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A B S T R A C T   

Zircon trace element geochemistry has become an increasingly popular tool to track crustal evolution through 
time. This has been especially important in early-Earth settings where most of the crust has been lost, but in some 
fortuitous instances detrital zircons derived from that lost crust have been preserved in younger sediments. To 
study the formation and geochemical evolution of continental crust from the Hadean to the Paleoarchean, the 3.6 
to 3.2 Ga Barberton Greenstone Belt in southern Africa is an excellent target due to its outstanding preservation 
and presence of detrital zircons that span almost a billion years. Here, we use trace elements, in combination with 
hafnium and oxygen isotopes, of 3.65 to 3.22 Ga detrital and tuffaceous zircons of the Moodies and Fig Tree 
groups and compare their geochemistry to previously studied 4.2 to 3.3 Ga detrital zircons from the Green 
Sandstone Bed of the Onverwacht Group. The major detrital zircon age clusters in the former at 3.55 Ga, 3.46 Ga, 
and 3.26–3.23 Ga overlap with episodes of TTG emplacement and felsic volcanism in the Barberton area, sug
gesting a local provenance. In contrast, age clusters at 3.65 Ga and 3.29 Ga of the Moodies and Fig Tree groups as 
well as 4.2 to 3.3 Ga detrital zircons from the Green Sandstone Bed do not have known intrusive sources and 
were likely derived from outside the present-day Barberton belt. This indicates that more than half of the felsic 
igneous events in the detrital zircon record do not have a whole-rock representation that can be directly studied. 
The similar compositions and inferred crustal evolution histories recorded in zircons from the Fig Tree and 
Moodies groups, as well as from the Green Sandstone Bed, suggest that they were derived from connected ter
ranes experiencing similar crustal processes diachronously. Together, they show three phases of felsic continent 
formation, reflecting different crustal processes: (1) long-lived protocrust formed in the Hadean from undepleted 
mantle sources. These zircons are vastly different from younger zircons and, hence, Barberton TTGs are not good 
analogues of Hadean crust formation. (2) At 3.8 Ga, onset of significant crustal growth though cyclic juvenile 
additions and hydrous melting, possibly within a volcanic plateau setting but an arc-like setting cannot be 
excluded based on this data. (3) Between 3.4 and 3.3 Ga, felsic crust is generated through a previously unrec
ognized episode of crustal growth by shallow melting of mafic, mantle-derived sources. This is immediately 
followed by the onset of crustal thickening through the transport of surface-altered, hydrated materials to deep 
crustal levels. Since there is geological evidence for extension and shortening at that time this may reflect the 
onset of horizontal movement. Whether this last geodynamic setting reflects modern-style plate tectonics or not, 
continent formation and the onset of plate tectonics in the Barberton area occurred through complex multi-stage 
processes spanning almost a billion years, most of which is only accessible through the detrital zircon record.   

1. Introduction 

The geochemical and tectonic evolution of Earth’s continents re
mains a field of ongoing debate as crustal (and lithospheric) conditions 
were likely different from modern conditions during the early Earth, but 

the effect of these differences is poorly understood. The timing of the 
onset of plate tectonics is controversially debated, whether it occurred as 
early as the Hadean (Hopkins et al., 2008; Harrison et al., 2017) or as 
late as the Neoproterozoic (Stern, 2005), and perhaps including several 
transitional stages over hundreds of millions to billions of years 
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(Cawood et al., 2022). Yet, the answer to this question is of importance 
to understanding Earth’s habitability. Plate tectonics would have been a 
major driver in linking solid Earth with surface liquid and gaseous res
ervoirs, causing the emergence of crust above sea level, and thus initi
ating silicate weathering to stabilize Earth’s climate and the release of 
nutrients into the oceans. 

To address the evolution of tectonic processes, zircon has gained 
increasing popularity. The importance of zircon becomes especially 
pertinent when studying the early Earth, where ~95% of Archean crust 
has been lost (Goodwin, 1996) and almost no known rock exists for the 
Hadean Eon. For these time intervals, detrital zircons derived from the 
erosion of crust that has long been obliterated or is now deeply buried 
can provide insight into conditions and processes of these inaccessible 
terranes. While Hf and O isotope systematics have been applied to zircon 
for a long time, recent advances in understanding zircon trace and rare 
earth elements (TREE) (Grimes et al., 2015) have allowed for more 
complex evaluations of early crustal histories (Drabon et al., 2021, 2022; 
Carley et al., 2022; Laurent et al., 2022). They offer important clues into 
the formation and stabilization of ancient proto-continental crust during 
the Hadean to Archean. 

The interpretation of zircon isotope and TREE chemistry is complex, 
as many different factors can affect zircon compositions, including 
zircon crystallization temperature, pressure, co-existing mineral 
assemblage, and magma source (Grimes et al., 2007, 2015; Claiborne 
et al., 2010). Interpreting Archean to Hadean zircons carries additional 
uncertainties because the higher heat flux from the mantle may have 
affected crustal conditions and tectonic processes. Most previous zircon 
TREE studies focused on Phanerozoic zircon suites. Yet, their results may 
not be directly applicable to Archean and Hadean zircon suites. How
ever, the more general petrologic/magmatic conditions (shallow vs deep 
crustal melting, dry vs fluid-assisted melting, common fractionation 
patterns for mafic and felsic melts), as opposed to specific tectonic set
tings associated with the Grimes model, are applicable across time. 
Archean TTGs are generally thought to have formed from melting of a 
hydrated mafic rock at variable depth (Martin, 1986; Clemens et al., 
2006; Moyen et al., 2006, 2007). The proposed environments may have 
ranged from uniformitarian plate tectonic environments (de Wit et al., 
1987a,b, 2011; de Wit, 1991; de Ronde and de Wit, 1994; Lowe, 1994; 
de Ronde and Kamo, 2000; Kleinhanns et al., 2003; Moyen et al., 2006; 
Stevens and Moyen, 2007; Schoene et al., 2008; Kisters et al., 2010; 
Schoene and Bowring, 2010; Furnes et al., 2011, 2012, 2013; Laurie and 
Stevens, 2012; Nagel et al., 2012; Jagoutz et al., 2013; Arndt, 2023) to 
non-uniformitarian environments such as delamination melting (Bédard 
et al., 2013; Johnson et al., 2017; Bédard, 2018) and/or patrial 
convective overturn (Van Kranendonk, 2011, 2021; Van Kranendonk 
et al., 2014) within an oceanic plateau setting. It is therefore important 
to study the compositions of Archean zircons from well-studied exposed 
locations, which may have formed under non-uniformitarian conditions, 
and may more favorably compare to Archean and Hadean detrital or 
xenocrystic zircons with no known source. 

The 3.6 to 3.2 Ga Barberton Granite-Greenstone Terrain (BGGT), 
South Africa and Eswatini, is uniquely qualified as a target for the study 
of Archean protocontinent formation due to its outstanding preserva
tion, because the compositions of its intermediate to felsic igneous rocks 
are well known (Moyen et al., 2007, 2019; Moyen, 2011; Moyen and 
Martin, 2012; Laurent et al., 2022), and as it contains zircons that range 
in age from 4.15 to 3.22 Ga, spanning almost a billion years of Earth’s 
history. Regional detrital zircon studies have shown that many of the 
detrital zircons were derived from known felsic igneous rocks in the 
vicinity (or from rocks of identical age and composition elsewhere) (Zeh 
et al., 2013; Drabon et al., 2017; Stutenbecker et al., 2019; Stoll et al., 
2021; Drabon and Lowe, 2022; Heubeck et al., 2022), with several 
notable exceptions: The major ~3.29 Ga and minor ~3.65 Ga detrital 
zircon age clusters from sandstones of the 3.22 Ga Moodies and 
3.28–3.23 Ga Fig Tree groups (Drabon et al., 2017, 2019a; Stoll et al., 
2021; Drabon and Lowe, 2022), and the 4.2 to 3.2 Ga detrital zircons of 

the Green Sandstone Bed (GSB) in the Onverwacht Group (Byerly et al., 
2018; Drabon et al., 2021, 2022) have no documented source rocks. 

In this study, (1) we assess what the detrital zircon trace and isotope 
geochemistry of detrital and tuffaceous zircons from the Moodies and 
Fig Tree Groups tells us about the crustal evolution of the BGGT. We 
compare the results to interpretations of bulk rock analyses and 
geological relationships of known sources to anchor our interpretations; 
(2) We then investigate what the zircon geochemistry tells us about 
detritus derived from unknown crustal sources, including >3.8 Ga 
detrital zircons from the Green Sandstone Bed (GSB) previously pub
lished by Drabon et al., (2021,2022) to test whether they may have been 
derived from Archean-style TTGs; (3) Finally, we will put the evolution 
of the source terranes into a process-oriented context to ultimately assess 
the formation and geochemical evolution of Archean proto-continental 
crust in the Barberton area. 

