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Abstract

Modern calcifying marine organisms face numerous environmental stressors, including
overfishing, deoxygenation, increasing ocean temperatures, and ocean acidification (OA).
Coastal marine settings are predicted to become warmer and more acidic in coming
decades, heightening the risks of extreme events such as marine heat waves. Given
these threats, it is important to understand the vulnerabilities of marine organisms that
construct their shells from calcium carbonate, which are particularly susceptible to
warming and decreasing pH levels. To investigate the response of four commercially
relevant bivalve species to OA and differing temperatures, juvenile Mercenaria
mercenaria (hard shell clams), juvenile Mya arenaria (soft shell clams), adult and juvenile
Arctica islandica (ocean quahog), and juvenile Placopecten magellanicus (Atlantic sea
scallops) were grown in varying pH and temperature conditions. Species were exposed
to four controlled pH conditions (7.4, 7.6, 7.8, and ambient/8.0) and three controlled
temperature conditions (6, 9, and 12°C) for 20.5 weeks and then shell growth and
coloration were analyzed. This research marks the first direct comparison of these
species’ biological responses to both temperature and OA conditions within the same
experiment. The four species exhibited varying responses to temperature and OA
conditions. Mortality rates were not significantly associated with pH or temperature
conditions for any of the species studied. Growth (measured as change in maximum shell
height) was observed to be higher in warmer tanks for all species and was not
significantly impacted by pH. Two groups (juvenile M. arenaria and juvenile M.
mercenaria) exhibited lightening in the color of their shells at lower pH levels at all
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temperatures, attributed to a loss of
shell periostracum. The variable
responses of the studied bivalve
species, despite belonging to the
same phylogenetic class and
geographic region, highlights the
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need for further study into
implications for health and
management of bivalves in the face
of variable stressors.

1. Introduction

1.1 Present and future
stressors on marine calcifying
organisms and the Gulf of
Maine ecosystem

Around a third of the excess CO2
released into the atmosphere since
the start of the Industrial Era has
been taken up by oceans, increasing
seawater dissolved inorganic carbon
content [1]. This process is termed
“ocean acidification” (OA) and has
led to a decrease in global ocean pH
of 0.1 pH units since ~1800 CE [2-5]

with a further reduction of ~0.1-0.3 pH units predicted by 2100 CE under several CO>
emission scenarios [6—9]. Carbonate saturation states (aragonite and calcite; Oaragonite and
Ocalcite) are declining along with pH. As O (for both aragonite and calcite) approaches a
critical level (generally 1.0-2.0), many calcifying organisms (shellfish, corals, coralline algae,
etc.) have difficulty biomineralizing calcium carbonate hard parts, such as shells and
skeleton [10-12]. Below an O of 1, for both aragonite and calcite, CaCOs starts to dissolve
[5]. However, the degree to which marine calcifying organisms are impacted by OA,
especially in coastal systems that generally have more variable and lower pH conditions
compared to the global ocean, is of importance to both ecological and economic systems.
Marine calcifiers have developed diverse calcification mechanisms [13-16] through their
distinct evolutionary histories. As a result, differing taxonomic groups exhibit varying
resiliency when confronted with low saturation states [17]. Given predictions of future
acidification [6, 7], a slight difference in this critical O threshold will substantially impact the
health of marine calcifiers.

The Gulf of Maine (GoM) is a semi-enclosed body of water in the northwest Atlantic
Ocean, bounded by Cape Cod (Massachusetts, USA) and Cape Sable Island (Nova Scotia,
Canada), including Georges Bank and Browns Bank. Oceanic mixing facilitates access to vital
nutrients necessary for sustaining high productivity and abundant fish populations in the
GoM. This is therefore an essential marine habitat for a diverse range of species and has
been identified as a climate change hotspot [18, 19]. Recent sea surface temperatures (SSTs)
in the GoM are increasing faster than 99% of the global ocean [20]. The Boothbay Harbor
SST record (located in central coastal Maine, USA), extends from 1905 CE to present, and
provides instrumental evidence of warming rates of up to 0.4C/decade, with an increase in
annual average temperature of more than 2.1T since measurements began in 1905 [21]. In
addition to this longer-term trend, marine heat waves have become more frequent with
fisheries being particularly sensitive to these heat extremes in this region (e.g. [22] and in
other parts of the ocean [23-26]). Analyses of seawater temperature profiles from the GoM
and surrounding regions by Seidov et al. [27] indicate that the rate of warming in the past
ten years is faster than the previous forty years, and this uptick in warming is partly related
to a change in the northern edge of the Gulf Stream, which allows more warm water to
enter the Gulf of Maine. Paleoclimate studies using oxygen isotopes in clam shells and
climate model simulations suggest that the warming in the Gulf of Maine started in the late
1800s, reversing 900 years of cooling in this region, with the current rate of warming
unprecedented in the last millennium [28, 29]. These changes in ocean temperatures are the
result of a combination of anthropogenic warming and hydrographic changes associated
with regional water mass variability [28—30]. Predictions of climatic temperature rise [19]
and marine heat waves [31, 32] demonstrate that marine calcifiers in this region likely will
be impacted by warmer ocean temperatures.

While GoM temperatures are documented to be changing dramatically, changes in pH
and possibly OA conditions are less clear. Marine pH (and Oaragonite) is spatially and
temporally variable [33]. pH is particularly variable in coastal environments such as the GoM,
where freshwater influences, high productivity, and ocean circulation impact carbonate
chemistry [2, 34]. These variables are impacted in deeper waters by the interaction of the
warm Gulf Stream from the south and the cold Labrador Current from the north, with
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surface waters composed primarily of waters from the Scotian Shelf [35]. Carbonate system
modelling in this region suggests that the full impacts of ocean acidification may have been
partially masked by simultaneous ocean warming in this region [2, 34]. As a result, the
impacts and rates of ocean acidification in the GoM are highly uncertain. However, models
suggest that surface water O across the GoM is expected to fall below a critical value of 1.5
by 2050 CE, with the largest impacts in coastal environments impacted by freshening [2].
This interplay of distinct water masses forms a unique marine environment that warrants
intensive study of the past, present, and future marine environmental conditions (including
temperature and pH) and their impact on the organisms that inhabit the GoM.

