

228 seen throughout the endocytic pathway; intriguingly, the bias plot highlights how the specificity for BMP
 229 increases at higher anionic lipid concentrations such as those seen at the late endosomal membrane.

230 To further probe how different anionic lipids impact the interaction of the FD with the membrane,
 231 we quantified the strength of this interaction via isothermal titration calorimetry (ITC) (Figure 3A). A K_d
 232 of $1.2 \pm 0.1 \mu\text{M}$, $3.0 \pm 0.1 \mu\text{M}$, and $2.6 \pm 0.1 \mu\text{M}$ was found for the FD associating with membranes containing
 233 BMP, POPS, and POPG respectively. It should also be noted that the presence of anionic lipids was found
 234 to be critical for the interaction between the FD and lipid vesicles, with a ~ 1000 -fold increase in K_d present
 235 (4.2 \pm 0.7 mM) with only POPC in the membrane (Figure S4). Despite being negatively charged at neutral

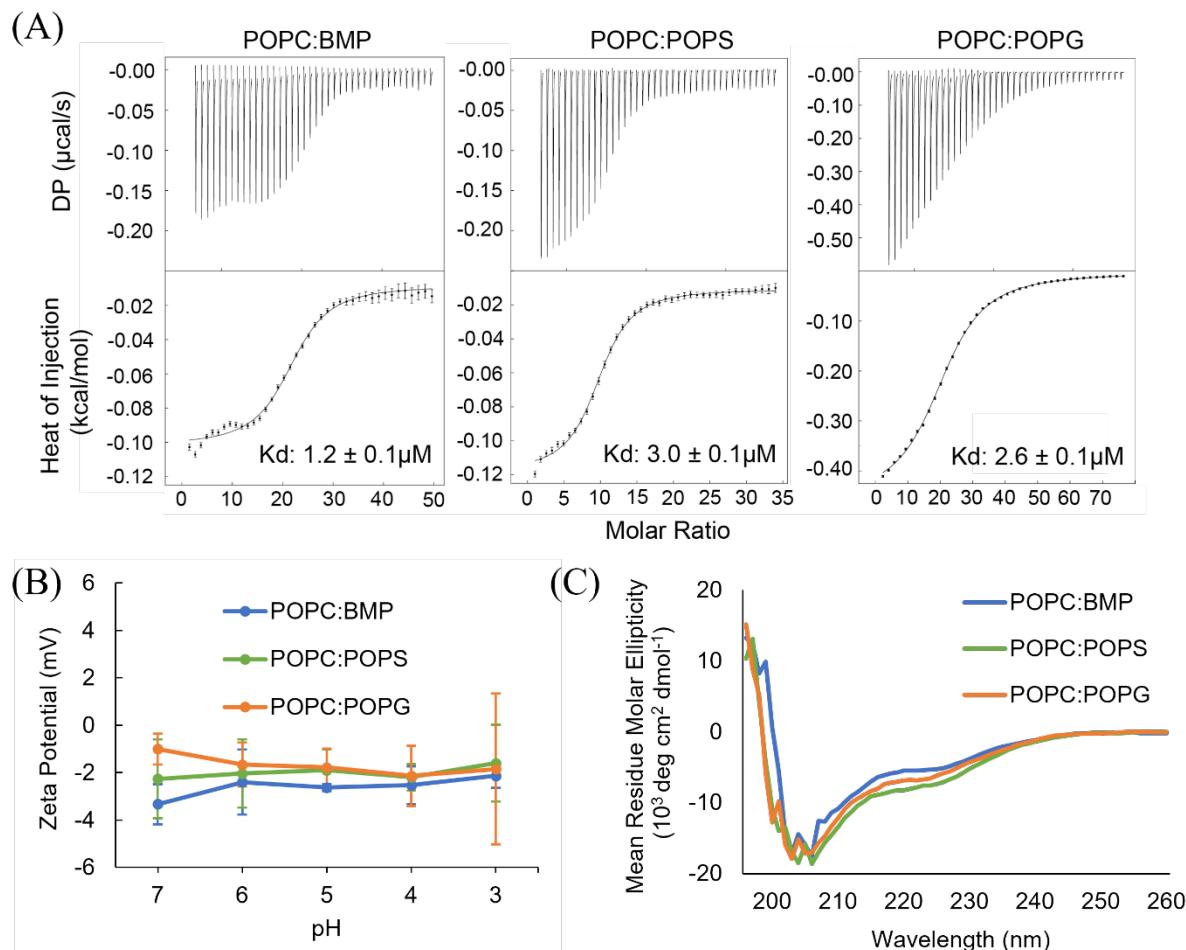


Figure 3: The initial interaction between the FD and lipid vesicles containing BMP, POPS or POPG. (A) Regardless of which anionic lipid is present, the dissociation constants (K_d) found through ITC are similar. Vesicles contained 50 mol% anionic lipid with a total concentration of 10 mM, and a protein concentration $\sim 20 \mu\text{M}$ was utilized in all ITC experiments. (B) Zeta potential measurements displayed no significant change in charge from pH 7 to pH 3 with 20 mol% anionic lipid present. (C) No major perturbations in global secondary structure were observable via CD based on the presence of different anionic lipids at 20 mol%.

pH, it is unknown whether this charge is maintained for all three anionic lipids under more acidic conditions, such as those found in the endocytic pathway. To experimentally probe the relationship between anionic lipid charge and pH we measured the zeta potential of LUVs from pH7.0 to pH3.0. In simplified terms, a zeta potential is the measurement of how the electric potential found to surround a nanoparticle due to the attraction of counterions, changes as the particle moves in solution.(36) By measuring the zeta potentials of LUVs containing BMP, POPS and POPG, we see that no significant alteration in charge occurs for any of the anionic lipids from pH7.0 through to pH3.0 (Figure 3B). Thus, environmental pH does not appear to significantly impact the net negative charge of the constructed lipid vesicles. We also assessed the structural impact of differing anionic lipids on the embedded FD through circular dichroism (CD). An alpha helical conformation for the FD was found in all three lipid environments, as expected based on previous literature (Figure 3C).(14, 37) This suggests that the presence of different lipid headgroups has little impact on the global secondary structure of the FD. Taken together, this data supports a conclusion where a negative charge is essential for the interaction between the SARS-CoV-2 FD and lipid vesicles, however, the different headgroups of the anionic lipids involved has minimal impact on this interaction.

