

Contrasting responses of commercially important Northwest Atlantic bivalve species to ocean acidification and temperature conditions

OPEN ACCESS

Citation: McMahon T, Thatcher D, Williams B, Wanamaker A, Jellison B, Franklin H, et al. (2024) Contrasting responses of commercially important Northwest Atlantic bivalve species to ocean acidification and temperature conditions. PLOS Clim 3(11): e0000509. <https://doi.org/10.1371/journal.pclm.0000509>

Editor: Frédéric Cyr, Fisheries and Oceans Canada, CANADA

Received: May 15, 2024

Accepted: October 3, 2024

Published: November 4, 2024

PeerReviewHistory: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: <https://doi.org/10.1371/journal.pclm.0000509>

Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

The work is made available under the [Creative Commons CC0](#) public domain dedication.

DataAvailabilityStatement: All data from this work and links to analyses are included in [supplemental materials](#).

RESEARCH ARTICLE

Teagan McMahon¹, Diana Thatcher^{2*}, Branwen Williams¹, Alan Wanamaker^{1,3}, Brittany Jellison⁴, Heidi Franklin⁵, Katherine Guay⁵, Nina M. Whitney⁶, Joseph A. Stewart⁷, Michèle LaVigne⁵

1 Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, California, United States of America, **2** Department of the Earth, Atmosphere, and Climate, Iowa State University, Ames, Iowa, United States of America, **3** National Science Foundation, Washington D.C., United States of America, **4** Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America, **5** Department of Earth and Oceanographic Science, Bowdoin College, Brunswick, Maine, United States of America, **6** Marine and Coastal Sciences Program, Western Washington University, Bellingham, Washington, United States of America, **7** School of Earth Sciences, University of Bristol, Bristol, United Kingdom

* thatcher@iastate.edu

Abstract

Modern calcifying marine organisms face numerous environmental stressors, including overfishing, deoxygenation, increasing ocean temperatures, and ocean acidification (OA). Coastal marine settings are predicted to become warmer and more acidic in coming decades, heightening the risks of extreme events such as marine heat waves. Given these threats, it is important to understand the vulnerabilities of marine organisms that construct their shells from calcium carbonate, which are particularly susceptible to warming and decreasing pH levels. To investigate the response of four commercially relevant bivalve species to OA and differing temperatures, juvenile *Mercenaria mercenaria* (hard shell clams), juvenile *Mya arenaria* (soft shell clams), adult and juvenile *Arctica islandica* (ocean quahog), and juvenile *Placopecten magellanicus* (Atlantic sea scallops) were grown in varying pH and temperature conditions. Species were exposed to four controlled pH conditions (7.4, 7.6, 7.8, and ambient/8.0) and three controlled temperature conditions (6, 9, and 12°C) for 20.5 weeks and then shell growth and coloration were analyzed. This research marks the first direct comparison of these species' biological responses to both temperature and OA conditions within the same experiment. The four species exhibited varying responses to temperature and OA conditions. Mortality rates were not significantly associated with pH or temperature conditions for any of the species studied. Growth (measured as change in maximum shell height) was observed to be higher in warmer tanks for all species and was not significantly impacted by pH. Two groups (juvenile *M. arenaria* and juvenile *M. mercenaria*) exhibited lightening in the color of their shells at lower pH levels at all

temperatures, attributed to a loss of shell periostracum. The variable responses of the studied bivalve species, despite belonging to the same phylogenetic class and geographic region, highlights the

Funding: Funding: National Science Foundation grant OCE-MGG 2028197 to ADW/DLT, OCE-MGG 2333620 to BW, OCE-MGG 028212 to ML. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

need for further study into implications for health and management of bivalves in the face of variable stressors.

with a further reduction of ~0.1–0.3 pH units predicted by 2100 CE under several CO₂ emission scenarios [6–9]. Carbonate saturation states (aragonite and calcite; $O_{\text{aragonite}}$ and O_{calcite}) are declining along with pH. As O (for both aragonite and calcite) approaches a critical level (generally 1.0–2.0), many calcifying organisms (shellfish, corals, coralline algae, etc.) have difficulty biomineralizing calcium carbonate hard parts, such as shells and skeleton [10–12]. Below an O of 1, for both aragonite and calcite, CaCO₃ starts to dissolve [5]. However, the degree to which marine calcifying organisms are impacted by OA, especially in coastal systems that generally have more variable and lower pH conditions compared to the global ocean, is of importance to both ecological and economic systems. Marine calcifiers have developed diverse calcification mechanisms [13–16] through their distinct evolutionary histories. As a result, differing taxonomic groups exhibit varying resiliency when confronted with low saturation states [17]. Given predictions of future acidification [6, 7], a slight difference in this critical O threshold will substantially impact the health of marine calcifiers.

The Gulf of Maine (GoM) is a semi-enclosed body of water in the northwest Atlantic Ocean, bounded by Cape Cod (Massachusetts, USA) and Cape Sable Island (Nova Scotia, Canada), including Georges Bank and Browns Bank. Oceanic mixing facilitates access to vital nutrients necessary for sustaining high productivity and abundant fish populations in the GoM. This is therefore an essential marine habitat for a diverse range of species and has been identified as a climate change hotspot [18, 19]. Recent sea surface temperatures (SSTs)

in the GoM are increasing faster than 99% of the global ocean [20]. The Boothbay Harbor SST record (located in central coastal Maine, USA), extends from 1905 CE to present, and provides instrumental evidence of warming rates of up to 0.4°C/decade, with an increase in annual average temperature of more than 2.1°C since measurements began in 1905 [21]. In addition to this longer-term trend, marine heat waves have become more frequent with fisheries being particularly sensitive to these heat extremes in this region (e.g. [22] and in other parts of the ocean [23–26]). Analyses of seawater temperature profiles from the GoM and surrounding regions by Seidov et al. [27] indicate that the rate of warming in the past ten years is faster than the previous forty years, and this uptick in warming is partly related to a change in the northern edge of the Gulf Stream, which allows more warm water to enter the Gulf of Maine. Paleoclimate studies using oxygen isotopes in clam shells and climate model simulations suggest that the warming in the Gulf of Maine started in the late 1800s, reversing 900 years of cooling in this region, with the current rate of warming unprecedented in the last millennium [28, 29]. These changes in ocean temperatures are the result of a combination of anthropogenic warming and hydrographic changes associated with regional water mass variability [28–30]. Predictions of climatic temperature rise [19] and marine heat waves [31, 32] demonstrate that marine calcifiers in this region likely will be impacted by warmer ocean temperatures.

While GoM temperatures are documented to be changing dramatically, changes in pH and possibly OA conditions are less clear. Marine pH (and $O_{\text{aragonite}}$) is spatially and temporally variable [33]. pH is particularly variable in coastal environments such as the GoM, where freshwater influences, high productivity, and ocean circulation impact carbonate chemistry [2, 34]. These variables are impacted in deeper waters by the interaction of the warm Gulf Stream from the south and the cold Labrador Current from the north, with

1. Introduction

1.1 Present and future stressors on marine calcifying organisms and the Gulf of Maine ecosystem

Around a third of the excess CO₂ released into the atmosphere since the start of the Industrial Era has been taken up by oceans, increasing seawater dissolved inorganic carbon content [1]. This process is termed “ocean acidification” (OA) and has led to a decrease in global ocean pH of 0.1 pH units since ~1800 CE [2–5]

surface waters composed primarily of waters from the Scotian Shelf [35]. Carbonate system modelling in this region suggests that the full impacts of ocean acidification may have been partially masked by simultaneous ocean warming in this region [2, 34]. As a result, the impacts and rates of ocean acidification in the GoM are highly uncertain. However, models suggest that surface water O across the GoM is expected to fall below a critical value of 1.5 by 2050 CE, with the largest impacts in coastal environments impacted by freshening [2]. This interplay of distinct water masses forms a unique marine environment that warrants intensive study of the past, present, and future marine environmental conditions (including temperature and pH) and their impact on the organisms that inhabit the GoM.

1.2 Documented impacts on marine calcifiers to OA and warming conditions

OA negatively impacts marine calcifiers (e.g., [36–43]). These effects of OA vary among species but include decreased survival, calcification, growth, development, and overall population decline [43]. For example, in the *Nucella lapillus* (dogwhelk), OA has caused negative impacts on shell strength, thickness, and size [44]. For some species, the negative impacts are more acute in early life stages. Some species show suppressed growth in larval and juvenile stages and suffer deformities and reduced survivorship in their larval stage [10, 45, 46]. For some bivalves, OA conditions impact the type of mineral precipitated (e.g., dissolution-resistant calcite substituting for aragonite) and whether the mineral has a protective layer of organic periostracum [47–50]. In many bivalves, this periostracum plays a vital role in calcification and protects from disease, predation, and corrosion. For instance, mussels that have lost their periostracum are shown to be more vulnerable to dissolution [51].

The combined effect of elevated temperature and low pH are varied but are potentially exacerbated when combined in some taxa [49, 50, 52]—e.g. *Tripneustes gratilla* (tropical sea urchin) [53]. However, other species experience minimal impacts or could benefit from increasing water temperatures and increases in pCO₂ (e.g. *Pisaster ochraceus* (ochre sea star); [54]). In the bivalve species *Mytilus edulis* (blue mussel) and *Arctica islandica* (ocean quahog), minimal impacts of higher pCO₂ at higher temperatures have been observed in previous controlled experiments (pH range = 7.63–8.01; [55]). In fact, *A. islandica* shell growth continued when living in undersaturated ($O < 1$) conditions during a three-month tank experiment (pH range = 7.5–8.1; [56]). However, whether these results would be maintained under permanent OA conditions is uncertain. For *A. islandica*, an increase in temperatures led to an increase in growth under experimental conditions, but once temperatures approached 16°C, growth rates then decreased (temperature range = 7.5–16°C; [55]). This growth with warming might reflect a change in shell microstructure, as increased temperatures in laboratory-grown *A. islandica* lead to an increase in the size of the largest individual biomimetic unit and a larger proportion of material in the crystalline phase [57].

The differing results for the seemingly OA-resistant *M. edulis* and *A. islandica* compared to other taxa indicate that the effects of acidification and temperature are dependent on the species, even for members of the same class (Bivalvia) and characteristics of each species might make them more or less susceptible to the singular or combined effects of increased temperature and acidification [58].

1.3 The response of economically and ecologically important shellfish to OA and temperature conditions in the Gulf of Maine

Collectively, the knowledge gap regarding how various shellfish will respond to persistent or semi-persistent OA conditions and rising temperatures is substantial. Given the varied threats to organisms within the GoM, additional study of their responses is warranted. To address this gap, we cultured four vulnerable, abundant, and commercially important species from the GoM region in a 20.5-week tank experiment.

Specifically, the experiment was performed with adult and juvenile *A. islandica* (ocean quahog), juvenile *P. magellanicus* (Atlantic sea scallops), juvenile *M. mercenaria* (hard shell clams) and juvenile *M. arenaria* (soft shell clams) at four controlled pH conditions (~7.4, 7.6, 7.8, 8.0) and three controlled temperature conditions (~6, 9, 12°C) utilizing a flow-through system. This is the first study that directly compares these species' biological responses to temperature and OA conditions within the same controlled experiment.

2. Methods

2.1 Species studied

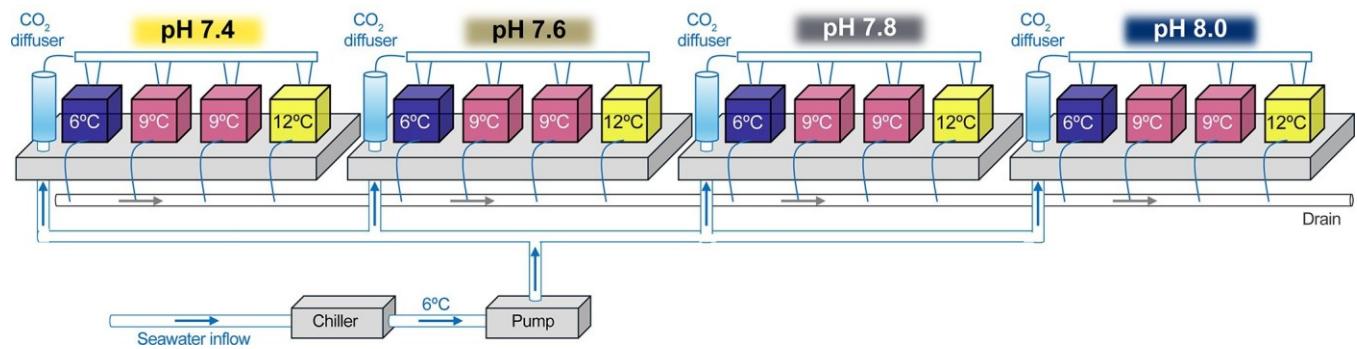
A. islandica (ocean quahog) are widely distributed along the east coast of the United States and Canada from Cape Hatteras, NC (USA) to Newfoundland (Canada), and along the Atlantic coastlines of northern Europe [59–61]. *A. islandica* are a slow-growing animal, living for over 500 years [62, 63]. This species of clam is a filter feeder, buries itself in ocean floor sediment, and has a temperature range of 6 to 16°C for optimal growth conditions [64, 65] but can survive at temperatures of 1 to 20°C ([66] and references therein). The U.S. harvest of *A. islandica* from 2023 was valued at US\$21 million [67].