1.2 Documented impacts on marine calcifiers to OA and warming
conditions

OA negatively impacts marine calcifiers (e.g., [36—43]). These effects of OA vary among
species but include decreased survival, calcification, growth, development, and overall
population decline [43]. For example, in the Nucella lapillus (dogwhelk), OA has caused
negative impacts on shell strength, thickness, and size [44]. For some species, the negative
impacts are more acute in early life stages. Some species show suppressed growth in larval
and juvenile stages and suffer deformities and reduced survivorship in their larval stage [10,
45, 46]. For some bivalves, OA conditions impact the type of mineral precipitated (e.g.,
dissolution-resistant calcite substituting for aragonite) and whether the mineral has a
protective layer of organic periostracum [47-50]. In many bivalves, this periostracum plays a
vital role in calcification and protects from disease, predation, and corrosion. For instance,
mussels that have lost their periostracum are shown to be more vulnerable to dissolution
[51].

The combined effect of elevated temperature and low pH are varied but are potentially
exacerbated when combined in some taxa [49, 50, 52]—e.g. Tripneustes gratilla (tropical sea
urchin) [53]. However, other species experience minimal impacts or could benefit from
increasing water temperatures and increases in pCO:z (e.g. Pisaster ochraceus (ochre sea
star); [54]). In the bivalve species Mytilus edulis (blue mussel) and Arctica islandica (ocean
quahog), minimal impacts of higher pCO: at higher temperatures have been observed in
previous controlled experiments (pH range = 7.63—-8.01; [55]). In fact, A. islandica shell
growth continued when living in undersaturated (O<1) conditions during a three-month tank
experiment (pH range = 7.5-8.1; [56]). However, whether these results would be maintained
under permanent OA conditions is uncertain. For A. islandica, an increase in temperatures
led to an increase in growth under experimental conditions, but once temperatures
approached 16T, growth rates then decreased (temperature range = 7.5-16C; [55]). This
growth with warming might reflect a change in shell microstructure, as increased
temperatures in laboratory-grown A. islandica lead to an increase in the size of the largest
individual biomineral unit and a larger proportion of material in the crystalline phase [57].

The differing results for the seemingly OA-resistant M. edulis and A. islandica compared
to other taxa indicate that the effects of acidification and temperature are dependent on the
species, even for members of the same class (Bivalvia) and characteristics of each species
might make them more or less susceptible to the singular or combined effects of increased
temperature and acidification [58].

PLOS Climate | https://doi.org/10.1371/journal.pcim.0000509 November 4, 2024 3/ 38




PLOS CLIMATE

Bivalve response to ocean acidification and temperature

1.3 The response of economically and ecologically important shellfish to OA
and temperature conditions in the Gulf of Maine

Collectively, the knowledge gap regarding how various shellfish will respond to persistent or
semi-persistent OA conditions and rising temperatures is substantial. Given the varied
threats to organisms within the GoM, additional study of their responses is warranted. To
address this gap, we cultured four vulnerable, abundant, and commercially important
species from the GoM region in a 20.5-week tank experiment.

Specifically, the experiment was performed with adult and juvenile A. islandica (ocean
quahog), juvenile P. magellanicus (Atlantic sea scallops), juvenile M. mercenaria (hard shell
clams) and juvenile M. arenaria (soft shell clams) at four controlled pH conditions (~7.4, 7.6,
7.8, 8.0) and three controlled temperature conditions (~6, 9, 12T) utilizing a flow-through
system. This is the first study that directly compares these species’ biological responses to
temperature and OA conditions within the same controlled experiment.

2. Methods
2.1 Species studied

A. islandica (ocean quahog) are widely distributed along the east coast of the United States
and Canada from Cape Hatteras, NC (USA) to Newfoundland (Canada), and along the Atlantic
coastlines of northern Europe [59-61]. A. islandica are a slow-growing animal, living for over
500 years [62, 63]. This species of clam is a filter feeder, buries itself in ocean floor sediment,
and has a temperature range of 6 to 16T for optimal growth conditions [64, 65] but can
survive at temperatures of 1 to 20T ([66] and references therein). The U.S. harvest of A.
islandica from 2023 was valued at US$21 million [67].

M. mercenaria (hard clam or northern quahog) are also found along the U.S. and Canada
Atlantic coastline from Florida (USA) to Nova Scotia (Canada). These bivalves can live up to
40 years and reach a maximum height of 127 mm. M. mercenaria are sessile, burrowing in
sediment until only their siphon is exposed for feeding purposes. They have an ideal
temperature for growth of 20T [68]. The 2018 estimate of the U.S. economic impact of M.
mercenaria fisheries was US$52 million [69].

M. arenaria (soft shelled clam, longnecks, or steamer) are native to the range from
Labrador (Canada) to Cape Hatteras, NC (USA). More recently, they were introduced in other
regions, including the eastern Pacific coast of the United States and Canada, and in the
North Atlantic around Europe, where they burrow in soft sediments in shallow water and
intertidal mud flats [70—73]. M. arenaria have a typical adult size of 75 to 100 mm, a typical
lifespan of 15 years [74] and can survive in temperatures up to 28C [75]. Commercial
landings for the U.S. from 2019 totaled $23.5 million [76].

