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variation on biodiversity. The environmental correlates of these spatial gradients are

drivers including warming and increased frequency of extreme events. We quanti-
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1 | INTRODUCTION et al., 2021; Maxwell et al., 2019), and altered composition and

configuration of landscapes via anthropogenic activities (Presley
Aspects of global change, including warming (e.g., Brown et al., 2022; et al., 2019; Scott et al., 2001; Vitousek et al., 1997), increasingly
Shi et al., 2021), increased frequency and intensity of extreme threaten biodiversity in ecosystems throughout the world. As a

weather events such as cyclonic storms and droughts (Habibullah consequence, concerns about the Earth's sixth mass extinction,
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especially as they relate to loss of ecosystem services (Cardinale
et al., 2006; Smale et al., 2019), have arisen in both popular and
scientific venues (Ceballos et al., 2015). Within this context, it has
become critical to characterize spatial patterns of biodiversity, un-
derstand the mechanisms that give rise to them, and employ that
understanding to inform conservation and management of natural

resources.

1.1 | Elevational gradients

Elevational gradients represent an important environmental
platform (Garten Jr. et al., 1999; Gonzalez et al., 2013) for study-
ing the effects of climate change on the spatial organization of
populations, communities, and metacommunities (Grytnes &
McCain, 2007; Koérner, 2003; McCain & Grytnes, 2010; Presley
& Willig, 2023). Areas with high elevational relief are often re-
gional or global hot spots of biodiversity (Kérner, 2007), stimulat-
ing much ecological and biogeographic research along elevational
gradients, as recently considered in a Special Feature in Frontiers
of Biogeography (Vetaas, 2021). Montane regions experience steep
gradients in temperature and moisture, with temperature declin-
ing and precipitation increasing as elevation increases, compara-
ble to the changes that accompany increasing latitude. However,
montane gradients are spatially condensed compared to latitudi-
nal gradients, with the same temperature change occurring across
a 1000-m increase in elevation as occurs over a 550-km increase
in latitude (Montgomery, 2006). Hence, the range of habitat condi-
tions that occur over a wide latitudinal gradient occur on a smaller
spatial scale in montane areas, potentially making montane eco-
systems sensitive indicators of environmental changes and their
effects on biodiversity dynamics (Elsen et al., 2018; Willig &
Presley, 2019).

As global climate warms, species distributions are expected
to shift toward higher latitudes or higher elevations, within the
constraints of precipitation change (Franklin et al., 1992; Freeman
et al., 2018; Schowalter, 2022). Because of their greater special-
ization and more restricted geographic ranges compared to tem-
perate counterparts, tropical organisms should respond more
strongly to environmental changes along elevational gradients
(Gonzélez & Lodge, 2017; Janzen, 1967; Rapoport, 1982; Tedersoo
et al., 2014). The rapid rate of change in environmental character-
istics within relatively short distances along elevational gradients
can provide insights into the mechanisms that determine spe-
cies distributions and community assembly (Cantrell et al., 2013;
Richardson & Richardson, 2013; Terborgh, 1971; Whittaker, 1960;
Willig et al., 2013), which can then be contrasted over time (Moritz
et al.,, 2008; Rowe, 2007; Schowalter et al., 2005), over space
(Dunn et al., 2009; Schowalter et al., 2005; Wiens et al., 2006;
Willig & Lyons, 1998), or among taxa (Presley et al., 2012). Because
responses along elevational gradients may occur more quickly
than those along latitudinal gradients, elevational responses may
be useful in predicting responses along analogous latitudinal gra-
dients, at least where mountain ranges are not too isolated to
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represent longer latitudinal gradients. Nonetheless, elevational
domains are smaller and in closer geographic proximity to each
other compared to equivalent latitudinal domains representing
similar environmental attributes. Consequently, mass effects as-
sociated with dispersal tend to enhance the homogenization of
species composition along elevational gradients compared to their
latitudinal counterparts. Similarly, the smaller area of elevational
domains compared to their equivalent latitudinal domains, would
decrease the number of domain specialists if effective population
sizes are less than the minimum sizes needed to maintain positive
growth rates, thereby decreasing the heterogeneity of species
composition along gradients of elevation compared to those as-

sociated with latitude.

1.2 | Luquillo Mountains

The Luquillo Mountains in Puerto Rico rise to 1075m in eleva-
tion, presenting gradients of climate and vegetation change that
extend through five life zones from subtropical moist forest to
lower montane rain forest (Ewel & Whitmore, 1973). A sequence
of plant assemblages occurs along this gradient from mid-elevation
(200-600m asl) tabonuco forest through palo colorado forest
(600-900m) to elfin woodland (900-1075m). In addition, palm for-
est (i.e., patches dominated by Prestoea acuminata [sierra palm]) is a
naturally fragmented forest type that can occur at all elevations on
steep slopes with wet soils. Importantly, this palm is quite common
throughout the Luquillo Mountains, even in nonpalm forests. As a
consequence of elevational variation in climatic, biogeochemical,
and plant characteristics, the abundance and biodiversity of many
groups of heterotrophs, including vertebrates (Campos-Cerqueira
et al., 2017), invertebrates (Richardson & Richardson, 2013; Willig
et al.,, 2013), and microbes (e.g., Cantrell et al., 2013), vary along this

montane gradient as well.