M. mercenaria (hard clam or northern quahog) are also found along the U.S. and Canada Atlantic coastline from Florida (USA) to Nova Scotia (Canada). These bivalves can live up to 40 years and reach a maximum height of 127 mm. *M. mercenaria* are sessile, burrowing in sediment until only their siphon is exposed for feeding purposes. They have an ideal temperature for growth of 20°C [68]. The 2018 estimate of the U.S. economic impact of *M. mercenaria* fisheries was US\$52 million [69].

M. arenaria (soft shelled clam, longnecks, or steamer) are native to the range from Labrador (Canada) to Cape Hatteras, NC (USA). More recently, they were introduced in other regions, including the eastern Pacific coast of the United States and Canada, and in the North Atlantic around Europe, where they burrow in soft sediments in shallow water and intertidal mud flats [70–73]. *M. arenaria* have a typical adult size of 75 to 100 mm, a typical lifespan of 15 years [74] and can survive in temperatures up to 28°C [75]. Commercial landings for the U.S. from 2019 totaled \$23.5 million [76].

P. magellanicus (Atlantic sea scallops) have a similar range to the other bivalves in this study; from the Mid-Atlantic coast of the United States to the Canadian border along the Atlantic coast [77]. They have a high economic value to the US fisheries industry, with 2022 U. S. commercial landings totaling 32 million pounds valued at US\$480 million [76, 78]. A small percentage (5 to 10%) of individuals are albino [79] and, unlike other bivalves in this study, *P. magellanicus* can move in the water to escape predation [76, 80]. The optimal growth temperature for this species is 10 to 15°C [81].

2.2 Field collection


Adult (n = 15; age range ~14 to 62 years) and juvenile (n = 67; less than 1 year old) *A. islandica* specimens were collected via a commercial dredge off of Jonesport, Maine, USA (44°

33.247'N, 67°16.183'W) in ~76–85 m water depth by the vessel FV 3D's in September 2021. Juvenile (1–2 years old) *P. magellanicus* (Atlantic sea scallops, n = 73) were obtained from Marsden Brewer of PenBay Farmed Scallops in Stonington, Maine (USA) and were cultivated from GoM wild spat in East Penobscot Bay. Juvenile *M. mercenaria* (hard shell clams, n = 161) and juvenile *M. arenaria* (soft shell clams, n = 160) were supplied by the Downeast Institute Hatchery in Beals, ME in November 2021 (map of these sites in [S1 Fig](#)). All specimens were transported to the Schiller Coastal Studies Center (SCSC; Bowdoin College, Orr's Island, ME) immediately after collection and placed in a common flow-through tank at ambient temperature and pH until the start of the experiment. All specimens were tagged and given alphanumeric identifiers used to track specimens throughout the experiment and subsequent analysis.

2.3 Experimental conditions and design

The 20.5-week tank experiment (January 14 to June 8, 2022) was conducted at the SCSC flowing seawater laboratory. Specimens were cultured in four pH treatments (7.40±0.01, 7.64±0.03, 7.84±0.04, ambient; 8.00±0.04) and three temperature treatments (6.29±0.15, 9.05±0.19, and 11.99±0.18°C) ([Fig 1](#); [Table 1](#); 20 pH and >196000 temperature measurements). These three temperatures were chosen as they were within the range of ideal conditions for most of the studied species to ensure sufficient growth. The four pH treatments were chosen to span the range of predicted coastal pH values by the end of the century [82]. Coastal seawater was pumped into the flowthrough seawater lab and sixteen experimental tanks where conditions were manipulated to the targeted pH and temperature ([Fig 1](#)). All tanks were set to a flow rate of 1 L/min.

The incoming seawater was chilled to <6°C with an Aqualogic DX Heat Exchanger System before being diverted into two Apex control systems that each controlled and monitored two target pH levels ([neptunesystems.com](#)). To achieve the target pH levels, CO₂ from compressed cylinders was bubbled into the water of a diffusion chamber leading to each of the three controlled pH systems. The three Apex systems each delivered CO₂-treated seawater to four experimental tanks via a four-outlet manifold. The Apex control program used a pH-stat system that measured pH in one of the four experimental tanks per pH level every minute and controlled pH by bubbling CO₂ in a diffusion chamber when pH measurement exceeded the target value. For the ambient pH culture conditions, pH was monitored by the Apex system but carbonate chemistry was not altered from the incoming seawater.

Fig 1. Schematic of the experimental design of the pH and temperature-controlled culture experiment in Schiller Coastal Studies Center (SCSC; Bowdoin College, Orr's Island, ME). Seawater was pumped into a chiller and cooled to <6°C before being pumped to CO₂ diffusers to achieve the three pH treatments. The ambient pH tanks received no treatment. The water was then heated to the target temperature by heaters within each tank. pH was monitored and adjusted with three Apex systems, temperatures were tracked with two Tidbit probes per tank and both pH and temperature were confirmed with weekly sampling with YSI probes. Colors representing pH and temperature treatments are consistent throughout subsequent figures.

<https://doi.org/10.1371/journal.pclm.0000509.g001>

Treatment C temperature (°C)	pH _T from water chem- s. (+ d.)	Temperature (°C (+ s.d.)	DIC (μmol/ kg) (+ s.d.)	TA (μmol/ kg) (+ s.d.)	O carbonate (+ s.d.)	pCO ₂ equivalent ppmv (+ s.d.)	Total specimens	Juvenile A. islandica deaths (+ s.d.)	Adult A. islandica deaths (+ s.d.)	Juvenile M. mercenaria deaths (+ s.d.)	Juvenile M. arenaria deaths (+ s.d.)	Juvenile P. megalanicus deaths, missing (+ s.d.)	
6	7.39 +/- 0.08	6.4 +/- 0.6	2182 +/-63	2122 +/-55	0.5±0.1 ±0.1	0.7 ±0.1	1903	31	4 (0)	1 (0)	10 (1)	10 (0)	6 ¹⁾ 1)
9	7.40 +/- 0.06	9.0 +/- 0.4	2164 +/-58	2120 +/-55	0.4±0.1 ±0.1	0.7 ±0.1	1862	29	4 (0)	1 (0)	10 (4)	10 (0)	4 (0)
9	7.41 +/- 0.14	9.3 +/- 0.4	2164 +/-63	2120 +/-55	0.4±0.1 ±0.1	0.6 ±0.1	1908	29	4 (0)	0 (0)	11 (3)	10 (0)	4 (0)
12	7.40 +/- 0.06	11.6 +/- 0.8	2156 +/-59	2121 +/-56	0.5±0.1 ±0.2	0.7 ±0.2	1892	31	4 (1)	1 (0)	10 (5)	10 (3)	6 (1)
6	7.67 +/- 0.08	6.3 +/- 0.8	2102 +/-42	2121 +/-59	0.7±0.1 ±0.2	1.1 ±0.2	966	31	4 (0)	1 (1)	10 (1)	10 (0)	6 (0)
9	7.64 +/- 0.06	9.0 +/- 0.4	2103 +/-48	2123 +/-60	0.7±0.1 ±0.2	1.1 ±0.2	1066	29	4 (0)	1 (1)	10 (3)	10 (1)	4 (0)
9	7.64 +/- 0.08	9.0 +/- 0.4	2098 +/-42	2119 +/-60	0.7±0.1 ±0.2	1.1 ±0.2	1063	29	4 (0)	1 (1)	10 (3)	10 (0)	4 (0)
12	7.59 +/- 0.07	12.4 +/- 0.4	2100 +/-46	2119 +/-58	0.7±0.2 ±0.2	1.1 ±0.2	1223	29	4 (0)	1 (0)	10 (1)	10 (1)	6 ¹⁾ 1)
6	7.89 +/- 0.07	6.5 +/- 0.7	2038 +/-46	2120 +/-58	1.1±0.2 ±0.3	1.8 ±0.3	558	30	4 (0)	1 (1)	10 (2)	10 (1)	5 (0)
9	7.84 +/- 0.06	9.2 +/- 0.6	2042 +/-54	2120 +/-60	1.1±0.2 ±0.2	1.8 ±0.2	644	29	4 (0)	1 (0)	10 (2)	10 (0)	4 (0)
9	7.82 +/- 0.06	9.1 +/- 0.4	2046 +/-55	2118 +/-57	1.1±0.2 ±0.3	1.8 ±0.3	672	29	4 (0)	1 (0)	10 (8)	10 (0)	4 (0)
12	7.81 +/- 0.07	11.9 +/- 0.4	2034 +/-50	2115 +/-60	1.1±0.1 ±0.2	1.7 ±0.2	707	29	4 (0)	1 (0)	10 (4)	10 (1)	4 (0)
6	8.05 +/- 0.05	6.3 +/- 0.8	1991 +/-40	2121 +/-56	1.5±0.2 ±0.3	2.4 ±0.3	376	31	4 (0)	1 (1)	10 (1)	10 (0)	6 (0)

(Continued)

Table 1. Average experimental conditions (\pm standard deviation) for each tank. The temperature is the average taken from the two Tidbits within each tank ($n > 19600$). Water samples for total pH, pH₇, TA, DIC, and O₂ were collected weekly from each tank ($n = 20$) and the average values from measured and calculated carbonate system parameters are shown here. The specimen counts are the number of specimens in each tank at the start of the experiment, with deaths (for all species) and missing/lost specimens (for scallops) in parentheses. Note that 22 scallops were removed halfway through the experiment (on April 14, 2022).

pH treatment	7.4	7.4	7.4	7.4	7.6	7.6	7.6	7.8	7.8	7.8	7.8	ambient
--------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---------

Temperature Treatment °C	pH _T from water chem /-s. (+ d.)	Temperature C (+/-s.)	DIC (μmol/ kg) (s.d.)	TA (μmol/ kg) (s.d.)	O aragonite (s.d.)	O calcite (d)	pCO ₂ equivalent ppmv	Total specimens	Juvenile A. islandica deaths	Adult A. islandica deaths	Juvenile M. mercenaria deaths	Juvenile M. arenaria deaths	Juvenile P. magellanicus deaths, (missing)
9	8.00 +/-0.05	9.24/ 0.6	1986 +/-44	2115 +/-60	1.5±0.2 +/-0.3	2.4 ±0.3	431	29	4 (0)	1 (0)	10 (2)	10 (0)	4 (1)
9	8.01 +/-0.05	8.6/ 0.3	1989 +/-42	2119 +/-58	1.5±0.2 +/-0.3	2.4 ±0.3	419	32	7 (0)	1 (0)	10 (3)	10 (1)	4 (0)
12	7.964 +/-0.05	11.9/ 0.4	1994 +/-42	2117 +/-57	1.5±0.2 +/-0.3	2.4 ±0.3	507	29	4 (0)	1 (0)	10 (3)	10 (3)	4 (2)