2. Geological background and samples 

The 3.6 to 3.2 Ga Barberton Granite-Greenstone Terrane is located in 
the eastern Kaapvaal Craton. It is composed of three stratigraphic units: 
the Onverwacht, Fig Tree and Moodies Groups (Fig. 1A and B). Whereas 
the Onverwacht Group is dominated by mafic and ultramafic volcanic 
rocks punctuated by two episodes of felsic igneous activity, the Fig Tree 
and Moodies Groups represent the onset of orogeny and syndeforma
tional deposition of siliciclastic and volcaniclastic rocks. The rocks are 
excellently preserved for Archean rocks, having mostly experienced 
lower-greenschist-facies metamorphism (Xie et al., 1997; Tice et al., 
2004). 

The BGGT experienced several episodes of felsic igneous activity that 
were sources to the zircons studied here. The Onverwacht Group, dating 
from 3.55 to ~3.26 Ga, experienced at least two significant periods of 
rhyolitic and dacitic volcanic activity associated with the intrusion of 
tonalite-trondhjemite-granodiorite (TTG) plutonic rocks. These include 
the 3.51 Ga Steynsdorp gneiss and felsic volcanic rocks of the 3.55 Ga 
Theespruit and Sandspruit formations (Armstrong et al., 1990; Byerly 
et al., 1996; Kröner et al., 2016; Roerdink et al., 2016). At ~3.45 Ga, the 
emplacement of the Stolzburg and Theespruit plutons took place pene
contemporaneously to the deposition of felsic volcanic rocks of the H6 
member of the Hooggenoeg Formation (Kröner and Todt, 1988; Arm
strong et al., 1990; Kröner et al., 1991; Byerly et al., 1996). The presence 
of thin felsic tuffs suggests that further episodes of felsic volcanic activity 
may have occurred predominantly outside the present-day BGGTat 3472 
Ma in the Hooggenoeg Formation, at 3280 ± 9 Ma and 3287 ± 3 Ma in 
the Mendon Formation (Decker et al., 2015), and at ~3280 Ma in the 
basal Fig Tree Group (Drabon et al., 2019a). Younger intrusive rocks 
include the 3.28–3.22 Ga Badplaas complex (Kisters et al., 2010), and 
the coeval 3.23 Ga Kaap Valley (Robb et al., 1986; Kamo and Davis, 
1994; de Ronde and Kamo, 2000) and Nelshoogte plutons (Schoene 
et al., 2008; Matsumura, 2014). 

Samples analyzed for this study were previously dated by Drabon 
et al., (2017,2019a) and Drabon and Lowe (2022) (Fig. 1C). Seven 
sandstone samples were taken from the Fig Tree Group (SAF-600-3, 
BARB5-DZ2, BARB5-DZ4, NAD-89, SAF-663-14, BSoI-S3-1, SSF-1) and 
two from the Moodies Group (SAF-663-13, NAD-130). Sediments of the 
Fig Tree Group were mostly derived from local uplifts of supracrustal 
rocks of the BGGT (Lowe and Nocita, 1999; Drabon et al., 2019a, 2019b; 
Drabon and Lowe, 2022). During Moodies time, erosion reached into 
deeper crustal levels because conglomerates also include granophyre 
clasts from the upper levels of shallow plutons or as erupted magma 
clasts (Eriksson, 1980; Reimer et al., 1985; Heubeck and Lowe, 1999; 
Sanchez-Garrido et al., 2011; Agangi et al., 2018). A major provenance 
region was likely the Stolzburg block (Zeh et al., 2013). The Ancient 
Gneiss Complex (AGC), an old terrane partially outcropping to the south 
of the present-day BGGT and in Eswatini (Fig. 1B), was apparently not 
exposed then (Heubeck et al., 2022). We also analyzed five volcanic and 
volcaniclastic samples of the BGGT sequence: SA-681-5 and SA-971-1 
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from a dacitic tuff from the ~3.46 Ga H6 unit of the Hooggenoeg For
mation of the Onverwacht Group, SB2-23 and NAD-101 from a 3.28 Ga 
rhyolitic tuff from the Loenen Member of the Fig Tree Group, and AV-2, 
a 3.23 Ga dacitic volcaniclastic rock from the Auber Villiers Formation 
of the Fig Tree Group. 

Together, samples show age clusters at ~3.55 Ga, ~3.46 Ga, ~3.29 
Ga, and 3.26–3.23 Ga (Figs. 2 and S1) and a single 3.65 Ga zircon. 
Previous work suggests the 3.55 to 3.51 Ga ages correspond to possible 
sources from the Theespruit Formation felsic volcanic rocks and co- 
magmatic Steynsdorp tonalitic gneisses, and the ~3.46 Ga cluster 
from the felsic volcanic rocks of the H6 member of the Hooggenoeg 
Formation and its co-magmatic 3.46 Ga TTG suite (Drabon et al., 2017, 
2019a; Drabon and Lowe, 2022; Heubeck et al., 2022). Zircon grains 
with an age of ~3.29 Ga form a major cluster, but only relatively minor 
felsic rocks of that age are present within the BGGT: thin 3.30 – 3.28 Ga 
tuffs in the upper Mendon Formation (Byerly et al., 1996; Decker et al., 
2015) and 3.28 Ga reworked tuffs in the lower Mapepe Formation 

(Drabon et al., 2019a). This may suggest the presence of a much larger 
source outside the preserved BGGT. The youngest detrital zircons be
tween 3.26 and 3.22 Ga correspond to felsic volcanic rocks of the upper 
Fig Tree Group that are widespread across the BGGT and potentially 

Fig. 1. [A] Stratigraphic column of the Barberton Granite-Greenstone Terrane (BGGT). Pink areas with “v” represent episodes of felsic volcanic activity that may 
have sourced the sediments to the Fig Tree and Moodies groups. [B] Geological map of the Barberton Greenstone Belt with possible plutonic sources within the BGGT 
and in the vicinity. [C] Geological map of the central BGGT (Lowe et al., 2012) with sample names and locations. GPS locations can be found in Drabon 
et al., (2017,2022). 

Fig. 2. Detrital and tuffaceous zircon samples from the BGGT (Drabon et al., 
2017, 2021; Heubeck et al., 2022; Stoll et al., 2021; Stutenbecker et al., 2019). 
See Fig. S1 for individual detrital zircon sample probability density plots 
studied here. 
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exposed upper segments of the Kaap Valley Tonalite, Nelshoogte pluton, 
Badplaas pluton, and Usutu magmatic suite or their extrusive equiva
lents (Fig. 1B). 

3. Methods 

3.1. Data acquisition 

We obtained zircon TREE, Hf and O isotope data following the pro
tocol described in Drabon et al. (2022). Zircon trace element analyses 
were conducted on the SHRIMP-RG ion microprobe in the co-operated 
Stanford and U. S. Geological Survey SUMAC facility at Stanford Uni
versity, using techniques described by Grimes et al. (2015). Lu-Hf iso
topic analyses were conducted at the Arizona LaserChron Laboratory, 
following methods previously described (Gehrels and Pecha, 2014; 
Ibanez-Mejia et al., 2014). Oxygen isotopic analyses were conducted 
using a Cameca 1280-HR SIMS at the Helmholtz Zentrum Potsdam. 
Where zircon grains were large enough, we tried to couple geochemical 
criteria within the same zircons, but that was only possible in a subset of 
zircons due to their small size. For complete information on analytical 
methods and our data compilation, we refer the reader to the supple
mentary material and the data repository at https://doi.org/10.17632/ 
zmj566r6m4.1. 

3.2. Filtering of Hf, O, and TREE data 

Isotopic and chemical measurements on zircon can be biased by 
analyses of radiation-damaged areas, fractures, or inclusions. During 
analyses we avoided sites with visible impurities. The targets were 
subsequently examined under transmitted light microscopy to identify 

any analysis locations situated on subsurface cracks or inclusions. All 
data where the analytical pits revealed such fractures or inclusions were 
excluded from our study. Additionally, CL imaging of the zircons was 
used to filter out grains with homogeneous or patchy zoning and to 
ensure the analyses were conducted within the same crystallographic 
domain as the U-Pb dating (Hoskin and Black, 2002; Cavosie et al., 
2005). Representative CL images were published by Drabon et al. 
(2019). For δ18O analyses, zircons with low 16O counts per second were 
discarded. For TREE analyses, we used conservative geochemical filters 
to exclude any data that signified enrichments of non-constituent cat
ions, as these may indicate contamination or alteration related to met
amictization (Grimes et al., 2015). Ca (>50 ppm) and P (>1000 pm) 
serve as screens for apatite inclusions, and Al (>100 ppm) as a screen for 
glass or feldspar inclusions, or altered (i.e., metamict) domains. Finally, 
we applied the Light Rare Earth Element Index (Bell et al., 2015) and 
excluded zircons with values <20. Means and ranges for each age cluster 
are summarized in Table 1. 