1.3 | Sierrapalm as a model system

The abundance and biodiversity of arthropods on P.acuminata likely
depend on the community context within which a host plant exists
(Figure 1). According to the Resource Concentration Hypothesis
(Futuyma & Wasserman, 1980; Kareiva, 1983), heterotrophs should
be more abundant in patches of concentrated host resources than
in patches with sparser host resources because foraging individuals
are more likely to find hosts that are close together. In palm forest,
most arthropods on P.acuminata likely colonize from other sierra
palms (green circles in Figure 1) that are in close proximity. Although
other host species can be a source of colonists (pink circle in Figure 1),
because they are rare or distant compared to other P.acuminata indi-
viduals in palm forest, they likely have a lesser effect on abundance or
biodiversity of arthropod assemblages on P.acuminata. Because the
cumulative abundance of P.acuminata in a plot is relatively large, the
size of the overall habitat those individuals represent is large and the
distance to other P.acuminata host individuals is relatively small. This
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Palm Forest Non-Palm Forest

FIGURE 1 Graphicillustration of the effect of forest context
(palm forest versus nonpalm forest) on the abundance and
biodiversity at the species level of arthropods on Prestoea
acuminata host trees. Circles represent host trees and colors
(green, red, orange, yellow) represent different species of trees.
The focal host tree (green, P.acuminata) is indicated by a circle with
a bold black perimeter. The sizes of the circles are irrelevant, except
that the size is enlarged for the focal tree to facilitate visualization
of the nature of the arthropod assemblage that has colonized it.
Within the large circle representing the host tree, the combination
of symbol shapes and colors represent different species of
arthropod, with symbol color indicating the source (host species) of
colonists.

predisposes the focal host individual to support greater abundances
of species that are adapted to live on this host species. In contrast,
because fewer sierra palm individuals coexist in close proximity in
nonpalm forests, biodiversity of arthropods should be low on indi-
vidual hosts because the pool of potential colonist species is low. This
effect could be exacerbated if arthropod species exhibit high host
specificity (i.e., if arthropods can effectively colonize a limited num-
ber of available host plant species). In a nonpalm forest, arthropods
on P.acuminata may predominantly colonize from nonpalm host spe-
cies. This results in a greater biodiversity of arthropods than would
be expected in a more homogeneous palm forest. [Correction added
on 16 December 2024, after first online publication: In the preceding
sentence, text ‘a’ has been changed to ‘biodiversity’ in this version.]
Conversely, the abundance of arthropods on the focal host individual
could be low because some of the arthropod species from nonpalm
sources would be unable to persist or reproduce on a nonpreferred
host (habitat filtering), the size of the palm habitat is relatively small
(area effect in island biogeography), and the distance to other P.acumi-
nata host individuals is relatively large (distance effect in island bio-
geography). Consequently, on hosts plants paired by elevation but in
different forest types, we expect mean abundance to be greater but
mean biodiversity to be lower on P.acuminata hosts from palm forest
compared to those from nonpalm forest (resource concentration hy-
pothesis—Futuyma & Wasserman, 1980; Kareiva, 1983).

1.4 | Objectives

Our goals were to evaluate the effects of elevation and host tree
identity on aspects of arthropod assemblages associated with the
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canopies of understory tree species in the Luquillo Mountains. In
general, we expected (1) the abundance and biodiversity of arthro-
pods to decline with increasing elevation in a host-specific man-
ner, and (2) elevational variation in the abundance and biodiversity
of palm-associated arthropods to differ between palm forest and
mixed forest transects. Moreover, we expected the abundance of
arthropods to be greater on palms within palm forest than on palms
within other forest types because of mechanisms related to host
selection behavior (Futuyma & Wasserman, 1980; Kareiva, 1983;
Schowalter, 2022), habitat area (Rosenzweig, 1995), and rescue ef-
fects (Brown & Kodric-Brown, 1977). In contrast, we expected the
biodiversity of arthropods on palms within palm forest to be lower
than the biodiversity of arthropods on palms within other forest
types because of mechanisms associated with habitat heteroge-
neity (Tscharntke et al., 2012) and source pool dynamics (Lessard
et al., 2012). Finally, we expected turnover of arthropod community
composition on palms to be greater along the mixed forest transect
than along the palm forest transect because of the influence of the
greater diversity and abundance of nonpalm tree species in tabo-

nuco, palo colorado, or elfin forests.

2 | MATERIALS AND METHODS
2.1 | Site description

The Luquillo Experimental Forest (LEF) is a Long-Term Ecological
Research site within El Yunque National Forest (18°19.6’N,
65°49.4'W) in eastern Puerto Rico (Brown et al., 1983). The LEF
is managed by the U.S. Forest Service, comprises 11,330ha, and
ranges in elevation from 100 to 1075m asl (Brown et al., 1983).
Historical temperatures at 350m asl average 24.5°C during the
warmest month (September), and 21.0°C during the coolest
month (January). At 1051 m asl historical temperatures average
about 4.5°C cooler than at 350m asl (Brown et al., 1983). Mean
annual precipitation increases with elevation from ~2300mm at
100m to ~4700mm at 700m, but then declines to ~3600mm at
1051 m (Brown et al., 1983). Precipitation at all elevations aver-
ages more than 100 mm every month of the year, but typically is
2-fold greater during the wet season (May-December) than during
the dry season (January-April). At higher elevations, the forest is
frequently enveloped by clouds, reducing mean annual solar ra-
diation by approximately 47%, compared to nearby coastal areas
(Briscoe, 1966).