<https://doi.org/10.1371/journal.pclm.0000509> November 4, 2024

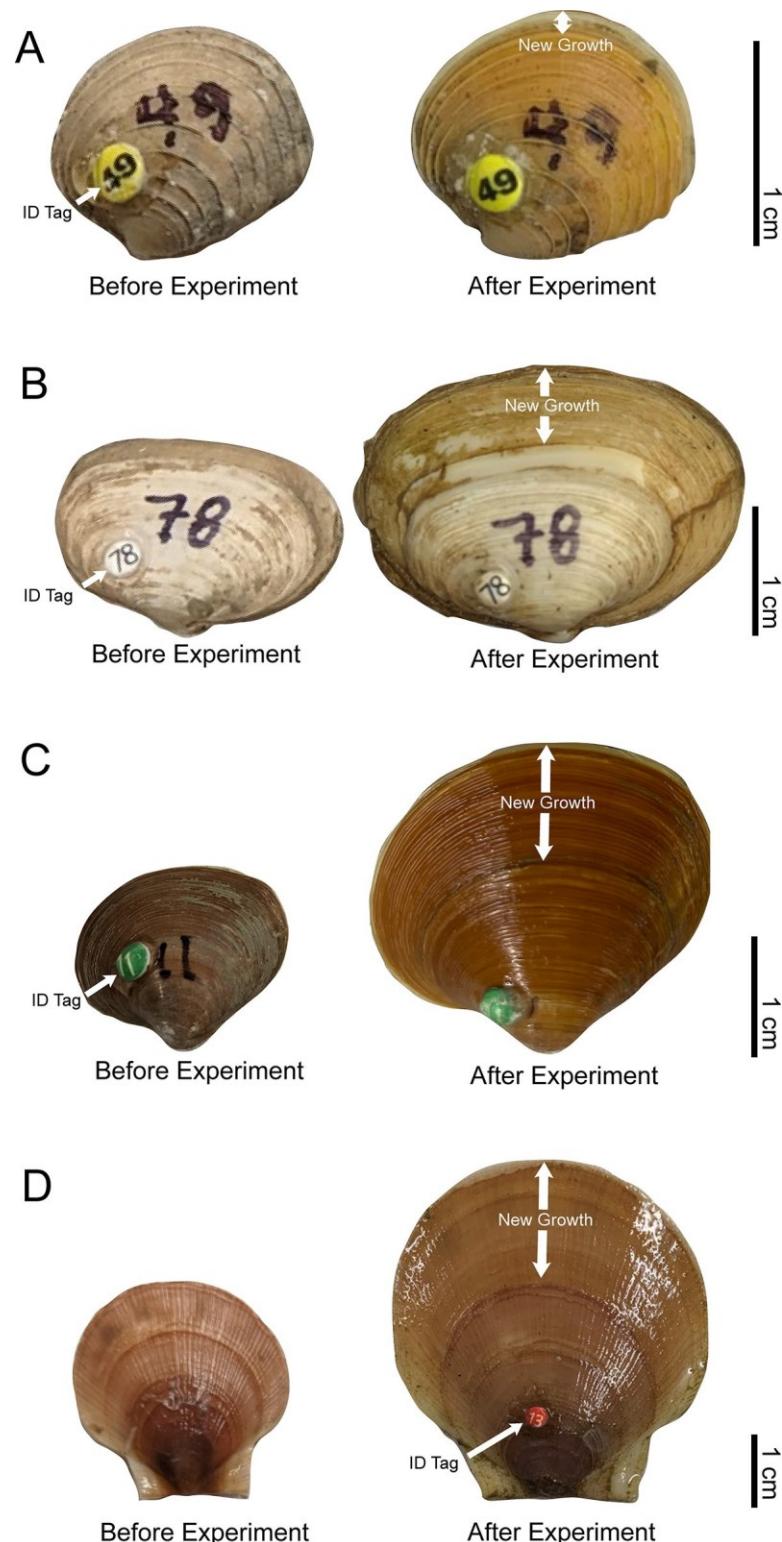
pH treatment	ambient	ambient	ambient

Table 1. Continu ed)

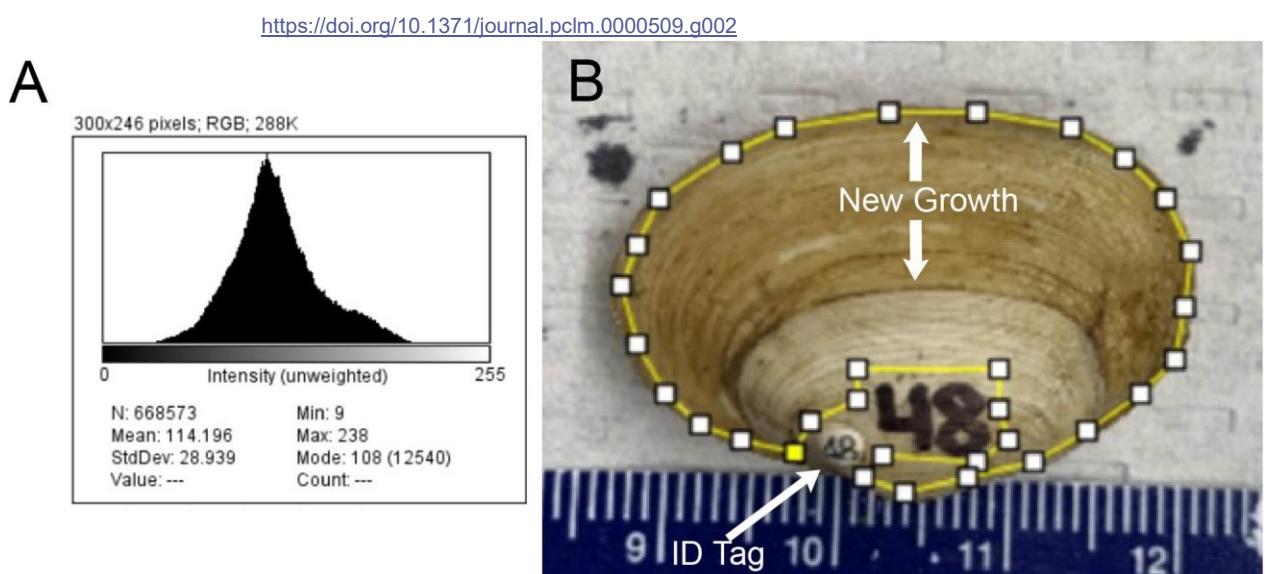
()

The temperature treatments were individually controlled in each tank with Inkbird controllers and two heaters (500/800W) per tank. The temperature was measured by two Hobo Tidbits (MX2032) in each experimental tank which recorded temperature every minute. Aquarium pumps circulated water and homogenized temperature and pH conditions within each tank. The stability of the experimental conditions in each tank was confirmed with weekly measurements of pH, temperature, salinity, and dissolved oxygen using a YSI Pro-Plus handheld sonde (Xylem Inc.).

Weekly water samples were collected from each tank to determine dissolved inorganic carbon (DIC), total alkalinity (TA) and total pH (pH_T) of the experimental tanks. 250 mL water samples were filtered with a 0.45um in-line filter, stored in borosilicate glass bottles and poisoned immediately after collection. DIC and TA samples were collected in screw-top bottles while pH samples were collected in bottles with greased ground glass stoppers. All samples were analyzed within eight months of the experiment's completion. pH_T , O and pCO_2 were also calculated from DIC and TA using Seacarb in R using K1 and K2 values of [83]. Carbonate chemistry was measured directly from the tanks weekly to confirm target pH conditions were met, and to consider temperature dependent pH effects.


Limited food availability can stress marine organisms [84]. To mitigate food limitation, the study tanks were supplemented with Shellfish Diet 1800 five times per week by mixing 1 mL (five different microalgae at a concentration of 2 billion cells/mL) of food with seawater and placing the food mixture into each tank (reedmariculture.com/products/shellfish-diet). Additionally, the tanks were checked weekly for appropriate flow rates, and any visibly dead specimens were removed and recorded.

2.4 Shell morphometrics


All study specimens were measured for maximum height, dry (live) weight and buoyant weight at the start and end of the experiment. Specimen maximum height was obtained using a digital caliper positioned on the maximum growth axis of the shell (Fig 2). Dry (live) and buoyant weight was measured with Mettler Toledo (ME204E) and Ohaus Model Adventurer balances, respectively (S2 Fig; [85, 86]). After dissection at the end of the experiment, shell weight was measured using an Ohaus Model Adventurer (AR1140) balance. Prior to the start of the experiment (January 2022) and ~12 weeks into the experiment (mid-April 2022), all specimens were placed in a calcein bath for 24 hours at ambient seawater conditions. This provides an unambiguous indicator of the start of the experimental period (and the midpoint in April) when shells are viewed under fluorescent light. The calcein stain lines were used to confirm some growth measurements (S3 Fig). Approximately half of the scallops ($n = 32$) were removed on April 14, 2022, and were measured for maximum height, dry (live) weight and buoyant weight but excluded from analysis as they were not grown in the experiment for a comparable amount of time to the other study groups.

Photos were taken of all specimens at the end of the tank experiment since there were observable visual differences in specimens within the same species group. Shell coloration can indicate differences in the periostracum which is important for calcium carbonate deposition and protection against dissolution and predation [48, 87–93]. Measurements of shell coloration were performed using ImageJ [94]. The shell's outer edge was outlined

manually using the polygon tool, and any shell label was excluded from the polygon (Fig 3). The Histogram tool from the Analyze menu displayed a histogram of the distribution of gray values (unitless) from the shell image. From this, the mean value for coloration of each shell was determined. Since color (RGB) images were used, the histogram was calculated by converting each pixel to grayscale using the formula $gray = 0.299*red+0.587*green+0.114*blue$. Larger values of coloration indicate a more white/less gray image.

Fig 2. Visual examples of the change in maximum height measure. The left image for all specimens were taken before the start of the tank experiment; the right image is the same specimen after being in the tank experiment for 20.5 weeks. All pictured specimens were grown in 9°C tanks. A. Juvenile *M. mercenaria*; B. Juvenile *M. arenaria*; C. Juvenile *A. islandica*; D. Juvenile *P. magellanicus*. The scallop image taken before the start of the experiment (in D) was taken after an alphanumeric ID was chosen but before the tag was attached. A. and B. were grown in pH 7.8 tanks and C. and D. were grown in pH 7.6 tanks.

Fig 3. Example of coloration measurement taken in ImageJ for *M. mercenaria* specimen w48 at the conclusion of the 20.5-week experiment.
 A. ImageJ histogram of color intensity of the defined shell region. B. Polygon outline used for generating histogram in (A) avoiding any ID tags. Note that the two labels were excluded from the polygon.

<https://doi.org/10.1371/journal.pclm.0000509.g003>

2.5 Statistical analysis

Sufficient juvenile *M. mercenaria*, juvenile *M. arenaria*, and juvenile *A. islandica* survived the experiment to explore the effects of the experimental conditions on mortality, growth and shell coloration. The adult *A. islandica* and juvenile *P. magellanicus* groups did not include enough individuals to be evaluated statistically, but data are included for general comparison.

The hypothesis that average tank pH and temperature impacted growth and shell coloration response variables was evaluated using linear mixed effects models for juvenile *M. mercenaria*, juvenile *M. arenaria* and juvenile *A. islandica*. The hypothesis that mortality was influenced by pH and temperature was assessed using a generalized linear mixed-effects model (binomial, logit link). This mortality analysis was only done for juvenile *M. mercenaria* and juvenile *M. arenaria* due to low deaths (juvenile *A. islandica*) and low specimen counts (juvenile *P. magellanicus* and adult *A. islandica*) in the other groups. Tank was included in all models as a random effect. All models were done separately per study species. Using full models, assumptions were verified using visual inspection of residuals versus fitted and Q-Q plots and scaled residuals using the DHARMA package [95] in RStudio.

For each test, a 'full' model was first created, which included average tank pH and temperature and their interaction. If the interaction term was not significant (assessed with a likelihood ratio test), this term was dropped, leaving a model that included only the main effects of the predictors (average tank pH and average tank temperature). Models were fit using the lme4 package [96] and all statistical analysis was done using RStudio (2022.07.2 Build 576).

3. Results

3.1 Abiotic factors

The actual pH and temperature conditions within each tank were stable throughout the experiment and were close to target values (Table 1; S4 and S5 Figs). For temperature, all tanks were within 2σ of the target value except for one of the 9°C and ambient pH tanks (8.6 ± 0.3°C;

Table 2. Parameter estimates

M.
from the final models for *M. mercenaria* & *arenaria* mortality. All models include the random effect of the tank. The *P* value shown is from *lmerTest::drop1* applied to the main effects model, which produces F-tests based on Satterthwaite's method which is equivalent to the summary t-tests using Satterthwaite's method. To make model intercepts interpretable, average pH values were normalized to the lowest measurement (e.g. the most acidic value was 0).

	Covariate	Estimate	SE	z	drop1 <i>P</i>
Juvenile <i>M. mercenaria</i>	(Intercept)	0.0620	0.587	0.105	
	Temperature	-0.0744	0.0595	-1.25	0.210
	pH	0.0668	0.514	0.130	0.896
Juvenile <i>M. arenaria</i>	(Intercept)	0.442	0.566	0.781	
	Temperature	-0.0616	0.0567	-1.09	0.276
	pH	-0.0657	0.494	-0.133	0.894

<https://doi.org/10.1371/journal.pclm.0000509.t002>

[Table 1](#)). For pH, all tanks were within 2σ of the target value except for the 6°C and 7.8 pH tank (7.89 ± 0.07 ; [Table 1](#)).

Throughout the experiment, the environmental conditions within the tanks were stable (Table A in [S1 Text](#)). Levene's test showed that the variance of tank conditions within treatment groups were equal for DIC ($\mu\text{mol/kg}$), TA ($\mu\text{mol/kg}$), temperature (°C), salinity (psu), DO (%) and pH ([S4](#) and [S5](#) Figs). The variance of tank conditions for treatment groups were not equal for *in situ* pH, $O_{\text{Aragonite}}$, O_{Calcite} and CO_3^{2-} . Average ($\pm \text{stdev}$) pCO_2 equivalents for the four tank pH treatments were 1891 ± 20 , 1080 ± 106 , 645 ± 64 , and 433 ± 54 ppmv for 7.4, 7.6, 7.8, and ambient/8.0 tanks, respectively.

3.2 Mortality

Mortality in tanks was low except for juvenile *M. mercenaria* and adult *A. islandica* which had overall mortality rates of 29% and 33%, respectively. Mortality rates for the other taxa were 1% for juvenile *A. islandica*, 7% for juvenile *M. arenaria*, and 8% for juvenile *P. magellanicus*. We determined that juvenile *M. mercenaria* and juvenile *M. arenaria* mortality were not influenced by pH or temperature ([Table 2](#), [S6](#) and [S7](#) Figs).

3.3 Growth/height

For all species groups that could be analyzed, pH did not influence the proportional change in maximum shell height. Average tank temperature significantly impacted all species groups' proportional change in height. Under all pH conditions, proportional change in maximum shell height increased with increasing temperature, but the slope differed between species ([Table 3](#), Table B in [S1 Text](#), [Fig 4](#)).