3.3. Zircon trace elements as recorders of magmatic environments and 
melting depth 

We use zircon trace and rare earth element (TREE) patterns to 
evaluate the geochemical evolution of the zircon-sourcing magmas 
based on magmatic origin and the melting depth of the zircons. 

Trace element ratios including those involving U, Th, Nb, Sc, Ce, and 
Yb provide a compositional distinction among zircons from different 
modern tectono-magmatic settings (Grimes et al., 2015). The Sc/Yb and 
U/Nb ratios in zircons have proven to be particularly useful in dis
tinguishing zircons from melts that formed in undepleted mantle set
tings (today’s ocean island settings, plumes), depleted mantle settings 

Table 1 
Means, minimums, and maximums for each age cluster. Only one zircon was analyzed for the 3.65 Ga age cluster. Errors are 1sig.       

3.29 Ga    

3.65 Ga 3.55 Ga 3.46 Ga Group 1 Group 2 <3.28 Ga 

Sc/Yb mean 0.51 ± 0.11 0.10 ± 0.07 0.15 ± 0.08 0.15 ± 0.11 0.03 ± 0.01 0.25 ± 0.19 
min N/A 0.05 0.03 0.08 0.008 0.06 
max N/A 0.33 0.34 0.7 0.06 0.6  

U/Nb mean 72 ± 12 42 ± 28 55 ± 31 57 ± 30 45 ± 114 29 ± 14 
min N/A 15 16 21 11 5 
max N/A 127 135 167 67 73  

Dy/Yb mean 0.28 ± 0.07 0.32 ± 0.07 0.27 ± 0.08 0.31 ± 0.07 0.34 ± 0.05 0.38 ± 0.14 
min N/A 0.19 0.1 0.14 0.24 0.17 
max N/A 0.46 0.46 0.5 0.43 0.68  

Nb/Ta mean 1.2 ± 0.3 1.1 ± 0.7 1.8 ± 1.7 2.5 ± 2.2 4.0 ± 2.2 1.2 ± 0.6 
min N/A 0.4 0.3 0.4 0.06 0.05 
max N/A 2.5 9.9 7.8 8.6 2.1  

Eu/Eu* mean 0.24 0.23 ± 0.8 0.36 ± 0.13 0.29 ± 0.12 0.17 ± 0.1 0.43 ± 0.17 
min N/A 0.09 0.18 0.03 0.06 0.1 
max N/A 0.36 0.8 0.5 0.49 0.88  

Ti mean 5.0 ± 1.1 9.2 ± 5.7 6.6 ± 4.3 8.2 ± 2.9 4.8 ± 1.8 7.9 ± 4.6 
min N/A 4.1 0.3 0.2 1.9 3.2 
max N/A 35.1 17.9 13.3 12.3 18.5  

δ18O mean N/A 5.5 ± 0.3 5.6 ± 0.3 5.9 ± 0.4 5.65 ± 0.3 6.6 ± 0.7 
min N/A 5 4.6 5.3 4.7 5.1 
max N/A 5.9 6.7 7.1 6.1 8.3  

εHft mean N/A 0.8 ± 1.7 0.8 ± 1.8 0.1 ± 1.8 1.6 ± 2.5 −0.1 ± 2.1 
min N/A −0.9 −3 −3.7 −2 −5 
max N/A 5.5 6.4 3.7 8.2 5.4  
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(today’s MOR and oceanic arcs) and subduction zones where fluid- 
assisted melting is a major feature (Grimes et al., 2015). Sc/Yb values 
are relatively elevated for zircons in fluid-rich arc environments 
(roughly > 0.1). In contrast, mafic magmas from the depleted or rela
tively undepleted mantle require extensive fractionation before zircon 
can crystallize, resulting in low Sc and low Sc/Yb values (Grimes et al., 
2015). The relationship between U and Nb in magmatic systems is 
affected by factors such as influenced by variations in mantle source 
composition (depleted vs undepleted mantle source), depth of melting, 
metamorphic dehydration of oceanic crust (Pearce, 1982; Baier et al., 
2008), and crustal assimilation (Grimes et al., 2015). In U/Yb versus Nb/ 
Yb diagrams, analyses of mantle zircons have delineated an observa
tionally constrained mantle trend, with the upper limit approximately 
correlating to a U/Nb ratio of 20. In contrast, zircons formed in sub
duction zones tend towards higher U/Nb values due to a relative 
depletion in Nb and enrichment of U. While Grimes et al. (2015) found 
that these proxies can be used to identify zircons formed in modern arc 
settings, it is clear that other tectonic processes may impart a similar 
TREE signature because the specific magmatic conditions or processes 
that produce melts may be similar (presence of water, melting depth, 
etc). Therefore, we will term signatures of, e.g., Nb depletion and Sc 
enrichment, as documented by zircons derived from Phanerozoic sub
duction zones, as “fluid-assisted melting”, “hydrous” or “arc-like” 
melting signatures in this manuscript, without intending any specific 
geodynamic interpretation. 

Depth indicators in zircon are related to the presence or absence of 
certain pressure-dependent mineral suites during melt fractionation or 
in the residuum. Important minerals included plagioclase (Eu/Eu*), 
rutile (Nb/Ta), and garnet (Y, Dy/Yb). 

Plagioclase is stable at relatively shallow depths and unstable at high 
pressure environments (Green, 1982). Plagioclase incorporates Sr2+, 
which is geochemically similar to Eu2+. Residual plagioclase in the 
source during melting or fractionation of plagioclase during fractional 
crystallization will draw down the Eu/Eu* (EuN/(SmN×GdN)0.5) of a 
melt, and hence the Eu/Eu* value of the subsequently crystallizing 
zircon. Eu/Eu* is also affected by the oxygen fugacity of the melt 
(Hoskin and Schaltegger, 2003; Trail et al., 2012). In general, Eu/Eu* 
values in zircons from arc suites can vary a lot depending on gross melt 
evolution, but many have Eu/Eu* in the 0.4–0.7 range; Iceland, ocean 
rift and Hawaiian zircons typically have Eu/Eu* 0.2–0.4 (Grimes et al., 
2015) in large part because of extensive plagioclase fractionation before 
zircon saturation. As the crust thickens, the increased pressure during 
magmatic differentiation at greater depths enhances rutile, amphibole 
and/or garnet fractionation relative to plagioclase. 

Nb/Ta values of a melt can provide information on the tectonic 
setting, source composition, mineral assemblage, and pressure. Gener
ally, primitive arc and basalt magmas have high Nb/Ta while more 
mature arcs tend to have low Nb/Ta (Tang et al., 2019). The reason for 
the low Nb/Ta in arc is still debated. It may to some extent be controlled 
by the presence or absence of rutile in the crystallizing fraction or res
idue. While the pressure dependence of rutile saturation is heavily 
debated (Ryerson and Watson, 1987; Gaetani et al., 2008; Xiong et al., 
2009), recent studies have found that rutile solubility is reduced at high 
pressures (Tang et al., 2019). This means that greater differentiation at 
higher pressures will result in a greater amount of rutile forming. Due to 
its high partition coefficients for Nb and Ta, rutile formation will impart 
a strong signal on [Nb/Ta]melt. Elevated titanite-to-rutile ratios result in 
melts characterized by exceptionally high Nb/Ta (>60), whereas 
reduced titanite-to-rutile ratios lead to melts with significantly lower 
Nb/Ta (≤30) (John et al., 2011). When all Ti-phases are completely 
consumed during intense melting, the Nb/Ta drops to very low levels 
(<16). As the titanite-to-rutile ratio is influenced by pressure, the Nb/Ta 
of melts becomes dependent on the depth of melting (John et al., 2011). 
In addition to rutile, the presence of amphibole or biotite has also been 
theorized to explain why continental crust demonstrates a lower average 
Nb/Ta ratio relative to chondritic values, since both amphibole and 

biotite preserve a DNb/DTa ratio exceeding 1 (Stepanov and Hermann, 
2013; Li et al., 2017). In addition, both of these minerals are Ti sinks that 
have temperature-controlled stability with greater Ti content in higher 
temperature amphibole (Ernst and Liu, 1998), making it less favorable 
for rutile to form. 