Unable to discern any substantial differences between the anionic lipid headgroups via their interaction with the FD, we next turned our focus to how POPS and BMP may affect the packing of the membrane, and in turn, fusion. C-Laurdan is a fluorescent probe that is sensitive to the local environment and has been used previously to study lipid packing.(38, 39) The probe contains two emission peaks at ~440nm (Increased lipid packing) and ~490nm (Decreased lipid packing), with the relative intensity changing in the presence of different degrees of lipid packing. When first comparing POPC:POPS to POPC:BMP liposomes we see that the presence of POPS results in a slightly more packed membrane, with a λ_{max} of 478nm and 484nm, respectively (Figure 4A&B). To probe this effect further we combined the anionic lipids with DPPC and DOPC, with the hypothesis that they would impact lipid packing based primarily on chain saturation (Figure S5). No change in packing was witnessed for DOPC:BMP (λ_{max} = 484nm), but a minor shift for DOPC:POPS (λ_{max} = 483nm) towards a less packed membrane was observed (Figure S6). Moreover, a clear difference in packing can be seen for both anionic lipids in the presence of

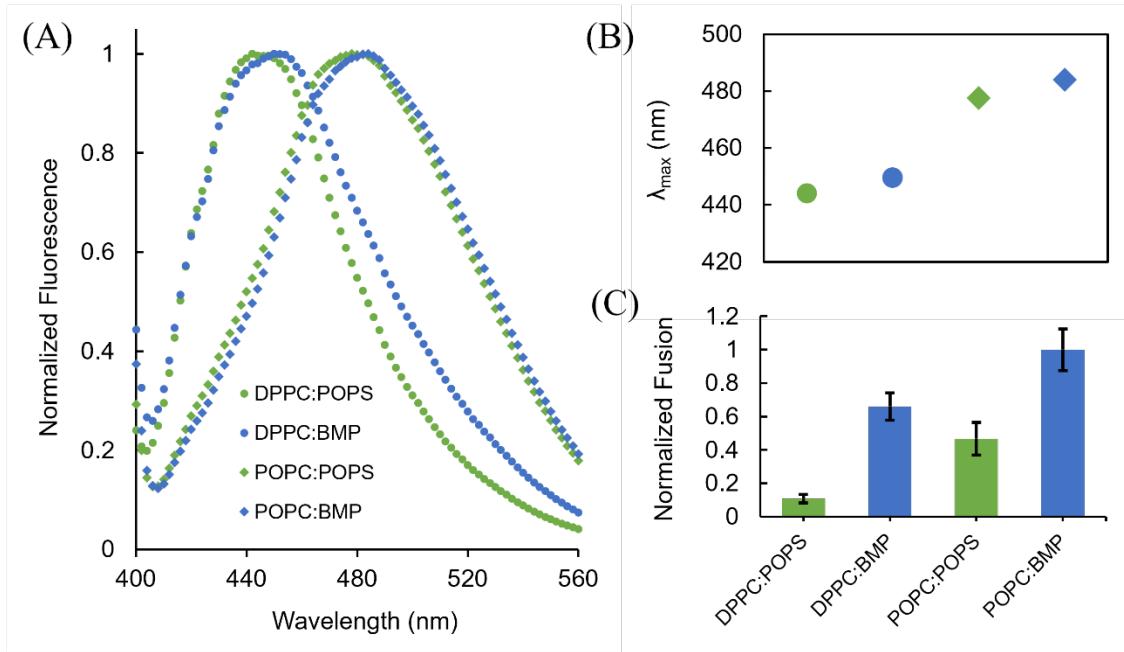


Figure 4: BMP decreases lipid packing, which has a positive impact on fusion. (A) DPPC:POPS and DPPC:BMP show increased lipid packing in comparison to POPC:POPS and POPC:BMP with a molar ratio of 80:20 present. (B) Plotting the lambda max displays a trend where BMP elicits a negative effect on lipid packing in comparison to POPS. (C) When comparing like headgroups, the liposomes containing lower levels of lipid packing allowed the FD to elicit increased amounts of fusion, with a molar ratio of 90:10 and $n \geq 12$.

262

263 DPPC when compared to POPC (Figure 4A&B). DPPC:POPS ($\lambda_{\max} = 444\text{nm}$) and DPPC:BMP ($\lambda_{\max} =$
 264 450nm) displayed a marked shift, with a large decrease in λ_{\max} indicative of an increase in lipid packing.
 265 (Figure 4A&B) Intriguingly, DPPC:BMP still displayed less lipid packing than DPPC:POPS, the same
 266 trend as was witnessed with POPC (Figure 4B). Furthermore, a negative relationship was found between
 267 increased lipid packing and the fusogenicity of the SARS-CoV-2 FD (Figure 4C). Comparing DPPC:POPS
 268 to POPC:POPS and DPPC:BMP to POPC:BMP, an increase in fusion was witnessed with both POPC
 269 compositions. In summary, a negative relationship between lipid packing and SARS-CoV-2 FD
 270 fusogeneity has been found, with BMP displaying a subtle, negative impact on lipid packing in comparison
 271 to POPS.