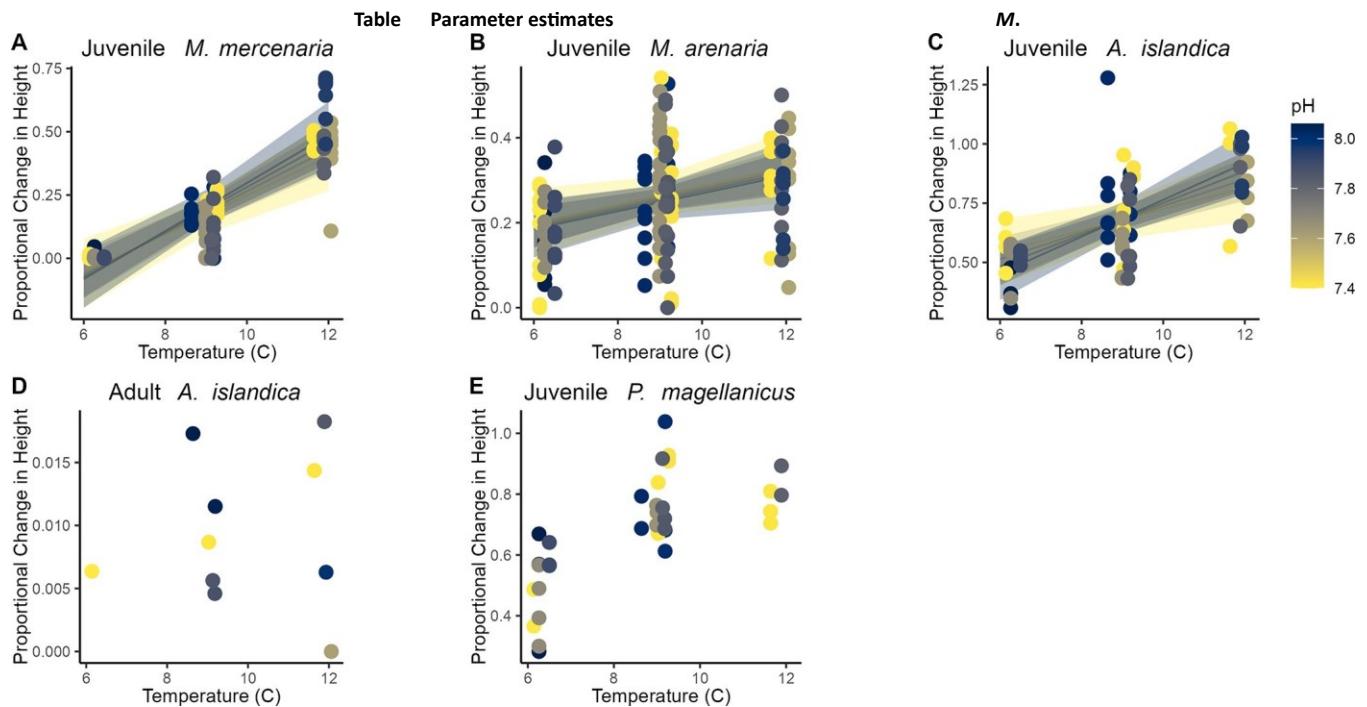
Table Parameter estimates**M.****3.4 Shell coloration**

The average shell coloration for juvenile *M. mercenaria* and juvenile *M. arenaria* at the end of the experiment was influenced by pH. *M. mercenaria* shell coloration became lighter, with both increasing temperature and decreasing pH. *M. arenaria* shell color became lighter only with decreasing pH. Juvenile *A. islandica* shell coloration was neither influenced by temperature or pH (Table 4, Table C in S1 Text, Figs 5 and 6, S8 and S9 Figs).

4. Discussion

In this short-term, controlled tank experiment, the growth of juvenile *M. mercenaria*, juvenile

M. arenaria and juvenile *A. islandica* proved resilient to reduced pH levels (Table 3 and Fig 4).


3. **of linear mixed effects models for juvenile *M. mercenaria*, juvenile *M. arenaria* and juvenile *A. islandica* proportional change in maximum height.** All models include the random effect of tank. The *P* value shown is from *lmerTest*::*drop1* applied to the main effects model, which produces F-tests based on Satterthwaite's method which is equivalent to the summary t-tests using Satterthwaite's method. To make model intercepts interpretable, average pH values were normalized to the lowest measurement (ex. the most acidic value was 0).

	Covariate	Estimate	SE	t	drop1 P
Juvenile <i>M. mercenaria</i>	(Intercept)	-0.604	0.106	-5.73	
	Temperature	0.0865	0.0106	8.15	<0.001
	pH	0.0437	0.0931	0.470	0.647
Juvenile <i>M. arenaria</i>	(Intercept)	0.0720	0.0628	1.15	
	Temperature	0.0214	0.00635	3.37	0.00476
	pH	-0.0266	0.0549	-0.485	0.636
Juvenile <i>A. islandica</i>	(Intercept)	0.117	0.110	1.06	
	Temperature	0.0631	0.0110	5.71	<0.001
	pH	-0.00873	0.0972	-0.090	0.930

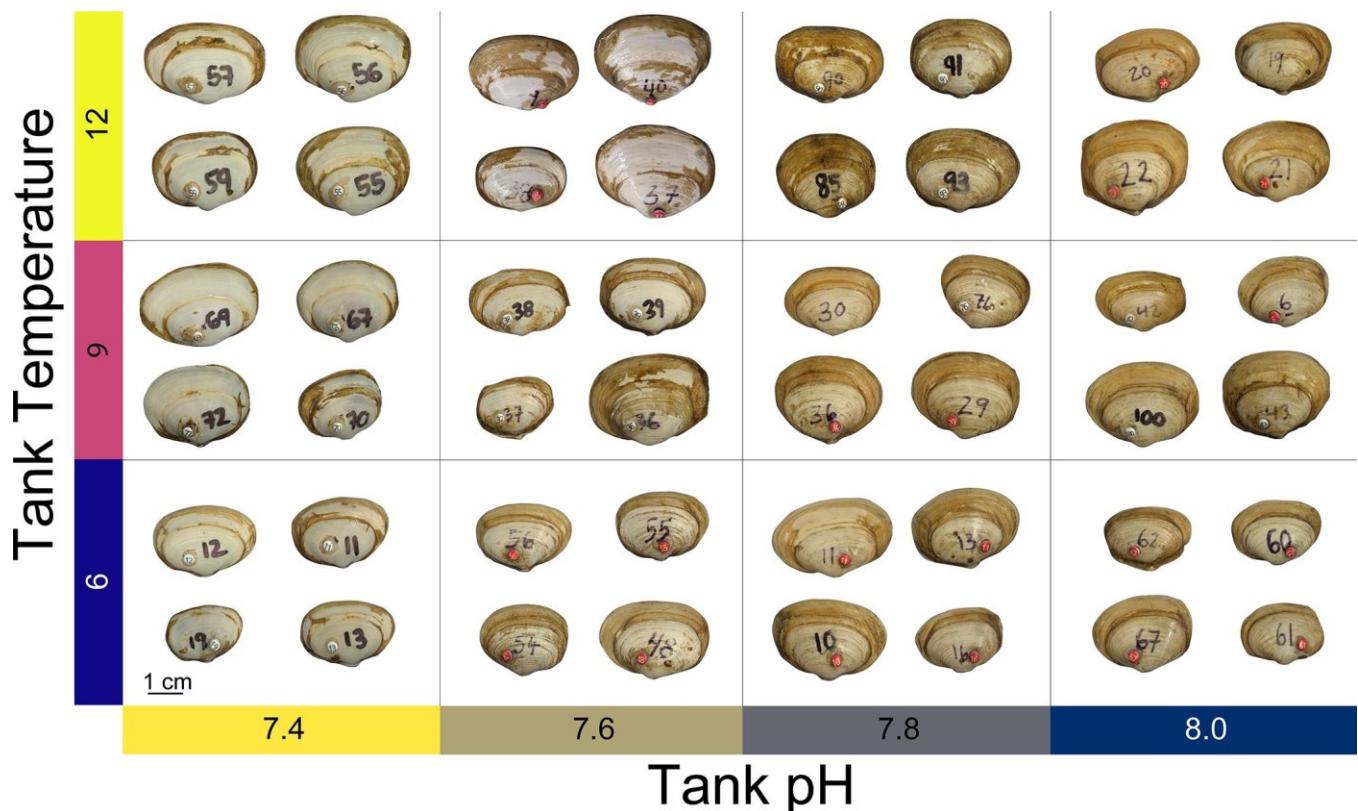
<https://doi.org/10.1371/journal.pclm.0000509.t003>

However, shells of both *M. mercenaria* and *M. arenaria* were lighter in color as the pH of tank conditions decreased, suggesting a loss or bleaching of periostracum in all temperatures (Table 4, Figs 5, 6 and S8). Growth of these three species groups increased with rising temperature (Table 3 and Fig 4) and the shells of *M. mercenaria* exhibited lighter color with increasing temperatures (Table 4, Figs 6 and S8).

Throughout the experiment, mortality rates remained low for most groups, and survival was not significantly related to temperature or pH (for the groups that could be analyzed;

Fig 4. The proportional change in maximum height for the five study groups. For all groups proportional change in maximum height is plotted against average tank temperature on the x-axis and colored by average tank pH, with each point representing an individual study specimen. For the groups with sufficient sample numbers for modeling (juvenile *M. mercenaria* (A), juvenile *M. arenaria* (B) and juvenile *A. islandica* (C)) lines represent linear mixed effects model predictions and shaded regions represent 95% confidence intervals; both are colored by average tank pH. Groups without sufficient sample numbers (adult *A. islandica* (D), juvenile *P. magellanicus* (E)) are included without model predictions or confidence intervals.

<https://doi.org/10.1371/journal.pclm.0000509.g004>


4. of linear mixed effects models for juvenile *mercenaria*, juvenile *M. arenaria* and juvenile A. *islandica* mean shell coloration. All models include the random effect of tank. The *P* value shown is from *lmerTest*::*drop1* applied to the main effects model, which produces F-tests based on Satterthwaite's method which is equivalent to the summary t-tests using Satterthwaite's method. To make model intercepts interpretable, average pH values were normalized to the lowest measurement (ex. the most acidic value was 0).

	Covariate	Estimate	SE	t	drop1 P
Juvenile <i>M. mercenaria</i>	(Intercept)	103	6.39	16.1	
	Temperature	2.79	0.644	4.33	<0.001
	pH	-19.6	5.66	-3.46	0.00357
Juvenile <i>M. arenaria</i>	(Intercept)	162	7.47	21.7	
	Temperature	-1.47	0.752	-1.96	0.0682
	pH	-49.9	6.54	-7.63	<0.001
Juvenile <i>A. islandica</i>	(Intercept)	68.3	3.76	18.1	
	Temperature	-0.726	0.381	-1.91	0.0611
	pH	-5.21	3.23	-1.62	0.111

Table 1 Parameter estimates
<https://doi.org/10.1371/journal.pclm.0000509.t004>

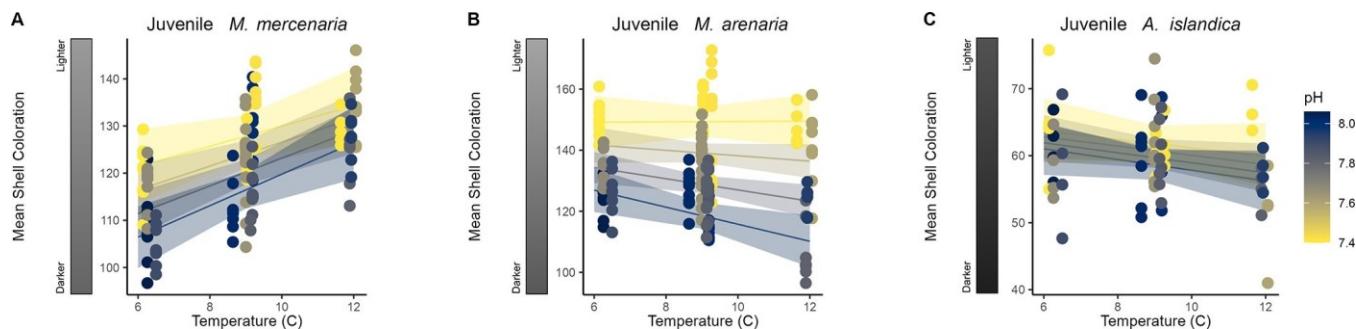

M.

Table 2, S6 and S7 Figs. These findings suggest that while study specimens could survive and grow over the 20.5-week experimental duration, disparities in health, indicated by lighting in shell color under more acidifying conditions, are likely present. Despite most bivalves surviving and growing in the experimental conditions, coloration changes suggest that they may not

Fig 5. Subset of juvenile *M. arenaria* specimens at the end of the experiment. Specimens are grouped by their controlled temperature and pH conditions. pH increases from left to right across the figure and temperature increases from bottom to top, colors indicate these treatments and are consistent with prior and subsequent figures. Note that shells become lighter to the left of the figure as pH decreases (becoming more acidic). This difference occurs regardless of temperature treatment for *M. arenaria*.