The Sonadora stream channel begins at ~1000m asl within El
Toro Wilderness Area and continues downslope until it meets the
Rio Espirito de Santo, which is just outside the LEF (<250 m asl).
Two transects (mixed-forest and palm forest) were established
that parallel the Sonadora stream channel, with plots at 50-m el-
evational intervals from 300 m to 1000 m asl within the Sonadora
drainage basin. These transects facilitate efforts to distinguish
between the effects of plant assemblage composition and vari-
ation in the abiotic environment along the elevational gradient
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(Willig et al., 2011, 2013; Willig & Presley, 2019). The mixed forest
transect comprised 15 elevational strata whereas the palm forest
transect comprised only 14 strata; a forest patch dominated by
P.acuminata did not occur in the Sonadora Watershed at 750 m asl.
The average distance between adjacent strata on the mixed forest
transect was 0.23 km (minimum, 0.15 km; maximum, 0.32km) and
was similar to the average distance between adjacent strata on
the palm forest transect, which was 0.19 km (minimum, 0.05km;
maximum, 0.29 km). The mean distance between strata on differ-
ent transects but at the same elevation was 0.32km (minimum,
0.03 km; maximum, 0.96km). The upper boundaries of plant spe-
cies distributions formed three distinct peaks at 500, 700, and
900m asl, suggesting discontinuities in the forest immediately
above those elevations (Barone et al., 2008). Accordingly, we se-
lected predominant understory tree species from four zones in
the mixed-forest plots: 300-550 m (Miconia prasina and Psychotria
berteriana), 600-700m (Croton poecilanthus, M.prasina, P.berte-
riana), 750-850m (Calycogonium squamulosum, Miconia sintenisii,
and P.berteriana) and 900-1000m (M. sintenisii and P.berteriana).
Prestoea acuminata was sampled from all strata, except from the

550-750m range on the palm forest transect due to limited access.

2.2 | Arthropod sampling and classification

In June 2017, trees were sampled by hand-bagging branches
within 3m of the forest floor, following a well-established protocol
(Schowalter & Chao, 2021). A 50-I plastic bag was quickly slipped
over an accessible branch of a randomly chosen tree of each spe-
cies (if present), the branch was clipped, and the bag was sealed.
Branches were usually ~50cm in length and no more than 1cm in
diameter at the point of excision.

This sampling technique typically undersamples highly mobile
arthropods (e.g., bees, wasps, flies). However, this technique is par-
ticularly useful for representing the density and biomass of resident
invertebrates that feed over periods of weeks to months on re-
sources associated with the sampled plant, and that have the great-
est effect on foliage turnover and nutrient flux (Blanton, 1990; Majer
& Recher, 1988). Alternative sampling techniques often yield more
species and individuals, but branch bagging yields greater abun-
dances of species that characterize particular plants (Blanton, 1990;
Majer & Recher, 1988). We emphasize that our objective was not
to represent arthropod biodiversity of the forest exhaustively,
but rather to evaluate the responses of arthropod assemblages on
particular tree species to environmental gradients associated with
elevation.

All arthropods in each sample were identified to the lowest pos-
sible taxonomic level. Most taxa were identified to genus or family
by the senior author, using collections at El Verde Field Station, or
by systematics colleagues at Louisiana State University. Many taxa
could not be accurately named due to a lack of reference material
and were sorted into “morphospecies” (hereafter species). Based on
morphological characteristics or autecological information about
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taxa, specimens were classified into one of four functional groups:
folivores, sap-suckers, detritivores, or predators. Foliage from sam-
ples was pressed and dried at 50°C to constant weight to provide a
measure of sample mass for use as a covariate in quantitative anal-
yses. In addition, the percent of leaf area missing (LAM) from fo-
liar samples was estimated visually. Although this metric is not an
accurate measure of folivore consumption because of expansion
of holes as leaves grow (Lowman, 1984) and does not account for
consumption by sap-suckers, it does reflect folivore effect on leaf
area index and penetration of light and precipitation through the
canopy (Schowalter et al., 2011). Following the recommendations of
Fauth et al. (1996), we refer to the collection of arthropods from a
host tree as an “assemblage” rather than a “community”, because the
focal group is restricted to species within a single clade (Arthropoda)
that co-occur in time and space, rather than all species, regardless of
clade, that co-occur in time and space (i.e., a community). Similarly,
we refer to the suite of arthropods within a functional group that co-
occurs in time and space as an “ensemble” rather than a local guild
because the focal group is restricted to functionally similar species
within a single clade (Arthropoda) that co-occur in time and space,
rather than all species that are functionally similar, regardless of

clade, that co-occur in time and space (i.e., a local guild).

