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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The emergence of white-nose syndrome (WNS) in North America has resulted in mass mor-

talities of hibernating bats and total extirpation of local populations. The need to mitigate this

disease has stirred a significant body of research to understand its pathogenesis. Pseudo-

gymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fun-

gus that resides within the class Leotiomycetes, which contains mainly plant pathogens and

is unrelated to other consequential pathogens of animals. In this review, we revisit the

unique biology of hibernating bats and P. destructans and provide an updated analysis of

the stages and mechanisms of WNS progression. The extreme life history of hibernating

bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other

well-characterized animal-infecting fungi translate into unique host–pathogen interactions,

many of them yet to be discovered.

Introduction

Bats are vital for our planet’s biodiversity and ecosystems. They are the second-most species-

diverse group of mammals after rodents [1]. Forty-seven species of bats occur in the United States

of America (USA) and Canada, and due to high population sizes and the tendency for many spe-

cies to congregate in large numbers, they are among the most locally abundant mammals in

North America [2]. They are vital in maintaining balanced habitats and agricultural systems, pro-

viding nutrients through their guano, and consuming vast amounts of insects, including pests

that damage wild plants and crops [3,4]. Bats also affect human health by predating disease-vec-

toring insects, including mosquitoes of the genus Culex, which carry viral pathogens such as West

Nile or St. Louis encephalitis viruses [5,6]. Despite their contributions to biodiversity, ecosystem

function, human health, and the economy, North American bat populations have been experienc-

ing large declines, with 31 percent of the species at risk or potentially at risk of extinction [2].

White-nose syndrome (WNS) is one of the most pressing threats for hibernating species of

bats in the USA and Canada and one of the most devastating infectious diseases of wild mam-

mals of the last century [2,6,7]. The causative agent, Pseudogymnoascus destructans, is a psy-

chrophilic (cold-loving) fungus that invades and parasitizes bat skin [8–10]. Since its first

report in North America in February 2006 (Albany County, New York), WNS has killed mil-

lions of bats on the continent, with over 95% declines in some species and extirpation of entire
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populations [6,7,9,11]. The disease has been confirmed in 40 USA states and 9 Canadian prov-

inces and is spreading westward across North America [6] (Fig 1). The need to mitigate the

impacts of this disease has translated into calls for the development of evidence-based treat-

ments and a better understanding of the mechanisms involved in disease progression or patho-

genesis of WNS. In this article, we provide an updated outlook on WNS pathogenesis by

describing and discussing the particularities of host and pathogen, the forms of transmission,

and the different phases of host–pathogen interactions, and by identifying factors influencing

disease severity and proposing future research directions.

The host

Bat hibernation

WNS exclusively affects hibernating bats [6]. Insectivorous bats in North America evolved to

undergo hibernation to cope with food scarcity and harsh winter conditions [12]. During

hibernation, bats enter prolonged periods of torpor of approximately 2 to 3 weeks, during

which their body temperature approximates that of the roosting site (approximately 1 to 16˚C)

[12,13]. During torpor, bats, like other hibernating mammals, are metabolically dormant, with

virtual cessation of transcription and translation [14,15]. Hibernating bats are also immuno-

logically depressed, with severe leukopenia involving neutrophils, monocytes, and lympho-

cytes, due to transient sequestration of these immune cells in lungs, liver, or lymphoid organs

and limited neutrophilic activation [16–20]. Following each period of torpor are shorter arous-

als of approximately 1 to 3 h characterized by euthermia with body temperature approaching

37˚C and rapid metabolic and immunological reactivation [12–19,21]. In this context of

immune suppression, torpid bats rely on their long periods of low body temperature and meta-

bolic dormancy to keep microbial pathogens in check [22]. Most bacterial pathogens of mam-

mals are mesophilic and, therefore, unable to replicate at temperatures below 5˚C, while

viruses depend on the host’s metabolic machinery for replication [22–25]. Paradoxically, the

long torpor bouts and short arousals characteristic of bat hibernation render hibernating bats

more susceptible to a uniquely adapted, cold-loving pathogen such as P. destructans.