<https://doi.org/10.1371/journal.pclm.0000509.g005>

Fig 6. Shell coloration for the three study groups analyzed (*M. mercenaria* (A), *M. arenaria* (B) and juvenile *A. islandica* (C)). Mean shell coloration is plotted against average tank temperature on the x-axis and colored by average tank pH with each point representing an individual study specimen. Lines represent linear mixed effects model predictions and shaded regions represent 95% confidence intervals; both are colored by average tank pH. Larger shell coloration values correspond to lighter or whiter shells, lower values correspond to darker shells. Representative color scales included on the y-axis for each group.

<https://doi.org/10.1371/journal.pclm.0000509.g006>

have all been thriving. Our results underscore the variable response of bivalve species to pH stress. This experiment provides a unique opportunity to directly compare organism responses to identical stressor conditions across species. Despite belonging to the same phylogenetic class and geographic region, the species in our study exhibited diverse responses to identical experimental conditions.

4.1 Growth

Optimal growth ranges vary for the studied specimens and range from 6–16°C for adult *A. islandica* [64, 65], 18–25°C for adult *M. mercenaria* [97], and ~20°C for adult *M. arenaria* with a high degree of uncertainty depending on life stage and location [75, 98, 99]. For example, the optimal temperatures are 10–15°C for adult *P. magellanicus* [81] with larvae viable at 12–18°C and juveniles able to survive across a larger temperature range (1.5–15°C; [100]). Given these temperature ranges, the differing growth of species in this experiment is perhaps expected, as the tank temperatures fall below or are consistent with the species' optimal growth temperatures. Increased growth with increased temperature was a striking similarity between juvenile *M. mercenaria*, juvenile *M. arenaria* and juvenile *A. islandica*.

In this experiment, juvenile *M. mercenaria* growth increased with increasing temperature but was not influenced by pH (Table 3, Fig 4). Ansell et al. [68] demonstrated that *M. mercenaria* increase growth with increased temperature, and suggested that growth stops at water temperatures below 9°C. Jones et al. [101] also established a standardized growth index, which is strongly positively correlated with mean annual water temperature. Our results corroborate this relationship with temperature. The lack of pH influence on *M. mercenaria* growth we find contrasts with previous studies, which found that elevated pCO₂ is associated with decreased growth and changes in other shell properties in *M. mercenaria* [102–105]. This difference might be at least partially related to life stage. Our specimens were exclusively juveniles while Talmage and Gobler [103, 104] included larval clams and Talmage and Gobler [105] included both juveniles and larval clams.

M. arenaria growth in this experiment also increased with increasing temperature but was not influenced by pH (Table 3, Fig 4). This finding supports previous research that shows

the growth of *M. arenaria* is impacted by water temperature until a thermal maximum is reached around 20°C [106]. Although temperature-performance curves for *M. arenaria* are well established, it is likely that adaptation to local temperature may shift these curves throughout the species range. Several studies on *M. arenaria* have shown that lowered pH/elevated pCO₂ can lead to shell dissolution and decrease shell growth, particularly in experiments with lower pH than used here (7.2) or in the wild in naturally variable environments [48, 107, 108], which contradicts the findings of this study. This contradictory behavior could be the result of life stage ([48] studied adults) and/or the specimen's natural habitat as Zhao et al. [108] studied specimens from a naturally pCO₂-enriched habitat.

A. islandica growth was moderately elevated under warmer temperature treatments but was not influenced by pH (Table 3, Fig 4). The sample size for adult *A. islandica* was too small to evaluate statistically, but the surviving adult specimens showed increased growth in warmer temperatures, a finding similar to that of the juveniles (Figs 4 and S10). Our findings are comparable with previous studies, particularly because our study temperature range was within the optimal temperature range of the species [64, 65]. Others have shown in lab conditions that juvenile *A. islandica* have increased growth with increased temperatures [109] and that rapid growth can occur under conditions similar to those used here [110, 111]. The resilience of growth to acidifying pH here is supported by previous studies of *A. islandica*. For instance, Liu et al. [56] found no statistical differences in growth between pH treatments ranging from 7.5 to 8.1. Other work showed no effect on shell growth at elevated pCO₂ conditions or decreasing aragonite saturation [55, 112]. Although not specifically considering growth, a five-day study by Bamber et al. [113] demonstrated that valve movement did not change significantly until pH conditions decreased to 6.2, a finding that the authors used to conclude that *A. islandica* are a species somewhat tolerant of ocean acidification conditions. Taken together in the context of past work, our results suggest that warming could have a greater influence on survivability, growth, and geographic distribution than OA for *A. islandica* under future climate change scenarios in this region.

The number of scallops in the tanks at the end of the experiment limited our ability to statistically investigate this group. However, results generally indicated that growth increased with increasing temperatures (Figs 4 and S11) and growth was variable between all pH conditions. *P. magellanicus* become thermally stressed at temperatures above 13°C [78] and are limited geographically to regions below the 20°C isotherm [114, 115]. Modeling of *P. magellanicus* growth predicts that growth will increase with warmer temperatures and decrease under OA conditions [116]. Utilizing similar experimental conditions to our study, Cameron et al. [117] found growth to be reduced at high pCO₂ conditions for adult specimens of *P. magellanicus*.

The general results of this study indicate that more growth occurs at warmer temperatures across these four species, and, for some species, a warmer future could lead to more growth in certain life stages. However, food availability may impact organisms living in the wild in a warmer ocean. Some studies have shown that as ocean waters warm, the availability of phytoplankton decreases [e.g. 118, 119], which may result in warmer ocean temperatures leading to decreased growth. In the present experiment, the incoming water was identical before being warmed in each tank and thus had consistent concentrations of phytoplankton. Additionally, there is isotopic evidence that the organisms selected to eat

phytoplankton in the incoming seawater as opposed to the Shellfish Diet that was supplemented. The stable carbon isotopes of the material found in their stomachs were much closer to that of phytoplankton than the Shellfish Diet (see [S12 Fig](#)). Although future warming and associated decreases in phytoplankton might lead to mixed growth results for organisms in the wild, the growth seen in the present experiment is primarily the result of temperature variability.

Although growth in these experimental conditions can be largely attributed to temperature variability and not food availability, the presence of food for these organisms could have buffered stress in the lower pH tanks. Studies involving other bivalves have shown that it is energetically costly to survive in low pH conditions [\[120\]](#) and that adequate food availability could allow organisms to survive. For example, for larval and adult *Crassostrea virginica* (eastern oysters), with greater food availability, there was less mortality and greater growth [\[121\]](#). Similarly, juvenile *Pecten maximus* (king scallops) indicated a greater tolerance for OA with sufficient food available [\[122\]](#). The availability of food in the present experiment (both natural and the Shellfish Diet 1800 supplemental food) may have mitigated some detrimental effects of low pH conditions.

For all species studied, growth was seemingly unaffected by decreased pH and was instead influenced by temperature, with growth enhanced as temperatures increased up to 12°C. This growth trend with temperature is expected as the tank temperatures generally remained within previously determined optimal growing conditions for the organisms. However, with the exception of juvenile *A. islandica*, the resilience of growth to acidifying pH was not expected. Our results suggest that the relationship between shell growth and pH for these species could be more complicated than previously thought. Specifically, differences in regional stocks, life stage and/or food availability could be important.

Prior studies indicating decreased growth in these species at lower pH/higher CO₂ did not evaluate differences in regional stocks and none have been done using populations from the GoM. As all our study specimens originated from the GoM this could, to some degree, explain why we saw the resilience of growth in acidifying pH while other experiments did not. Additionally, juvenile bivalves often prioritize linear extension over increasing shell density until they reach the size of sexual maturity [\[123\]](#). This could be the case in our study, with these individuals prioritizing increasing shell maximum height over other crucial biological processes. Further study is needed to evaluate the differential growth responses to acidifying pH in species stocks from different regions and life stages.

4.2 Coloration

Variation in specimen coloration resulting from exposure to experimental pH and temperature treatments was an unexpected finding. Notably, the coloration of juvenile *M. mercenaria* and juvenile *M. arenaria* was strongly influenced by pH, and *M. mercenaria* coloration was additionally influenced by temperature ([Table 4](#), [Figs 5, 6](#) and [S8](#)). Conversely, the same environmental conditions had almost no influence on juvenile *A. islandica* coloration ([Table 4](#), [Figs 6](#) and [S9](#)).

Coloration in bivalves often displays considerable variability. In certain species (i.e. *P. magellanicus*) a dominant color prevails, while a minority may exhibit minimal pigmentation

(i.e. albino specimens; [S11 Fig](#)). In others, color serves as a defining trait, utilized for camouflage or communication, and it is believed to bolster shell integrity [\[124, 125\]](#). For *M. arenaria*, shells have been reported to become more translucent with increased metabolic activity [\[106\]](#). However, for most bivalves, individual coloration is largely influenced by the periostracum, the outer organic layer comprising mucopolysaccharides and lipids, which serves as a matrix for calcium carbonate deposition, a protective barrier against dissolution and to deter predation [\[48, 87–93\]](#). The loss of periostracum compromises these vital functions.

Our findings reveal that juvenile *M. mercenaria* and juvenile *M. arenaria* shells were lighter under lower pH conditions, indicating changes or loss of the periostracum and thus possible susceptibility to shell dissolution. For *M. mercenaria*, increasing temperature also increased the lightness of the shell. Similar visual changes in shell condition due to stressors have been observed previously; for instance, *M. arenaria* shells become more transparent with increased metabolic rates [\[106\]](#), and in the bivalve species *Corbicula fluminea* (Asian freshwater clam), internal shell color differences with stress suggest a redirection of energy from shell building to vital processes [\[126\]](#). Alternatively, a lighter shell color could indicate increased shell dissolution. In *M. edulis*, exposure to unsaturated water ($O_{Ar} < 1$) led to visible periostracum loss and subsequent shell dissolution, whereas areas with intact periostracum remained unaffected [\[51\]](#).

Published data on expected coloration differences in response to changing temperature and pH in *M. mercenaria* are scarce. Our study fills this gap by providing the first evidence that *M. mercenaria* shell color responds to environmental changes. Our results indicate that shell color becomes lighter as pH decreases and as temperatures rise ([Table 4](#), [Figs 6](#) and [S8](#)), suggesting a similar stress-induced impact on shell coloration as hypothesized for *M. arenaria*.

In our study, the most robust and significant differences in color were observed in *M. arenaria* specimens across pH treatments ([Table 4](#), [Figs 5](#) and [6](#)). Our results suggest that loss of coloration in *M. arenaria* clams under low pH conditions may be attributed to a loss of periostracum ([Fig 5](#)). Anecdotal observations of wild *M. arenaria* also support that shell color may become lighter when clams are exposed to lower pH conditions (A. Strong, personal communication and [\[107\]](#)). While Lewis & Cerrato [\[106\]](#) did not directly investigate the relationship between pH and shell color during their study on metabolic stressors, they did report differences in the translucency of *M. arenaria* shells suggesting that variations in shell coloration may indeed reflect fluctuations in metabolic rates.

By contrast, juvenile *A. islandica* exhibited consistent coloration irrespective of temperature or pH ([Table 4](#), [Figs 6](#) and [S9](#)). While previous laboratory-grown shell material has displayed distinct growth checks and differences in periostracum color [\[57\]](#), our study did not yield any notable impacts of pH or temperature on shell color or periostracum. However, a distinct growth check and a slight change in periostracum color were noticeable at the beginning of the experiment ([Fig 2](#)).

While differences in bivalve shell condition and coloration have been seen before under environmental stress, we have now established a quantitative relationship between pH and shell coloration for juvenile *M. mercenaria* and juvenile *M. arenaria*. The mechanism for these color changes is poorly understood, but we hypothesize that lighter shells could

indicate loss of periostracum, shell dissolution and/or metabolic stress. In the case of *M. mercenaria*, where shells also became lighter at higher temperatures, the pattern cannot be fully explained by shell dissolution alone.

Regarding the differential shell coloration response of these species to identical temperature and pH conditions, it is plausible that this disparity stems from inherent distinctions in shell biology or differences in the species' tolerance to environmental stress. For example, the resilience of juvenile *A. islandica* shell coloration compared to juvenile *M. arenaria* might be attributed to differences in periostracum characteristics or shell composition. Alternatively, the lack of fluctuation in juvenile *A. islandica* shell coloration under varying environmental conditions could suggest that physiological processes in this species are less susceptible under the range of temperatures and pH studied here.

4.3 Mortality

In this experiment, the observed mortality rate did not show a clear relationship with fluctuations in pH or temperature. Mortality rates were notably higher for *M. mercenaria* and adult *A. islandica* across all tank conditions. However, factors beyond the scope of this experiment, including the initial stock quality and the health status of the organisms, may have contributed to these deaths. Mortality can vary significantly depending on species, specific environmental conditions, and even geographic location [127], with bivalves generally proving highly sensitive to temperature variability outside of their optimal range [128, 129]. While some bivalves can endure short-term exposure to extreme temperatures, prolonged exposure often results in death [130]. Throughout our 20.5-week experiment overall mortality for all specimens combined was below 15% but varied between the study groups.