P. magellanicus (Atlantic sea scallops) have a similar range to the other bivalves in this
study; from the Mid-Atlantic coast of the United States to the Canadian border along the
Atlantic coast [77]. They have a high economic value to the US fisheries industry, with 2022
U. S. commercial landings totaling 32 million pounds valued at US$480 million [76, 78]. A
small percentage (5 to 10%) of individuals are albino [79] and, unlike other bivalves in this
study, P. magellanicus can move in the water to escape predation [76, 80]. The optimal
growth temperature for this species is 10 to 15T [81].
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2.2 Field collection

Adult (n = 15; age range ~14 to 62 years) and juvenile (n = 67; less than 1 year old) A.
islandica specimens were collected via a commercial dredge off of Jonesport, Maine, USA
(44°

33.247°N, 67°16.183’W) in ~76—85 m water depth by the vessel FV 3D’s in September 2021.
Juvenile (1-2 years old) P. magellanicus (Atlantic sea scallops, n = 73) were obtained from
Marsden Brewer of PenBay Farmed Scallops in Stonington, Maine (USA) and were cultivated
from GoM wild spat in East Penobscot Bay. Juvenile M. mercenaria (hard shell clams, n =
161) and juvenile M. arenaria (soft shell clams, n = 160) were supplied by the Downeast
Institute Hatchery in Beals, ME in November 2021 (map of these sites in S1 Fig). All
specimens were transported to the Schiller Coastal Studies Center (SCSC; Bowdoin College,
Orr’s Island, ME) immediately after collection and placed in a common flow-through tank at
ambient temperature and pH until the start of the experiment. All specimens were tagged
and given alphanumeric identifiers used to track specimens throughout the experiment and
subsequent analysis.

2.3 Experimental conditions and design

The 20.5-week tank experiment (January 14 to June 8, 2022) was conducted at the SCSC
flowing seawater laboratory. Specimens were cultured in four pH treatments (7.40+0.01,
7.64
+0.03, 7.84% 0.04, ambient; 8.00+0.04) and three temperature treatments (6.29+0.15, 9.05
$0.19, and 11.99+40.18C) (Fig 1; Table 1; 20 pH and > 196000 temperature measurements).
These three temperatures were chosen as they were within the range of ideal conditions for
most of the studied species to ensure sufficient growth. The four pH treatments were
chosen to span the range of predicted coastal pH values by the end of the century [82].
Coastal seawater was pumped into the flowthrough seawater lab and sixteen experimental
tanks where conditions were manipulated to the targeted pH and temperature (Fig 1). All
tanks were set to a flow rate of 1 L/min.

The incoming seawater was chilled to <6C with an Aqualogic DX Heat Exchanger System
before being diverted into two Apex control systems that each controlled and monitored
two target pH levels (neptunesystems.com). To achieve the target pH levels, CO2from

compressed cylinders was bubbled into the water of a diffusion chamber leading to each of
the three controlled pH systems. The three Apex systems each delivered CO»-treated
seawater to four experimental tanks via a four-outlet manifold. The Apex control program
used a pH-stat system that measured pH in one of the four experimental tanks per pH level
every minute and controlled pH by bubbling COzin a diffusion chamber when pH
measurement exceeded the target value. For the ambient pH culture conditions, pH was
monitored by the Apex system but carbonate chemistry was not altered from the incoming
seawater.
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. e 0 L _pH 7.8 o
diffuser pH7.4 diffuser ~PHT.6 diffuser diffuser pH 8.0

R
Seawater inflow

Fig 1. Schematic of the experimental design of the pH and temperature-controlled culture experiment in Schiller Coastal Studies Center (SCSC; Bowdoin
College, Orr’s Island, ME). Seawater was pumped into a chiller and cooled to <6C before being pumped to CO, diffusers to achieve the three pH
treatments. The ambient pH tanks received no treatment. The water was then heated to the target temperature by heaters within each tank. pH was
monitored and adjusted with three Apex systems, temperatures were tracked with two Tidbit probes per tank and both pH and temperature were
confirmed with weekly sampling with YSI probes. Colors representing pH and temperature treatments are consistent throughout subsequent figures.

https://doi.org/10.1371/journal.pclm.0000509.9001
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Table 1. Continu ed)

pH

treatment
ambient
ambient
ambient
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The temperature treatments were individually controlled in each tank with Inkbird
controllers and two heaters (500/800W) per tank. The temperature was measured by two
Hobo Tidbits (MX2032) in each experimental tank which recorded temperature every
minute. Aquarium pumps circulated water and homogenized temperature and pH conditions
within each tank. The stability of the experimental conditions in each tank was confirmed
with weekly measurements of pH, temperature, salinity, and dissolved oxygen using a YSI
Pro-Plus handheld sonde (Xylem Inc.).

Weekly water samples were collected from each tank to determine dissolved inorganic
carbon (DIC), total alkalinity (TA) and total pH (pHr) of the experimental tanks. 250 mL water
samples were filtered with a 0.45um in-line filter, stored in borosilicate glass bottles and
poisoned immediately after collection. DIC and TA samples were collected in screw-top
bottles while pH samples were collected in bottles with greased ground glass stoppers. All
samples were analyzed within eight months of the experiment’s completion. pHrt, O and
pCO2 were also calculated from DIC and TA using Seacarb in R using K1 and K2 values of [83].
Carbonate chemistry was measured directly from the tanks weekly to confirm target pH
conditions were met, and to consider temperature dependent pH effects.

Limited food availability can stress marine organisms [84]. To mitigate food limitation, the
study tanks were supplemented with Shellfish Diet 1800 five times per week by mixing 1 mL
(five different microalgae at a concentration of 2 billion cells/mL) of food with seawater and
placing the food mixture into each tank (reedmariculture.com/products/shellfish-diet).

Additionally, the tanks were checked weekly for appropriate flow rates, and any visibly dead

specimens were removed and recorded.

