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ARTICLE INFO ABSTRACT

Associate editor: Tsuyoshi lizuka Zircon trace element geochemistry has become an increasingly popular tool to track crustal evolution through
time. This has been especially important in early-Earth settings where most of the crust has been lost, but in some
fortuitous instances detrital zircons derived from that lost crust have been preserved in younger sediments. To
study the formation and geochemical evolution of continental crust from the Hadean to the Paleoarchean, the 3.6
to 3.2 Ga Barberton Greenstone Belt in southern Africa is an excellent target due to its outstanding preservation
and presence of detrital zircons that span almost a billion years. Here, we use trace elements, in combination with
hafnium and oxygen isotopes, of 3.65 to 3.22 Ga detrital and tuffaceous zircons of the Moodies and Fig Tree
groups and compare their geochemistry to previously studied 4.2 to 3.3 Ga detrital zircons from the Green
Sandstone Bed of the Onverwacht Group. The major detrital zircon age clusters in the former at 3.55 Ga, 3.46 Ga,
and 3.26-3.23 Ga overlap with episodes of TTG emplacement and felsic volcanism in the Barberton area, sug-
gesting a local provenance. In contrast, age clusters at 3.65 Ga and 3.29 Ga of the Moodies and Fig Tree groups as
well as 4.2 to 3.3 Ga detrital zircons from the Green Sandstone Bed do not have known intrusive sources and
were likely derived from outside the present-day Barberton belt. This indicates that more than half of the felsic
igneous events in the detrital zircon record do not have a whole-rock representation that can be directly studied.
The similar compositions and inferred crustal evolution histories recorded in zircons from the Fig Tree and
Moodies groups, as well as from the Green Sandstone Bed, suggest that they were derived from connected ter-
ranes experiencing similar crustal processes diachronously. Together, they show three phases of felsic continent
formation, reflecting different crustal processes: (1) long-lived protocrust formed in the Hadean from undepleted
mantle sources. These zircons are vastly different from younger zircons and, hence, Barberton TTGs are not good
analogues of Hadean crust formation. (2) At 3.8 Ga, onset of significant crustal growth though cyclic juvenile
additions and hydrous melting, possibly within a volcanic plateau setting but an arc-like setting cannot be
excluded based on this data. (3) Between 3.4 and 3.3 Ga, felsic crust is generated through a previously unrec-
ognized episode of crustal growth by shallow melting of mafic, mantle-derived sources. This is immediately
followed by the onset of crustal thickening through the transport of surface-altered, hydrated materials to deep
crustal levels. Since there is geological evidence for extension and shortening at that time this may reflect the
onset of horizontal movement. Whether this last geodynamic setting reflects modern-style plate tectonics or not,
continent formation and the onset of plate tectonics in the Barberton area occurred through complex multi-stage
processes spanning almost a billion years, most of which is only accessible through the detrital zircon record.
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1. Introduction

The geochemical and tectonic evolution of Earth’s continents re-
mains a field of ongoing debate as crustal (and lithospheric) conditions
were likely different from modern conditions during the early Earth, but
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the effect of these differences is poorly understood. The timing of the
onset of plate tectonics is controversially debated, whether it occurred as
early as the Hadean (Hopkins et al., 2008; Harrison et al., 2017) or as
late as the Neoproterozoic (Stern, 2005), and perhaps including several
transitional stages over hundreds of millions to billions of years
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(Cawood et al., 2022). Yet, the answer to this question is of importance
to understanding Earth’s habitability. Plate tectonics would have been a
major driver in linking solid Earth with surface liquid and gaseous res-
ervoirs, causing the emergence of crust above sea level, and thus initi-
ating silicate weathering to stabilize Earth’s climate and the release of
nutrients into the oceans.

To address the evolution of tectonic processes, zircon has gained
increasing popularity. The importance of zircon becomes especially
pertinent when studying the early Earth, where ~95% of Archean crust
has been lost (Goodwin, 1996) and almost no known rock exists for the
Hadean Eon. For these time intervals, detrital zircons derived from the
erosion of crust that has long been obliterated or is now deeply buried
can provide insight into conditions and processes of these inaccessible
terranes. While Hf and O isotope systematics have been applied to zircon
for a long time, recent advances in understanding zircon trace and rare
earth elements (TREE) (Grimes et al., 2015) have allowed for more
complex evaluations of early crustal histories (Drabon et al., 2021, 2022;
Carley et al., 2022; Laurent et al., 2022). They offer important clues into
the formation and stabilization of ancient proto-continental crust during
the Hadean to Archean.

The interpretation of zircon isotope and TREE chemistry is complex,
as many different factors can affect zircon compositions, including
zircon crystallization temperature, pressure, co-existing mineral
assemblage, and magma source (Grimes et al., 2007, 2015; Claiborne
et al., 2010). Interpreting Archean to Hadean zircons carries additional
uncertainties because the higher heat flux from the mantle may have
affected crustal conditions and tectonic processes. Most previous zircon
TREE studies focused on Phanerozoic zircon suites. Yet, their results may
not be directly applicable to Archean and Hadean zircon suites. How-
ever, the more general petrologic/magmatic conditions (shallow vs deep
crustal melting, dry vs fluid-assisted melting, common fractionation
patterns for mafic and felsic melts), as opposed to specific tectonic set-
tings associated with the Grimes model, are applicable across time.
Archean TTGs are generally thought to have formed from melting of a
hydrated mafic rock at variable depth (Martin, 1986; Clemens et al.,
2006; Moyen et al., 2006, 2007). The proposed environments may have
ranged from uniformitarian plate tectonic environments (de Wit et al.,
1987a,b, 2011; de Wit, 1991; de Ronde and de Wit, 1994; Lowe, 1994;
de Ronde and Kamo, 2000; Kleinhanns et al., 2003; Moyen et al., 2006;
Stevens and Moyen, 2007; Schoene et al., 2008; Kisters et al., 2010;
Schoene and Bowring, 2010; Furnes et al., 2011, 2012, 2013; Laurie and
Stevens, 2012; Nagel et al., 2012; Jagoutz et al., 2013; Arndt, 2023) to
non-uniformitarian environments such as delamination melting (Bédard
et al., 2013; Johnson et al., 2017; Bédard, 2018) and/or patrial
convective overturn (Van Kranendonk, 2011, 2021; Van Kranendonk
et al., 2014) within an oceanic plateau setting. It is therefore important
to study the compositions of Archean zircons from well-studied exposed
locations, which may have formed under non-uniformitarian conditions,
and may more favorably compare to Archean and Hadean detrital or
xenocrystic zircons with no known source.

The 3.6 to 3.2 Ga Barberton Granite-Greenstone Terrain (BGGT),
South Africa and Eswatini, is uniquely qualified as a target for the study
of Archean protocontinent formation due to its outstanding preserva-
tion, because the compositions of its intermediate to felsic igneous rocks
are well known (Moyen et al., 2007, 2019; Moyen, 2011; Moyen and
Martin, 2012; Laurent et al., 2022), and as it contains zircons that range
in age from 4.15 to 3.22 Ga, spanning almost a billion years of Earth’s
history. Regional detrital zircon studies have shown that many of the
detrital zircons were derived from known felsic igneous rocks in the
vicinity (or from rocks of identical age and composition elsewhere) (Zeh
et al., 2013; Drabon et al., 2017; Stutenbecker et al., 2019; Stoll et al.,
2021; Drabon and Lowe, 2022; Heubeck et al., 2022), with several
notable exceptions: The major ~3.29 Ga and minor ~3.65 Ga detrital
zircon age clusters from sandstones of the 3.22 Ga Moodies and
3.28-3.23 Ga Fig Tree groups (Drabon et al., 2017, 2019a; Stoll et al.,
2021; Drabon and Lowe, 2022), and the 4.2 to 3.2 Ga detrital zircons of
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the Green Sandstone Bed (GSB) in the Onverwacht Group (Byerly et al.,
2018; Drabon et al., 2021, 2022) have no documented source rocks.