Notably, despite mortality rates exceeding 29% for juvenile *M. mercenaria*, we did not see changes in the probability of survival with changing pCO₂/pH or temperature (Table 2, S6 and S7 Figs). This outcome was in line with expectations, as *M. mercenaria* is known to be sensitive to fluctuating temperature and pH conditions, especially juveniles in undersaturated waters ($O < 1$; [131]). Additionally, lower temperatures, such as those employed in our study, increase the risk of mortality due to the presence of Quahog Parasite Unknown which is more prevalent at temperatures below 13°C [132]. Since all temperature treatments in the present experiment fell below this critical threshold, we cannot rule out that Quahog Parasite Unknown played a role in the mortality of juvenile *M. mercenaria* across treatments.

The low mortality rates in juvenile *M. arenaria* and their independence from temperature/ pH are perhaps unsurprising given the tested ranges. *M. arenaria* mortality from environmental variability is not well established, but temperatures in the range of the present experiment (6 to 12°C) appear conducive for survival. However, *M. arenaria* are more susceptible in warmer temperatures, with waters exceeding 28°C proving historically lethal for specimens from Chesapeake Bay, USA [75].

Similar to previous findings on juvenile *A. islandica* [55], our study showed low mortality rates independent of varying pH and temperature conditions. The ranges of temperatures and pH conditions in our study were similar to those in that of Hiebenthal et al. [55], yet we

observed mortality rates around three times lower in juveniles and ten times higher in adults across all treatments.

Although the total number of juvenile *P. magellanicus* specimens in our study was limited, a noteworthy trend emerged, with higher mortality rates observed in 12°C tanks (four individuals) compared to 6°C and 9°C treatments (one in each) (S6 Fig). Although it is known that *P. magellanicus* are sensitive to handling [133], this trend suggests a potential influence of temperature on *P. magellanicus* mortality. Other studies involving *P. magellanicus* indicate that this species is perhaps less tolerant to varying temperature and pH conditions compared to other bivalve taxa, with particularly elevated mortality rates observed under combined high pCO₂ (up to 2199 ppm) and temperature (up to 12°C) conditions [117].

Overall, while the study specimens generally survived (overall mortality <15%) and grew throughout our 20.5-week experiment, differences in shell coloration may hint at underlying differences in organism health. Our results highlight the variable response of bivalve species to pH and thermal stress, indicating that despite coming from the same class of organisms and locality the response of each species to identical experimental conditions was non-uniform.

4.4 Conclusions and implications

Our controlled tank experiment reveals that the growth of juvenile *M. mercenaria*, juvenile *M. arenaria*, and juvenile *A. islandica* was resilient to the low pH levels predicted for surface waters in the GoM by the end of the century. Although shell growth for juvenile *M. mercenaria* and juvenile *M. arenaria* remained unaffected by changing pH, noticeable differences in shell coloration were observed, with shells appearing lighter in color as pH decreased. Mortality rates remained low for most groups throughout the experiment and survival appeared unrelated to temperature or pH. These findings suggest that while study specimens were able to survive and grow during the experiment, disparities in health, indicated by variations in shell coloration under more acidifying conditions, may exist.

The results presented in this study could be a starting point for assessing the risk of these four bivalve species to OA in the Gulf of Maine. Our results highlight the fact that individual species likely harbor differential vulnerability to OA and that the juvenile stage for these four species is likely not at the greatest risk, at least to exposures like those described here. More study is needed to disentangle the effects of multiple stressors on differing life stages and stocks of these species. Additionally, shellfish growers may see differential impacts from OA depending on the bivalve species they grow and their site. Considering OA in site leasing and diversifying stocks could be beneficial for bivalve aquaculture.

Our results underscore the variable response of bivalve species to pH stress and provide a unique opportunity to compare organism responses to identical stressor conditions across species. Despite belonging to the same phylogenetic class and geographic region, the species in our study exhibited variable responses to identical experimental conditions. Considering the trajectory of predicted seawater temperatures and pH in the GoM, further research is warranted to explore the mechanisms underlying these differential responses

and their implications for bivalve health, resilience, and management in the face of changing environmental conditions.

Supporting information

S1 Fig. Map of collection areas within the Gulf of Maine.

(PDF)

S2 Fig. Correlations of various growth metrics from juvenile *A. islandica*, *M. mercenaria*, *M. arenaria* & *P. magellanicus*.

(PDF)

S3 Fig. Calcein stain lines under fluorescent light from a juvenile *Arctica islandica* shell.

(PDF)

S4 Fig. Abiotic tank treatment measures throughout the experiment.

(PDF)

S5 Fig. Abiotic tank treatment measures throughout the experiment by date.

(PDF)

S6 Fig. Deaths by species throughout the controlled tank experiment.

(PDF)

S7 Fig. Predicted probabilities of survival for juvenile *M. mercenaria* and juvenile *M. arenaria*. (PDF)

S8 Fig. Subset of juvenile *M. mercenaria* at the end of the experiment.

(PDF)

S9 Fig. Subset of juvenile *A. islandica* at the end of the experiment.

(PDF)

S10 Fig. Subset of adult *A. islandica* at the end of the experiment.

(PDF)

S11 Fig. Subset of juvenile *P. magellanicus* at the end of the experiment.

(PDF)

S12 Fig. Box plot of carbon isotopes from food, carbon isotopes of stomach/intestine contents, and carbon isotopes of the filters which tank water was filtered each week, representing the phytoplankton naturally available to the organisms.

(PDF)

S1 Data. Growth and color data for all specimens and tank temperature and pH conditions. (XLSX)

S1 Text. Tables of Levene's test for tank conditions and summary statistics of growth and coloration.

(DOCX)

S2 Text. Links to R code used for statistical analyses. (DOCX)

Acknowledgments

We thank student research assistants at Bowdoin College—Alexis Mullen, Lemona Niu, Lucie Nolden, and Jean Clemente—for collecting weekly water samples, flow rate, temperature, and pH data. Additional thanks to Lindsey Jarosinski (Iowa State University) for assistance with setting up the tank experiment, Joe Tourtelotte for SCSC facilities assistance, and Caroline Godfrey for data collection and for helping with the conclusion of the tank experiment.

ADW is supported by and serves at the NSF. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

We are grateful to two anonymous reviewers for their helpful comments to improve on an earlier version of this manuscript.

Author Contributions

Conceptualization: Branwen Williams, Alan Wanamaker, Brittany Jellison, Michèle LaVigne.

Data curation: Teagan McMahon, Diana Thatcher.

Formal analysis: Teagan McMahon, Brittany Jellison.

Funding acquisition: Branwen Williams, Alan Wanamaker, Joseph A. Stewart, Michèle LaVigne.

Investigation: Diana Thatcher, Branwen Williams, Alan Wanamaker, Heidi Franklin, Katherine Guay, Nina M. Whitney, Michèle LaVigne.

Methodology: Diana Thatcher, Alan Wanamaker, Brittany Jellison, Michèle LaVigne.

Project administration: Branwen Williams, Alan Wanamaker, Joseph A. Stewart, Michèle LaVigne.

Resources: Nina M. Whitney.

Software: Teagan McMahon, Brittany Jellison.

Supervision: Branwen Williams, Alan Wanamaker, Joseph A. Stewart, Michèle LaVigne.

Visualization: Teagan McMahon.

Writing – original draft: Teagan McMahon, Diana Thatcher.

Writing – review & editing: Teagan McMahon, Diana Thatcher, Branwen Williams, Alan Wanamaker, Brittany Jellison, Heidi Franklin, Katherine Guay, Nina M. Whitney, Joseph A. Stewart, Michèle LaVigne.

References

1. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, et al. Oceanic sources, sinks, and transport of atmospheric CO₂. *Global Biogeochemical Cycles*. 2009 Feb 18; 23(1). Available from: http://ocean.mit.edu/~stephd/gruber_gbc_09.pdf
2. Siedlecki S, Salisbury J, Gledhill D, Bastidas C, Meseck S, McGarry K, et al. Projecting ocean acidification impacts for the Gulf of Maine to 2050: New tools and expectations. *Elementa: Science of the Anthropocene*. 2021 May 13; 9(1). <https://doi.org/10.1525/elementa.2020.00062>

3. Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. *Nature*. 2003 Sep; 425(6956):365–5. Available from: <https://www.nature.com/articles/425365a>
4. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, et al. Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. *Nature*. 2005 Sep; 437(7059):681–6. Available from: <https://www.nature.com/articles/nature04095> <https://doi.org/10.1038/nature04095> PMID: [16193043](#)
5. Doney SC, Fabry VJ, Feely RA, Kleypas JA. Ocean acidification: the Other CO₂ Problem. *Annual Review of Marine Science*. 2009; 1(1):169–92. <https://doi.org/10.1146/annurev.marine.010908.163834> PMID: [21141034](#)
6. Bindoff N, Cheung W, Kairo J, Ari'stegui J, Spain V, Guinder A, et al. Salpie Djoudourian (Lebanon), Catia Domingues (Australia), Andreas Oschlies. 2019; Available from: https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/07_SROCC_Ch05_FINAL.pdf; <https://doi.org/10.1017/978100>
7. Feely R, Doney S, Cooley S. Ocean Acidification: Present Conditions and Future Changes in a HighCO₂ World. *Oceanography*. 2009 Dec 1; 22(4):36–47.
8. Burgess MG, Becker SL, Langendorf RE, Fredston A, Brooks CM. Climate change scenarios in fisheries and aquatic conservation research. *Ices Journal of Marine Science* [Internet]. 2023 Apr 4; 80(5):1163–78. Available from: <https://academic.oup.com/icesjms/article/80/5/1163/7103492>
9. Intergovernmental Panel on Climate Change (IPCC). Future Global Climate: Scenario-based Projections and Near-term Information. In: *Climate Change 2021 –The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge: Cambridge University Press; 2023. p. 553–672.
10. Waldbusser GG, Salisbury JE. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats. *Annual review of marine science*. 2014 Jan 3; 6:221–47. <https://doi.org/10.1146/annurev-marine-121211-172238> PMID: [23987912](#)
11. Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA. The Pacific oyster, *Crassostrea gigas*, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. *Limnology and Oceanography*. 2012 Apr 16; 57(3):698–710.
12. Gazeau F, Alliouane S, Bock C, Bramanti L, Lo'pez Correa M, Gentile M, et al. Impact of ocean acidification and warming on the Mediterranean mussel (*Mytilus galloprovincialis*). *Frontiers in Marine Science*. 2014 Nov 26; 1.
13. Sikes CS, Okazaki K, Fink RD. Respiratory CO₂ and the supply of inorganic carbon for calcification of sea urchin embryos. *Comparative Biochemistry and Physiology Part A: Comparative Physiology*. 1981 Jan 1; 70(3):285–91.
14. Furla P, Galgani I, Durand I, Allemand D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. *Journal of Experimental Biology*. 2000 Nov 15; 203(22):3445–57. <https://doi.org/10.1242/jeb.203.22.3445> PMID: [11044383](#)
15. Matt AS, Chang W, Marian Yong-An Hu. Extracellular carbonic anhydrase activity promotes a carbon concentration mechanism in metazoan calcifying cells. *Proceedings of the National Academy of Sciences of the United States of America*. 2022 Sep 26; 119(40). <https://doi.org/10.1073/pnas.2203904119> PMID: [36161891](#)
16. Gold DA, Vermeij GJ. Deep resilience: An evolutionary perspective on calcification in an age of ocean acidification. *Frontiers in Physiology*. 2023 Feb 3; 14.
17. Sutton AJ, Sabine CL, Feely RA, Cai WJ, Cronin MF, McPhaden MJ, et al. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. *Biogeosciences*. 2016 Sep 13; 13(17):5065–83.
18. Hobday AJ, Pecl GT. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. *Reviews in Fish Biology and Fisheries*. 2013 Sep 24; 24(2):415–25.