2.4 Shell morphometrics

All study specimens were measured for maximum height, dry (live) weight and buoyant
weight at the start and end of the experiment. Specimen maximum height was obtained
using a digital caliper positioned on the maximum growth axis of the shell (Fig 2). Dry (live)
and buoyant weight was measured with Mettler Toledo (ME204E) and Ohaus Model
Adventurer balances, respectively (S2 Fig; [85, 86]). After dissection at the end of the
experiment, shell weight was measured using an Ohaus Model Adventurer (AR1140)
balance. Prior to the start of the experiment (January 2022) and ~12 weeks into the
experiment (mid-April 2022), all specimens were placed in a calcein bath for 24 hours at
ambient seawater conditions. This provides an unambiguous indicator of the start of the
experimental period (and the midpoint in April) when shells are viewed under fluorescent
light. The calcein stain lines were used to confirm some growth measurements (S3 Fig).
Approximately half of the scallops (n = 32) were removed on April 14, 2022, and were
measured for maximum height, dry (live) weight and buoyant weight but excluded from
analysis as they were not grown in the experiment for a comparable amount of time to the
other study groups.

Photos were taken of all specimens at the end of the tank experiment since there were
observable visual differences in specimens within the same species group. Shell coloration
can indicate differences in the periostracum which is important for calcium carbonate
deposition and protection against dissolution and predation [48, 87-93]. Measurements of
shell coloration were performed using ImageJ [94]. The shell’s outer edge was outlined
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manually using the polygon tool, and any shell label was excluded from the polygon (Fig 3).
The Histogram tool from the Analyze menu displayed a histogram of the distribution of gray
values (unitless) from the shell image. From this, the mean value for coloration of each shell
was determined. Since color (RGB) images were used, the histogram was calculated by
converting each pixel to grayscale using the formula gray =

0.299*red+0.587*green+0.114*blue. Larger values of coloration indicate a more white/less

gray image.
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Fig 2. Visual examples of the change in maximum height measure. The left image for all specimens were taken
before the start of the tank experiment; the right image is the same specimen after being in the tank experiment
for 20.5 weeks. All pictured specimens were grown in 9T tanks. A. Juvenile M. mercenaria; B. Juvenile M. arenaria;
C. Juvenile A. islandica; D. Juvenile P. magellanicus. The scallop image taken before the start of the experiment (in
D) was taken after an alphanumeric ID was chosen but before the tag was attached. A. and B. were grown in pH 7.8

tanks and C. and D. were grown in pH 7.6 tanks.
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https://doi.org/10.1371/journal.pcim.0000509.9g002
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N: 668573 Min: 9
Mean: 114.196 Max: 238
StdDev: 28.939 Mode: 108 (12540)
Value: --- Count: —

Fig 3. Example of coloration measurement taken in ImageJ for M. mercenaria specimen w48 at the conclusion of the 20.5-week experiment.
A. Image) histogram of color intensity of the defined shell region. B. Polygon outline used for generating histogram in (A) avoiding any ID tags.
Note that the two labels were excluded from the polygon.

https://doi.org/10.1371/journal.pclm.0000509.9003

2.5 Statistical analysis

Sufficient juvenile M. mercenaria, juvenile M. arenaria, and juvenile A. islandica survived the
experiment to explore the effects of the experimental conditions on mortality, growth and
shell coloration. The adult A. islandica and juvenile P. magellanicus groups did not include
enough individuals to be evaluated statistically, but data are included for general
comparison.

The hypothesis that average tank pH and temperature impacted growth and shell
coloration response variables was evaluated using linear mixed effects models for juvenile
M. mercenaria, juvenile M. arenaria and juvenile A. islandica. The hypothesis that mortality
was influenced by pH and temperature was assessed using a generalized linear mixed-effects
model (binomial, logit link). This mortality analysis was only done for juvenile M. mercenaria
and juvenile M. arenaria due to low deaths (juvenile A. islandica) and low specimen counts
(juvenile P. magellanicus and adult A. islandica) in the other groups. Tank was included in all
models as a random effect. All models were done separately per study species. Using full
models, assumptions were verified using visual inspection of residuals versus fitted and Q-Q
plots and scaled residuals using the DHARMa package [95] in RStudio.

For each test, a ‘full’ model was first created, which included average tank pH and
temperature and their interaction. If the interaction term was not significant (assessed with
a likelihood ratio test), this term was dropped, leaving a model that included only the main
effects of the predictors (average tank pH and average tank temperature). Models were fit
using the Ime4 package [96] and all statistical analysis was done using RStudio (2022.07.2
Build 576).
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3. Results
3.1 Abiotic factors

The actual pH and temperature conditions within each tank were stable throughout the
experiment and were close to target values (Table 1; S4 and S5 Figs). For temperature, all
tanks were within 20 of the target value except for one of the 9T and ambient pH tanks (8.6
+0.3C;
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Table Parameter estimates M.

2. from the final models for M. mercenaria & arenaria mortality. All models
include the random effect of the tank. The P value shown is from ImerTest::drop1 applied to the main effects
model, which produces F-tests based on Satterthwaite’s method which is equivalent to the summary t-tests using
Satterthwaite’s method. To make model intercepts interpretable, average pH values were normalized to the lowest
measurement (e.g. the most acidic value was 0).

Covariate Estimate SE z dropl P
Juvenile M. mercenaria (Intercept) 0.0620 0.587 0.105
Temperature -0.0744 0.0595 -1.25 0.210
pH 0.0668 0.514 0.130 0.896
Juvenile M. arenaria (Intercept) 0.442 0.566 0.781
Temperature -0.0616 0.0567 -1.09 0.276
pH -0.0657 0.494 -0.133 0.894

https://doi.org/10.1371/journal.pcim.0000509.t002

Table 1). For pH, all tanks were within 20 of the target value except for the 6C and 7.8 pH
tank (7.89 + 0.07; Table 1).