272 After assessing the anionic lipids in unison, we finally wanted to investigate whether they displayed
 273 any synergistic effects alongside other physiologically relevant lipids. Due to their relatively high
 274 abundance in both the plasma and endosomal membranes as well as their previous implications in viral
 275 fusion, we focused on POPE and Cholesterol. Intriguingly, the two lipids showed some synergy together

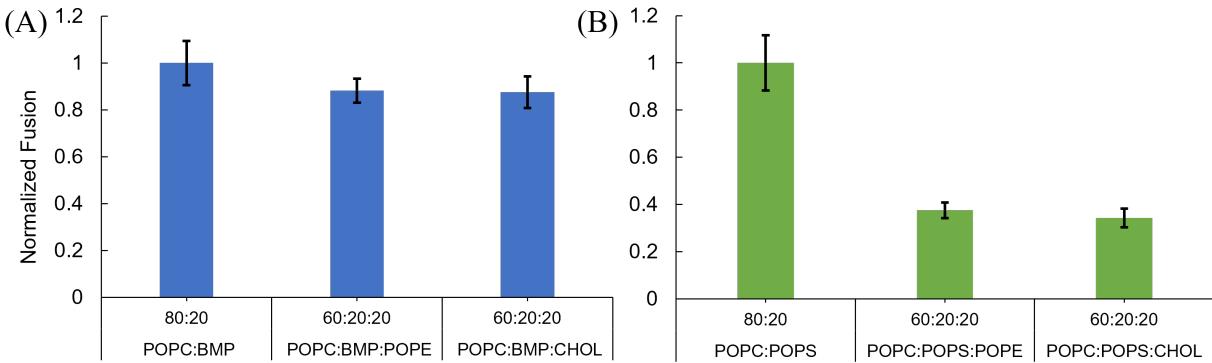


Figure 5: The presence of POPE and cholesterol in the membrane has a negative impact on POPS mediated fusion, but not BMP (A) No difference in fusion is observed with vesicles containing BMP when in the presence of POPE or Cholesterol. (B) FD mediated fusion is significantly decreased when vesicles containing POPS are accompanied with POPE or Cholesterol. $n \leq 10$.

276 (Figure S7), although at relatively low levels of fusion in comparison to the anionic lipids. When
 277 individually incorporating POPE or CHOL into LUVs alongside BMP no significant impact on fusion is
 278 observed (Figure 5A). On the other hand, a significant decrease in fusion is witnessed when POPS is
 279 incorporated alongside POPE or CHOL (Figure 5B). Hence, whilst neither anionic lipid displays positive
 280 synergistic properties alongside POPE or CHOL, both lipids have a detrimental impact on POPS mediated
 281 fusion.

282

283 **Discussion**

284 SARS-CoV-2 is an incredibly infectious virus, in part due to its ability to enter the target cell through either
 285 the plasma or endosomal membrane.(4, 40, 41) Whilst most viruses can only access one pathway, the ability
 286 to utilize both increases the likelihood of infection. One key difference between the two pathways is
 287 environmental pH: the plasma membrane exists at a neutral pH, whilst the pH within the endocytic pathway
 288 gradually decreases throughout. Both *in vitro*(12) and *in vivo*(41) SARS-CoV-2 has been shown to
 289 preferentially initiate fusion at a pH akin to that witnessed in the endocytic pathway. However, neither study
 290 considered the lipid composition of the target cell membrane; another critical environmental factor that
 291 differs between the plasma and endosomal routes of fusion. It should be noted that previous work has also
 292 found Ca^{2+} to be involved within the initiation of membrane fusion. However, the exact role of Ca^{2+} is yet
 293 to be elucidated within this process and we have thus decided to omit the divalent ion from all of our

294 experiments allowing us to focus on the impact of lipid composition. Here we have shown that the FD of
295 SARS-CoV-2 displays a preference to initiate fusion with the lipid composition found in the late endosomal
296 membrane (Figure 1B), regardless of the environmental pH (Figure S1). Hence, alongside pH, lipid
297 composition could be another major determining factor that dictates the likelihood of success for SARS-
298 CoV-2 fusion.

299 Within the human body, the sum of POPS (~5mol%) in the plasma membrane is generally thought
300 to be significantly lower than that of BMP (~20mol%) in the late endosomal membrane.(22, 24)
301 Additionally, POPS is thought to be more commonly found on the inner leaflet of the plasma membrane
302 rather than the outer leaflet where it would be exposed to the external environment.(42, 43) So, not only is
303 POPS at a lower concentration than BMP in their respective membranes, but it is also less accessible to
304 interact with the FD. Such reasoning could provide a physiological explanation as to why a preference for
305 the SARS-CoV-2 FD to initiate fusion with membranes containing BMP over POPS exists, as the former
306 is the predominant anionic lipid that comes into contact with the viral glycoprotein (Figure 2). Furthermore,
307 several other viruses which utilize the endocytic pathway (Influenza, LASV, and VSV) have all displayed
308 a positive fusogenic relationships with BMP. (27-29) It is possible that a trend could be emerging, where
309 enveloped viruses which travel through the endocytic pathway take advantage of the increasing
310 concentrations of BMP as a potential trigger to initiate their fusion processes.