Garnet is commonly used to argue for high-pressure environments 
that formed at great depth, although some exceptions occur. Garnet 
shows high partition coefficients for HREE and Y, and its crystallization 
results in an increase of the Dy/Yb of the melt (Dy/Yb > 0.4 in zircon are 
typically associated with garnet, although the fractionation of/presence 
of amphibole in the residuum prior to zircon crystallization may lead to 
lower Dy/Yb values even when associated with garnet). Typically, 
garnet-bearing source rocks will also contain rutile. Collectively, melts 
generated at greater pressure should thus exhibit high Dy/Yb and Eu/ 
Eu*, and low Y, Yb and Nb/Ta. On the other hand, a Dy/Yb range of 0.1 
to 0.4 for zircon is common within many magmatic systems (Grimes 
et al., 2015) and Dy/Yb decreases during simple mineral fractionation 
and cooling. Values for zircon less than 0.2 are found in more frac
tionated samples or at zircon edges. 

4. Results 

The results of the geochemical and isotopic analyses are shown in 
Figs. 3–7 and in the online repository. For all plots, we color-coded the 
data based on the relevant age clusters recognized by previous studies: 
~3.55 Ga, ~3.46 Ga, ~3.29 Ga, and <3.28 Ga (Zeh et al., 2013; Drabon 
et al., 2017; Stoll et al., 2021; Drabon and Lowe, 2022; Heubeck et al., 
2022). The geochemical and isotopic signatures of detrital zircons from 
these age clusters largely overlap between zircons derived from the Fig 
Tree and Moodies Group sandstones, suggesting a similar provenance. 
Zircons from the 3.46 Ga, 3.29 Ga, and 3.26 Ga age clusters extracted 
from tuffs and reworked tuffs (Figs. 3–7) also overlap in composition 
with those from the Moodies and Fig Tree Groups, which may indicate a 
source-sink relationship. Many detrital zircons from individual age 
clusters show some amount of heterogeneity, which may hint at sub
populations from distinct sources, as is reasonable to expect since many 
of these felsic igneous episodes span several tens of millions of years. 
While we focus on broader trends here, future work on possible sub
populations tied to more precise ages will be necessary. 

4.1. TREE indicators for tectono-magmatic settings 

We studied trace element ratios including those involving U, Th, Nb, 
Sc, Ce, and Yb to evaluate the tectono-magmatic origin of the Barberton 
zircons. All age clusters show at least some influence of fluid-assisted 
melting (Figs. 3 and 4): the single 3.65 Ga zircon, ~30% of zircons of 
the 3.55 Ga, and ~80% of the 3.45 Ga age zircons fall within the arc-like 
field for U/Nb and Sc/Yb. The 3.29 Ga zircon cluster shows the largest 
amount of heterogeneity in Sc/Yb. This variability broadly translates to 
other TREE proxies such as Nb/Ta and Eu/Eu* as well. We therefore use 
the Sc/Yb data to separate the zircons of the 3.29 Ga cluster into Group 1 
(>0.07) and Group 2 (<0.07) (Fig. 3). While the origin of the compo
sitional variability remains unclear, considering these zircons as distinct 
compositional varieties facilitates contrasting the diverse potential end- 
member processes or sources capable of generating the observed range 
of geochemical signatures. Sc/Yb values for Group 1 fall almost exclu
sively into the arc field. Group 2 zircons fall (by definition) entirely into 
the mantle field for Sc/Yb. Nb concentrations for Group 2 are typical for 
zircons from mafic mantle melts with U/Nb values at the high end of the 
mantle range, but appropriate for the high U concentrations which in 
part may be the result of strong melt fractionation (Fig. S2). Lastly, while 
most age clusters show a range in signature overlapping both with the 
mantle and arc fields, <3.28 Ga zircons exclusively fall within the arc 
field for Sc/Yb and where arc-like and mantle fields overlap for U/Nb, 
largely driven by low U content. 

It should be noted that in the U/Yb vs Nb/Yb diagram after Grimes 
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et al. (2015), the Barberton data plot in an intermediate position be
tween the undepleted mantle and the arc fields (Fig. 4D). This may 
suggest that tectonic processes were different from modern-style plate 
tectonics or that the mantle composition was different (e.g., no clearly 
depleted and enriched reservoirs as seen today had formed yet). This 
mirrors observations from Archean whole rocks (Moyen and Laurent, 
2018). 

4.2. TREE indicators for melting depth 

To understand variations in melting depth, we utilized Dy/Yb, Yb, 

Eu/Eu*, and Nb/Ta ratios (Fig. 5). The 3.55 and 3.45 Ga age clusters 
show a similar range in Dy/Yb and Nb/Ta with only subtle differences 
(Figs. 5 and 6). For Dy/Yb, the values mostly range between 0.2 and 0.4 
and show negative correlation with Hf/Ti (Figs. S3 and S4) as is common 
within many magmatic systems in the absence of garnet in the residuum 
or fractionating assemblage (Claiborne et al., 2010). Since most whole- 
rock data for 3.45 Ga TTGs show heavy REE depletion in agreement with 
garnet in the crystallizing fraction, it is likely that the zircons were 
derived from a rhyolitic/rhyodacitic volcanic source within the H6 
member of the Onverwacht Group (Lowe, 1999; Diergaardt, 2013). 
These rocks may have originated through the differentiation of tonalitic 

Fig. 3. [A] Sc/Yb and [B] U/Nb of detrital zircons from the Moodies and Fig 
Tree groups. Tectono-magmatic fields (first to third quartile) are from Grimes 
et al. (2015). Grimes zircon compilation was updated based on revision of the 
zircon reference material concentrations (Coble et al., 2018). The dashed lines 
reflect proposed bounding lines between different tectono-magmatic domains. 

Fig. 4. Tectono-magmatic discrimination diagrams [A] U/Yb vs Hf, [B] Sc/Yb vs Nb/Yb, [C] U/Yb vs Sc/Nb, and [D] U/Yb vs Nb/Yb following Grimes et al. (2015). 
Grimes zircon compilation was updated based on revision of the zircon reference material concentrations (Coble et al., 2018). Plotted tectono-magmatic fields 
represent 90% of data. 

Fig. 5. Melting depth indicators [A] Dy/Yb, [B] Eu/Eu*, and [C] Nb/Ta vs age. 
Compositional and redox relationships are based on previous work (Trail et al., 
2010; Grimes et al., 2015; Tang et al., 2021). 
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magmas, with the residual liquids erupting as silicic volcanic rock 
(Laurent et al., 2022). It is also possible that presence of amphibole in 
the fractionating assemblage or residuum reduced the Dy/Yb ratio 
before zircon saturation was reached. Nb/Ta values are relatively low 
for both age clusters and are consistent with zircon crystallization from 
melts that had rutile in the fractionation or source mineral assemblage 
and thus indicate melts generated or fractionated at moderate to 
moderately high pressures. The most interesting difference between the 
two age clusters is their Eu/Eu* range, with the values for 3.55 Ga zir
cons lower than the 3.46 Ga zircons (Fig. 5). This possibly points at the 
suppression of plagioclase and hence a higher-pressure origin for the 
3.45 Ga zircons compared to the 3.55 Ga zircons or may be a result of 
variable amounts of plagioclase in the residuum. 

For the 3.29 Ga zircon cluster, Group 1 and 2 zircons compositions 
show indications for different melting depths and/or sources. Group 2 of 
the 3.29 Ga age cluster shows the highest Nb/Ta values of all age clusters 
while Group 1 shows lower values similar to the older age clusters 
(Fig. 5C). As discussed above, this could indicate a lower pressure origin, 
and/or a more mafic melt from a mantle source. A mafic composition 
that experienced strong fractionation prior to zircon saturation is sup
ported by the lowest Eu/Eu* values of the entire zircon suite, high REE, 
high Y, and low Sc/Yb (Fig. 6). With the exception of Eu2+, REEs are 
largely incompatible in plagioclase, hence plagioclase fractionation will 
produce or contribute to the production of REE-enriched magmas. This 
group also shows a correlation between Eu/Eu* and Sc/Yb (Fig. 6C). 
Mantle-related settings (MOR, OI) show low Sc values due to the 
extensive fractionation of ferromagnesian minerals. Here, the correla
tion between the two elements may relate to the coupled fractionation of 
plagioclase and clinopyroxene in a more mafic environment, likely at 
shallow depth. Group 1 of the 3.29 Ga age cluster shows higher Eu/Eu* 
values, does not show REE enrichment, and has lower but variable Nb/ 

Ta values compared to Group 2 (Fig. 5), possibly related to a higher- 
pressure crustal origin and/or mixing between mafic materials with 
preexisting crustal materials. 