Throughout the experiment, the environmental conditions within the tanks were stable
(Table A in S1 Text). Levene’s test showed that the variance of tank conditions within
treatment groups were equal for DIC (umol/kg), TA (umol/kg), temperature (T), salinity
(psu), DO (%) and pH (S4 and S5 Figs). The variance of tank conditions for treatment groups
were not equal for in situ pH, Oaragonite, Ocalcite and COs%". Average (+ stdev) pCOz equivalents
for the four tank pH treatments were 1891+20, 1080+106, 645164, and 433154 ppmv for
7.4,7.6,

7.8, and ambient/8.0 tanks, respectively.

3.2 Mortality

Mortality in tanks was low except for juvenile M. mercenaria and adult A. islandica which
had overall mortality rates of 29% and 33%, respectively. Mortality rates for the other taxa
were 1% for juvenile A. islandica, 7% for juvenile M. arenaria, and 8% for juvenile P.
magellanicus. We determined that juvenile M. mercenaria and juvenile M. arenaria
mortality were not influenced by pH or temperature (Table 2, S6 and S7 Figs).

3.3 Growth/height

For all species groups that could be analyzed, pH did not influence the proportional change
in maximum shell height. Average tank temperature significantly impacted all species
groups’ proportional change in height. Under all pH conditions, proportional change in
maximum shell height increased with increasing temperature, but the slope differed
between species (Table 3, Table B in S1 Text, Fig 4).
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Table Parameter estimates M.

3.4 Shell coloration

The average shell coloration for juvenile M. mercenaria and juvenile M. arenaria at the end
of the experiment was influenced by pH. M. mercenaria shell coloration became lighter, with
both increasing temperature and decreasing pH. M. arenaria shell color became lighter only
with decreasing pH. Juvenile A. islandica shell coloration was neither influenced by
temperature or pH (Table 4, Table Cin S1 Text, Figs 5 and 6, S8 and S9 Figs).

4. Discussion

In this short-term, controlled tank experiment, the growth of juvenile M. mercenaria,
juvenile

M. arenaria and juvenile A. islandica proved resilient to reduced pH levels (Table 3 and Fig
4).

3. of linear mixed effects models for juvenile mercenaria, juvenile M. arenaria and
juvenile A. islandica proportional change in maximum height. All models include the random effect of tank. The P
value shown is from ImerTest::drop1 applied to the main effects model, which produces F-tests based on
Satterthwaite’s method which is equivalent to the summary t-tests using Satterthwaite’s method. To make model
intercepts interpretable, average pH values were normalized to the lowest measurement (ex. the most acidic value

was 0).
Covariate Estimate SE t dropl P
Juvenile M. mercenaria (Intercept) -0.604 0.106 -5.73
Temperature 0.0865 0.0106 8.15 <0.001
pH 0.0437 0.0931 0.470 0.647
Juvenile M. arenaria (Intercept) 0.0720 0.0628 1.15
Temperature 0.0214 0.00635 3.37 0.00476
pH -0.0266 0.0549 -0.485 0.636
Juvenile A. islandica (Intercept) 0.117 0.110 1.06
Temperature 0.0631 0.0110 5.71 <0.001
pH -0.00873 0.0972 -0.090 0.930

https://doi.org/10.1371/journal.pclm.0000509.t003

However, shells of both M. mercenaria and M. arenaria were lighter in color as the pH of
tank conditions decreased, suggesting a loss or bleaching of periostracum in all
temperatures (Table 4, Figs 5, 6 and S8). Growth of these three species groups increased
with rising temperature (Table 3 and Fig 4) and the shells of M. mercenaria exhibited lighter
color with increasing temperatures (Table 4, Figs 6 and S8).

Throughout the experiment, mortality rates remained low for most groups, and survival
was not significantly related to temperature or pH (for the groups that could be analyzed;
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Fig 4. The proportional change in maximum height for the five study groups. For all groups proportional change in maximum height is plotted against
average tank temperature on the x-axis and colored by average tank pH, with each point representing an individual study specimen. For the groups with
sufficient sample numbers for modeling (juvenile M. mercenaria (A), juvenile M. arenaria (B) and juvenile A. islandica (C)) lines represent linear mixed
effects model predictions and shaded regions represent 95% confidence intervals; both are colored by average tank pH. Groups without sufficient sample
numbers (adult A. islandica (D), juvenile P. magellanicus (E)) are included without model predictions or confidence intervals.

https://doi.org/10.1371/journal.pclm.0000509.9004

4, of linear mixed effects models for juvenile mercenaria, juvenile M. arenaria and juvenile A.
islandica mean shell coloration. All models include the random effect of tank. The P value shown is from
ImerTest::drop1 applied to the main effects model, which produces F-tests based on Satterthwaite’s method which
is equivalent to the summary t-tests using Satterthwaite’s method. To make model intercepts interpretable, average
pH values were normalized to the lowest measurement (ex. the most acidic value was 0).

Covariate Estimate SE t dropl P
Juvenile M. mercenaria (Intercept) 103 6.39 16.1
Temperature 2.79 0.644 4.33 <0.001
pH -19.6 5.66 -3.46 0.00357
Juvenile M. arenaria (Intercept) 162 7.47 21.7
Temperature -1.47 0.752 -1.96 0.0682
pH -49.9 6.54 -7.63 <0.001
Juvenile A. islandica (Intercept) 68.3 3.76 18.1
Temperature -0.726 0.381 -1.91 0.0611
pH -5.21 3.23 -1.62 0.111
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Table Parameter estimates M.
https://doi.org/10.1371/journal.pclm.0000509.t004

Table 2, S6 and S7 Figs). These findings suggest that while study specimens could survive and
grow over the 20.5-week experimental duration, disparities in health, indicated by lighting in
shell color under more acidifying conditions, are likely present. Despite most bivalves
surviving and growing in the experimental conditions, coloration changes suggest that they

may not

12

Tank Temperature

Fig 5. Subset of juvenile M. arenaria specimens at the end of the experiment. Specimens are grouped by their controlled temperature and pH conditions.
pH increases from left to right across the figure and temperature increases from bottom to top, colors indicate these treatments and are consistent with
prior and subsequent figures. Note that shells become lighter to the left of the figure as pH decreases (becoming more acidic). This difference occurs
regardless of temperature treatment for M. arenaria.