In this study, (1) we assess what the detrital zircon trace and isotope
geochemistry of detrital and tuffaceous zircons from the Moodies and
Fig Tree Groups tells us about the crustal evolution of the BGGT. We
compare the results to interpretations of bulk rock analyses and
geological relationships of known sources to anchor our interpretations;
(2) We then investigate what the zircon geochemistry tells us about
detritus derived from unknown crustal sources, including >3.8 Ga
detrital zircons from the Green Sandstone Bed (GSB) previously pub-
lished by Drabon et al., (2021,2022) to test whether they may have been
derived from Archean-style TTGs; (3) Finally, we will put the evolution
of the source terranes into a process-oriented context to ultimately assess
the formation and geochemical evolution of Archean proto-continental
crust in the Barberton area.

2. Geological background and samples

The 3.6 to 3.2 Ga Barberton Granite-Greenstone Terrane is located in
the eastern Kaapvaal Craton. It is composed of three stratigraphic units:
the Onverwacht, Fig Tree and Moodies Groups (Fig. 1A and B). Whereas
the Onverwacht Group is dominated by mafic and ultramafic volcanic
rocks punctuated by two episodes of felsic igneous activity, the Fig Tree
and Moodies Groups represent the onset of orogeny and syndeforma-
tional deposition of siliciclastic and volcaniclastic rocks. The rocks are
excellently preserved for Archean rocks, having mostly experienced
lower-greenschist-facies metamorphism (Xie et al., 1997; Tice et al.,
2004).

The BGGT experienced several episodes of felsic igneous activity that
were sources to the zircons studied here. The Onverwacht Group, dating
from 3.55 to ~3.26 Ga, experienced at least two significant periods of
rhyolitic and dacitic volcanic activity associated with the intrusion of
tonalite-trondhjemite-granodiorite (TTG) plutonic rocks. These include
the 3.51 Ga Steynsdorp gneiss and felsic volcanic rocks of the 3.55 Ga
Theespruit and Sandspruit formations (Armstrong et al., 1990; Byerly
et al., 1996; Kroner et al., 2016; Roerdink et al., 2016). At ~3.45 Ga, the
emplacement of the Stolzburg and Theespruit plutons took place pene-
contemporaneously to the deposition of felsic volcanic rocks of the H6
member of the Hooggenoeg Formation (Kroner and Todt, 1988; Arm-
strong et al., 1990; Kroner et al., 1991; Byerly et al., 1996). The presence
of thin felsic tuffs suggests that further episodes of felsic volcanic activity
may have occurred predominantly outside the present-day BGGTat 3472
Ma in the Hooggenoeg Formation, at 3280 + 9 Ma and 3287 + 3 Ma in
the Mendon Formation (Decker et al., 2015), and at ~3280 Ma in the
basal Fig Tree Group (Drabon et al., 2019a). Younger intrusive rocks
include the 3.28-3.22 Ga Badplaas complex (Kisters et al., 2010), and
the coeval 3.23 Ga Kaap Valley (Robb et al., 1986; Kamo and Davis,
1994; de Ronde and Kamo, 2000) and Nelshoogte plutons (Schoene
et al., 2008; Matsumura, 2014).

Samples analyzed for this study were previously dated by Drabon
et al., (2017,2019a) and Drabon and Lowe (2022) (Fig. 1C). Seven
sandstone samples were taken from the Fig Tree Group (SAF-600-3,
BARB5-DZ2, BARB5-DZ4, NAD-89, SAF-663-14, BSo0I-S3-1, SSF-1) and
two from the Moodies Group (SAF-663-13, NAD-130). Sediments of the
Fig Tree Group were mostly derived from local uplifts of supracrustal
rocks of the BGGT (Lowe and Nocita, 1999; Drabon et al., 2019a, 2019b;
Drabon and Lowe, 2022). During Moodies time, erosion reached into
deeper crustal levels because conglomerates also include granophyre
clasts from the upper levels of shallow plutons or as erupted magma
clasts (Eriksson, 1980; Reimer et al., 1985; Heubeck and Lowe, 1999;
Sanchez-Garrido et al., 2011; Agangi et al., 2018). A major provenance
region was likely the Stolzburg block (Zeh et al., 2013). The Ancient
Gneiss Complex (AGC), an old terrane partially outcropping to the south
of the present-day BGGT and in Eswatini (Fig. 1B), was apparently not
exposed then (Heubeck et al., 2022). We also analyzed five volcanic and
volcaniclastic samples of the BGGT sequence: SA-681-5 and SA-971-1
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Fig. 1. [A] Stratigraphic column of the Barberton Granite-Greenstone Terrane (BGGT). Pink areas with “v” represent episodes of felsic volcanic activity that may
have sourced the sediments to the Fig Tree and Moodies groups. [B] Geological map of the Barberton Greenstone Belt with possible plutonic sources within the BGGT
and in the vicinity. [C] Geological map of the central BGGT (Lowe et al., 2012) with sample names and locations. GPS locations can be found in Drabon

et al., (2017,2022).

from a dacitic tuff from the ~3.46 Ga H6 unit of the Hooggenoeg For-
mation of the Onverwacht Group, SB2-23 and NAD-101 from a 3.28 Ga
rhyolitic tuff from the Loenen Member of the Fig Tree Group, and AV-2,
a 3.23 Ga dacitic volcaniclastic rock from the Auber Villiers Formation
of the Fig Tree Group.

Together, samples show age clusters at ~3.55 Ga, ~3.46 Ga, ~3.29
Ga, and 3.26-3.23 Ga (Figs. 2 and S1) and a single 3.65 Ga zircon.
Previous work suggests the 3.55 to 3.51 Ga ages correspond to possible
sources from the Theespruit Formation felsic volcanic rocks and co-
magmatic Steynsdorp tonalitic gneisses, and the ~3.46 Ga cluster
from the felsic volcanic rocks of the H6 member of the Hooggenoeg
Formation and its co-magmatic 3.46 Ga TTG suite (Drabon et al., 2017,
2019a; Drabon and Lowe, 2022; Heubeck et al., 2022). Zircon grains
with an age of ~3.29 Ga form a major cluster, but only relatively minor
felsic rocks of that age are present within the BGGT: thin 3.30 — 3.28 Ga
tuffs in the upper Mendon Formation (Byerly et al., 1996; Decker et al.,
2015) and 3.28 Ga reworked tuffs in the lower Mapepe Formation
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Fig. 2. Detrital and tuffaceous zircon samples from the BGGT (Drabon et al.,
2017, 2021; Heubeck et al., 2022; Stoll et al., 2021; Stutenbecker et al., 2019).
See Fig. S1 for individual detrital zircon sample probability density plots
studied here.

(Drabon et al., 2019a). This may suggest the presence of a much larger
source outside the preserved BGGT. The youngest detrital zircons be-
tween 3.26 and 3.22 Ga correspond to felsic volcanic rocks of the upper
Fig Tree Group that are widespread across the BGGT and potentially
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exposed upper segments of the Kaap Valley Tonalite, Nelshoogte pluton,
Badplaas pluton, and Usutu magmatic suite or their extrusive equiva-
lents (Fig. 1B).

3. Methods
3.1. Data acquisition

We obtained zircon TREE, Hf and O isotope data following the pro-
tocol described in Drabon et al. (2022). Zircon trace element analyses
were conducted on the SHRIMP-RG ion microprobe in the co-operated
Stanford and U. S. Geological Survey SUMAC facility at Stanford Uni-
versity, using techniques described by Grimes et al. (2015). Lu-Hf iso-
topic analyses were conducted at the Arizona LaserChron Laboratory,
following methods previously described (Gehrels and Pecha, 2014;
Ibanez-Mejia et al., 2014). Oxygen isotopic analyses were conducted
using a Cameca 1280-HR SIMS at the Helmholtz Zentrum Potsdam.
Where zircon grains were large enough, we tried to couple geochemical
criteria within the same zircons, but that was only possible in a subset of
zircons due to their small size. For complete information on analytical
methods and our data compilation, we refer the reader to the supple-
mentary material and the data repository at https://doi.org/10.17632/
zmj566r6m4.1.