2.3 | Quantitative analyses

For each sample, we quantified the abundance of each of the four
functional groups based on the sum of the number of individuals
in all morphospecies assigned to a particular functional group. We
quantified total abundances as the sum of the abundances of all spe-
cies regardless of affiliation with functional groups. In addition, we
quantified six measures of taxonomic biodiversity: species richness,
and a variety of measures that are sensitive to species abundances,
including Shannon diversity (Pielou, 1966), Camargo evenness
(Camargo, 1993), Berger-Parker dominance (Berger & Parker, 1970),
and two measures of rarity. Local rarity was defined as the number
of species in a sample whose relative abundance in that sample was
less than 1/S_, where S_is the number of species in the sample. In con-
trast, global rarity was defined as the number of species in a sample
whose relative abundance in the species pool (sum of all individuals
from all samples) was less than 1/S;, where S is the number of spe-
cies in the species pool. Importantly, any species can be rare locally,
whereas the identities of the rare taxa based on global rarity are the
same for all samples. In addition to taxonomic biodiversity, in which
species represent the focal entity, we quantified ensemble biodiver-
sity, in which functional groups were the focal entity for analyses.
From this perspective, we quantified the same six measures of bio-
diversity used at the species level. Each metric of biodiversity based
on species or ensembles was expressed as a Hill number (Jost, 2006).
Importantly, Hill numbers for all metrics are on the same scale (i.e.,
from 1 to species richness for taxonomic biodiversity, and from 1
to the number of functional groups for ensemble biodiversity) with
greater values connoting greater biodiversity for all metrics, including
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dominance (i.e., high values for dominance expressed as Hill numbers
indicate low dominance and high biodiversity).

The selected metrics of biodiversity have a long history of use
and were chosen because they characterize nuanced aspects of the
shape of species abundance distributions or ensemble abundance
distributions (e.g., Stevens & Willig, 2002; Willig & Presley, 2019).
Because of their mathematical bases, these metrics are predisposed
to be correlated with each other if the shapes of species abundance
distributions are similar among communities. Nonetheless, their
empirical associations need not be significant. Using Pearson prod-
uct-moment correlations, we quantified the associations between
all possible pairs of biodiversity metrics, and did so separately at the
level of species and at the level of ensemble. Analyses were executed
for canopy arthropods from the mixed forest transect regardless of
host tree identity, and for canopy arthropods from P.acuminata re-
gardless of transect.

For samples from the mixed forest transect, we conducted an
analysis of covariance (ANCOVA) to decompose the effects of el-
evation and host tree identity, while controlling for variation in
sample mass, on the abundance of each functional group, total
abundance, each metric of biodiversity at the species level, and
each metric of biodiversity at the ensemble level. For arthropod
samples from P.acuminata, we conducted an ANCOVA to decom-
pose the effects of elevation and transect (mixed forest versus
palm forest), while controlling for variation in sample mass, on the
abundance of each functional group, each metric of biodiversity
at the species level, and each metric of biodiversity at the en-
semble level. A parallel set of analyses was conducted to evaluate
elevational variation in LAM. For samples from the mixed-forest
transect, a fully factorial model evaluated the effects of elevation,
host tree identity, and folivore abundance on patterns of LAM
along the elevational gradient. For samples from P.acuminata, a
fully factorial model evaluated the effects of elevation, transect,
and folivore abundance on patterns of LAM on this particular tree
species.

Analyses of biodiversity and LAM used Gaussian error distribu-
tions and were conducted using the Im and anova functions in the
stats package in R (R Core Team, 2023). Analyses of abundance
used negative binomial distributions via the glm.nb function from
the mass library (Venables & Ripley, 2002) because these data were
counts and prone to zero inflation. Analyses restricted to the mixed
forest transect removed variation associated with sample mass be-
fore analyzing the effects of elevation (covariate), host tree identity
(factor), or their interaction on abundances or metrics of biodiver-
sity. Similarly, analyses restricted to samples from P.acuminata re-
moved variation associated with sample mass before analyzing the
effects of elevation (covariate), transect (factor), and their interac-
tion on abundances or metrics of biodiversity.

For canopy arthropod assemblages on P.acuminata, we estimated
turnover (p component of biodiversity based on an additive model;
Gering et al., 2003) between sequential elevational strata along each
transect. We then compared their magnitudes between transects
using a paired t-test via the t-test function in the stats package in
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R (R Core Team, 2024). We did so separately for Hill-transformed
values of richness, diversity, evenness, dominance, local rarity, and
global rarity based on species and based on ensembles. Because not
all strata along each transect were sampled, analyses were restricted
to sequential pairs of strata that were sampled along both transects
(i.e., turnover between 300m and 350m, 350m and 400m, 400m
and 450m, 450m and 500m, and 800m and 850m) to employ a

more powerful paired statistical design.

3 | RESULTS

The power to detect significant effects in this study, especially those
involving interactions, is diminished by (1) the small number of indi-
vidual trees at each stratum that represent particular host species, (2)
the restricted elevational range of host species, and (3) interspecific
differences in the elevational extent of host species in the Luquillo
Mountains. Individual insect taxa were not sufficiently abundant for
analyses. Nonetheless, detected effects must be strong to overcome

the limitations associated with issues of statistical power.

3.1 | Mixed forest transect

Elevational variation in total abundance depended on host species
(Table 1, Figure 2). Moreover, the nature of the relationship between
abundance and elevation differed among functional groups. The
abundance of detritivores and folivores varied with elevation in a con-
sistent manner, regardless of host tree species (Table 1). In contrast,
elevational variation in abundance of predators and sap-suckers de-
pended on host species (Table 1). Regardless of these heterogeneous
results, total abundance as well as abundance of each of the functional
groups, except for predators, declined with increasing elevation.

All pairs of metrics of biodiversity were significantly and highly
correlated at the species-level (R ranging from .413 to .928) and at
the ensemble level (R ranging from .581 to .994) for the mixed for-
est transect (Table S1). Elevational variation in each of six aspects
of biodiversity at the species level and at the ensemble level was
consistent regardless of host species identity (Table 1). In general,
biodiversity declined with increasing elevation (Figure 3).