https://doi.org/10.1371/journal.pcim.0000509.9005
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Fig 6. Shell coloration for the three study groups analyzed (M. mercenaria (A), M. arenaria (B) and juvenile A. islandica (C)). Mean shell coloration is plotted
against average tank temperature on the x-axis and colored by average tank pH with each point representing an individual study specimen. Lines represent
linear mixed effects model predictions and shaded regions represent 95% confidence intervals; both are colored by average tank pH. Larger shell coloration
values correspond to lighter or whiter shells, lower values correspond to darker shells. Representative color scales included on the y-axis for each group.

https://doi.org/10.1371/journal.pclm.0000509.9006

have all been thriving. Our results underscore the variable response of bivalve species to pH
stress. This experiment provides a unique opportunity to directly compare organism
responses to identical stressor conditions across species. Despite belonging to the same
phylogenic class and geographic region, the species in our study exhibited diverse responses
to identical experimental conditions.

4.1 Growth

Optimal growth ranges vary for the studied specimens and range from 6—16C for adult A.
islandica [64, 65], 18-25C for adult M. mercenaria [97], and ~20C for adult M. arenaria with
a high degree of uncertainty depending on life stage and location [75, 98, 99]. For example,
the optimal temperatures are 10—15C for adult P. magellanicus [81] with larvae viable at 12—
18C and juveniles able to survive across a larger temperature range (1.5-15C; [100]). Given
these temperature ranges, the differing growth of species in this experiment is perhaps
expected, as the tank temperatures fall below or are consistent with the species’ optimal
growth temperatures. Increased growth with increased temperature was a striking similarity
between juvenile M. mercenaria, juvenile M. arenaria and juvenile A. islandica.

In this experiment, juvenile M. mercenaria growth increased with increasing temperature
but was not influenced by pH (Table 3, Fig 4). Ansell et al. [68] demonstrated that M.
mercenaria increase growth with increased temperature, and suggested that growth stops at
water temperatures below 9C. Jones et al. [101] also established a standardized growth
index, which is strongly positively correlated with mean annual water temperature. Our
results corroborate this relationship with temperature. The lack of pH influence on M.
mercenaria growth we find contrasts with previous studies, which found that elevated pCO;
is associated with decreased growth and changes in other shell properties in M. mercenaria
[102-105]. This difference might be at least partially related to life stage. Our specimens
were exclusively juveniles while Talmage and Gobler [103, 104] included larval clams and
Talmage and Gobler [105] included both juveniles and larval clams.

M. arenaria growth in this experiment also increased with increasing temperature but
was not influenced by pH (Table 3, Fig 4). This finding supports previous research that shows
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the growth of M. arenaria is impacted by water temperature until a thermal maximum is
reached around 20C [106]. Although temperature-performance curves for M. arenaria are
well established, it is likely that adaptation to local temperature may shift these curves
throughout the species range. Several studies on M. arenaria have shown that lowered
pH/elevated pCO: can lead to shell dissolution and decrease shell growth, particularly in
experiments with lower pH than used here (7.2) or in the wild in naturally variable
environments [48, 107, 108], which contradicts the findings of this study. This contradictory
behavior could be the result of life stage ([48] studied adults) and/or the specimen’s natural
habitat as Zhao et al. [108] studied specimens from a naturally pCOz-enriched habitat.

A. islandica growth was moderately elevated under warmer temperature treatments but
was not influenced by pH (Table 3, Fig 4). The sample size for adult A. islandica was too small

to evaluate statistically, but the surviving adult specimens showed increased growth in
warmer temperatures, a finding similar to that of the juveniles (Figs 4 and S10). Our findings
are comparable with previous studies, particularly because our study temperature range was
within the optimal temperature range of the species [64, 65]. Others have shown in lab
conditions that juvenile A. islandica have increased growth with increased temperatures
[109] and that rapid growth can occur under conditions similar to those used here [110,
111]. The resilience of growth to acidifying pH here is supported by previous studies of A.
islandica. For instance, Liu et al. [56] found no statistical differences in growth between pH
treatments ranging from 7.5 to 8.1. Other work showed no effect on shell growth at elevated
pCO2 conditions or decreasing aragonite saturation [55, 112]. Although not specifically
considering growth, a five-day study by Bamber et al. [113] demonstrated that valve
movement did not change significantly until pH conditions decreased to 6.2, a finding that
the authors used to conclude that A. islandica are a species somewhat tolerant of ocean
acidification conditions. Taken together in the context of past work, our results suggest that
warming could have a greater influence on survivability, growth, and geographic distribution
than OA for A. islandica under future climate change scenarios in this region.

The number of scallops in the tanks at the end of the experiment limited our ability to
statistically investigate this group. However, results generally indicated that growth
increased with increasing temperatures (Figs 4 and S11) and growth was variable between
all pH conditions. P. magellanicus become thermally stressed at temperatures above 13C
[78] and are limited geographically to regions below the 20T isotherm [114, 115]. Modeling
of P. magellanicus growth predicts that growth will increase with warmer temperatures and
decrease under OA conditions [116]. Utilizing similar experimental conditions to our study,
Cameron et al. [117] found growth to be reduced at high pCO2 conditions for adult
specimens of P. magellanicus.