Zircons <3.28 Ga show variability with age in Dy/Yb, Eu/Eu*, and 
Nb/Ta (Fig. 5). Most notable are the high Dy/Yb (>0.4) combined with 
low Yb for 3.23 Ga zircons from the Auber Villiers Formation and a few 
isolated detrital 3.26 Ga zircons. This could indicate the presence of 
garnet in the crystallizing fraction or in the residuum. These results 
match whole rock analyses, which show a similar transition in Dy/Yb at 
3.23 Ga (Wang et al., 2022b). In addition, these zircons have elevated 
Eu/Eu* values, which indicates a plagioclase-poor system and/or a more 
oxidized system. In fact, garnet fractionation may cause endogenic 
oxidation of Eu2+ (Tang et al., 2021). Overall, this pattern may reflect a 
deep melting origin of the youngest detrital BGGT zircons. The 
elemental composition, together with Sc and Nb, compares most 
favorably to modern arc environments (Grimes et al., 2015). Other zir
cons of the <3.28 Ga zircon suite show variable Dy/Yb, generally var
iable Eu/Eu*, and slightly decreasing Nb/Ta, possibly pointing towards 
melting at variable depth. This matches whole rock analyses, which 
show the start of more complex compositional variability and sources at 
variable depths for felsic igneous rocks <3.28 Ga (Moyen et al., 2019). 

4.3. Hf isotope systematics 

The Lu-Hf isotope system tracks crust-mantle differentiation pro
cesses. εHft values scatter ± 5 units around CHUR (Fig. 7A, Table 1): The 
3.55 and 3.45 Ga age clusters show a slightly superchondritic mean (0.8 
± 1.7 and 0.8 ± 1.8 εHft units, respectively). The 3.29 Ga zircons’ εHfT 
value is roughly chondritic for Group 1 (0.1 ± 1.8 εHft units) but 
superchondritic for Group 2 (1.6 ± 2.5 εHft units). Fig Tree-age zircon 
(<3.28 Ga zircon) show a slightly subchondritic value (−0.1 ± 2.1). The 

Fig. 6. Trace element diagrams. [A] Dy/Yb vs Yb, [B] Dy/Yb vs Eu/Eu*, and [C] Sc/Yb vs Eu/Eu*. Error bars are omitted for clarity. Diagrams are based on previous 
work (Grimes et al., 2015; Clemens-Knott et al., 2021). 
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Hf isotope measurement of a 3.65 Ga zircon burnt through the grain; a 
previously reported 3.65 Ga zircon from the Moodies Group has a value 
of 2.1 ± 0.8 εHft units (Fig. 7; Zeh et al., 2013). The isotope results agree 
with previous work on Moodies and Fig Tree detrital zircons (Zeh et al., 
2013; Wang et al., 2022a) and matches those of granitoids from the 
BGGT and AGC (Fig. S5). 

It is notable that the lowest εHft values systematically decrease with 
age and are largely delineated by an inferred mantle extraction trend 
line from around 3.8 to 3.65 Ga (Fig. 7). If one assumes a single source, 
this means that the lowest εHft values fall above a line of 176Lu/177Hf of 
0.012, typical for felsic crust for all zircons; the vast majority fall above a 
line of 176Lu/177Hf = 0.02, typical for mafic crust. These crustal- 
evolution lines intersect with CHUR at 3.65 Ga. However, mantle 
extraction ages also depend on the evolution of the depleted mantle, 
which is poorly constrained (Petersson et al., 2020). If a depleted mantle 
had already formed, mantle extraction may have happened as early as 
3.8 Ga. The highest εHft values for every cluster are all superchondritic, 
reaching as high as 6 εHft units. Overall, these results suggest that 
magmatism throughout the evolution of the BGGT continuously had two 
sources: reworking of older crust extracted from the mantle sometime 
between 3.8 and 3.65 Ga, and juvenile crustal additions. 

4.4. O isotope systematics 

Zircon’s oxygen isotopes are a temperature-dependent proxy for 
fluid and solid interactions in the crust (Valley, 2003). The δ18O 
composition of the modern mantle has been well established and falls 
within a narrow range of δ18O of 5.3 ± 0.6 ‰ (2SD) (Valley et al., 1998, 
2005; Cavosie et al., 2009). Elevated δ18O values in zircon (>6.3‰) 
result from crystallization in magmas whose source materials (or major 
assimilants) have undergone low-temperature alteration prior to 
melting, while low δ18O values (<4.7‰) result from high-temperature 
alteration by low δ18O surface water. 

The O isotope data can be divided into two groups (Fig. 7B). Firstly, 
zircons older than 3.28 Ga show δ18O values largely within the mantle 
field. Only a single 3.46 Ga zircon and three zircons of the 3.29 Ga Group 
2 age cluster clearly plot within the supracrustal field. Secondly, there is 
an increase in δ18O values starting at 3.28 Ga, reflecting the input of 
surface-altered materials into the melts. Fig Tree zircons show the 
highest values of all age clusters (6.6 ± 0.7 ‰). These results are similar 
to previous work (Wang et al., 2022a; Wang et al., 2022b), albeit our 
data suggest that reworking of abundant surface-altered materials began 

earlier (at 3.28 Ga) compared to the previously proposed ages of 3.26 
and 3.23 Ga, respectively. This indicates that the shift from reworking of 
mantle material to surface-altered material coincides with the onset of 
Fig Tree deposition. 

5. Discussion 

5.1. Implications for the geological evolution of the BGGT 

The geochemistry of Barberton zircons illuminates varied processes 
of felsic igneous crust generation. Since many geochemical signatures 
are non-unique, we use a synthesis of the isotopic and geochemical data 
compared to previous work on the geology, whole-rock geochemistry, 
and igneous petrology to infer the geological evolution of the BGGT. 

The formation of the BGGT commenced prior to the formation of its 
oldest preserved rocks (3.55 Ga). Physical evidence for earlier crust 
formation comes from the presence of >3.55 Ga detrital zircons from the 
GSB (see Section 5.3), two 3.7 Ga xenocrysts in a 3.5 Ga granodiorite 
(Kröner et al., 1996), and rare 3.65 Ga detrital zircons from the Fig Tree 
and Moodies Groups (Zeh et al., 2013; Drabon et al., 2017; Heubeck 
et al., 2022). Additional indirect evidence comes from negative εHfT 
values of zircons from two tuffs from the Theespruit Formation (Kröner 
et al., 2016), a εHfT value significantly below CHUR for a single 3.55 Ga 
detrital zircon (Zeh et al., 2013) and 182W isotope data of ultramafic to 
felsic rocks (Tusch et al., 2022). These low isotopic signatures may be 
related to the reworking of ancient GSB crust. Similarly, negative εHfT 
values in the AGC are also thought to be related to Hadean crust in the 
area (Hoffmann and Kröner, 2019). Yet, the bulk of 3.55 Ga zircons plot 
close to CHUR and yield mantle extraction ages ranging between ~3.8 
Ga and 3.65 Ga (Fig. 7), close in age to the oldest detrital zircons within 
the Moodies and Fig Tree groups, making this the major episode of BGGT 
inception. While the analytical results of the single 3.65 Ga zircon need 
to be taken with caution and more analyses are certainly necessary, this 
initial melting may have been hydrous melting of juvenile crust (Figs. 3 
and 4, Zeh et al., 2013). It appears that either pre-3.8 Ga materials 
consisted of isolated felsic crustal fragments that were rapidly reworked 
or that older crust was not involved in the younger magmatic episodes. 

The oldest episodes of felsic crust production that are preserved 
within the BGGT whole-rock record occurred at ~3.55 Ga and 3.46 Ga. 
The 3.55 Ga zircons show evidence for second-stage melting of relatively 
juvenile rocks (largely chondritic εHfT, relatively low Sc/Yb and U/Nb) 
that were at least partially hydrated prior to melting (some elevated U/ 
Nb and Sc/Yb). Melting occurred in the plagioclase stability field. 
Mantle-like δ18O values suggest that not much sedimentary rock was 
incorporated into the melts from which the zircons formed. Following 
this event of crustal growth, the 3.46 Ga felsic igneous episode repre
sents the predominant reworking of pre-existing crust, with some ju
venile additions. Its elevated U/Nb and Sc/Yb values suggest a more 
evolved composition with a stronger hydrous melting signature when 
compared to the 3.55 Ga crust. Based on lower εHfT values and the 
presence of 3.55 Ga xenocrysts, it is likely that some of the reworked 
crust included 3.55 Ga BGGT crust (Byerly et al., 1996). The presence of 
elevated εHfT values for both zircon clusters suggests continuous juvenile 
felsic additions. Previous work on the 3.51 Ga Steynsdorp gneiss showed 
that it formed at a shallower depth than the 3.45 Ga TTG suite, but both 
from an altered basaltic source (Moyen et al., 2019). This is consistent 
with our findings based on Eu/Eu*, Sc/Yb and U/Nb. While other ex
planations are also possible (Laurent et al., 2020), the reworking of 
hydrated crust remains a unifying feature. 