Elevational gradients of LAM on the mixed forest transect were
contingent on host tree identity, but were not affected by folivore
abundances (Figure 2; Table 2). LAM on M. prasina (p=.015) and M.
sintenisii (p=.051) increased with increasing elevation, LAM on P.
brachiata (p=.065) decreased with increasing elevation, and LAM on

P.acuminata exhibited no relationship with elevation (p=.664).
3.2 | Palms along the mixed forest and palm forest
transects

Total abundance on palm hosts decreased significantly with el-
evation in indistinguishable ways along both transects (Table 3,
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Elevation x host

TABLE 1 Results from generalized
linear models with negative binomial

Sample mass Elevation Host tree tree
error terms (analyses of abundance) or
(df=1) (df=1) (df=5) (df=5) with Gaussian error terms (analyses of
biodiversity) that decompose the effects
2 of elevation and host tree identity on total
orF p xPorF p APorF p xorF p arthropod abundance, abundance of each
Abundance (S, N) of four guilds, six aspects of biodiversity
" at the species level, or six aspects of
Detritivore 41 522 1402 <.001 11.15 049 796 159 . . .
biodiversity at the ensemble level while
abundance (9, 31) .
controlling for sample mass. Plant hosts
Folivore abundance 6.44 .011 33.60 <.001 6.25 .283 5.77 .330 were restricted to those from along the
(5,24) mixed forest transect.
Predator abundance 5.39 .020 43.64 <.001 513.38 <.001 6749 <.001
(10, 121)
Sap-sucker 1.75 186 .38 .537 70.54 <.001 18.32 .003
abundance (7, 110)
Total abundance 27.68 <.001 99.38 <.001 32518 <.001 183.76 <.001
(38, 307)
Species biodiversity
Species richness .09 .770 19.54 <.001 .80 561 1.44 .245
Shannon diversity .01 935 13.32 .001 41 .835  1.51 222
Camargo evenness .16 .690 10.69 .003 45 .812 1.26 .310
Berger-Parker .60 445 569 .025 .39 .848  1.23 .323
dominance
Global rarity .00 985 10.76 .003 .79 564 1.38 265
Local rarity 1.07 312 1942 <.001 1.06 406  1.06 406
Ensemble biodiversity
Guild richness .21 649 2692 <.001 1.03 419 2.07 103
Shannon diversity .01 942 2153 <.001 .43 825 1.83 144
Camargo evenness .07 .795 18.53 <.001 .53 .752 1.77 156
Berger-Parker .23 .639 13.62 .001 .67 .652 1.37 .268
dominance
Global rarity 1.66 210 2755 <.001 1.37 270 1.20 .338
Local rarity .01 912 33117 <.001 .70 626 93 479

Note: Analyses with negative binomial error terms use 4 as a test statistic, whereas analyses with
Gaussian error terms use F as a test statistic. Significant (p <.05) results are bold.

Abbreviations: df, degrees of freedom; N, number of individuals; S, number of species of

invertebrate.

Figure 4). Similarly, detritivore abundance on palm hosts decreased
significantly with elevation but did not differ between transects.
Neither predator abundance nor sap-sucker abundance on palm
hosts was associated with elevation, transect, or their interactions.
In contrast, elevational variation in abundance of folivores on palm
hosts differed between transects (Table 3). Generally, abundance
declined with increasing elevation (Figure 4).

All pairs of biodiversity metrics were significantly and highly
correlated at the species-level (r ranging from .558 to .995) and
at the ensemble level (r ranging from .523 to .992) for analyses
based on palm hosts regardless of transect (Table S2). Elevational
variation in each of six aspects of biodiversity at the species level
and at the ensemble level (Table 3) was consistent regardless of
transect (Table 1). Regardless of metric, biodiversity declined with
increasing elevation (Figures 5, S2). LAM on P.acuminata was not

affected by elevation, transect, or folivore abundance (Table 2;
Figures 3, S1).

Turnover between sequential elevational strata did not differ
between transects (p>.217). This was true regardless of biodiver-
sity metric for both species- and ensemble-based considerations
(Table 4).

4 | DISCUSSION

Because of concerning projections about the effects of global change
on the biota, increasing attention to the protection of elevational gra-
dients in montane regions may be required for effective conservation
action (e.g., Elsen et al., 2018). The details of the required conservation
action may depend on the nature of empirical gradients of abundance,
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which for arthropods include: (1) monotonic decreases with increas-
ing elevation, (2) mid-elevational peaks, (3) monotonic increases with
increasing elevation (including those with asymptotes or plateaus),
(4) mid-elevational troughs, and (5) no discernable patterns (Supriya
et al., 2019). To some extent, such disparate empirical gradients likely
arise because of variation in latitudinal contexts, differences in the
elevational extents, differences in environmental characteristics at
the base of mountains (e.g., aridity, humidity), differences in substrate
identity from which arthropods were collected (e.g., ground, leaves,
air), or variation in sampling methodologies, including sample effort
and number of sites per gradient (Supriya et al., 2019). Fortunately,
inter-ensemble comparisons of variation in abundances or biodiver-
sity within the Luquillo Mountains from our work are not subject to
such critiques, although comparisons of our results with those from
other studies would involve the same interpretative constraints.

4.1 | Elevational gradients

Our results support the hypothesis that arthropod abundance
and richness decline with increasing elevation. These results are

consistent with studies along elevational gradients elsewhere (e.g.,
Roder et al., 2017; Sohn et al., 2019; Zhao et al., 2023).