The general results of this study indicate that more growth occurs at warmer
temperatures across these four species, and, for some species, a warmer future could lead
to more growth in certain life stages. However, food availability may impact organisms living
in the wild in a warmer ocean. Some studies have shown that as ocean waters warm, the
availability of phytoplankton decreases [e.g. 118, 119], which may result in warmer ocean
temperatures leading to decreased growth. In the present experiment, the incoming water
was identical before being warmed in each tank and thus had consistent concentrations of
phytoplankton. Additionally, there is isotopic evidence that the organisms selected to eat
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phytoplankton in the incoming seawater as opposed to the Shellfish Diet that was
supplemented. The stable carbon isotopes of the material found in their stomachs were
much closer to that of phytoplankton than the Shellfish Diet (see S12 Fig). Although future
warming and associated decreases in phytoplankton might lead to mixed growth results for
organisms in the wild, the growth seen in the present experiment is primarily the result of
temperature variability.

Although growth in these experimental conditions can be largely attributed to
temperature variability and not food availability, the presence of food for these organisms
could have buffered stress in the lower pH tanks. Studies involving other bivalves have
shown that it is energetically costly to survive in low pH conditions [120] and that adequate
food availability could allow organisms to survive. For example, for larval and adult
Crassostrea virginica (eastern oysters), with greater food availability, there was less mortality
and greater growth [121]. Similarly, juvenile Pecten maximus (king scallops) indicated a
greater tolerance for OA with sufficient food available [122]. The availability of food in the
present experiment (both natural and the Shellfish Diet 1800 supplemental food) may have
mitigated some detrimental effects of low pH conditions.

For all species studied, growth was seemingly unaffected by decreased pH and was
instead influenced by temperature, with growth enhanced as temperatures increased up to
12C. This growth trend with temperature is expected as the tank temperatures generally
remained within previously determined optimal growing conditions for the organisms.
However, with the exception of juvenile A. islandica, the resilience of growth to acidifying pH
was not expected. Our results suggest that the relationship between shell growth and pH for
these species could be more complicated than previously thought. Specifically, differences in
regional stocks, life stage and/or food availability could be important.

Prior studies indicating decreased growth in these species at lower pH/higher CO2 did not
evaluate differences in regional stocks and none have been done using populations from the
GoM. As all our study specimens originated from the GoM this could, to some degree,
explain why we saw the resilience of growth in acidifying pH while other experiments did
not. Additionally, juvenile bivalves often prioritize linear extension over increasing shell
density until they reach the size of sexual maturity [123]. This could be the case in our study,
with these individuals prioritizing increasing shell maximum height over other crucial
biological processes. Further study is needed to evaluate the differential growth responses
to acidifying pH in species stocks from different regions and life stages.

4.2 Coloration

Variation in specimen coloration resulting from exposure to experimental pH and
temperature treatments was an unexpected finding. Notably, the coloration of juvenile M.
mercenaria and juvenile M. arenaria was strongly influenced by pH, and M. mercenaria
coloration was additionally influenced by temperature (Table 4, Figs 5, 6 and S8). Conversely,
the same environmental conditions had almost no influence on juvenile A. islandica
coloration (Table 4, Figs 6 and S9).

Coloration in bivalves often displays considerable variability. In certain species (i.e. P.
magellanicus) a dominant color prevails, while a minority may exhibit minimal pigmentation
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(i.e. albino specimens; S11 Fig). In others, color serves as a defining trait, utilized for
camouflage or communication, and it is believed to bolster shell integrity [124, 125]. For M.
arenaria, shells have been reported to become more translucent with increased metabolic
activity [106]. However, for most bivalves, individual coloration is largely influenced by the
periostracum, the outer organic layer comprising mucopolysaccharides and lipids, which
serves as a matrix for calcium carbonate deposition, a protective barrier against dissolution
and to deter predation [48, 87-93]. The loss of periostracum compromises these vital
functions.

Our findings reveal that juvenile M. mercenaria and juvenile M. arenaria shells were
lighter under lower pH conditions, indicating changes or loss of the periostracum and thus
possible susceptibility to shell dissolution. For M. mercenaria, increasing temperature also
increased the lightness of the shell. Similar visual changes in shell condition due to stressors
have been observed previously; for instance, M. arenaria shells become more transparent
with increased metabolic rates [106], and in the bivalve species Corbicula fluminea (Asian
freshwater clam), internal shell color differences with stress suggest a redirection of energy
from shell building to vital processes [126]. Alternatively, a lighter shell color could indicate
increased shell dissolution. In M. edulis, exposure to unsaturated water (Oar<1) led to visible
periostracum loss and subsequent shell dissolution, whereas areas with intact periostracum
remained unaffected [51].

Published data on expected coloration differences in response to changing temperature
and pH in M. mercenaria are scarce. Our study fills this gap by providing the first evidence
that M. mercenaria shell color responds to environmental changes. Our results indicate that
shell color becomes lighter as pH decreases and as temperatures rise (Table 4, Figs 6 and S8),
suggesting a similar stress-induced impact on shell coloration as hypothesized for M.
arenaria.

In our study, the most robust and significant differences in color were observed in M.
arenaria specimens across pH treatments (Table 4, Figs 5 and 6). Our results suggest that

loss of coloration in M. arenaria clams under low pH conditions may be attributed to a loss
of periostracum (Fig 5). Anecdotal observations of wild M. arenaria also support that shell
color may become lighter when clams are exposed to lower pH conditions (A. Strong,
personal communication and [107]). While Lewis & Cerrato [106] did not directly investigate
the relationship between pH and shell color during their study on metabolic stressors, they
did report differences in the translucency of M. arenaria shells suggesting that variations in
shell coloration may indeed reflect fluctuations in metabolic rates.

By contrast, juvenile A. islandica exhibited consistent coloration irrespective of
temperature or pH (Table 4, Figs 6 and S9). While previous laboratory-grown shell material
has displayed distinct growth checks and differences in periostracum color [57], our study
did not yield any notable impacts of pH or temperature on shell color or periostracum.
However, a distinct growth check and a slight change in periostracum color were noticeable
at the beginning of the experiment (Fig 2).