311 We sought to clarify where this preference for BMP arises from by looking at how the anionic
312 lipids impact the membrane from a biophysical perspective. It has previously been stated that BMP elicits
313 fusion in a pH dependent manner,(24) however this was not witnessed within our experimental set-up as
314 controls without FD displayed no fusion regardless of lipid composition (Figure S8). A third anionic lipid
315 was introduced, POPG, which despite being a structural isomer and precursor of BMP retains more
316 similarities with POPS due to headgroup stoichiometry, chain length and saturation.(27) Similarly to POPS,
317 POPG was also not as efficient at eliciting fusion when compared to BMP (Figure S2). Through the use of
318 zeta potential measurements, the overall charge of the lipid membrane was assessed across a wide pH range.
319 The thought process behind these measurements includes the possibility that the negative charge could be

320 lost as the lipid headgroup becomes protonated at low pH, with the isoelectric points for each functional
321 group not well established. Yet, all three anionic lipids displayed no significant variation between pH7 and
322 pH3, with the negative charge maintained throughout (Figure 3B). Membranes containing BMP, however,
323 were found to be slightly more negative than POPS and POPG. Interestingly, a similar trend was witnessed
324 through ITC, where a slight increase in binding affinity was also discovered for BMP (Figure 3A). We
325 hypothesize that both of these results may be due to a greater preference for BMP to partition into the outer
326 leaflet of LUVs, as the zeta potential measurement only detects the outer surface charge of a given
327 nanoparticle and the FD is only thought to interact with the lipid headgroups of the membranes outer
328 leaflet.(37, 44) Further studies involving the impact of lipid asymmetry may prove beneficial in further
329 elucidating the preference for BMP as well as how the complexity of the membrane impacts fusion.
330 Additionally, the same alpha helical conformation found in previous studies of the FD was also present in
331 all three different lipid environments (Figure 3B). Hence, the FD appears to directly interact with anionic
332 lipids in order to initiate fusion, which explains the positive relationship witnessed. With four positively
333 charged residues within the FD (K825, K835, R847 and K854), an increase in anionic lipid present in the
334 membrane could facilitate more ionic interactions regardless of lipid structure, which based upon the lack
335 of binding for a membrane containing 100mol% POPC, appears critical. However, such interactions do
336 not explain the preference for the FD to fuse at membranes containing BMP over other anionic lipids.

337 Alongside anionic lipids, both POPE and CHOL have been implicated in viral fusion previously
338 with the lipids found to impact membrane curvature and fluidity, respectively. (45-48) Unexpectedly,
339 neither POPE nor CHOL displayed any positive impact on the ability of the FD to elicit fusion (Figure
340 S3). This was a particular surprise as *in vivo* based studies have shown cholesterol to positively influence
341 SARS-CoV-2 fusion.(49, 50) The discrepancy in results could be due to a greater complexity of membrane
342 lipid compositions involved in such studies, or the more likely scenario, by where the formation of lipid
343 rafts results in the localization of the ACE2 receptor on the cell surface. Hence, rather than direct protein-
344 lipid interactions between the SARS-CoV-2 spike protein and the target cell membrane, it is in fact the
345 membranes impact on the ACE2 receptor that may promote fusion in such cases.

346 The two main characteristics of lipids are a hydrophilic headgroup and two hydrophobic fatty acid
347 tails, both of which play a key role in modulating the biophysical make-up of the membrane.(22, 51, 52)
348 Headgroups often dictate interactions with the soluble environment and are distinguishable by traits such
349 as shape, size and charge. Alternatively, aliphatic chains are more directly involved within the hydrophobic
350 core of the membrane, relying on varying degrees of saturation and length for differentiation. Two key
351 structural differences exist between BMP and POPS which may help to explain the significant differences
352 within fusion, one in the lipid headgroup and another in the fatty acid tails (Figure S5). Firstly, BMP is a
353 structural isomer of phosphatidyl glycerol (PG) that contains a rare sn-1;sn-1' configuration that is not
354 found in any other mammalian glycerophospholipids.(53) This unique configuration has been found to
355 participate in less hydrogen bonding than the traditional sn-3:sn-1' orientation that is found in both POPS
356 and POPG, thought to be due to the orientation of available hydrogen bond donors.(54-56) Secondly, BMP
357 most commonly contains two unsaturated tails (18:1) whilst POPS and POPG have one saturated and one
358 unsaturated chain (16:0-18:1). Saturated fatty acids allow lipids to pack tightly alongside one another,
359 however double bonds introduce kinks to the acyl chains and prevent efficient lipid packing. A simplified
360 example is lipids with saturated acyl chains being thought of as having an overall rectangular shape, so the
361 headgroup and acyl chains are a similar width. Alternatively, unsaturated lipids have a more triangle like
362 shape with their lipid tails consuming a wider area than there headgroup counterpart (Figure S5). Through
363 MD simulations, it has been suggested that the SARS-CoV-2 FD can more readily insert itself into
364 endosomal membranes as opposed to the plasma membrane due to a decrease in lipid packing.(57) Our
365 experimental results further indicate that BMP has a subtle, negative impact on lipid packing when
366 compared to POPS (Figure 4). Put another way, BMP increases the fluidity of the membrane, a finding
367 that has also been corroborated previously,(58) and appears to directly correlate with an increase in fusion
368 elicited by the SARS-CoV-2 FD (Figure 4C). Increasing polyunsaturated lipids in the membrane has been
369 shown to favor fusion through decreasing the overall activation energy required previously.(59) Thus,
370 greater membrane fluidity via the presence of BMP as a result of less hydrogen bonding and increased
371 unsaturation, could aid the FD in reducing the energetic barrier necessary to elicit fusion.