3.2. Filtering of Hf, O, and TREE data

Isotopic and chemical measurements on zircon can be biased by
analyses of radiation-damaged areas, fractures, or inclusions. During
analyses we avoided sites with visible impurities. The targets were
subsequently examined under transmitted light microscopy to identify
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any analysis locations situated on subsurface cracks or inclusions. All
data where the analytical pits revealed such fractures or inclusions were
excluded from our study. Additionally, CL imaging of the zircons was
used to filter out grains with homogeneous or patchy zoning and to
ensure the analyses were conducted within the same crystallographic
domain as the U-Pb dating (Hoskin and Black, 2002; Cavosie et al.,
2005). Representative CL images were published by Drabon et al
(2019). For 8'80 analyses, zircons with low 160 counts per second were
discarded. For TREE analyses, we used conservative geochemical filters
to exclude any data that signified enrichments of non-constituent cat-
ions, as these may indicate contamination or alteration related to met-
amictization (Grimes et al., 2015). Ca (>50 ppm) and P (>1000 pm)
serve as screens for apatite inclusions, and Al (>100 ppm) as a screen for
glass or feldspar inclusions, or altered (i.e., metamict) domains. Finally,
we applied the Light Rare Earth Element Index (Bell et al., 2015) and
excluded zircons with values <20. Means and ranges for each age cluster
are summarized in Table 1.

3.3. Zircon trace elements as recorders of magmatic environments and
melting depth

We use zircon trace and rare earth element (TREE) patterns to
evaluate the geochemical evolution of the zircon-sourcing magmas
based on magmatic origin and the melting depth of the zircons.

Trace element ratios including those involving U, Th, Nb, Sc, Ce, and
Yb provide a compositional distinction among zircons from different
modern tectono-magmatic settings (Grimes et al., 2015). The Sc/Yb and
U/Nb ratios in zircons have proven to be particularly useful in dis-
tinguishing zircons from melts that formed in undepleted mantle set-
tings (today’s ocean island settings, plumes), depleted mantle settings

Table 1
Means, minimums, and maximums for each age cluster. Only one zircon was analyzed for the 3.65 Ga age cluster. Errors are 1sig.
3.29 Ga
3.65 Ga 3.55 Ga 3.46 Ga Group 1 Group 2 <3.28 Ga

Sc/Yb mean 0.51 £ 0.11 0.10 £ 0.07 0.15 £+ 0.08 0.15 £ 0.11 0.03 £+ 0.01 0.25 £ 0.19
min N/A 0.05 0.03 0.08 0.008 0.06
max N/A 0.33 0.34 0.7 0.06 0.6

U/Nb mean 72 £ 12 42 + 28 55+ 31 57 +£30 45 +£ 114 29 + 14
min N/A 15 16 21 11 5
max N/A 127 135 167 67 73

Dy/Yb mean 0.28 + 0.07 0.32 £ 0.07 0.27 £+ 0.08 0.31 £ 0.07 0.34 £+ 0.05 0.38 £ 0.14
min N/A 0.19 0.1 0.14 0.24 0.17
max N/A 0.46 0.46 0.5 0.43 0.68

Nb/Ta mean 1.2+0.3 1.1+0.7 1.8+17 25+22 4.0 £2.2 1.2+ 0.6
min N/A 0.4 0.3 0.4 0.06 0.05
max N/A 2.5 9.9 7.8 8.6 2.1

Eu/Eu* mean 0.24 0.23 +£0.8 0.36 + 0.13 0.29 £ 0.12 0.17 £ 0.1 0.43 £ 0.17
min N/A 0.09 0.18 0.03 0.06 0.1
max N/A 0.36 0.8 0.5 0.49 0.88

Ti mean 50+1.1 9.2 +5.7 6.6 +£ 4.3 8.2+29 48 +£1.8 79+ 4.6
min N/A 4.1 0.3 0.2 1.9 3.2
max N/A 35.1 17.9 13.3 12.3 18.5

5'%0 mean N/A 55+0.3 5.6 £0.3 59+ 04 5.65 + 0.3 6.6 + 0.7
min N/A 5 4.6 5.3 4.7 5.1
max N/A 5.9 6.7 7.1 6.1 8.3

Exfe mean N/A 08 £1.7 08+1.8 0.1+1.8 1.6 £ 25 -0.1+21
min N/A -0.9 -3 -3.7 -2 -5
max N/A 5.5 6.4 3.7 8.2 5.4
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(today’s MOR and oceanic arcs) and subduction zones where fluid-
assisted melting is a major feature (Grimes et al., 2015). Sc/Yb values
are relatively elevated for zircons in fluid-rich arc environments
(roughly > 0.1). In contrast, mafic magmas from the depleted or rela-
tively undepleted mantle require extensive fractionation before zircon
can crystallize, resulting in low Sc and low Sc/Yb values (Grimes et al.,
2015). The relationship between U and Nb in magmatic systems is
affected by factors such as influenced by variations in mantle source
composition (depleted vs undepleted mantle source), depth of melting,
metamorphic dehydration of oceanic crust (Pearce, 1982; Baier et al.,
2008), and crustal assimilation (Grimes et al., 2015). In U/Yb versus Nb/
Yb diagrams, analyses of mantle zircons have delineated an observa-
tionally constrained mantle trend, with the upper limit approximately
correlating to a U/Nb ratio of 20. In contrast, zircons formed in sub-
duction zones tend towards higher U/Nb values due to a relative
depletion in Nb and enrichment of U. While Grimes et al. (2015) found
that these proxies can be used to identify zircons formed in modern arc
settings, it is clear that other tectonic processes may impart a similar
TREE signature because the specific magmatic conditions or processes
that produce melts may be similar (presence of water, melting depth,
etc). Therefore, we will term signatures of, e.g., Nb depletion and Sc
enrichment, as documented by zircons derived from Phanerozoic sub-
duction zones, as “fluid-assisted melting”, “hydrous” or “arc-like”
melting signatures in this manuscript, without intending any specific
geodynamic interpretation.

Depth indicators in zircon are related to the presence or absence of
certain pressure-dependent mineral suites during melt fractionation or
in the residuum. Important minerals included plagioclase (Eu/Eu*),
rutile (Nb/Ta), and garnet (Y, Dy/Yb).

Plagioclase is stable at relatively shallow depths and unstable at high
pressure environments (Green, 1982). Plagioclase incorporates Sr2,
which is geochemically similar to Eu?*. Residual plagioclase in the
source during melting or fractionation of plagioclase during fractional
crystallization will draw down the Eu/Eu* (EuN/(SmeGdN)O'S) of a
melt, and hence the Eu/Eu* value of the subsequently crystallizing
zircon. Eu/Eu* is also affected by the oxygen fugacity of the melt
(Hoskin and Schaltegger, 2003; Trail et al., 2012). In general, Eu/Eu*
values in zircons from arc suites can vary a lot depending on gross melt
evolution, but many have Eu/Eu* in the 0.4-0.7 range; Iceland, ocean
rift and Hawaiian zircons typically have Eu/Eu* 0.2-0.4 (Grimes et al.,
2015) in large part because of extensive plagioclase fractionation before
zircon saturation. As the crust thickens, the increased pressure during
magmatic differentiation at greater depths enhances rutile, amphibole
and/or garnet fractionation relative to plagioclase.

Nb/Ta values of a melt can provide information on the tectonic
setting, source composition, mineral assemblage, and pressure. Gener-
ally, primitive arc and basalt magmas have high Nb/Ta while more
mature arcs tend to have low Nb/Ta (Tang et al., 2019). The reason for
the low Nb/Ta in arc is still debated. It may to some extent be controlled
by the presence or absence of rutile in the crystallizing fraction or res-
idue. While the pressure dependence of rutile saturation is heavily
debated (Ryerson and Watson, 1987; Gaetani et al., 2008; Xiong et al.,
2009), recent studies have found that rutile solubility is reduced at high
pressures (Tang et al., 2019). This means that greater differentiation at
higher pressures will result in a greater amount of rutile forming. Due to
its high partition coefficients for Nb and Ta, rutile formation will impart
a strong signal on [Nb/Ta]nel;. Elevated titanite-to-rutile ratios result in
melts characterized by exceptionally high Nb/Ta (>60), whereas
reduced titanite-to-rutile ratios lead to melts with significantly lower
Nb/Ta (<30) (John et al., 2011). When all Ti-phases are completely
consumed during intense melting, the Nb/Ta drops to very low levels
(<16). As the titanite-to-rutile ratio is influenced by pressure, the Nb/Ta
of melts becomes dependent on the depth of melting (John et al., 2011).
In addition to rutile, the presence of amphibole or biotite has also been
theorized to explain why continental crust demonstrates a lower average
Nb/Ta ratio relative to chondritic values, since both amphibole and
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biotite preserve a Dyp/Dr, ratio exceeding 1 (Stepanov and Hermann,
2013; Lietal., 2017). In addition, both of these minerals are Ti sinks that
have temperature-controlled stability with greater Ti content in higher
temperature amphibole (Ernst and Liu, 1998), making it less favorable
for rutile to form.