19. Saba VS, Griffies SM, Anderson WG, Winton M, Alexander MA, Delworth TL, et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. *Journal of Geophysical Research: Oceans*. 2016 Jan; 121(1):118–32.
20. Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Le Bris A, Mills KE, et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. *Science*. 2015 Oct 29; 350 (6262):809–12. <https://doi.org/10.1126/science.aac9819> PMID: 26516197
21. Petrie B, Drinkwater K. Temperature and salinity variability on the Scotian Shelf and in the Gulf of Maine 1945–1990. *Journal of Geophysical Research*. 1993; 98(C11):20079.
22. Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang FS, Holland DS, et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. *Oceanography*. 2013 Jun 1; 26(2):191–5.
23. Cheung WWL, Frolicher TL. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. *Scientific Reports*. 2020 Apr 21; 10(1):1–10. Available from: <https://www.nature.com/articles/s41598-020-63650-z>
24. Frolicher TL, Fischer EM, Gruber N. Marine heatwaves under global warming. *Nature*. 2018 Aug; 560 (7718):360–4. Available from: <https://www.nature.com/articles/s41586-018-0383-9> <https://doi.org/10.1038/s41586-018-0383-9> PMID: 30111788
25. Frolicher TL, Laukoetter C. Emerging risks from marine heat waves. *Nature Communications*. 2018 Feb 13; 9(1):650. <https://doi.org/10.1038/s41467-018-03163-6> PMID: 29440658
26. Huang B, Wang Z, Yin X, Arguez A, Graham G, Liu C, et al. Prolonged Marine Heatwaves in the Arctic: 1982–2020. *Geophysical Research Letters*. 2021 Dec 13; 48(24).
27. Seidov D, Mishonov A, Parsons R. Recent warming and decadal variability of Gulf of Maine and Slope Water. *Limnology and Oceanography*. 2021 Jul 27; 66(9):3472–88. <https://doi.org/10.1002/leo.11892>
28. Whitney NM, Wanamaker AD, Ummenhofer CC, Johnson BJ, Cresswell-Clay N, Kreutz KJ. Rapid 20th century warming reverses 900-year cooling in the Gulf of Maine. *Communications Earth & Environment*. 2022 Aug 8; 3(1).
29. Wanamaker AD, Kreutz KJ, Schone BR, Pettigrew NR, Borns HW, Introne DS, et al. Coupled North Atlantic slope water forcing on Gulf of Maine temperatures over the past millennium. *Climate Dynamics*. 2008 Aug 1; 31(2–3):183–94.
30. Lower-Spies EE, Whitney NM, Wanamaker AD, Griffin SM, Introne DS, Kreutz KJ. A 250-year, decadally resolved, radiocarbon time history in the Gulf of Maine reveals a hydrographic regime shift at the end of the little ice age. *Journal of Geophysical Research: Oceans*. 2020 Sep; 125(9): e2020JC016579.
31. Oliver ECJ, Burrows MT, Donat MG, Sen Gupta A, Alexander LV, Perkins-Kirkpatrick SE, et al. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. *Frontiers in Marine Science*. 2019 Dec 4; 6.
32. Plecha SM, Soares PMM, Silva-Fernandes SM, Cabos W. On the uncertainty of future projections of Marine Heatwave events in the North Atlantic Ocean. *Climate Dynamics*. 2021 Feb 25; 56(7–8):2027–56.
33. Olsen A, Lange N, Key RM, Tanhua T, Bittig HC, Kozyr A, et al. An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020. *Earth System Science Data*. 2020 Dec 23; 12(4):3653–78.
34. Salisbury JE, Joansson BF. Rapid warming and salinity changes in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean acidification. *Biogeochemistry*. 2018 Oct 12; 141 (3):401–18. <https://doi.org/10.1007/s10533-018-0505-3> PMID: 30930509
35. Townsend D. W. et al. Water masses and nutrient sources to the Gulf of Maine. *Journal of Marine Research*. 73, 93–122 (2015). <https://doi.org/10.1357/002224015815848811> PMID: 27721519
36. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM. Reduced calcification of marine plankton in response to increased atmospheric CO₂. *Nature*. 2000 Sep; 407(6802):364–7. <https://doi.org/10.1038/35030078> PMID: 11014189

37. Marubini F, Ferrier-Pages C, Cuif J. Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. *Proceedings of the Royal Society of London Series B: Biological Sciences*. 2003 Jan 22; 270(1511):179–84.
38. Shirayama Y. Effect of increased atmospheric CO₂ on shallow water marine benthos. *Journal of Geophysical Research*. 2005; 110(C9).
39. Michaelidis B, Ouzounis C, Paleras A, Poertner H. Effects of long-term moderate hypercapnia on acidbase balance and growth rate in marine mussels *Mytilus galloprovincialis*. *Marine Ecology Progress Series*. 2005; 293:109–18.
40. Welladsen H. M, Southgate P. C., Heimann K., *Molluscan Research* 2010, 30, 125.
41. Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. *Limnology and Oceanography*. 2011 May 24; 56(4):1200–12.
42. Chan VBS, Li C, Lane AC, Wang Y, Lu X, Shih K, et al. CO₂-Driven Ocean Acidification Alters and Weakens Integrity of the Calcareous Tubes Produced by the Serpulid Tubeworm, *Hydroides elegans*. Lin S, editor. *PLoS ONE*. 2012 Aug 13; 7(8):e42718.
43. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. *Global Change Biology*. 2013 Apr 3; 19(6):1884–96. <https://doi.org/10.1111/gcb.12179> PMID: 23505245
44. Mayk D, Peck LS, Harper EM. Evidence for Carbonate System Mediated Shape Shift in an Intertidal Predatory Gastropod. *Frontiers in Marine Science*. 2022 Jun 21; 9.
45. Kurihara H, Kato S, Ishimatsu A. Effects of increased seawater pCO₂ on early development of the oyster *Crassostrea gigas*. *Aquatic Biology*. 2007 Oct 9; 1:91–8.
46. Pousse E, Poach ME, Redman DH, Sennefelder G, Hubbard W, Osborne K, et al. Juvenile Atlantic sea scallop, *Placopecten magellanicus*, energetic response to increased carbon dioxide and temperature changes. *PLOS climate*. 2023 Feb 22; 2(2):e0000142–2.
47. Nienhuis S, Palmer AR, Harley CDG. Elevated CO₂ affects shell dissolution rate but not calcification rate in a marine snail. *Proceedings of the Royal Society B: Biological Sciences*. 2010 Apr 14; 277(1693):2553–8. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894921/>
48. Ries JB, Cohen AL, McCorkle DC. Marine calcifiers exhibit mixed responses to CO₂-induced ocean acidification. *Geology*. 2009 Dec 1; 37(12):1131–4. Available from: <https://pubs.geoscienceworld.org/gsa/geology/article-abstract/37/12/1131/103987>
49. Rodolfo-Metalpa R, Houlbrèque F, Tambutte' E', Boisson F, Baggini C, Patti FP, et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. *Nature Climate Change*. 2011 Aug 21; 1(6):308–12. Available from: <https://www.nature.com/articles/nclimate1200>
50. Wolfe K, Smith AM, Trimby P, Byrne M. Vulnerability of the Paper Nautilus (*Argonauta nodosa*) Shell to a Climate-Change Ocean: Potential for Extinction by Dissolution. *Biological Bulletin*. 2012 [cited 2024 Mar 5]; 223(2):236–44. Available from: <https://www.jstor.org/stable/41759010>
51. Fitzer SC, Vittet L, Bowman A, Kamenos NA, Phoenix VR, Cusack M. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection? *Ecology and Evolution*. 2015 Oct 12; 5(21):4875–84. <https://doi.org/10.1002/ece3.1756> PMID: 26640667
52. Byrne M. Impact of Ocean Warming and Ocean Acidification on Marine Invertebrates Life History Stages: Vulnerabilities and Potential for Persistence in a Changing Ocean. *Oceanography and Marine Biology*, 2011; 49, 1–42. <https://doi.org/10.1201/b11009-2>
53. Dworjanyn SA, Byrne M. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. *Proceedings of the Royal Society B: Biological Sciences*. 2018 Apr 11; 285(1876):20172684. <https://doi.org/10.1098/rspb.2017.2684> PMID: 29643209
54. Gooding RA, Harley CDG, Tang E. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. *Proceedings of the National Academy of Sciences*.

2009 May 26; 106(23):9316–21. <https://doi.org/10.1073/pnas.0811143106> PMID: 19470464

55. Hiebenthal C, Philipp EER, Eisenhauer A, Wahl M. Effects of seawater pCO₂ and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea *Mytilus edulis* (L.) and *Arctica islandica* (L.). *Marine Biology*. 2012 Oct 18; 160(8):2073–87. <https://doi.org/10.1007/s00227012-2080-9>

56. Liu Y, Wanamaker AD, Aciego S, Searles I, Thor Arne Hangstad, Chierici M, et al. Resistant calcification responses of *Arctica islandica* clams under ocean acidification conditions. *Journal of Experimental Marine Biology and Ecology*. 2023 Mar 1; 560:151855–5. <https://doi.org/10.1016/j.jembe.2022.151855>

57. Ho“che N, Walliser EO, de Winter NJ, Witbaard R, Scho“ne BR. Temperature-induced microstructural changes in shells of laboratory-grown *Arctica islandica* (Bivalvia). Gillikin DP, editor. *PLOS ONE*. 2021 Feb 26; 16(2):e0247968. <https://doi.org/10.1371/journal.pone.0247968>

58. Lefevre S. Are global warming and ocean acidification conspiring against marine ectotherms? A metaanalysis of the respiratory effects of elevated temperature, high CO₂ and their interaction. *Conservation Physiology*. 2016; 4(1):cow009.

59. Dahlgren TG, Weinberg JR, Halanych KM. Phylogeography of the ocean quahog (*Arctica islandica*): influences of paleoclimate on genetic diversity and species range. *Marine Biology*. 2000 Oct 16; 137 (3):487–95.

60. Merrill A.S. and Ropes J.W., 1969. The general distribution of the surf clam and ocean quahog. *Proceedings of the Natural Shellfish Association*, 59, 40–45.

61. Mette MJ, Wanamaker AD, Carroll ML, Ambrose WG, Retelle MJ. Linking large-scale climate variability with *Arctica islandica* shell growth and geochemistry in northern Norway. *Limnology and Oceanography*. 2015 Dec 31; 61(2):748–64.

62. Butler PG, Wanamaker AD, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve *Arctica islandica*. *Palaeogeography, Palaeoclimatology, Palaeoecology*. 2013 Mar; 373:141–51.

63. Kennish MJ, Lutz RA, Dobarro JA, Fritz LW. *In situ* growth rates of the ocean quahog, *Arctica islandica* (Linnaeus, 1767), in the Middle Atlantic Bight. *Journal of Shellfish Research*. 1994; 13(2):473–8.

64. Golikov A.N. and Scarlato O.A. 1973. Method for indirectly defining optimum temperatures of inhabitancy for marine cold-blooded animals. *Marine Biology* 20: 1–5.

65. Cargnelli et al., 1999, Essential fish habitat source document. Ocean quahog, *Arctica islandica*, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-148.

66. Scho“ne BR. *Arctica islandica* (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean. *Global and Planetary Change*. 2013 Dec; 111:199–225.

67. MAFMC. 2024. Ocean quahog fishery information document. Dover, DE: Mid-Atlantic Fishery Management Council. 15 pp

68. Ansell AD. The Rate of Growth of the Hard Clam (*Mercenaria mercenaria*) throughout the Geographical Range. *ICES Journal of Marine Science*. 1968 Jan 1; 31(3):364–409.

69. USDA. 2017 Census of Agriculture: Census of Aquaculture (2018).

70. Abbott, Robert Tucker. *American Seashells*. Van Nostrand Reinhold Company; 1974.

71. Gosner KL, National Audubon Society, National Wildlife Federation, Tory R. A field guide to the Atlantic seashore: from the Bay of Fundy to Cape Hatteras. Boston: Houghton Mifflin; 1978.

72. Coan EV, Valentich-Scott P, Bernard FR. *Bivalve Seashells of Western North America. Marine Bivalve Mollusks from Arctic Alaska to Baja California*. Paul Valentich-Scott; 2000.

73. Coan EV and Valentich Scott P. 2007. Bivalvia. In: Carlton J. T., editors. *The Light and Smith Manual. Intertidal invertebrates from central California to Oregon*. Berkeley: Univ. of California Press. pp.807– 859.

74. Gerasimova A.V., Maximovich N.V. & Filippova N.A. Cohort life tables for a population of the soft-shell clam, *Mya arenaria* L., in the White Sea. *Helgoland Marine Research* 69, 147–158 (2015). <https://doi.org/10.1007/s10152-014-0423-2>

75. Stickney AP. Salinity, Temperature, and Food Requirements of Soft-Shell Clam Larvae in Laboratory Culture. *Ecology*. 1964 Apr; 45(2):283–91.

76. NOAA, 2024, Commercial Fisheries Statistics: annual commercial landing statistics, *NMFS Office of Science and Technology*, <https://www.fisheries.noaa.gov/national/sustainable-fisheries/commercialfisheries-landings>

77. Posgay JA. The range of the sea scallop. *Nautilus*. 1957; 71:55–57.

78. Zang Z, Ji R, Hart DR, JIN D, Chen C, Liu Y, et al. Effects of warming and fishing on Atlantic sea scallop (*Placopecten magellanicus*) size structure in the Mid-Atlantic rotationally closed areas. *ICES Journal of Marine Science*. 2023 Apr 17; 80(5):1351–66.

79. Ferraro DM; Trembanis AC; Mille DC; and Rudders David, "Estimates Of Sea Scallop (*Placopecten Magellanicus*) Incidental Mortality From Photographic Multiple Before-After-Control-Impact Surveys" (2017). VIMS Articles. 300.