372

373 **Conclusions**

374 The SARS-CoV-2 FD contains a preference to elicit fusion in membranes containing the endosomal lipid
375 BMP. Alongside its negative charge, which is maintained across a wide pH range encompassing the
376 endosomal pathway, BMP is thought to have a subtle, negative impact lipid packing, likely due to its unique
377 structural characteristics. Together, these properties are deemed to be critical for the positive and specific
378 impact on membrane fusion witnessed when BMP is compared to POPS. The negative charge shared by
379 both lipids is critical for the initial interaction between the FD and the lipid membrane, whilst the minor
380 decrease in lipid packing imparted by BMP results in increased FD mediated fusion. Intriguingly, whilst
381 fusion with membranes containing POPS was negatively impacted by the presence of POPE or cholesterol,
382 BMP showed neither positive nor negative synergistic effects alongside other lipids (Figure 5). Further
383 work should prioritize understanding the interplay of such lipids within the membrane and how that may
384 directly impact SARS-CoV-2 mediated fusion in more complex systems incorporating features such as lipid
385 asymmetry and phase separation. This knowledge could be applied to other viruses, aiding in the
386 understanding of viral tropism through different membrane lipid compositions.

387

388 **Supporting Information**

389 S1. The impact on fusion when matching the anionic lipid concentration and pH in the plasma membrane
390 to that of the endosomal membrane

391 S2. Positive relationship between POPG concentration and SARS-CoV-2 FD mediated fusion

392 S3. Impact of POPE and cholesterol on SARS-CoV-2 FD mediated fusion

393 S4. SARS-CoV-2 FD binding to 100% POPC vesicles

394 S5. Chemical structures of POPC, DOPC, DPPC, POPG, POPS and BMP lipids.

395 S6. Lipid packing of DOPC:POPS v DOPC:BMP

- 396 S7. Synergistic relationship witnessed with POPE and cholesterol
397 S8. Control data for fusion experiments with anionic lipids and general data processing work flow
398

399 **Acknowledgements**

400 We would like to thank Oluwatobi Aderotoye and Dr. Sung Joon Kim at Howard University for the use of
401 their Horiba Scientific nanoPARTICA Nanoparticle Analyzer SZ-100V2 used to acquire the zeta potential
402 data displayed within this manuscript. Also a special thanks to the rest of the Lee Lab for their helpful
403 comments and discussions in constructing this manuscript.

404

405 **Funding Sources**

406 This work was supported by the University of Maryland – College Park and the National Science
407 Foundation, Division of Chemistry (CHE: 2238139).

408

409

410 **References**

- 411 (1) Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K. Y.; et al.
412 Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. *Cell* **2005**, *181* (4), 894-904.
413 DOI: 10.1016/j.cell.2020.03.045.
414 (2) Simmons, G.; Reeves, J. D.; Rennekamp, A. J.; Amberg, S. M.; Piefer, A. J.; Bates, P. Characterization of
415 severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral
416 entry. *Proc Natl Acad Sci U S A* **2004**, *101* (12), 4240-4245. DOI: 10.1073/pnas.0306446101.
417 (3) Belouzard, S.; Chu, V. C.; Whittaker, G. R. Activation of the SARS coronavirus spike protein via
418 sequential proteolytic cleavage at two distinct sites. *Proc Natl Acad Sci U S A* **2009**, *106* (14), 5871-5876.
419 DOI: 10.1073/pnas.0809524106.
420 (4) Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.;
421 Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
422 Blocked by a Clinically Proven Protease Inhibitor. *Cell* **2020**, *181* (2), 271-280.e278. DOI:
423 10.1016/j.cell.2020.02.052 (accessed 2021-02-01T19:31:27).
424 (5) Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient Activation of the
425 Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2.
426 *J Virol.* **2010**, *84* (24), 12658-12664. DOI: 10.1128/JVI.01542-10.