The geochemistry of 3.29 Ga zircons reveals a previously unrecog
nized episode of felsic crustal growth. Group 2 zircons of this age cluster 
show a significant excursion into the mantle field for Sc/Yb. This 
signature is similar to modern intra-cratonic rift or plume settings 
(Grimes et al., 2015), which often yield low Ti values, such as the Silver 
Spring caldera (McDowell et al., 2014) or Salton Sea rifting (Lowenstern 
et al., 1997, 2006), or continental plumes such as Yellowstone (Stelten 

Fig. 7. Summary of isotope and geochemical analyses of zircons from the Fig 
Tree and Moodies groups. Gray dots show previous detrital zircon data (Zeh 
et al., 2013; H. Wang et al., 2022; X. Wang et al., 2022). See Fig. 8 for indi
vidual TREE Groups of the 3.29 Ga age cluster and Fig. S5 for the comparison to 
possible source lithologies. 
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et al., 2014). The somewhat elevated εHfT values of this age cluster 
compared to other clusters (Fig. 8A), suggest an increase in juvenile 
additions; mantle-like δ18O values confirm a contribution of mantle- 
derived materials. Their formation contemporaneous with komatiites 
of the 3.34 to 3.26 Ga Mendon Formation, which have been interpreted 
as forming in an extensional setting driven by a deep mantle plume 
(Lowe, 1994, 1999; Trower and Lowe, 2016), suggests a change in 
geodynamic setting consistent with our interpretation. This explanation 
is strengthened by the presence of bimodal (komatiitic and rhyolitic) 
volcanism at 3.29 Ga, a hallmark of extensional settings (Pedersen et al., 
1998). However, we acknowledge that the tectonic settings of komatiitic 
volcanism are still debated and that more work is necessary on the 
tectonic setting of Mendon Formation komatiites. Moodies 3.29 Ga felsic 
conglomerate clasts and xenoliths (Kamo and Davis, 1994) should also 
be studied in more detail. In contrast, Group 1 zircons show a mostly 
hydrous melting signature and relatively lower εHfT values (Fig. 9). The 
interpretation of these data in part depends on whether Group 1 and 2 of 
the 3.29 Ga age cluster reflect two separate sources or mixing of mantle- 
derived magmas with pre-existing continental crust. 

After 3.28 Ga, we find evidence for the most arc-like melting sig
natures, the recycling of surface-altered materials (this study; Wang 
et al., 2022a; Wang et al., 2022b) and, at least by 3.23 Ga, deeper crustal 
recycling. The Sc/Yb signature of zircons of this age group is most 
similar to that of zircons formed in modern arcs, and very few zircons 
plot within the mantle field (Fig. 3). The fact that the zircons do not fall 
exclusively in the arc field for U/Nb may be related to a more mafic 
source as postulated based on similarly aged whole rock analyses 
(Moyen et al., 2019), which could explain the lower U abundance. The 
positive shift in δ18O of the zircons to supracrustal values shows that 
abundant material that had been altered in the presence of low- 

temperature water was melted at depth. While the zircon Hf isotopes 
suggest mostly crustal reworking, there is also evidence for limited ju
venile additions, as seen in isolated elevated εHfT values and the pres
ence of a few zircons that show both: mantle-like Sc/Yb and δ18O values. 
Melting depth was variable for <3.28 Ga zircons and includes the first 
occurrence of Dy/Yb > 0.4 and low Yb (Fig. 6A), which are both 
indicative of high-pressure melting in the presence of garnet. This 
interpretation matches previous explanations that these rocks formed 
from high-pressure, water-present partial melting of an eclogite facies 
metabasaltic source based on experimental work (Laurie and Stevens, 
2012). 

The crustal evolution of the BGGT apparently changed substantially 
at around ~3.3 Ga. One remarkable aspect of the older felsic episodes is 
the cyclicity of major events, with major felsic crust formation events 
occurring at ~100 Ma intervals at 3.65 Ga, 3.55 Ga, and 3.46 Ga. This 
apparent cyclicity suggests a repetitive nature to felsic crust generation. 
Elucidating the tectono-magmatic setting within which these zircons 
formed remains challenging due to the lack of modern analogues for 
possible non-uniformitarian tectonic settings. It is, however, clear that 
hydrous melting played a role throughout this time period to varying 
degrees, that there were significant mantle additions throughout, that 
newly generated magmas traversed through older felsic rocks as evi
denced by the pervasive presence of xenocrysts (de Ronde et al., 1991; 
Kröner et al., 1991; Byerly et al., 1996; Decker et al., 2015; Drabon and 
Lowe, 2022), and that there is little evidence for deformation or the 
generation of topographic highs to generate siliciclastic rocks (Lowe, 
1999). This has been used to argue for a complex interplay of magmatic 
accretion (Byerly et al., 1996; Moyen et al., 2019), delamination (Bédard 
et al., 2013) and/or cyclic partial convective overturn (Van Kranendonk, 
2011; Van Kranendonk et al., 2015; Wiemer et al., 2018; Wang et al., 

Fig. 8. Comparison of pre-3.8 Ga zircons of the GSB to detrital zircons of the Fig Tree and Moodies groups of the BGGT. [A] εHfT distribution, [B] δ18O distribution, 
[C] U/Nb vs Sc/Yb (after Grimes et al., 2015). Data only plotted for grains that we have TREE data for. We did not correct for the radioactive decay of U within zircon 
in [C], because the abundance of U has decreased by the same proportion in all relevant reservoirs due to radioactive decay. Hence, not only zircon, but also the 
Hadean mantle, crust, and source magmas would have contained about twice as much U as today, all else equal. Thus, a comparison of uncorrected values allows a 
comparison at equal relative U abundance, irrespective of the time of crystallization. 
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2022a) in a magmatic plateau. Within a magmatic plateau, mafic crust 
that was altered and hydrated at the sea floor would provide the pre
cursor crust that was reworked to form more felsic melts from which the 
zircons crystallized. However, a magmatic arc origin cannot be excluded 
based on the data presented here. 

The cyclicity of crust generation ends around 3.3 Ga with a previ
ously unrecognized episode of felsic crustal growth. Immediately 
following this event, volcanic activity occurred on a much shorter time 
scale, lacked cyclicity, and became compositionally more complex. In 
addition, this transition is associated with a major change in the stra
tigraphy of the BGGT; from a ~300 Myr period dominated by felsic and 
ultramafic igneous activity to the formation of thick siliciclastic, quartz- 
rich sedimentary strata reflecting the generation of topography at the 
onset of the deposition of the Fig Tree Group. Different models have 
been proposed for this period, ranging from modern-style plate tectonics 
(de Wit et al., 1987b; De Wit, 1998; Moyen et al., 2006; Schoene et al., 
2008; Kisters et al., 2010), squishy-lid tectonics (Moyen et al., 2019), 

and partial convective overturn (Van Kranendonk, 2011, 2021; Van 
Kranendonk et al., 2015). While the zircon signatures are non-unique, 
we prefer a model in which at least some local horizontal plate motion 
occurred. This is because the shift in zircon geochemistry coincides with 
the onset of progressive accretion based on geological relations and 
geochronology of different structural belts within the Fig Tree Group 
(Drabon and Lowe, 2022). In addition, a recent structural and 
geochronological analysis by Heubeck et al., (2022) of the Malolotsha 
area confirmed earlier postulates for a minimum of 33 km of sub
horizontal shortening towards the northwest, following Moodies depo
sition in this region. This supports earlier work that provides evidence 
for lateral motion (Lamb, 1984; Jackson et al., 1987; Lamb and Paris, 
1988; Heubeck and Lowe, 1994; Dziggel and Kisters, 2019) com
plemented by evidence for some potential vertical mobility (Van Kra
nendonk, 2011, 2021; Schmitz and Heubeck, 2021), perhaps in a 
squishy-lid environment. This orogenic stage of the BGGT evolution 
had started by 3.28 Ga but peaked with the 3.23 Ga D2 deformation 
event (Lowe, 1999), when 3.23 Ga zircons record the strong deep crustal 
melting signature of hydrated material. Together, this may reflect the 
onset of crustal thickening through the transport of surface-altered, 
hydrated materials to deep crustal levels associated with the D2 event. 
Clearly, a change in the Barberton geology towards an orogenic stage is 
directly reflected in the zircon TREE and isotope geochemistry. 