Garnet is commonly used to argue for high-pressure environments
that formed at great depth, although some exceptions occur. Garnet
shows high partition coefficients for HREE and Y, and its crystallization
results in an increase of the Dy/Yb of the melt (Dy/Yb > 0.4 in zircon are
typically associated with garnet, although the fractionation of/presence
of amphibole in the residuum prior to zircon crystallization may lead to
lower Dy/Yb values even when associated with garnet). Typically,
garnet-bearing source rocks will also contain rutile. Collectively, melts
generated at greater pressure should thus exhibit high Dy/Yb and Eu/
Eu*, and low Y, Yb and Nb/Ta. On the other hand, a Dy/Yb range of 0.1
to 0.4 for zircon is common within many magmatic systems (Grimes
et al., 2015) and Dy/Yb decreases during simple mineral fractionation
and cooling. Values for zircon less than 0.2 are found in more frac-
tionated samples or at zircon edges.

4. Results

The results of the geochemical and isotopic analyses are shown in
Figs. 3-7 and in the online repository. For all plots, we color-coded the
data based on the relevant age clusters recognized by previous studies:
~3.55 Ga, ~3.46 Ga, ~3.29 Ga, and <3.28 Ga (Zeh et al., 2013; Drabon
et al., 2017; Stoll et al., 2021; Drabon and Lowe, 2022; Heubeck et al.,
2022). The geochemical and isotopic signatures of detrital zircons from
these age clusters largely overlap between zircons derived from the Fig
Tree and Moodies Group sandstones, suggesting a similar provenance.
Zircons from the 3.46 Ga, 3.29 Ga, and 3.26 Ga age clusters extracted
from tuffs and reworked tuffs (Figs. 3-7) also overlap in composition
with those from the Moodies and Fig Tree Groups, which may indicate a
source-sink relationship. Many detrital zircons from individual age
clusters show some amount of heterogeneity, which may hint at sub-
populations from distinct sources, as is reasonable to expect since many
of these felsic igneous episodes span several tens of millions of years.
While we focus on broader trends here, future work on possible sub-
populations tied to more precise ages will be necessary.

4.1. TREE indicators for tectono-magmatic settings

We studied trace element ratios including those involving U, Th, Nb,
Sc, Ce, and YD to evaluate the tectono-magmatic origin of the Barberton
zircons. All age clusters show at least some influence of fluid-assisted
melting (Figs. 3 and 4): the single 3.65 Ga zircon, ~30% of zircons of
the 3.55 Ga, and ~80% of the 3.45 Ga age zircons fall within the arc-like
field for U/Nb and Sc/Yb. The 3.29 Ga zircon cluster shows the largest
amount of heterogeneity in Sc/Yb. This variability broadly translates to
other TREE proxies such as Nb/Ta and Eu/Eu* as well. We therefore use
the Sc/Yb data to separate the zircons of the 3.29 Ga cluster into Group 1
(>0.07) and Group 2 (<0.07) (Fig. 3). While the origin of the compo-
sitional variability remains unclear, considering these zircons as distinct
compositional varieties facilitates contrasting the diverse potential end-
member processes or sources capable of generating the observed range
of geochemical signatures. Sc/Yb values for Group 1 fall almost exclu-
sively into the arc field. Group 2 zircons fall (by definition) entirely into
the mantle field for Sc/Yb. Nb concentrations for Group 2 are typical for
zircons from mafic mantle melts with U/Nb values at the high end of the
mantle range, but appropriate for the high U concentrations which in
part may be the result of strong melt fractionation (Fig. S2). Lastly, while
most age clusters show a range in signature overlapping both with the
mantle and arc fields, <3.28 Ga zircons exclusively fall within the arc
field for Sc/Yb and where arc-like and mantle fields overlap for U/Nb,
largely driven by low U content.

It should be noted that in the U/Yb vs Nb/Yb diagram after Grimes
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et al. (2015), the Barberton data plot in an intermediate position be-
tween the undepleted mantle and the arc fields (Fig. 4D). This may
suggest that tectonic processes were different from modern-style plate
tectonics or that the mantle composition was different (e.g., no clearly
depleted and enriched reservoirs as seen today had formed yet). This
mirrors observations from Archean whole rocks (Moyen and Laurent,
2018).

4.2. TREE indicators for melting depth
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Eu/Eu*, and Nb/Ta ratios (Fig. 5). The 3.55 and 3.45 Ga age clusters
show a similar range in Dy/Yb and Nb/Ta with only subtle differences
(Figs. 5 and 6). For Dy/Yb, the values mostly range between 0.2 and 0.4
and show negative correlation with Hf/Ti (Figs. S3 and S4) as is common
within many magmatic systems in the absence of garnet in the residuum
or fractionating assemblage (Claiborne et al., 2010). Since most whole-
rock data for 3.45 Ga TTGs show heavy REE depletion in agreement with
garnet in the crystallizing fraction, it is likely that the zircons were
derived from a rhyolitic/rhyodacitic volcanic source within the H6
member of the Onverwacht Group (Lowe, 1999; Diergaardt, 2013).
These rocks may have originated through the differentiation of tonalitic
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represent 90% of data.
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2018). Plotted tectono-magmatic fields
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magmas, with the residual liquids erupting as silicic volcanic rock
(Laurent et al., 2022). It is also possible that presence of amphibole in
the fractionating assemblage or residuum reduced the Dy/Yb ratio
before zircon saturation was reached. Nb/Ta values are relatively low
for both age clusters and are consistent with zircon crystallization from
melts that had rutile in the fractionation or source mineral assemblage
and thus indicate melts generated or fractionated at moderate to
moderately high pressures. The most interesting difference between the
two age clusters is their Eu/Eu* range, with the values for 3.55 Ga zir-
cons lower than the 3.46 Ga zircons (Fig. 5). This possibly points at the
suppression of plagioclase and hence a higher-pressure origin for the
3.45 Ga zircons compared to the 3.55 Ga zircons or may be a result of
variable amounts of plagioclase in the residuum.

For the 3.29 Ga zircon cluster, Group 1 and 2 zircons compositions
show indications for different melting depths and/or sources. Group 2 of
the 3.29 Ga age cluster shows the highest Nb/Ta values of all age clusters
while Group 1 shows lower values similar to the older age clusters
(Fig. 5C). As discussed above, this could indicate a lower pressure origin,
and/or a more mafic melt from a mantle source. A mafic composition
that experienced strong fractionation prior to zircon saturation is sup-
ported by the lowest Eu/Eu* values of the entire zircon suite, high REE,
high Y, and low Sc/Yb (Fig. 6). With the exception of Eu2+, REEs are
largely incompatible in plagioclase, hence plagioclase fractionation will
produce or contribute to the production of REE-enriched magmas. This
group also shows a correlation between Eu/Eu* and Sc/Yb (Fig. 6C).
Mantle-related settings (MOR, OI) show low Sc values due to the
extensive fractionation of ferromagnesian minerals. Here, the correla-
tion between the two elements may relate to the coupled fractionation of
plagioclase and clinopyroxene in a more mafic environment, likely at
shallow depth. Group 1 of the 3.29 Ga age cluster shows higher Eu/Eu*
values, does not show REE enrichment, and has lower but variable Nb/
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Ta values compared to Group 2 (Fig. 5), possibly related to a higher-
pressure crustal origin and/or mixing between mafic materials with
preexisting crustal materials.