A number of mechanisms have been advanced to account
for elevational variation in biodiversity, including considerations
of climate, space, evolutionary history, and biotic interactions
(Grytnes & McCain, 2007). Unfortunately, consensus is elusive
as to whether a dominant cause exists or its identity, especially
given the variety of forms (e.g., monotonic declines, unimodal)
that patterns along gradients exhibit for a diversity of taxa (plants,
vertebrates, invertebrates) in a variety of geographic contexts
(tropical, temperate, and xeric habitats) throughout the world
(McCain & Grytnes, 2010) and the confounding of harsher climate
with declining area for gradients in both latitude and elevation
(Terborgh, 1973). Nonetheless, variation in climatic characteris-
tics (e.g., temperature and precipitation) that affect primary pro-
duction are often considered to play an important role. Primary
productivity decreases with increasing elevation in the Luquillo
Mountains (Harris et al., 2013; Weaver & Murphy, 1990), as
does the concentration of essential nutrients in leaf necromass
(Willig & Presley, 2019). Heterothermic organisms, such as ar-
thropods, are sensitive to variation in temperature, and their
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FIGURE 3 Elevational gradients in biodiversity of canopy arthropods at the species level along the mixed forest transect in the Luquillo
Mountains of Puerto Rico as represented by each of six metrics: Species richness, Shannon diversity, global rarity, and local rarity. Symbols
represent individual samples from particular host tree species within each elevational stratum: Calycogonium squamulosum, red circles;
Croton poecilanthus, purple squares; Miconia prasina, black triangles; Miconia sintenisii, yellow diamonds; Prestoea acuminata, green circles;
Psychotria brachiata, blue diamonds. Solid black lines represent best-fit linear regression models based on all samples. Significance of factors
from generalized linear mixed-effects models (Table 1) for elevation, tree species, and interactions between elevation and tree species are

indicated by red letters (black letters represent nonsignificant terms).

Mixed forest transect

Prestoea acuminata along both transects

TABLE 2 Results from generalized
linear models with Gaussian error terms

Df F p
Elevation 1 .351 561 Elevation
Host tree species 5 .588 .710 Transect
Folivore abundance 1 2.553 128 Folivore abundance
Elevation x Host 4 3.976 .018  ElevationxTransect
Elevation x Folivore 1 .034  .855 Elevation x Folivore
Hostx Folivore 4 1.414 .270  TransectxFolivore
3-way interaction 2 .035 .966 3-way interaction

Note: Significant (p <.05) results are bold.

abundance and diversity typically decline as temperature declines
(Schowalter, 2022; Zhao et al., 2023). Some groups may show
peak abundance at intermediate elevations, perhaps reflecting
opposing gradients in temperature and predator abundance (Toko
et al., 2023). Nevertheless, we correctly predicted that abundance
and biodiversity of canopy arthropods would decrease with in-
creasing elevation, as it does for anumber of other groups of organ-
isms (e.g., plants, microbes, gastropods, arthropods, vertebrates)
in the Luquillo Mountains (Barone et al., 2008; Campos-Cerqueira
etal,, 2017; Cantrell et al., 2013; Ewel & Whitmore, 1973; O'Meara
& Yee, 2024; Richardson & Richardson, 2013; Schaus et al., 2023;
Willig et al., 2011, 2013; Willig & Presley, 2019). In the absence of
manipulative experiments, the ultimate cause of elevational varia-
tion in aspects of biodiversity remains inconclusive.

Df F p that decompose the effects of elevation,
host tree identity, and folivore abundance
1 192 667 .
along the mixed forest transect on leaf
1 1440 .248 consumption, or the effects of elevation,
1 2412 140 transect, and folivore abundance on leaf
1 343 566 area r.mssmg for sa'mples from Prestoea
acuminata along mixed or palm forest
1 003 959 transects.
1 166 690
1 .045 .835

We expected ecosystems at lower elevation to support more
individuals than ecosystems at higher elevation because condi-
tions become harsher, with lower productivity and diversity of
resources. This pattern has been observed for gastropods and
ground-dwelling arthropods along these same transects (O'Meara
& Yee, 2024; Schaus et al., 2023; Willig & Presley, 2019), with vari-
ation in abundance linked to elevational variation in the quantity
and quality of leaf litter. Because heterotherms require external
heat sources to support metabolic activity, colder temperatures
at higher elevations filter intolerant individuals, especially in
tropical faunas with little opportunity to develop cold tolerance.
Furthermore, plant productivity typically declines with decreasing
temperatures, limiting resource availability to support arthropod
food webs (e.g., Schowalter, 2022).
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TABLE 3 Results from generalized
linear models with negative binomial error
terms (analyses of abundance) or general
linear models with Gaussian error terms
(analyses of biodiversity) that decompose
the effects of elevation and transect
(mixed forest versus palm forest) on total
arthropod abundance, abundance of

each of four guilds, each six aspects of
biodiversity at the level of species, or each
of six aspects of biodiversity at the level
of ensemble while controlling for sample
mass. The focal host tree was restricted to
Prestoea acuminata along both palm forest
and mixed forest transects.