5.2. Are Archean TTGs potential analogues to Hadean source rocks? 

Hadean zircons are the only record of the Earth’s first 500 Ma of 
history. While these zircons reveal a plethora of information through 
their isotope geochemistry, TREE geochemistry, and mineral inclusions, 
the interpretation of these data is not always straightforward and similar 
datasets have resulted in vastly different conclusions (Harrison et al., 
2008; Rollinson, 2008; Kemp et al., 2010; Rasmussen et al., 2010, 2011; 
Carley et al., 2022). In addition, a comparison to modern TREE in zircon 
may not be adequate since conditions (e.g., higher heat flux from the 
mantle, reduced mantle viscosity) and hence tectonic processes were 
likely different compared to today. Previous work proposed that 
Archean TTGs may be possible analogues to settings in which the Ha
dean Green Sandstone Bed (GSB) zircons formed (Carley et al., 2022). To 
test this, we will compare and contrast Archean detrital zircons to >3.8 
Ga zircons from the GSB. During this comparative analysis, we will refer 
to the zircons from the Green Sandstone Bed as “GSB” zircons and those 
from the Moodies and Fig Tree Groups as “BGGT” zircons. While the 
zircons of the GSB are theoretically part of the BGGT, they show a 
significantly different zircon age distribution and Cr-spinel geochem
istry, and hence a fundamentally different source terrane to that of the 
BGGT (see section 5.3). 

The Isotope and TREE geochemistry of the GSB are discussed in 
detail by Drabon et al., (2021,2022). The 4.2 to 3.3 Ga detrital zircon 
suite of the GSB shows a notable transition in its geochemistry at 3.8 Ga 
(Drabon et al., 2022). Zircons older than 3.8 Ga have been interpreted to 
reflect long-lived, mantle-derived protocrust that experienced no juve
nile additions based on the array of decreasing εHfT with time and 
mantle-like TREE signatures (Drabon et al., 2021, 2022). 

The geochemical and isotopic composition of BGGT detrital zircons 
show significant differences to those >3.8 Ga of the GSB. The starkest 
difference is seen in the Hf isotope record (Fig. 8A). BGGT zircons do not 
show evidence for intracrustal reworking without juvenile additions; 
instead, each episode of felsic crust formation shows a mix of juvenile 
additions together with remelting of older crust, with the mean of each 
age cluster being close to CHUR. The TREE geochemistry of BGGT zir
cons also shows some notable differences, with none of the BGGT zircons 
showing the same distribution of Sc/Yb and U/Nb data as the pre-3.8 Ga 
GSB zircons (Fig. 8C; 2D Kolmogorov-Smirnov test; p<8x10-7). The most 
favorable comparison is for Group 2 of the 3.29 Ga cluster and the 3.55 
Ga zircon cluster, which partially overlap with the pre-3.8 Ga GSB zir
cons (Fig. 8C). However, the 3.29 Ga and the 3.55 Ga BGGT zircons have 

Fig. 9. Comparison of evolutions of the BGGT (this study) and the GSB zircons 
(Drabon et al., 2021, 2022). [A] Detrital zircon age distribution for the Green 
Sandstone Bed (Drabon et al., 2021; Byerly et al., 2018) compared to other data 
from the BGB (Zeh et al., 2013; Drabon et al., 2017, 2019, 2022; Stoll et al., 
2021; Stutenbecker et al., 2019). Comparison of [B] εHfT, [C] δ18O, [D] U/Nb, 
[E] Sc/Yb, and [F] Eu/Eu* values for the GSB (Drabon et al., 2022) to other 
data from the BGGT (this study). 
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higher U values compared to pre-3.8 Ga GSB zircons. This may hint at 
remelting of some pre-existing hydrated crust for the BGGT zircons, 
melting at different depth, and/or a shift in mantle composition. The 
3.46 Ga age cluster, which has been suggested to be an analogue for 
Hadean crust formation in the Jack Hills (Laurent et al., 2022), shows 
fundamental differences to the >3.8 Ga GSB zircons when Sc and Nb are 
considered. Lastly, GSB and BGGT zircons show a similar range in δ18O 
values but differ in their clustering (Fig. 8B). BGGT zircons show distinct 
clustering while pre-3.8 Ga GSB zircons instead show a wide range of 
values from mantle to supercrustal values for their 400 Ma history 
without any distinct clustering. This may be related to a wide range of 
sources rather than a limited number of sources as is the case for the 
detrital zircons of the Fig Tree and Moodies Groups. 

In summary, Barberton felsic igneous rocks and co-magmatic vol
canic rocks are not good analogues for the majority of Hadean zircon of 
the GSB. We argue that the majority of pre-3.8 Ga zircons of the GSB 
formed in vastly different tectono-magmatic environments to those of 
volcanic and plutonic igneous rocks of the BGGT due to their differences 
in crustal residence time and in volume of hydrous melting. 

5.3. Comparison of the evolution of the source terrane(s) to the GSB and 
BGGT and implications for the formation of Archean proto-continental 
crust 

One unresolved question in early Earth relates to the timing and 
process of continent formation. The detrital zircons from the BGGT and 
GSB combined span ~900 million years, between 4.15 and 3.22 Ga, 
providing two complementary geochemical records of early crust 
generation. 

The BGGT and GSB detritus tapped largely different sources of two 
neighboring terranes. Many of the detrital zircon and spinel grains of the 
GSB appear to have been derived from outside the BGGT or from units 
currently unrecognized within the Barberton area (Byerly et al., 2018; 
Drabon et al., 2021, 2022). In terms of felsic igneous sources, most 
zircon age clusters seen in the GSB (3.31 Ga, 3.38 Ga, 4.1 Ga) are not 
seen in 112 detrital zircon sandstone samples collected throughout the 
greenstone belt (Fig. 9A) (Drabon et al., 2021). In terms of mafic igneous 
sources, the dominant Cr-spinel population from the GSB does not 
overlap in its geochemistry with those of associated komatiitic flow 
sequences of the Mendon Formation (Byerly et al., 2018; Drabon et al., 
2021). Many of the zircons and chromites are well rounded, suggesting 
that they have been transported for long distances and/or experienced 
efficient reworking while being transported from their respective sour
ces, possibly by aeolian processes (Lowe et al., 2021). On the other hand, 
there is some evidence for a connection between the two terranes. 
Firstly, proposed aeolian transport of relatively coarse GSB detritus, 
much coarser (~150 µm; Lowe et al., 2021) than typical wind-blown 
loess (<20 µm) that can be blown for great distances, would be 
limited to at least connected terranes. Secondly, there is some overlap in 
ages: the 3.65 Ga age cluster in the GSB is represented by rare detrital 
zircons of the same age in Moodies and Fig Tree sediments and both 
have a similar geochemical signature (Fig. 9); the major 3.38 Ga event in 
the GSB source terrane may be represented in the Barberton area by 
dykes intruding the Theespruit Pluton dated at 3383 ± 11 Ma and 3388 
± 38 Ma (Moyen et al., 2019). Thirdly, negative εHfT values of two 
Theespruit tuffs may represent some reworking of pre-3.8 Ga protocrust. 
Lastly, the BGGT and GSB zircon suites show similar, albeit not con
current, changes through time in their zircon geochemistry (Fig. 9). 
These similar stages of crustal evolution within the two terranes may 
reflect the diachronous evolution of tectonic processes across two con
nected terranes. As a more recent example, rifting that opened the Rocas 
Verdes back-arc basin during the Jurassic and earliest Cretaceous and 
associated rift volcanism commenced diachronously over tens of mil
lions of years and hundreds of kilometers (Malkowski et al., 2016). 
However, the difference in timing of the onset of extension and short
ening of tens of millions of years between the GSB and the BGGT 

suggests that the two terranes must have been quite far apart, possibly 
hundreds of kilometers. 