Zircons <3.28 Ga show variability with age in Dy/Yb, Eu/Eu*, and
Nb/Ta (Fig. 5). Most notable are the high Dy/Yb (>0.4) combined with
low Yb for 3.23 Ga zircons from the Auber Villiers Formation and a few
isolated detrital 3.26 Ga zircons. This could indicate the presence of
garnet in the crystallizing fraction or in the residuum. These results
match whole rock analyses, which show a similar transition in Dy/Yb at
3.23 Ga (Wang et al., 2022b). In addition, these zircons have elevated
Eu/Eu* values, which indicates a plagioclase-poor system and/or a more
oxidized system. In fact, garnet fractionation may cause endogenic
oxidation of Eu®* (Tang et al., 2021). Overall, this pattern may reflect a
deep melting origin of the youngest detrital BGGT zircons. The
elemental composition, together with Sc and Nb, compares most
favorably to modern arc environments (Grimes et al., 2015). Other zir-
cons of the <3.28 Ga zircon suite show variable Dy/Yb, generally var-
iable Eu/Eu*, and slightly decreasing Nb/Ta, possibly pointing towards
melting at variable depth. This matches whole rock analyses, which
show the start of more complex compositional variability and sources at
variable depths for felsic igneous rocks <3.28 Ga (Moyen et al., 2019).

4.3. Hf isotope systematics

The Lu-Hf isotope system tracks crust-mantle differentiation pro-
cesses. ey values scatter + 5 units around CHUR (Fig. 7A, Table 1): The
3.55 and 3.45 Ga age clusters show a slightly superchondritic mean (0.8
+ 1.7 and 0.8 + 1.8 eyg units, respectively). The 3.29 Ga zircons’ ey¢r
value is roughly chondritic for Group 1 (0.1 + 1.8 eys units) but
superchondritic for Group 2 (1.6 + 2.5 eyg units). Fig Tree-age zircon
(<3.28 Ga zircon) show a slightly subchondritic value (—0.1 + 2.1). The
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Hf isotope measurement of a 3.65 Ga zircon burnt through the grain; a
previously reported 3.65 Ga zircon from the Moodies Group has a value
of 2.1 + 0.8 ey units (Fig. 7; Zeh et al., 2013). The isotope results agree
with previous work on Moodies and Fig Tree detrital zircons (Zeh et al.,
2013; Wang et al., 2022a) and matches those of granitoids from the
BGGT and AGC (Fig. S5).

It is notable that the lowest ey values systematically decrease with
age and are largely delineated by an inferred mantle extraction trend
line from around 3.8 to 3.65 Ga (Fig. 7). If one assumes a single source,
this means that the lowest ey values fall above a line of 17610/ 77Hf of
0.012, typical for felsic crust for all zircons; the vast majority fall above a
line of Y®Lu/Y7Hf = 0.02, typical for mafic crust. These crustal-
evolution lines intersect with CHUR at 3.65 Ga. However, mantle
extraction ages also depend on the evolution of the depleted mantle,
which is poorly constrained (Petersson et al., 2020). If a depleted mantle
had already formed, mantle extraction may have happened as early as
3.8 Ga. The highest ey values for every cluster are all superchondritic,
reaching as high as 6 eyg units. Overall, these results suggest that
magmatism throughout the evolution of the BGGT continuously had two
sources: reworking of older crust extracted from the mantle sometime
between 3.8 and 3.65 Ga, and juvenile crustal additions.

4.4. O isotope systematics

Zircon’s oxygen isotopes are a temperature-dependent proxy for
fluid and solid interactions in the crust (Valley, 2003). The 5180
composition of the modern mantle has been well established and falls
within a narrow range of 5180 of 5.3 + 0.6 %o (2SD) (Valley et al., 1998,
2005; Cavosie et al., 2009). Elevated §'80 values in zircon (>6.3%o0)
result from crystallization in magmas whose source materials (or major
assimilants) have undergone low-temperature alteration prior to
melting, while low §'80 values (<4.7%o) result from high-temperature
alteration by low 520 surface water.

The O isotope data can be divided into two groups (Fig. 7B). Firstly,
zircons older than 3.28 Ga show 5'%0 values largely within the mantle
field. Only a single 3.46 Ga zircon and three zircons of the 3.29 Ga Group
2 age cluster clearly plot within the supracrustal field. Secondly, there is
an increase in 5!%0 values starting at 3.28 Ga, reflecting the input of
surface-altered materials into the melts. Fig Tree zircons show the
highest values of all age clusters (6.6 & 0.7 %o). These results are similar
to previous work (Wang et al., 2022a; Wang et al., 2022b), albeit our
data suggest that reworking of abundant surface-altered materials began
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earlier (at 3.28 Ga) compared to the previously proposed ages of 3.26
and 3.23 Ga, respectively. This indicates that the shift from reworking of
mantle material to surface-altered material coincides with the onset of
Fig Tree deposition.

5. Discussion
5.1. Implications for the geological evolution of the BGGT

The geochemistry of Barberton zircons illuminates varied processes
of felsic igneous crust generation. Since many geochemical signatures
are non-unique, we use a synthesis of the isotopic and geochemical data
compared to previous work on the geology, whole-rock geochemistry,
and igneous petrology to infer the geological evolution of the BGGT.

The formation of the BGGT commenced prior to the formation of its
oldest preserved rocks (3.55 Ga). Physical evidence for earlier crust
formation comes from the presence of >3.55 Ga detrital zircons from the
GSB (see Section 5.3), two 3.7 Ga xenocrysts in a 3.5 Ga granodiorite
(Kroner et al., 1996), and rare 3.65 Ga detrital zircons from the Fig Tree
and Moodies Groups (Zeh et al., 2013; Drabon et al., 2017; Heubeck
et al., 2022). Additional indirect evidence comes from negative eyer
values of zircons from two tuffs from the Theespruit Formation (Kroner
et al., 2016), a eyer value significantly below CHUR for a single 3.55 Ga
detrital zircon (Zeh et al., 2013) and 182y isotope data of ultramafic to
felsic rocks (Tusch et al., 2022). These low isotopic signatures may be
related to the reworking of ancient GSB crust. Similarly, negative eyer
values in the AGC are also thought to be related to Hadean crust in the
area (Hoffmann and Kroner, 2019). Yet, the bulk of 3.55 Ga zircons plot
close to CHUR and yield mantle extraction ages ranging between ~3.8
Ga and 3.65 Ga (Fig. 7), close in age to the oldest detrital zircons within
the Moodies and Fig Tree groups, making this the major episode of BGGT
inception. While the analytical results of the single 3.65 Ga zircon need
to be taken with caution and more analyses are certainly necessary, this
initial melting may have been hydrous melting of juvenile crust (Figs. 3
and 4, Zeh et al., 2013). It appears that either pre-3.8 Ga materials
consisted of isolated felsic crustal fragments that were rapidly reworked
or that older crust was not involved in the younger magmatic episodes.

The oldest episodes of felsic crust production that are preserved
within the BGGT whole-rock record occurred at ~3.55 Ga and 3.46 Ga.
The 3.55 Ga zircons show evidence for second-stage melting of relatively
juvenile rocks (largely chondritic ey¢r, relatively low Sc/Yb and U/Nb)
that were at least partially hydrated prior to melting (some elevated U/
Nb and Sc/Yb). Melting occurred in the plagioclase stability field.
Mantle-like 5'0 values suggest that not much sedimentary rock was
incorporated into the melts from which the zircons formed. Following
this event of crustal growth, the 3.46 Ga felsic igneous episode repre-
sents the predominant reworking of pre-existing crust, with some ju-
venile additions. Its elevated U/Nb and Sc/Yb values suggest a more
evolved composition with a stronger hydrous melting signature when
compared to the 3.55 Ga crust. Based on lower eyer values and the
presence of 3.55 Ga xenocrysts, it is likely that some of the reworked
crust included 3.55 Ga BGGT crust (Byerly et al., 1996). The presence of
elevated ey¢r values for both zircon clusters suggests continuous juvenile
felsic additions. Previous work on the 3.51 Ga Steynsdorp gneiss showed
that it formed at a shallower depth than the 3.45 Ga TTG suite, but both
from an altered basaltic source (Moyen et al., 2019). This is consistent
with our findings based on Eu/Eu*, Sc/Yb and U/Nb. While other ex-
planations are also possible (Laurent et al., 2020), the reworking of
hydrated crust remains a unifying feature.