- 427 (6) Bollavaram, K.; Leeman, T. H.; Lee, M. W.; Kulkarni, A.; Upshaw, S. G.; Yang, J.; Song, H.; Platt, M. O.
428 Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V.
429 *Protein Sci* **2021**, 30 (6), 1131-1143. DOI: 10.1002/pro.4073.
- 430 (7) Simmons, G.; Gosalia, D. N.; Rennekamp, A. J.; Reeves, J. D.; Diamond, S. L.; Bates, P. Inhibitors of
431 cathepsin L prevent severe acute respiratory syndrome coronavirus entry. *Proc Natl Acad Sci U S A* **2005**,
432 102 (33), 11876-11881. DOI: 10.1073/pnas.0505577102.
- 433 (8) Lai, A. L.; Freed, J. H. SARS-CoV-2 Fusion Peptide has a Greater Membrane Perturbing Effect than
434 SARS-CoV with Highly Specific Dependence on Ca²⁺. *J Mol Biol* **2021**, 433 (10), 166946. DOI:
435 10.1016/j.jmb.2021.166946. (acccesed 2021-02-10T19:40:35).
- 436 (9) Chiliveri, S. C.; Louis, J. M.; Ghirlando, R.; Bax, A. Transient lipid-bound states of spike protein heptad
437 repeats provide insights into SARS-CoV-2 membrane fusion. *Sci Adv* **2021**, 7 (41), eabk2226. DOI:
438 10.1126/sciadv.abk2226.
- 439 (10) Birtles, D.; Lee, J. SARS-CoV-2 Fusion Domain Provides Clues toward the Molecular Mechanism for
440 Membrane Fusion. *Biochemistry* **2023**, 62, 3033-3035. DOI: 10.1021/acs.biochem.3c00501.
- 441 (11) Shi, W.; Cai, Y.; Zhu, H.; Peng, H.; Voyer, J.; Rits-Volloch, S.; Cao, H.; Mayer, M. L.; Song, K.; Xu, C.; et
442 al. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane. *Nature* **2023**, 619 (7969), 403-409.
443 DOI: 10.1038/s41586-023-06273-4
- 444 (12) Birtles, D.; Oh, A. E.; Lee, J. Exploring the pH dependence of the SARS-CoV-2 complete fusion domain
445 and the role of its unique structural features. *Protein Science* **2022**, 31 (9), e4390. DOI: 10.1002/pro.4390
- 446 (13) Lai, A. L.; Millet, J. K.; Daniel, S.; Freed, J. H.; Whittaker, G. R. The SARS-CoV Fusion Peptide Forms an
447 Extended Bipartite Fusion Platform That Perturbs Membrane Order in a Calcium-Dependent Manner. *J
448 Mol Biol* **2017**, 429 (24), 3875-3892. DOI: 10.1016/j.jmb.2017.10.017.
- 449 (14) Birtles, D.; Lee, J.. Identifying Distinct Structural Features of the Sars-cov-2 Spike Protein Fusion
450 Domain Essential for Membrane Interaction. *Biochemistry* **2021**, 60 (40), 2978-2986.
451 <https://doi.org/10.1021/acs.biochem.1c00543>.
- 452 (15) Dimitrov, A. S.; Rawat, S. S.; Jiang, S.; Blumenthal, R. Role of the Fusion Peptide and Membrane-
453 Proximal Domain in HIV-1 Envelope Glycoprotein-Mediated Membrane Fusion. *Biochemistry* **2003**, 42
454 (48), 14150-14158. DOI: 10.1021/bi035154g
- 455 (16) Han, X.; Bushweller, J. H.; Cafiso, D. S.; Tamm, L. K. Membrane structure and fusion-triggering
456 conformational change of the fusion domain from influenza hemagglutinin. *Nature Structural Biology*
457 **2001**, 8 (8), 715-720. DOI: 10.1038/90434
- 458 (17) Gregory, S. M.; Harada, E.; Liang, B.; Delos, S. E.; White, J. M.; Tamm, L. K. Structure and function of
459 the complete internal fusion loop from Ebolavirus glycoprotein 2. *Proc Natl Acad Sci U S A* **2011**, 108 (27),
460 11211-11216. DOI: 10.1073/pnas.1104760108.
- 461 (18) *CoVariants*. **2024**. <https://covariants.org> (Date accessed: 09.20.2023)
- 462 (19) Low, J. S.; Jerak, J.; Tortorici, M. A.; Mccallum, M.; Pinto, D.; Cassotta, A.; Foglierini, M.; Mele, F.;
463 Abdelnabi, R.; Weynand, B.; et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly
464 neutralizing coronavirus antibodies. *Science* **2022**, 377 (6607), 735-742. DOI: 10.1126/science.abq2679
- 465 (20) Dacon, C.; Tucker, C.; Peng, L.; Lee, C. D.; Lin, T. H.; Yuan, M.; Cong, Y.; Wang, L.; Purser, L.; Williams,
466 J. K.; et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. *Science* **2022**, 377 (6607),
467 728-735. DOI: 10.1126/science.abq3773.
- 468 (21) Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-
469 CoV-2 Is Essential for Infection of Human Lung Cells. *Mol Cell* **2020**, 78 (4), 779-784.e775. DOI:
470 10.1016/j.molcel.2020.04.022.
- 471 (22) Van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: where they are and how they behave.
472 *Nature Reviews Molecular Cell Biology* **2008**, 9 (2), 112-124. DOI: 10.1038/nrm2330
- 473 (23) Symons, J. L.; Cho, K.-J.; Chang, J. T.; Du, G.; Waxham, M. N.; Hancock, J. F.; Levental, I.; Levental, K.
474 R. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture

- 475 conditions, subcellular membranes, and cell lineages. *Soft Matter* **2021**, *17* (2), 288-297. DOI:
476 10.1039/d0sm00404a
- 477 (24) Kobayashi, T.; Beuchat, M. H.; Chevallier, J.; Makino, A.; Mayran, N.; Escola, J. M.; Lebrand, C.; Cosson,
478 P.; Gruenberg, J. Separation and characterization of late endosomal membrane domains. *J Biol Chem*
479 **2002**, *277* (35), 32157-32164. DOI: 10.1074/jbc.M202838200.
- 480 (25) Kobayashi, T.; Beuchat, M.-H.; Lindsay, M.; Frias, S.; Palmiter, R. D.; Sakuraba, H.; Parton, R. G.;
481 Gruenberg, J. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport.
482 *Nature Cell Biology* **1999**, *1* (2), 113-118. DOI: 10.1038/10084
- 483 (26) Kobayashi, T.; Stang, E.; Fang, K. S.; De Moerloose, P.; Parton, R. G.; Gruenberg, J. A lipid associated
484 with the antiphospholipid syndrome regulates endosome structure and function. *Nature* **1998**, *392*
485 (6672), 193-197. DOI: 10.1038/32440
- 486 (27) Mannsverk, S.; Villamil Giraldo, A. M.; Kasson, P. M. Influenza Virus Membrane Fusion Is Promoted
487 by the Endosome-Resident Phospholipid Bis(monoacylglycerol)phosphate. *The Journal of Physical
488 Chemistry B* **2022**, *126* (49), 10445-10451. DOI: 10.1021/acs.jpcb.
- 489 (28) Markosyan, R. M.; Marin, M.; Zhang, Y.; Cohen, F. S.; Melikyan, G. B. The late endosome-resident lipid
490 bis(monoacylglycerol)phosphate is a cofactor for Lassa virus fusion. *PLOS Pathogens* **2021**, *17* (9),
491 e1009488. DOI: 10.1371/journal.ppat.1009488
- 492 (29) Roth, S. L.; Whittaker, G. R. Promotion of vesicular stomatitis virus fusion by the endosome-specific
493 phospholipid bis(monoacylglycerol)phosphate (BMP). *FEBS Letters* **2011**, *585* (6), 865-869. DOI:
494 10.1016/j.febslet.2011.02.015
- 495 (30) Silvius, J. R. Role of cholesterol in lipid raft formation: lessons from lipid model systems. *Biochim
496 Biophys Acta* **2003**, *1610* (2), 174-183. DOI: 10.1016/s0005-2736(03)00016-6.
- 497 (31) Kulkarni, R.; Wiemer, E. A. C.; Chang, W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini
498 Review. *Front Immunol* **2021**, *12*, 815020. DOI: 10.3389/fimmu.2021.815020.
- 499 (32) Yang, S.-T.; Kiessling, V.; Simmons, J. A.; White, J. M.; Tamm, L. K. HIV gp41-mediated membrane
500 fusion occurs at edges of cholesterol-rich lipid domains. *Nature Chemical Biology* **2015**, *11* (6), 424-431.
501 DOI: 10.1038/nchembio.1800
- 502 (33) Lai, A. L.; Moorthy, A. E.; Li, Y.; Tamm, L. K. Fusion activity of HIV gp41 fusion domain is related to its
503 secondary structure and depth of membrane insertion in a cholesterol-dependent fashion. *J Mol Biol*
504 **2012**, *418* (1-2), 3-15. DOI: 10.1016/j.jmb.2012.02.010.
- 505 (34) Zhao, H.; Piszczek, G.; Schuck, P. SEDPHAT – A platform for global ITC analysis and global multi-method
506 analysis of molecular interactions. *Methods* **2015**, *76*, 137-148. DOI: 10.1016/j.ymeth.2014.11.012
507 (acccesed 2023-10-16T20:12:35).
- 508 (35) Karl, K.; Paul, M. D.; Pasquale, E. B.; Hristova, K. Ligand bias in receptor tyrosine kinase signaling.
509 *Journal of Biological Chemistry* **2020**, *295* (52), 18494-18507. DOI: 10.1074/jbc.rev120.015190
- 510 (36) Clogston, J. D.; Patri, A. K. Zeta Potential Measurement. In *Methods in Molecular Biology*, Humana
511 Press, 2011; pp 63-70.
- 512 (37) Koppisetti, R. K.; Fulcher, Y. G.; Van Doren, S. R. Fusion Peptide of SARS-CoV-2 Spike Rearranges into
513 a Wedge Inserted in Bilayered Micelles. *Journal of the American Chemical Society* **2021**, *143* (33), 13205-
514 13211. DOI: 10.1021/jacs.1c05435
- 515 (38) Sezgin, E.; Sadowski, T.; Simons, K. Measuring Lipid Packing of Model and Cellular Membranes with
516 Environment Sensitive Probes. *Langmuir* **2014**, *30* (27), 8160-8166. DOI: 10.1021/la501226v
- 517 (39) Kim, H. M.; Choo, H. J.; Jung, S. Y.; Ko, Y. G.; Park, W. H.; Jeon, S. J.; Kim, C. H.; Joo, T.; Cho, B. R. A
518 Two-Photon Fluorescent Probe for Lipid Raft Imaging: C-Laurdan. *ChemBioChem* **2007**, *8* (5), 553-559. DOI:
519 10.1002/cbic.200700003
- 520 (40) Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G. Y.; Katsamba, P. S.; Sampson, J.
521 M.; Schön, A.; Bimela, J.; et al. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a