Abundance (S, N)

Detritivore
abundance (8, 18)

Folivore abundance
(3, 24)

Predator abundance
(9, 21)

Sap-sucker

DIOTROPICA .»°
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AND CONSERVATION

WI LEYM

abundance (1, 2)

Total abundance
(27, 76)

Species biodiversity
Species richness
Shannon diversity
Camargo evenness

Berger-Parker
dominance

Global rarity

Local rarity
Ensemble Biodiversity

Guild richness

Shannon diversity

Camargo evenness

Berger-Parker
dominance

Global rarity

Local rarity

Sample mass Elevation Transect Elevation x transect
(df=1) (df=1) (df=1) (df=1)

e e e

orF p orF p orF p xz orF p
3.82 .051 441 .036 .21 651 1.89 .170
549 .019 22.09 <.001 539 .020 6.20 .013
1.85 173 .85 357 .01 937 .00 974
298 .085 1.75 185 .84  .358 .32 .574
.30 586 1641 <.001 .12 727 .16 .692
A2 736 14.78 .001 .31 .584 17 .687
.08 775 14.08 .001 .65 431 .56 465
.07 791 14.01 .001 1.03 .322 .98 .335
.00 958 10.13 .005 1.39 252 1.72 .206
.07 790 11.44 .003 .03 .872 .22 644
45 510 10.48 .004 .10 .758 .00 .954
.00 969 1789 <.001 .30 .588 .08 .782
.01 916 18.76 <.001 .59 451 .27 .608
.06 810 1974 <.001 1.22 .284 .58 455
49 494 20.79 <.001 1.65 .215 .90 .355
.00 965 2639 <.001 .21 .649 .01 .942
.57 458 5.71 .027 .19 666 14 711

Note: Analyses with negative binomial error terms use 4 as a test statistic, whereas analyses with
Gaussian error terms use F as a test statistic. Significant (p <.05) results are bold.

Abbreviations: df, degrees of freedom; N, number of individuals; S, number of species of

invertebrate.

Variation among sites in the cumulative abundance of individuals
can give rise to variation in aspects of biodiversity. The linkage ex-
ists for statistical and biological reasons as detailed in the Theory of
Random Placement (Coleman et al., 1982) and the More Individuals
Hypothesis (Srivastava & Lawton, 1998). Nonetheless, empirical ev-
idence suggests that the form of the elevational relationship is scale
sensitive (Willig & Presley, 2019). Gradients in abundance and biodi-
versity will likely be more distinct in regions with steeper or longer

gradients in elevation.
4.2 | Gradients of abundance-weighted metrics of
biodiversity

The ways in which abundance biodiversity varies with elevation have
not been well established from theoretical or empirical perspectives.

Nonetheless, we expect some abundance-weighted metrics (e.g., di-
versity, local rarity) whose magnitudes are related to species richness
to be strongly molded by elevation in a manner similar to that of spe-
cies richness. Analyses from the mixed forest transect corroborate
the decline in all five abundance-weighted measures of biodiversity
with increasing elevation, whether the focus is on species or on en-
sembles (Table 1 and Figure 2). Similarly, analyses of data from palm
hosts corroborate declines in abundance-weighted measures of bio-
diversity with increasing elevation, whether the focus is on species
or ensembles (Table 3, Figures 3, S1). In the aftermath of Hurricane
Maria, which occurred after our data were collected, common species
of ants became more abundant compared to prehurricane conditions;
this effect was greatest at lower elevations (O'Meara & Yee, 2024).
This suggests that large-scale disturbances can temporarily affect el-
evational gradients in abundance as well as in abundance-weighted
aspects of biodiversity, by creating conditions that are favorable to
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common species (which likely are generalists), but not for rare species
(which likely are specialists). In this case, the increased abundances of
common species would reduce biodiversity at lower elevations more
than at higher elevations, possibly changing the direction, strength,
or shape of elevational gradients of biodiversity.

4.3 | Gradients in folivory

We expected LAM to decline with increasing elevation because fo-
livore abundance, as well as total abundance and biodiversity, de-
clined with increasing elevation. However, empirical results were
more complicated (Figures 2 and 4). LAM on P.acuminata was un-
related to folivore abundance, elevation, transect, or their interac-
tions. Similarly, LAM was unrelated to the abundance of folivores
along the mixed forest transect but did vary with elevation in a host-
specific manner.

Previous studies generally documented increases in LAM
with elevation. More specifically, leaf damage from herbivorous
insects in Nepal (Paudel et al., 2021), insect herbivory in Spain
(Galman et al., 2019), and leaf damage from insects in South
Korea (Sohn et al.,, 2019) all increased with increasing eleva-
tion. Critically, these elevational increases in herbivory occurred

600

700 800 900 1000

Elevation

whether herbivore abundances increased (Paudel et al., 2021)
or decreased (Sohn et al., 2019). This elevational increase in leaf
damage likely is associated with slower temperature-mediated
growth rates as elevation increases (Coomes & Allen, 2007; Rapp
etal, 2012).

4.4 | Effects of host tree species

Arthropod abundance could differ among host species in one of two
ways: (1) consistent differences among host species regardless of el-
evation or (2) differences among host species that are contingent on
elevation. This latter scenario was observedin the Luquillo Mountains
(Table 1). This is consistent with earlier studies (e.g., Schowalter
et al., 2021) and likely reflects variation in nutritional quality and de-
fensive chemistry among tree species (Schowalter, 2022), as well as
the ways in which these factors respond to environmental attributes
associated with elevation (Galméan et al., 2019; Paudel et al., 2021;
Sohn et al., 2019).