The geochemistry of 3.29 Ga zircons reveals a previously unrecog-
nized episode of felsic crustal growth. Group 2 zircons of this age cluster
show a significant excursion into the mantle field for Sc/Yb. This
signature is similar to modern intra-cratonic rift or plume settings
(Grimes et al., 2015), which often yield low Ti values, such as the Silver
Spring caldera (McDowell et al., 2014) or Salton Sea rifting (Lowenstern
et al., 1997, 2006), or continental plumes such as Yellowstone (Stelten
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et al.,, 2014). The somewhat elevated eyer values of this age cluster
compared to other clusters (Fig. 8A), suggest an increase in juvenile
additions; mantle-like §'®0 values confirm a contribution of mantle-
derived materials. Their formation contemporaneous with komatiites
of the 3.34 to 3.26 Ga Mendon Formation, which have been interpreted
as forming in an extensional setting driven by a deep mantle plume
(Lowe, 1994, 1999; Trower and Lowe, 2016), suggests a change in
geodynamic setting consistent with our interpretation. This explanation
is strengthened by the presence of bimodal (komatiitic and rhyolitic)
volcanism at 3.29 Ga, a hallmark of extensional settings (Pedersen et al.,
1998). However, we acknowledge that the tectonic settings of komatiitic
volcanism are still debated and that more work is necessary on the
tectonic setting of Mendon Formation komatiites. Moodies 3.29 Ga felsic
conglomerate clasts and xenoliths (Kamo and Davis, 1994) should also
be studied in more detail. In contrast, Group 1 zircons show a mostly
hydrous melting signature and relatively lower ey¢r values (Fig. 9). The
interpretation of these data in part depends on whether Group 1 and 2 of
the 3.29 Ga age cluster reflect two separate sources or mixing of mantle-
derived magmas with pre-existing continental crust.

After 3.28 Ga, we find evidence for the most arc-like melting sig-
natures, the recycling of surface-altered materials (this study; Wang
etal., 2022a; Wang et al., 2022b) and, at least by 3.23 Ga, deeper crustal
recycling. The Sc/Yb signature of zircons of this age group is most
similar to that of zircons formed in modern arcs, and very few zircons
plot within the mantle field (Fig. 3). The fact that the zircons do not fall
exclusively in the arc field for U/Nb may be related to a more mafic
source as postulated based on similarly aged whole rock analyses
(Moyen et al., 2019), which could explain the lower U abundance. The
positive shift in 5180 of the zircons to supracrustal values shows that
abundant material that had been altered in the presence of low-
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temperature water was melted at depth. While the zircon Hf isotopes
suggest mostly crustal reworking, there is also evidence for limited ju-
venile additions, as seen in isolated elevated eysr values and the pres-
ence of a few zircons that show both: mantle-like Sc/Yb and §'80 values.
Melting depth was variable for <3.28 Ga zircons and includes the first
occurrence of Dy/Yb > 0.4 and low Yb (Fig. 6A), which are both
indicative of high-pressure melting in the presence of garnet. This
interpretation matches previous explanations that these rocks formed
from high-pressure, water-present partial melting of an eclogite facies
metabasaltic source based on experimental work (Laurie and Stevens,
2012).

The crustal evolution of the BGGT apparently changed substantially
at around ~3.3 Ga. One remarkable aspect of the older felsic episodes is
the cyclicity of major events, with major felsic crust formation events
occurring at ~100 Ma intervals at 3.65 Ga, 3.55 Ga, and 3.46 Ga. This
apparent cyclicity suggests a repetitive nature to felsic crust generation.
Elucidating the tectono-magmatic setting within which these zircons
formed remains challenging due to the lack of modern analogues for
possible non-uniformitarian tectonic settings. It is, however, clear that
hydrous melting played a role throughout this time period to varying
degrees, that there were significant mantle additions throughout, that
newly generated magmas traversed through older felsic rocks as evi-
denced by the pervasive presence of xenocrysts (de Ronde et al., 1991;
Kroner et al., 1991; Byerly et al., 1996; Decker et al., 2015; Drabon and
Lowe, 2022), and that there is little evidence for deformation or the
generation of topographic highs to generate siliciclastic rocks (Lowe,
1999). This has been used to argue for a complex interplay of magmatic
accretion (Byerly et al., 1996; Moyen et al., 2019), delamination (Bédard
etal., 2013) and/or cyclic partial convective overturn (Van Kranendonk,
2011; Van Kranendonk et al., 2015; Wiemer et al., 2018; Wang et al.,

z £
204 B 2 3
@ z
o g
a 8
1.5 =
(el
2 Io%
G 1.0
o
0.5
=
0.0
T T T
4 6 8
8'%0
Age cluster

Moodies and Fig Tree
Group detrital zircons

/ - <3.28 Ga
/ . Group 1
] ]— 3.29 Ga cluster
L Group 2
. 3.46 Ga cluster
/ . 3.55 Ga cluster
Green Sandstone Bed
detrital zircons

/ M s

Fig. 8. Comparison of pre-3.8 Ga zircons of the GSB to detrital zircons of the Fig Tree and Moodies groups of the BGGT. [A] eygr distribution, [B] 5'%0 distribution,
[C] U/Nb vs Sc/Yb (after Grimes et al., 2015). Data only plotted for grains that we have TREE data for. We did not correct for the radioactive decay of U within zircon
in [C], because the abundance of U has decreased by the same proportion in all relevant reservoirs due to radioactive decay. Hence, not only zircon, but also the
Hadean mantle, crust, and source magmas would have contained about twice as much U as today, all else equal. Thus, a comparison of uncorrected values allows a
comparison at equal relative U abundance, irrespective of the time of crystallization.

144



N. Drabon et al.

Barberton felsic igneous events

GSB detrital zircons I 800

_—n =6580 (6 samples)

400

Relative probability/
# of zircons analyzed

74 o . ~ + —t Supracrustal zircon|
o *ti B $+
o 5 ¥ 0 e’ - mantle zircon
" T +
g e <
-0
3 -+ + 4
2 —o—
D
100+
a — Sood
E ntie
> 10 4 man le
s:gnature

arc-like signature

e p—— e ————
- "':?_._
-0z
* “mantle signature
0.01 o
-
1.00
, 075
)
4
S 0.50-]
w

0.25

0.00{

T T T T T T T T
3200 3300 34|00 3500 3600 3700 3800 3900 4050 4100 42‘00 43I00 4400
Age [Ma]
IL I 1L J
StagelV Stagelll Stagell Stage |

Fig. 9. Comparison of evolutions of the BGGT (this study) and the GSB zircons
(Drabon et al., 2021, 2022). [A] Detrital zircon age distribution for the Green
Sandstone Bed (Drabon et al., 2021; Byerly et al., 2018) compared to other data
from the BGB (Zeh et al., 2013; Drabon et al., 2017, 2019, 2022; Stoll et al.,
2021; Stutenbecker et al., 2019). Comparison of [B] ey¢r, [C] 8180, [D] U/NbD,
[E] Sc/Yb, and [F] Eu/Eu* values for the GSB (Drabon et al., 2022) to other
data from the BGGT (this study).

2022a) in a magmatic plateau. Within a magmatic plateau, mafic crust
that was altered and hydrated at the sea floor would provide the pre-
cursor crust that was reworked to form more felsic melts from which the
zircons crystallized. However, a magmatic arc origin cannot be excluded
based on the data presented here.

The cyclicity of crust generation ends around 3.3 Ga with a previ-
ously unrecognized episode of felsic crustal growth. Immediately
following this event, volcanic activity occurred on a much shorter time
scale, lacked cyclicity, and became compositionally more complex. In
addition, this transition is associated with a major change in the stra-
tigraphy of the BGGT; from a ~300 Myr period dominated by felsic and
ultramafic igneous activity to the formation of thick siliciclastic, quartz-
rich sedimentary strata reflecting the generation of topography at the
onset of the deposition of the Fig Tree Group. Different models have
been proposed for this period, ranging from modern-style plate tectonics
(de Wit et al., 1987b; De Wit, 1998; Moyen et al., 2006; Schoene et al.,
2008; Kisters et al., 2010), squishy-lid tectonics (Moyen et al., 2019),
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and partial convective overturn (Van Kranendonk, 2011, 2021; Van
Kranendonk et al., 2015). While the zircon signatures are non-unique,
we prefer a model in which at least some local horizontal plate motion
occurred. This is because the shift in zircon geochemistry coincides with
the onset of progressive accretion based on geological relations and
geochronology of different structural belts within the Fig Tree Group
(Drabon and Lowe, 2022). In addition, a recent structural and
geochronological analysis by Heubeck et al., (2022) of the Malolotsha
area confirmed earlier postulates for a minimum of 33 km of sub-
horizontal shortening towards the northwest, following Moodies depo-
sition in this region. This supports earlier work that provides evidence
for lateral motion (Lamb, 1984; Jackson et al., 1987; Lamb and Paris,
1988; Heubeck and Lowe, 1994; Dziggel and Kisters, 2019) com-
plemented by evidence for some potential vertical mobility (Van Kra-
nendonk, 2011, 2021; Schmitz and Heubeck, 2021), perhaps in a
squishy-lid environment. This orogenic stage of the BGGT evolution
had started by 3.28 Ga but peaked with the 3.23 Ga D2 deformation
event (Lowe, 1999), when 3.23 Ga zircons record the strong deep crustal
melting signature of hydrated material. Together, this may reflect the
onset of crustal thickening through the transport of surface-altered,
hydrated materials to deep crustal levels associated with the D2 event.
Clearly, a change in the Barberton geology towards an orogenic stage is
directly reflected in the zircon TREE and isotope geochemistry.