- 522 pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. *Cell Host Microbe*
523 **2020**, 28 (6), 867-879.e865. DOI: 10.1016/j.chom.2020.11.004.
- 524 (41) Kreutzberger, A. J. B.; Sanyal, A.; Saminathan, A.; Bloyet, L.-M.; Stumpf, S.; Liu, Z.; Ojha, R.; Patjas, M.
525 T.; Geneid, A.; Scanavachi, G.; et al. SARS-CoV-2 requires acidic pH to infect cells. *Proceedings of the*
526 *National Academy of Sciences* **2022**, 119 (38), e2209514119. DOI: 10.1073/pnas.2209514119
- 527 (42) Bretscher, M. S. Asymmetrical Lipid Bilayer Structure for Biological Membranes. *Nature New Biology*
528 **1972**, 236 (61), 11-12. DOI: 10.1038/newbio236011a0
- 529 (43) Op Den Kamp, J. A. F. Lipid Asymmetry in Membranes. *Annual Review of Biochemistry* **1979**, 48 (1),
530 47-71. DOI: 10.1146/annurev.bi.48.070179.000403
- 531 (44) Van Doren, S. R.; Scott, B. S.; Koppisetti, R. K. SARS-CoV-2 fusion peptide sculpting of a membrane
532 with insertion of charged and polar groups. *Structure* **2023**, 31 (10), 1184-1199.e1183. DOI:
533 10.1016/j.str.2023.07.015.
- 534 (45) Lee, J.; Kreutzberger, A. J. B.; Odongo, L.; Nelson, E. A.; Nyenhuis, D. A.; Kiessling, V.; Liang, B.; Cafiso,
535 D. S.; White, J. M.; Tamm, L. K. Ebola virus glycoprotein interacts with cholesterol to enhance membrane
536 fusion and cell entry. *Nature Structural & Molecular Biology* **2021**, 28 (2), 181-189. DOI: 10.1038/s41594-
537 020-00548-4
- 538 (46) Qiang, W.; Sun, Y.; Weliky, D. P. A strong correlation between fusogenicity and membrane insertion
539 depth of the HIV fusion peptide. *Proc Natl Acad Sci U S A* **2009**, 106 (36), 15314-15319. DOI:
540 10.1073/pnas.0907360106.
- 541 (47) Biswas, S.; Yin, S.-R.; Blank, P. S.; Zimmerberg, J. Cholesterol Promotes Hemifusion and Pore Widening
542 in Membrane Fusion Induced by Influenza Hemagglutinin. *Journal of General Physiology* **2008**, 131 (5),
543 503-513. DOI: 10.1085/jgp.200709932
- 544 (48) Lee, M.; Morgan, C. A.; Hong, M. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation
545 in phospholipid bilayers. *J Biol Chem* **2019**, 294 (40), 14732-14744. DOI: 10.1074/jbc.RA119.009542.
- 546 (49) Niort, K.; Dancourt, J.; Boedec, E.; Al Amir Dache, Z.; Lavieu, G.; Tareste, D. Cholesterol and Ceramide
547 Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. *ACS Omega*
548 **2023**, 8 (36), 32729-32739. DOI: 10.1021/acsomega.3c03610
- 549 (50) Sanders, D. W.; Jumper, C. C.; Ackerman, P. J.; Bracha, D.; Donlic, A.; Kim, H.; Kenney, D.; Castello-
550 Serrano, I.; Suzuki, S.; Tamura, T.; et al. SARS-CoV-2 requires cholesterol for viral entry and pathological
551 syncytia formation. *eLife* **2021**, 10, e65962. DOI: 10.7554/elife.65962
- 552 (51) Ding, W.; Palaiokostas, M.; Wang, W.; Orsi, M. Effects of Lipid Composition on Bilayer Membranes
553 Quantified by All-Atom Molecular Dynamics. *The Journal of Physical Chemistry B* **2015**, 119 (49), 15263-
554 15274. DOI: 10.1021/acs.jpcb.5b06604
- 555 (52) Ballweg, S.; Sezgin, E.; Doktorova, M.; Covino, R.; Reinhard, J.; Wunnicke, D.; Hänelt, I.; Levental, I.;
556 Hummer, G.; Ernst, R. Regulation of lipid saturation without sensing membrane fluidity. *Nature*
557 *Communications* **2020**, 11 (1), 14528-1. DOI: 10.1038/s41467-020-14528-1
- 558 (53) Akgoc, Z.; Sena-Esteves, M.; Martin, D. R.; Han, X.; D'azzo, A.; Seyfried, T. N.
559 Bis(monoacylglycerol)phosphate: a secondary storage lipid in the gangliosidoses. *Journal of Lipid Research*
560 **2015**, 56 (5), 1005-1006. DOI: 10.1194/jlr.m057851
- 561 (54) Hayakawa, T.; Hirano, Y.; Makino, A.; Michaud, S.; Lagarde, M.; Pageaux, J.-F.; Douthneau, A.; Ito, K.;
562 Fujisawa, T.; Takahashi, H.; et al. Differential Membrane Packing of Stereoisomers of
563 Bis(monoacylglycerol)phosphate. *Biochemistry* **2006**, 45 (30), 9198-9209. DOI: 10.1021/bi060722o
- 564 (55) Dickey, A.; Faller, R. Examining the Contributions of Lipid Shape and Headgroup Charge on Bilayer
565 Behavior. *Biophysical Journal* **2008**, 95 (6), 2636-2646. DOI: 10.1529/biophysj.107.128074
- 566 (56) Mukhopadhyay, P.; Monticelli, L.; Tieleman, D. P. Molecular Dynamics Simulation of a Palmitoyl-
567 Oleoyl Phosphatidylserine Bilayer with Na⁺ Counterions and NaCl. *Biophysical Journal* **2004**, 86 (3), 1601-
568 1609. DOI: 10.1016/s0006-3495(04)74227-7

- 569 (57) Schaefer, S. L.; Jung, H.; Hummer, G. Binding of SARS-CoV-2 Fusion Peptide to Host Endosome and
570 Plasma Membrane. *J Phys Chem B* **2021**, *125* (28), 7732-7741. DOI: 10.1021/acs.jpcb.1c04176.
571 (58) Holopainen, J. M.; Söderlund, T.; Alakoskela, J. M.; Säily, M.; Eriksson, O.; Kinnunen, P. K.
572 Intermolecular interactions of lysobisphosphatidic acid with phosphatidylcholine in mixed bilayers. *Chem
573 Phys Lipids* **2005**, *133* (1), 51-67. DOI: 10.1016/j.chemphyslip.2004.08.004.
574 (59) François-Martin, C.; Bacle, A.; Rothman, J. E.; Fuchs, P. F. J.; Pincet, F. Cooperation of Conical and
575 Polyunsaturated Lipids to Regulate Initiation and Processing of Membrane Fusion. *Front Mol Biosci* **2021**,
576 *8*, 763115. DOI: 10.3389/fmolb.2021.763115.

577

578

579

580

581

582

583

584

585

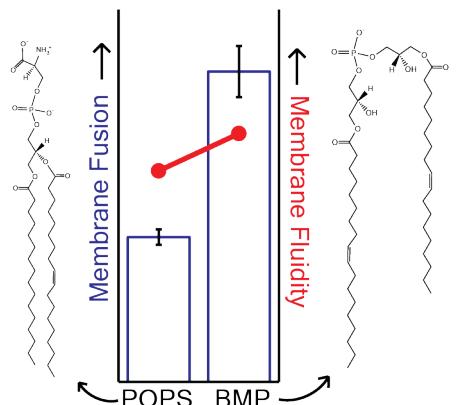
586

587

588

589

590


591

592

593

594 **For Table Of Contents Only**

595