While differences in bivalve shell condition and coloration have been seen before under
environmental stress, we have now established a quantitative relationship between pH and
shell coloration for juvenile M. mercenaria and juvenile M. arenaria. The mechanism for
these color changes is poorly understood, but we hypothesize that lighter shells could
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indicate loss of periostracum, shell dissolution and/or metabolic stress. In the case of M.
mercenaria, where shells also became lighter at higher temperatures, the pattern cannot be
fully explained by shell dissolution alone.

Regarding the differential shell coloration response of these species to identical
temperature and pH conditions, it is plausible that this disparity stems from inherent
distinctions in shell biology or differences in the species’ tolerance to environmental stress.
For example, the resilience of juvenile A. islandica shell coloration compared to juvenile M.
arenaria might be attributed to differences in periostracum characteristics or shell
composition. Alternatively, the lack of fluctuation in juvenile A. islandica shell coloration
under varying environmental conditions could suggest that physiological processes in this
species are less susceptible under the range of temperatures and pH studied here.

4.3 Mortality

In this experiment, the observed mortality rate did not show a clear relationship with
fluctuations in pH or temperature. Mortality rates were notably higher for M. mercenaria
and adult A. islandica across all tank conditions. However, factors beyond the scope of this
experiment, including the initial stock quality and the health status of the organisms, may
have contributed to these deaths. Mortality can vary significantly depending on species,
specific environmental conditions, and even geographic location [127], with bivalves
generally proving highly sensitive to temperature variability outside of their optimal range
[128, 129]. While some bivalves can endure short-term exposure to extreme temperatures,
prolonged exposure often results in death [130]. Throughout our 20.5-week experiment
overall mortality for all specimens combined was below 15% but varied between the study
groups.

Notably, despite mortality rates exceeding 29% for juvenile M. mercenaria, we did not see
changes in the probability of survival with changing pCO2/pH or temperature (Table 2, S6
and S7 Figs). This outcome was in line with expectations, as M. mercenaria is known to be
sensitive to fluctuating temperature and pH conditions, especially juveniles in
undersaturated waters (O<1; [131]). Additionally, lower temperatures, such as those
employed in our study, increase the risk of mortality due to the presence of Quahog Parasite
Unknown which is more prevalent at temperatures below 13C [132]. Since all temperature
treatments in the present experiment fell below this critical threshold, we cannot rule out
that Quahog Parasite Unknown played a role in the mortality of juvenile M. mercenaria
across treatments.

The low mortality rates in juvenile M. arenaria and their independence from
temperature/ pH are perhaps unsurprising given the tested ranges. M. arenaria mortality
from environmental variability is not well established, but temperatures in the range of the
present experiment (6 to 12C) appear conducive for survival. However, M. arenaria are more
susceptible in warmer temperatures, with waters exceeding 28T proving historically lethal
for specimens from Chesapeake Bay, USA [75].

Similar to previous findings on juvenile A. islandica [55], our study showed low mortality
rates independent of varying pH and temperature conditions. The ranges of temperatures
and pH conditions in our study were similar to those in that of Hiebenthal et al. [55], yet we
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observed mortality rates around three times lower in juveniles and ten times higher in adults
across all treatments.

Although the total number of juvenile P. magellanicus specimens in our study was
limited, a noteworthy trend emerged, with higher mortality rates observed in 12C tanks
(four individuals) compared to 6C and 9T treatments (one in each) (S6 Fig). Although it is
known that P. magellanicus are sensitive to handling [133], this trend suggests a potential

influence of temperature on P. magellanicus mortality. Other studies involving P.
magellanicus indicate that this species is perhaps less tolerant to varying temperature and
pH conditions compared to other bivalve taxa, with particularly elevated mortality rates
observed under combined high pCO2 (up to 2199 ppm) and temperature (up to 12T)
conditions [117].

Overall, while the study specimens generally survived (overall mortality <15%) and grew
throughout our 20.5-week experiment, differences in shell coloration may hint at underlying
differences in organism health. Our results highlight the variable response of bivalve species
to pH and thermal stress, indicating that despite coming from the same class of organisms
and locality the response of each species to identical experimental conditions was non-
uniform.

4.4 Conclusions and implications

Our controlled tank experiment reveals that the growth of juvenile M. mercenaria, juvenile
M. arenaria, and juvenile A. islandica was resilient to the low pH levels predicted for surface
waters in the GoM by the end of the century. Although shell growth for juvenile M.
mercenaria and juvenile M. arenaria remained unaffected by changing pH, noticeable
differences in shell coloration were observed, with shells appearing lighter in color as pH
decreased. Mortality rates remained low for most groups throughout the experiment and
survival appeared unrelated to temperature or pH. These findings suggest that while study
specimens were able to survive and grow during the experiment, disparities in health,
indicated by variations in shell coloration under more acidifying conditions, may exist.

The results presented in this study could be a starting point for assessing the risk of these
four bivalve species to OA in the Gulf of Maine. Our results highlight the fact that individual
species likely harbor differential vulnerability to OA and that the juvenile stage for these four
species is likely not at the greatest risk, at least to exposures like those described here. More
study is needed to disentangle the effects of multiple stressors on differing life stages and
stocks of these species. Additionally, shellfish growers may see differential impacts from OA
depending on the bivalve species they grow and their site. Considering OA in site leasing and
diversifying stocks could be beneficial for bivalve aquaculture.

Our results underscore the variable response of bivalve species to pH stress and provide a
unique opportunity to compare organism responses to identical stressor conditions across
species. Despite belonging to the same phylogenetic class and geographic region, the
species in our study exhibited variable responses to identical experimental conditions.
Considering the trajectory of predicted seawater temperatures and pH in the GoM, further
research is warranted to explore the mechanisms underlying these differential responses
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and their implications for bivalve health, resilience, and management in the face of changing
environmental conditions.
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