5.2. Are Archean TTGs potential analogues to Hadean source rocks?

Hadean zircons are the only record of the Earth’s first 500 Ma of
history. While these zircons reveal a plethora of information through
their isotope geochemistry, TREE geochemistry, and mineral inclusions,
the interpretation of these data is not always straightforward and similar
datasets have resulted in vastly different conclusions (Harrison et al.,
2008; Rollinson, 2008; Kemp et al., 2010; Rasmussen et al., 2010, 2011;
Carley et al., 2022). In addition, a comparison to modern TREE in zircon
may not be adequate since conditions (e.g., higher heat flux from the
mantle, reduced mantle viscosity) and hence tectonic processes were
likely different compared to today. Previous work proposed that
Archean TTGs may be possible analogues to settings in which the Ha-
dean Green Sandstone Bed (GSB) zircons formed (Carley et al., 2022). To
test this, we will compare and contrast Archean detrital zircons to >3.8
Ga zircons from the GSB. During this comparative analysis, we will refer
to the zircons from the Green Sandstone Bed as “GSB” zircons and those
from the Moodies and Fig Tree Groups as “BGGT” zircons. While the
zircons of the GSB are theoretically part of the BGGT, they show a
significantly different zircon age distribution and Cr-spinel geochem-
istry, and hence a fundamentally different source terrane to that of the
BGGT (see section 5.3).

The Isotope and TREE geochemistry of the GSB are discussed in
detail by Drabon et al., (2021,2022). The 4.2 to 3.3 Ga detrital zircon
suite of the GSB shows a notable transition in its geochemistry at 3.8 Ga
(Drabon et al., 2022). Zircons older than 3.8 Ga have been interpreted to
reflect long-lived, mantle-derived protocrust that experienced no juve-
nile additions based on the array of decreasing eyer with time and
mantle-like TREE signatures (Drabon et al., 2021, 2022).

The geochemical and isotopic composition of BGGT detrital zircons
show significant differences to those >3.8 Ga of the GSB. The starkest
difference is seen in the Hf isotope record (Fig. 8A). BGGT zircons do not
show evidence for intracrustal reworking without juvenile additions;
instead, each episode of felsic crust formation shows a mix of juvenile
additions together with remelting of older crust, with the mean of each
age cluster being close to CHUR. The TREE geochemistry of BGGT zir-
cons also shows some notable differences, with none of the BGGT zircons
showing the same distribution of Sc/Yb and U/Nb data as the pre-3.8 Ga
GSB zircons (Fig. 8C; 2D Kolmogorov-Smirnov test; p<8x107). The most
favorable comparison is for Group 2 of the 3.29 Ga cluster and the 3.55
Ga zircon cluster, which partially overlap with the pre-3.8 Ga GSB zir-
cons (Fig. 8C). However, the 3.29 Ga and the 3.55 Ga BGGT zircons have
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higher U values compared to pre-3.8 Ga GSB zircons. This may hint at
remelting of some pre-existing hydrated crust for the BGGT zircons,
melting at different depth, and/or a shift in mantle composition. The
3.46 Ga age cluster, which has been suggested to be an analogue for
Hadean crust formation in the Jack Hills (Laurent et al., 2022), shows
fundamental differences to the >3.8 Ga GSB zircons when Sc and Nb are
considered. Lastly, GSB and BGGT zircons show a similar range in 5'0
values but differ in their clustering (Fig. 8B). BGGT zircons show distinct
clustering while pre-3.8 Ga GSB zircons instead show a wide range of
values from mantle to supercrustal values for their 400 Ma history
without any distinct clustering. This may be related to a wide range of
sources rather than a limited number of sources as is the case for the
detrital zircons of the Fig Tree and Moodies Groups.

In summary, Barberton felsic igneous rocks and co-magmatic vol-
canic rocks are not good analogues for the majority of Hadean zircon of
the GSB. We argue that the majority of pre-3.8 Ga zircons of the GSB
formed in vastly different tectono-magmatic environments to those of
volcanic and plutonic igneous rocks of the BGGT due to their differences
in crustal residence time and in volume of hydrous melting.

5.3. Comparison of the evolution of the source terrane(s) to the GSB and
BGGT and implications for the formation of Archean proto-continental
crust

One unresolved question in early Earth relates to the timing and
process of continent formation. The detrital zircons from the BGGT and
GSB combined span ~900 million years, between 4.15 and 3.22 Ga,
providing two complementary geochemical records of early crust
generation.

The BGGT and GSB detritus tapped largely different sources of two
neighboring terranes. Many of the detrital zircon and spinel grains of the
GSB appear to have been derived from outside the BGGT or from units
currently unrecognized within the Barberton area (Byerly et al., 2018;
Drabon et al., 2021, 2022). In terms of felsic igneous sources, most
zircon age clusters seen in the GSB (3.31 Ga, 3.38 Ga, 4.1 Ga) are not
seen in 112 detrital zircon sandstone samples collected throughout the
greenstone belt (Fig. 9A) (Drabon et al., 2021). In terms of mafic igneous
sources, the dominant Cr-spinel population from the GSB does not
overlap in its geochemistry with those of associated komatiitic flow
sequences of the Mendon Formation (Byerly et al., 2018; Drabon et al.,
2021). Many of the zircons and chromites are well rounded, suggesting
that they have been transported for long distances and/or experienced
efficient reworking while being transported from their respective sour-
ces, possibly by aeolian processes (Lowe et al., 2021). On the other hand,
there is some evidence for a connection between the two terranes.
Firstly, proposed aeolian transport of relatively coarse GSB detritus,
much coarser (~150 um; Lowe et al., 2021) than typical wind-blown
loess (<20 um) that can be blown for great distances, would be
limited to at least connected terranes. Secondly, there is some overlap in
ages: the 3.65 Ga age cluster in the GSB is represented by rare detrital
zircons of the same age in Moodies and Fig Tree sediments and both
have a similar geochemical signature (Fig. 9); the major 3.38 Ga event in
the GSB source terrane may be represented in the Barberton area by
dykes intruding the Theespruit Pluton dated at 3383 + 11 Ma and 3388
+ 38 Ma (Moyen et al., 2019). Thirdly, negative eyer values of two
Theespruit tuffs may represent some reworking of pre-3.8 Ga protocrust.
Lastly, the BGGT and GSB zircon suites show similar, albeit not con-
current, changes through time in their zircon geochemistry (Fig. 9).
These similar stages of crustal evolution within the two terranes may
reflect the diachronous evolution of tectonic processes across two con-
nected terranes. As a more recent example, rifting that opened the Rocas
Verdes back-arc basin during the Jurassic and earliest Cretaceous and
associated rift volcanism commenced diachronously over tens of mil-
lions of years and hundreds of kilometers (Malkowski et al., 2016).
However, the difference in timing of the onset of extension and short-
ening of tens of millions of years between the GSB and the BGGT
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suggests that the two terranes must have been quite far apart, possibly
hundreds of kilometers.