80. Pearse V. Living invertebrates. Palo Alto, Calif.: Blackwell Scientific Publications; Pacific Grove, Calif; 1987.

81. Coleman S, Cleaver C, Morse D, Brady DC, Kiffney T. The coupled effects of stocking density and temperature on Sea Scallop (*Placopecten magellanicus*) growth in suspended culture. *Aquaculture Reports*. 2021 Jul; 20:100684.

82. Carstensen J, Duarte CM. Drivers of pH Variability in Coastal Ecosystems. *Environmental Science & Technology*. 2019 Mar 20; 53(8):4020–9. <https://doi.org/10.1021/acs.est.8b03655> PMID: 30892892

83. Lueker T. J., Dickson A. G. and Keeling C. D., 2000 Ocean pCO₂ calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium. *Marine Chemistry* 70 105–119.

84. Cominassi L, Moyano M, Claireaux G, Howald S, Mark FC, Zambonino-Infante JL, et al. Food availability modulates the combined effects of ocean acidification and warming on fish growth. *Scientific Reports*. 2020 Feb 11; 10(1). <https://doi.org/10.1038/s41598-020-58846-2> PMID: 32047178

85. Nishii T. Examination of the underwater weight used for measuring the growth of pearl oyster, *Pinctada martensii*. *Bulletin of the National Pearl Research Laboratory* 1965 10: 1264–1282.

86. Palmer AR. Growth in marine gastropods: A nondestructive technique for independently measuring shell and body weight. *Malacologia* 1982 23:63–73.

87. Harper EM. The molluscan periostracum: an important constraint in bivalve evolution. *Palaeontology*. 1997 Jan 1; 40:71–97.

88. Salas C, Marina P, Checa AG, Rueda JL. The periostracum of *Digitaria digitaria* (Bivalvia: Astartidae): formation and structure. *Journal of Molluscan Studies*. 2011 Oct 18 [cited 2022 Aug 24]; 78(1):34–43. Available from: <https://academic.oup.com/mollus/article/78/1/34/1are103061>

89. Harper E, Skelton P. A defensive value of the thickened periostracum in the *Mytiloidea*. *Veliger*. 1993; 36:36–42.

90. Tunnicliffe V, Davies KTA, Butterfield DA, Embley RW, Rose JM, Chadwick WW Jr. Survival of mussels in extremely acidic waters on a submarine volcano. *Nature Geoscience*. 2009 Apr 12 [cited 2020 Jan 20]; 2(5):344–8. Available from: <https://www.nature.com/articles/ngeo500>

91. Wa'hlisch FC, Peter NJ, Oscar Torrents Abad, Mariana V.G. Oliveira, Schneider AS, Schmahl W, et al. Surviving the surf: The tribomechanical properties of the periostracum of *Mytilus* sp. *Acta biomaterialia*. 2014 Sep 1; 10(9):3978–85.

92. Telesca L, Peck LS, Sanders T, Jakob Thyrring, Sejr MK, Harper EM. Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. *Global Change Biology*. 2019 Aug 20; 25(12):4179–93. <https://doi.org/10.1111/gcb.14758> PMID: 31432587

93. Chi H, Pan X, Zhang G. Structure and function of the periostracum in the bivalve *Perna viridis*. *Micron*

(Oxford, England: 1993). 2023 Jun 1; 169:103458. Available from: <https://pubmed.ncbi.nlm.nih.gov/37075556/>

94. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. *Nature Methods*. 2012 Jun 28; 9(7):671–5. <https://doi.org/10.1038/nmeth.2089> PMID: 22930834

95. Hartig F (2022). *_DHARMA: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models_*. R package version 0.4.6, <https://CRAN.R-project.org/package=DHARMA>

96. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*. 2015; 67(1).

97. FAO 2023. *Mercenaria mercenaria*. Cultured Aquatic Species Information Programme. Text by Kraeuter, J. N. Fisheries and Aquaculture Division [online]. Rome. Updated 2005-03-15 [Cited Thursday, December 7, 2023].

98. Kennedy VS, Mihursky JA. Upper Temperature Tolerances of Some Estuarine Bivalves. *Chesapeake Science*. 1971 Dec; 12(4):193.

99. Newell Carter R; Hidu Herbert (1986) Species profiles: Life histories and environmental requirements of coastal fish and invertebrates (North Atlantic): Softshell Clam, Biological Report 82(11.53): 1–17.

100. Hart DR, Chute AS. Essential fish habitat source document. Sea scallop, *Placopecten magellanicus*, life history and habitat characteristics [Internet]. Noaa.gov. 2019 [cited 2024 Aug 13]. Available from: <https://repository.library.noaa.gov/view/noaa/4031>

101. Jones DS, Arthur MA, Allard DJ. Sclerochronological records of temperature and growth from shells of *Mercenaria mercenaria* from Narragansett Bay, Rhode Island. *Marine Biology*. 1989 Aug; 102(2):225–34.

102. Dickinson GH, Matoo OB, Tourek RT, Sokolova IM, Beniash E. Environmental salinity modulates the effects of elevated CO₂ levels on juvenile hard-shell clams, *Mercenaria mercenaria*. *Journal of Experimental Biology*. 2013 Mar 26; 216(14):2607–1fee8.

103. Talmage SC, Gobler CJ. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (*Mercenaria mercenaria*), bay scallops (*Argopecten irradians*), and Eastern oysters (*Crassostrea virginica*). *Limnology and Oceanography*. 2009 Sep 14; 54 (6):2072–80.

104. Talmage SC, Gobler CJ. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. *Proceedings of the National Academy of Sciences*. 2010 Sep 20; 107(40):17246–51. Available from: <https://www.pnas.org/content/107/40/17246> <https://doi.org/10.1073/pnas.0913804107> PMID: 20855590

105. Talmage SC, Gobler CJ. Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves. Gratwicke B, editor. *PLoS ONE*. 2011 Oct 31; 6(10):e26941. <https://doi.org/10.1371/journal.pone.0026941> PMID: 22066018

106. Lewis D. E., & Cerrato R. M. (1997). Growth uncoupling and the relationship between shell growth and metabolism in the soft shell clam *Mya arenaria*. *Marine Ecology Progress Series*, 158, 177–189. <http://www.jstor.org/stable/24858808>

107. Glaspie Cassandra N., Longmire Katherine, Seitz Rochelle D., Acidification alters predator-prey interactions of blue crab *Callinectes sapidus* and soft-shell clam *Mya arenaria*, *Journal of Experimental Marine Biology and Ecology*, Volume 489, 2017, Pages 58–65, ISSN 0022-0981, <https://doi.org/10.1016/j.jembe.2016.11.010>.

108. Zhao L, Milano S, Eric Otto Walliser, Schoene BR. Bivalve shell formation in a naturally CO₂-enriched habitat: Unraveling the resilience mechanisms from elemental signatures. *Chemosphere*. 2018 Jul 1; 203:132–8.

109. Witbaard R., Franken R, Visser B. Growth of juvenile *Arctica islandica* under experimental conditions. *Helgolander Meeresuntersuchungen*. 1998 Feb 1; 51(4):417–31.

110. Kraus MG, Beal BF, Chapman SR. Growth rate of *Arctica islandica* a comparison of wild and laboratory reared individuals. *Journal of Shellfish Research*. 1989 Sep 17; 8(2):463.

111. Kraus MG, Beal BF, Chapman SR, McMartin L. A comparison of growth rates in *Arctica islandica* (Linnaeus, 1767) between field and laboratory populations. *Journal of shellfish research*. 1992; 11:289– 294.
112. Stemmer K, Nehrke G, Brey T. Elevated CO₂ Levels do not Affect the Shell Structure of the Bivalve *Arctica islandica* from the Western Baltic. Stepanova A, editor. PLoS ONE. 2013 Jul 29; 8(7):e70106.
113. Bamber SD, Westerlund S. Behavioral responses of *Arctica islandica* (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage. *Aquatic Toxicology*. 2016 Nov; 180:295–305.
114. MacKenzie C.L. Jr. 1979. Biological and fisheries data on sea scallop, *Placopecten magellanicus* (Gmelin). U.S. National Marine Fisheries Service Northeast Fisheries Center Sandy Hook Laboratory Tech. Ser. Rep. No. 19. 34 p.
115. Mullen D M, and Moring J R. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic): Sea scallop. [*Placopecten magellanicus*]. United States: N. p., 1986.
116. Cooley SR, Rheuban JE, Hart DR, Luu V, Glover DM, Hare JA, et al. An Integrated Assessment Model for Helping the United States Sea Scallop (*Placopecten magellanicus*) Fishery Plan Ahead for Ocean Acidification and Warming. Dupont S, editor. PLOS ONE. 2015 May 6; 10(5):e0124145.
117. Cameron LP, Grabowski JH, Ries JB. Effects of elevated pCO₂ and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop *Placopecten magellanicus*. *Limnology and Oceanography*. 2022 Jul 7; 67(8):1670–86. <https://doi.org/10.1002/lo.12153>
118. Behrenfeld MJ, O'Malley RT, Boss ES, Westberry TK, Graff JR, Halsey KH, et al. Revaluating ocean warming impacts on global phytoplankton. *Nature Climate Change*. 2015 Oct 26; 6(3):323–30.
119. Guyondet T, Comeau LA, Bacher C, Grant J, Rosland R, Sonier R, et al. Climate Change Influences Carrying Capacity in a Coastal Embayment Dedicated to Shellfish Aquaculture. *Estuaries and Coasts*. 2014 Oct 21; 38(5):1593–618.
120. Ramajo L, Pe'rez-Leo'n E, Hendriks IE, Marbà N, Krause-Jensen D, Sejr MK, et al. Food supply confers calcifiers resistance to ocean acidification. *Scientific Reports*. 2016 Jan 18; 6(1).
121. Schwaner C, Barbosa M, Schwemmer TG, Pales Espinosa E, Allam B. Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification. *Animals* [Internet]. 2023 Jan 1; 13(7):1161. Available from: <https://www.mdpi.com/2076-2615/13/7/1161> <https://doi.org/10.3390/ani13071161> PMID: 37048417
122. Sanders M, Bean TP, Hutchinson TH, J.F W. Juvenile King Scallop, *Pecten maximus*, Is Potentially Tolerant to Low Levels of Ocean Acidification When Food Is Unrestricted. *PLOS ONE*. 2013 Sep 4; 8(9):e74118–8.115. <https://doi.org/10.1371/journal.pone.0074118> PMID: 24023928
123. Mancuso A., Stagioni M., Prada F. et al. Environmental influence on calcification of the bivalve *Chamelea gallina* along a latitudinal gradient in the Adriatic Sea. *Sci Rep* 9, 11198 (2019). <https://doi.org/10.1038/s41598-019-47538-1>
124. Rosin ZM, Kobak J, Lesicki A, Tryjanowski P. Differential shell strength of *Cepaea nemoralis* colour morphs—implications for their anti-predator defence. *Naturwissenschaften*. 2013 Aug 7; 100(9):843– 51.
125. Saenko SV, Schilthuizen M. Evo-devo of shell colour in gastropods and bivalves. *Current Opinion in Genetics & Development*. 2021 Aug; 69:1–5. <https://doi.org/10.1016/j.gde.2020.11.009> PMID: 33388521
126. Prezant RS., Tan Tiu aA, Chalermwat K. Shell microstructure and color changes in stressed *Corbicula* (Bivalva: *Corbiculidae*) The Veliger 1988 31 (3/4):236–243.
127. Thomas Y, Bacher C. Assessing the sensitivity of bivalve populations to global warming using an individual-based modelling approach. *Global Change Biology*. 2018 Aug 8; 24(10):4581–97. <https://doi.org/10.1111/gcb.14402> PMID: 30030873

128. Hare J. A., Morrison W. E., Nelson M. W., Stachura M. M., Teeters E. J., Griffis R. B., et al. (2016). A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf. PLoS ONE 11(2): e0146756. <https://doi.org/10.1371/journal.pone.0146756> PMID: 26839967
129. Masanja F, Xu Y, Yang K, Mkuye R, Deng Y, Zhao L. Surviving the cold: a review of the effects of cold spells on bivalves and mitigation measures. *Frontiers in Marine Science*. 2023 Apr 21; 10.
130. Seuront L, Nicastro KR, Zardi GI, Goberville E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel *Mytilus edulis*. *Scientific Reports*. 2019 Nov 25; 9(1).
131. Green MA, Jones ME, Boudreau CL, Moore RL, Westman BA. Dissolution mortality of juvenile bivalves in coastal marine deposits. *Limnology and Oceanography*. 2004 May; 49(3):727–34.
132. Dahl SF, Mickael Perrigault, Liu Q, Collier JL, Barnes DA, Allam B. Effects of temperature on hard clam (*Mercenaria mercenaria*) immunity and QPX (Quahog Parasite Unknown) disease development: I. Dynamics of QPX disease. *Journal of Invertebrate Pathology*. 2011 Feb 1; 106(2):314–21.
133. Pe'rez HM, Janssoone X, Nadeau M, Guderley H. Force production during escape responses by *Placopecten magellanicus* is a sensitive indicator of handling stress: Comparison with adductor muscle adenylate energy charge and phosphoarginine levels. *Aquaculture*. 2008 Sep; 282(1–4):142–6.