In the Luquillo Mountains, three ensemble-specific responses
were documented: (1) host species identity affected the abundance
of predators and sap-suckers, but effects were contingent on eleva-
tion; (2) host species identity affected the abundance of detritivores
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FIGURE 5 Elevational gradients in biodiversity of canopy arthropods at the species level from Sierra Palms (Prestoea acuminata) hosts
along the mixed forest and palm forest transects in the Luquillo Mountains of Puerto Rico as represented by each of four metrics of
biodiversity: Species richness, Shannon diversity, global rarity, and local rarity. Symbols represent single samples from P.acuminata within
each elevational stratum: Mixed-forest transect, filled circles; palm forest transect, open circles. Solid black lines represent best-fit linear
regression models based on all samples. Significance of factors from generalized linear mixed-effects models (Table 3) for elevation, transect,
and interactions between elevation and transect are indicated by red letters (black letters represent nonsignificant terms).

TABLE 4 Paired t-tests comparing turnover (# component of
biodiversity based on an additive model) between sequential
elevational strata on the mixed forest and palm forest transects.

Type of beta diversity df t p

Species biodiversity

Species richness 5 -0.250 .542
Shannon diversity 5 -0.664 247
Camargo evenness 5 -0.521 .318
Berger-Parker dominance 5 -0.201 .601
Global rarity 5 0.000 1.000
Local rarity 5 0.333 .363
Ensemble biodiversity
Guild richness 5 0.417 .259
Shannon diversity 5 -0.149 .657
Camargo evenness 5 0.050 798
Berger-Parker dominance 5 0.353 217
Global rarity 5 0.083 611
Local rarity 5 0.167 .576

Note: Separate analyses were executed for richness, diversity, evenness,
dominance, local rarity, and global rarity based on species as well as
ensembles. See text for details.

in a consistent way, regardless of elevation; and (3) host species iden-
tity did not affect differences in abundance of folivores. The interac-
tions between host species and elevation suggests that responses of

host tree species to elevation may affect their suitability for associ-
ated arthropods, or that abiotic correlates of elevation may enhance
or diminish the ability of consumers to exploit particular resources
that are host-specific in nature.

The ways in which the abundances of different ensembles re-
spond to host species identity is not well understood, but it is known
that such responses depend on host-specific concentrations of
phytochemicals whose production is related to growing conditions
(Schowalter, 2022). Tree species within genera or individuals within
species can have significantly different phytochemical profiles (e.g.,
Coley et al., 2018; Genung et al., 2012) that affect herbivore attrac-
tion, survival, or LAM. Concentrations of various defensive chemicals
can be affected by environmental variation, including that caused by
disturbance (Hunter & Forkner, 1999; Mopper et al., 2004; Nunes
et al., 2019). Of particular relevance to folivorous arthropods along
tropical elevational gradients is that peroxidase, cinnamyl alcohol-
dehydrogenase, and lignin concentrations can increase with wind
exposure (Cipollini Jr., 1997), and that concentrations of gallic acid
and flavenoid aglycone can decrease and increase, respectively, with
increased exposure to UVB radiation (Rousseaux et al., 2004).

4.5 | Effects of forest type

Our results did not support the prediction that palms in palm for-
ests would have greater arthropod abundance than would palms
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in other forest types. Folivores did show a significant elevation by
transect interaction; however, folivore abundance was greater on
palms in mixed-forest plots, contrary to our hypothesis, suggesting
that abundance may be sensitive to factors such as the abundance
and diversity of arthropods on surrounding tree species (Figures 5,
S2). Importantly, because palm patches are relatively small and im-
bedded within a matrix of other forest types, patterns of arthro-
pod abundance and biodiversity are likely dominated by the more
extensive forest types in the surrounding landscape. Nevertheless,
the inclusion of palm patches in a palm transect provided a unique
opportunity to control the effects of host speciesxelevation
interactions.

We expected that elevational turnover of the arthropod assem-
blage on palms would be greater along the mixed forest transect
than along the palm forest transect. This assumed that changing
plant species composition along the mixed forest transect would en-
hance turnover of canopy arthropods on P.acuminata. Contrary to
that expectation, turnover between sequential elevational strata did
not differ between transects for any of the metrics of biodiversity
based on species or based on ensembles (Table 4). The lack of signif-
icance could result from ecological or statistical phenomena that are
not mutually exclusive. The low power associated with small sam-
ple sizes would result in the lack of significance. Alternatively, palms
might strongly filter potential colonists regardless of the abundance
or identity of other host taxa, and the insects that they harbor or
the abundance of P.acuminata in all forest types might create similar
colonist species pools regardless of transect. Likely all three consid-

erations contribute to empirical patterns.

4.6 | Prospects for the future

Our results are consistent with previous studies, indicating that de-
clines in canopy arthropod abundance and richness with increasing
elevation represent a characteristic pattern regardless of variation
in host-plant species composition. As global temperatures rise,
we expect that the ranges of arthropods will shift to higher el-
evations to effectively track their fundamental niches, especially
thermal requirements. Species at the highest elevations, in par-
ticular specialists, will likely disappear for a number of interrelated
reasons. First, the thermal regime for arthropod taxa adapted to
cooler temperatures at high elevations will no longer exist. Second,
some species of host plant may become sufficiently rare or be ex-
tirpated, thereby reducing the abundance of critical resources.
Third, high-elevation arthropods may face increased competitive
pressure from species whose distributions expand upslope. These
mechanisms will combine to create conditions within which main-
taining minimum population sizes is a challenge for high-elevation

arthropod species.
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