In summary, the use of detrital zircons allows us to study the
geochemical evolution of a much larger number of felsic igneous events
than are preserved in the Barberton region, recorded by detrital zircons
derived from crust that is now lost or deeply buried. Combining both the
BGGT and GSB zircon data provides a prime example of the geochemical
evolution of Archean continents and, while speculative until whole
rocks that sourced the GSB are found, reveals our preferred model of the
buildup of Archean proto-continental crust includes at least four stages
(Figs. 9 and 10):

Stage I (Long-lived protocrust; Fig. 10A): The formation of a domi-
nantly mafic crustal nucleus was initiated by extraction from the mantle
between 4.4 and 4.2 Ga (Drabon et al., 2022). This crust experienced
continuous intracrustal reworking with no, or only very limited, evi-
dence for juvenile felsic additions and hydrous melting (Fig. 9). The
continuous mantle signature as suggested by zircon trace elements in-
dicates that arc-accretion was not a major process. Importantly, the
zircon geochemical signatures are significantly different from those of <
3.8 Ga zircons from the GSB and BGGT, implying that crustal processes,
conditions, and/or source materials were vastly different.

Stage II (crustal growth; Fig. 10B): The onset of crustal growth and
magmatic thickening though frequent juvenile felsic additions, crustal
reworking, and the onset of fluid-assisted melting, possibly at greater
depths. This started at ~3.8 Ga in the GSB and at least since 3.65 Ga in
the BGGT source terranes. Zircons <3.8 Ga in the GSB show abundant
similarities to those of the BGGT, including common CHUR-like ey¢r and
hydrous melting TREE signatures (Drabon et al., 2022; Fig. 9B, D, E).

Stage | | 4.2 Ga: Formation of long-lived protocrust
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Fig. 10. Block diagrams representing the proposed crustal evolution. [Stage I]
Formation of long-lived crust, [Stage II] formation of an oceanic plateau, and
[Stage IIT] onset of extension and shortening.
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Isotopic evidence for the Hadean protocrust is almost entirely lost dur-
ing this time period (Fig. 9B), either because it was small in extent or
because it was not involved in subsequent melting. In either case, our
data provide no evidence for a substantial Hadean continental basement
below the BGGT. Our results are consistent with formation of an oceanic
plateau for the BGGT, as suggested for the evolution of the Onverwacht
Group due to the lack of evidence for tectonic deformation (e.g., Byerly
et al., 2019; Moyen et al., 2019), but horizontal tectonics cannot be
excluded based on the zircon geochemistry alone.

Stage III (extension and shortening; Fig. 10C):

Stage IIla: The abrupt influx of mantle material in an extensional
setting (3.38 Ga in the GSB and 3.29 Ga in the BGGT). In both regions,
this can be traced by a sharp drop in Sc/Yb and elevated Nb values
(Fig. 9D and E). The occurrence of the lowest Eu/Eu* and Sc/Yb values
in both sequences (Fig. 9F) may relate to melting and fractionation
within the plagioclase stability field, hence melting at relatively shallow
depth of a mafic precursor derived from the mantle. In the BGGT,
geological relations support mantle-plume induced extension (Lowe,
1999; Trower and Lowe, 2016). In the GSB, low 5'80 values and high Ti
values are similar to plume/extensional settings (Stelten et al., 2014;
Zhu et al., 2021). The similar evolution of the two source terranes at this
time suggests a connectivity of the two terranes at least since Stage III.

Stage IIIb: This episode is dominated by crustal reworking and
characterized by zircon signatures more akin to modern subduction
zones (3.31 Ga in the GSB and 3.28 Ga in the BGGT). This includes an
increase in hydrous melting (highest Sc/Yb), associated with an
apparent shift to deeper melting and/or more oxidizing conditions (in-
crease in Eu/Eu*, Dy/Yb) (Fig. 9E, F). In the BGGT, this is the first time
when TREE and O isotopes reflect deep melting of surface-derived rocks.
It is quite remarkable that this is the first time in almost 900 million
years of crustal evolution in the area. Overall, this time period may mark
the onset of crustal amalgamation and thickening. While controversy
exists as to what the exact tectonic setting was during that time, strati-
graphic and structural data suggest at least some subhorizontal short-
ening (Drabon and Lowe, 2022; Heubeck et al., 2023). The close
association between mantle plume/extension and lateral accretion may
reflect a cause-and-effect mechanism. For example, some form of hot
proto-subduction may have been triggered by gravitational instability
due to the initiation of extension (Tang et al., 2020) or plume activity
(Gerya et al., 2015). Other, non-uniformitarian triggers may have been
subduction triggered by meteorite impacts such as suggested for the S6
and S8 impact events at ~3.3 Ga recorded in the Barberton area (O’ Neill
et al., 2020). More work will be necessary to deduce a possible cause-
and-effect relationship.

Stage IV: Craton stabilization: Although not part of this study, pre-
vious work identified a final episode of generation of a large, buoyant
continental block, today represented by the Kaapvaal Craton. This
episode is characterized by gradual crustal stabilization and thickening
through intrusion of large potassic granitic batholiths, intracrustal
melting, several phases of regional metamorphism, and late-stage
deformation between 3.216 Ga and ~3.1 Ga (Westraat et al., 2005;
Belcher and Kisters, 2006; Schoene and Bowring, 2010; Byerly et al.,
2019). This episode occurred long after sedimentation and deformation
in the BGGT had ceased (Byerly et al., 2019).

As detailed above, the formation of the Archean continental crust in
the Barberton area can be seen as evolving through several stages from
static to more dynamic: from Stage I during which felsic crust formed in
long-lived protocrust, to Stage II significant crustal growth and
magmatic thickening perhaps in a mafic plateau, and Stage III horizontal
mobility expressed by extension and shortening, the latter of which
caused tectonic amalgamation and thickening. While the zircon
geochemical signatures during Stage III would be consistent with mod-
ern plate tectonics, it is unclear whether plate tectonics were even
rheologically feasible during the early Earth due to the hotter mantle
(Davies, 2009; Herzberg et al., 2010; Ganne and Feng, 2017; Korenaga,
2018). While these conditions may have hindered the development of
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senso stricto modern-style plate tectonics, they would have still allowed
for some compression and shortening, based on numerical modeling
(Sizova et al., 2010; Wang et al., 2018; Tang et al., 2020). In either case,
continent formation in the Barberton region was a multi-step process
that may have included some form of horizontal tectonics in the latter
half of its formation.

6. Conclusion

The Barberton Greenstone Belt reveals a rich geochemical record of
crustal evolution and geodynamics covering almost a billion years of
felsic crust generation, only about half of which is recorded in the whole-
rock record. Detrital and tuffaceous zircons thus provide a more com-
plete picture of the crustal evolution in the broader Barberton region,
revealing several insights:

(1) The broad trends in the elementally partitioned geochemistry of
zircons from known sources matches that of related whole-rocks
and the local geology, showing that zircon can record crustal
conditions and source compositions of melts in which they
formed in many instances when multiple geochemical proxies are
combined. However, it is important to note that zircons may be
crystallizing from residual melts produced by differentiation of
the parental melt and may hence vary in detail from the bulk
composition of its source (Laurent et al., 2022).
In every age cluster (3.65, 3.55, 3.45, 3.28, and <3.29 Ga) for
Barberton detrital zircons (excluding GSB zircons) at least some
of the zircon compositions indicate evidence for hydrous melting,
indicating that the different types of processes that melted hy-
drated rock were active throughout the time of greenstone belt
evolution.
(3) There were two major episodes of mantle extraction in the BGGT
at ~3.65-3.80 Ga and, previously unrecognized, at 3.29 Ga. Both
are followed by episodes of dominated by crustal reworking, but
only the latter event was immediately followed by a major tec-
tonic episode of orogenesis that initiated the generation of
topography and siliciclastic debris, and culminated in the onset of
deep recycling of surface-derived materials at 3.23 Ga.

Barberton TTGs are not a good analogue for Hadean crust for-

mation as indicated by a comparison to the oldest zircons in the

Green Sandstone Bed. The Hadean zircons from the GSB are

vastly different to the Barberton TTG zircons in their eygr, 5180

and TREE signatures, suggesting that they formed by different

processes, under different conditions, and/or from different
source materials.

(5) The geochemical and tectonic evolution of the broader Barberton
region (incl. detrital zircons of the Moodies, Fig Tree groups, and
the GSB) occurred in several stages, with zircon signatures for
zircons younger than <3.4 Ga being most similar to that of
modern plate tectonics. While it is unclear if this last stage rep-
resents plate or squishy-lid tectonics, it does suggest that Archean
continent formation and the onset of modern-style plate tectonics
was a multi-step process spanning hundreds of millions of years
in the Barberton region.
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