In summary, the use of detrital zircons allows us to study the 
geochemical evolution of a much larger number of felsic igneous events 
than are preserved in the Barberton region, recorded by detrital zircons 
derived from crust that is now lost or deeply buried. Combining both the 
BGGT and GSB zircon data provides a prime example of the geochemical 
evolution of Archean continents and, while speculative until whole 
rocks that sourced the GSB are found, reveals our preferred model of the 
buildup of Archean proto-continental crust includes at least four stages 
(Figs. 9 and 10): 

Stage I (Long-lived protocrust; Fig. 10A): The formation of a domi
nantly mafic crustal nucleus was initiated by extraction from the mantle 
between 4.4 and 4.2 Ga (Drabon et al., 2022). This crust experienced 
continuous intracrustal reworking with no, or only very limited, evi
dence for juvenile felsic additions and hydrous melting (Fig. 9). The 
continuous mantle signature as suggested by zircon trace elements in
dicates that arc-accretion was not a major process. Importantly, the 
zircon geochemical signatures are significantly different from those of <
3.8 Ga zircons from the GSB and BGGT, implying that crustal processes, 
conditions, and/or source materials were vastly different. 

Stage II (crustal growth; Fig. 10B): The onset of crustal growth and 
magmatic thickening though frequent juvenile felsic additions, crustal 
reworking, and the onset of fluid-assisted melting, possibly at greater 
depths. This started at ~3.8 Ga in the GSB and at least since 3.65 Ga in 
the BGGT source terranes. Zircons <3.8 Ga in the GSB show abundant 
similarities to those of the BGGT, including common CHUR-like εHfT and 
hydrous melting TREE signatures (Drabon et al., 2022; Fig. 9B, D, E). 

Fig. 10. Block diagrams representing the proposed crustal evolution. [Stage I] 
Formation of long-lived crust, [Stage II] formation of an oceanic plateau, and 
[Stage III] onset of extension and shortening. 
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Isotopic evidence for the Hadean protocrust is almost entirely lost dur
ing this time period (Fig. 9B), either because it was small in extent or 
because it was not involved in subsequent melting. In either case, our 
data provide no evidence for a substantial Hadean continental basement 
below the BGGT. Our results are consistent with formation of an oceanic 
plateau for the BGGT, as suggested for the evolution of the Onverwacht 
Group due to the lack of evidence for tectonic deformation (e.g., Byerly 
et al., 2019; Moyen et al., 2019), but horizontal tectonics cannot be 
excluded based on the zircon geochemistry alone. 

Stage III (extension and shortening; Fig. 10C): 
Stage IIIa: The abrupt influx of mantle material in an extensional 

setting (3.38 Ga in the GSB and 3.29 Ga in the BGGT). In both regions, 
this can be traced by a sharp drop in Sc/Yb and elevated Nb values 
(Fig. 9D and E). The occurrence of the lowest Eu/Eu* and Sc/Yb values 
in both sequences (Fig. 9F) may relate to melting and fractionation 
within the plagioclase stability field, hence melting at relatively shallow 
depth of a mafic precursor derived from the mantle. In the BGGT, 
geological relations support mantle-plume induced extension (Lowe, 
1999; Trower and Lowe, 2016). In the GSB, low δ18O values and high Ti 
values are similar to plume/extensional settings (Stelten et al., 2014; 
Zhu et al., 2021). The similar evolution of the two source terranes at this 
time suggests a connectivity of the two terranes at least since Stage III. 

Stage IIIb: This episode is dominated by crustal reworking and 
characterized by zircon signatures more akin to modern subduction 
zones (3.31 Ga in the GSB and 3.28 Ga in the BGGT). This includes an 
increase in hydrous melting (highest Sc/Yb), associated with an 
apparent shift to deeper melting and/or more oxidizing conditions (in
crease in Eu/Eu*, Dy/Yb) (Fig. 9E, F). In the BGGT, this is the first time 
when TREE and O isotopes reflect deep melting of surface-derived rocks. 
It is quite remarkable that this is the first time in almost 900 million 
years of crustal evolution in the area. Overall, this time period may mark 
the onset of crustal amalgamation and thickening. While controversy 
exists as to what the exact tectonic setting was during that time, strati
graphic and structural data suggest at least some subhorizontal short
ening (Drabon and Lowe, 2022; Heubeck et al., 2023). The close 
association between mantle plume/extension and lateral accretion may 
reflect a cause-and-effect mechanism. For example, some form of hot 
proto-subduction may have been triggered by gravitational instability 
due to the initiation of extension (Tang et al., 2020) or plume activity 
(Gerya et al., 2015). Other, non-uniformitarian triggers may have been 
subduction triggered by meteorite impacts such as suggested for the S6 
and S8 impact events at ~3.3 Ga recorded in the Barberton area (O’Neill 
et al., 2020). More work will be necessary to deduce a possible cause- 
and-effect relationship. 

Stage IV: Craton stabilization: Although not part of this study, pre
vious work identified a final episode of generation of a large, buoyant 
continental block, today represented by the Kaapvaal Craton. This 
episode is characterized by gradual crustal stabilization and thickening 
through intrusion of large potassic granitic batholiths, intracrustal 
melting, several phases of regional metamorphism, and late-stage 
deformation between 3.216 Ga and ~3.1 Ga (Westraat et al., 2005; 
Belcher and Kisters, 2006; Schoene and Bowring, 2010; Byerly et al., 
2019). This episode occurred long after sedimentation and deformation 
in the BGGT had ceased (Byerly et al., 2019). 

As detailed above, the formation of the Archean continental crust in 
the Barberton area can be seen as evolving through several stages from 
static to more dynamic: from Stage I during which felsic crust formed in 
long-lived protocrust, to Stage II significant crustal growth and 
magmatic thickening perhaps in a mafic plateau, and Stage III horizontal 
mobility expressed by extension and shortening, the latter of which 
caused tectonic amalgamation and thickening. While the zircon 
geochemical signatures during Stage III would be consistent with mod
ern plate tectonics, it is unclear whether plate tectonics were even 
rheologically feasible during the early Earth due to the hotter mantle 
(Davies, 2009; Herzberg et al., 2010; Ganne and Feng, 2017; Korenaga, 
2018). While these conditions may have hindered the development of 

senso stricto modern-style plate tectonics, they would have still allowed 
for some compression and shortening, based on numerical modeling 
(Sizova et al., 2010; Wang et al., 2018; Tang et al., 2020). In either case, 
continent formation in the Barberton region was a multi-step process 
that may have included some form of horizontal tectonics in the latter 
half of its formation. 

6. Conclusion 

The Barberton Greenstone Belt reveals a rich geochemical record of 
crustal evolution and geodynamics covering almost a billion years of 
felsic crust generation, only about half of which is recorded in the whole- 
rock record. Detrital and tuffaceous zircons thus provide a more com
plete picture of the crustal evolution in the broader Barberton region, 
revealing several insights:  

(1) The broad trends in the elementally partitioned geochemistry of 
zircons from known sources matches that of related whole-rocks 
and the local geology, showing that zircon can record crustal 
conditions and source compositions of melts in which they 
formed in many instances when multiple geochemical proxies are 
combined. However, it is important to note that zircons may be 
crystallizing from residual melts produced by differentiation of 
the parental melt and may hence vary in detail from the bulk 
composition of its source (Laurent et al., 2022).  

(2) In every age cluster (3.65, 3.55, 3.45, 3.28, and <3.29 Ga) for 
Barberton detrital zircons (excluding GSB zircons) at least some 
of the zircon compositions indicate evidence for hydrous melting, 
indicating that the different types of processes that melted hy
drated rock were active throughout the time of greenstone belt 
evolution.  

(3) There were two major episodes of mantle extraction in the BGGT 
at ~3.65–3.80 Ga and, previously unrecognized, at 3.29 Ga. Both 
are followed by episodes of dominated by crustal reworking, but 
only the latter event was immediately followed by a major tec
tonic episode of orogenesis that initiated the generation of 
topography and siliciclastic debris, and culminated in the onset of 
deep recycling of surface-derived materials at 3.23 Ga. 

(4) Barberton TTGs are not a good analogue for Hadean crust for
mation as indicated by a comparison to the oldest zircons in the 
Green Sandstone Bed. The Hadean zircons from the GSB are 
vastly different to the Barberton TTG zircons in their εHfT, δ18O 
and TREE signatures, suggesting that they formed by different 
processes, under different conditions, and/or from different 
source materials.  

(5) The geochemical and tectonic evolution of the broader Barberton 
region (incl. detrital zircons of the Moodies, Fig Tree groups, and 
the GSB) occurred in several stages, with zircon signatures for 
zircons younger than <3.4 Ga being most similar to that of 
modern plate tectonics. While it is unclear if this last stage rep
resents plate or squishy-lid tectonics, it does suggest that Archean 
continent formation and the onset of modern-style plate tectonics 
was a multi-step process spanning hundreds of millions of years 
in the Barberton region. 
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