Bat skin

Most pathological changes related to WNS involve the skin of the wing (plagiopatagia) and tail

(uropatagia) membranes [26]. Patagial skin is thin, virtually devoid of hair, and consists of 2 epi-

dermal layers separated by a thin dermal layer. The non-keratinized part of the epidermis is made

of 1 to 2 layers of keratinocytes, while the stratum corneum has up to 10 layers of thin corneocytes

(terminally differentiated keratinocytes) [27,28]. Other cells present in the epidermis are melano-

cytes, antigen-presenting Langerhans cells, and T lymphocytes [29]. The dermis is characterized

by a scaffold of fibroblasts, collagen, and elastic fibers supporting lymphatic and blood vessels,

neurons, and specialized immune cells such as dendritic cells, macrophages, lymphocytes, natural

killer, and mast cells [27–29]. The thin nature of the patagial skin results from functional adapta-

tions to flight, thermoregulation (heat dissipation), and gas exchange (O2 and CO2) [26,30]. More-

over, bats are highly susceptible to dehydration during hibernation and losses through the wing

skin account for 99% of the total water loss [26]. Therefore, epidermal disruption of the patagia

during WNS ultimately translates into disruption of the host’s physiology.

The pathogen

P. destructans is a filamentous fungus in the Division Ascomycota, Class Leotiomycetes, Order

Thelebolales [9,31,32]. Other than P. destructans, Leotiomycetes includes mostly plant
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Fig 1. Distribution and impact of WNS on North American bats. (A) Map of distribution of WNS in North America (2006–2024). Conf., WNS confirmed,

Susp., WNS suspect; Pd+, Pseudogymnoascus destructans detected; Pd?, P. destructans suspect [126]. (B) Little brown bat (Myotis lucifugus) with characteristic

macroscopic WNS lesions consisting of white fuzzy-flaky material (i.e., P. destructans hyphae) on the skin of the wing, pinnae, and around the nose. Photo by

Heather Kaarakka, Wisconsin DNR. (C) WNS status based on histopathology and quantitative PCR detection of P. destructans [79,127], conservation status

(ESA, SARA, IUCN), and population trends (IUCN) of continental bat species of the eastern USA and Canada. ESA, US Endangered Species Act [128]; SARA,

Canada Species at Risk Act [129]; IUCN, The International Union for Conservation of Nature Red List of Threatened Species [130]; EN, endangered; VU,

vulnerable; NT, near threatened; LC, least concern.

https://doi.org/10.1371/journal.ppat.1012342.g001
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pathogens with no relevant animal pathogens, making this fungus unique among other ani-

mal-infecting fungi (Fig 2A) [32,33]. Three distinct P. destructans clades have been identified

and geographically grouped in Far-East Asia, Central Asia, and Europe [34]. P. destructans is

believed to have been established in North America through a single introduction event fol-

lowed by clonal spread from Europe, where it coexisted with hibernating bats for millennia

without causing known mortalities or population declines [34]. Supporting this hypothesis,

experimental infection of North American bats (Myotis lucifugus) with a European strain of P.

destructans caused WNS with mortality and severity comparable to those caused by a North

American strain [35]. P. destructans is a haploid heterothallic fungus with 2 mating types

(MAT1-1 and MAT1-2) needed for sexual reproduction. Although both genotypes have been

identified in Europe, only MAT1-1 has been found in North American isolates [34]. Therefore,

only the asexual lifecycle of P. destructans is known to occur in North America, with slender,

thin-walled hyphae producing curved (banana-shaped) melanized conidia [9,10] (Fig 2B).

Fig 2. Phylogeny and life cycle of Pseudogymnoascus destructans in hibernacula. (A) Phylogenetic tree showing the major taxonomic groups with

representative taxa of pathogenic ascomycete fungi. Plant pathogens are denoted by blue dots, while animal (including insect) pathogens are marked with

orange dots. Note that P. destructans (marked with a bat icon) resides within the class Leotiomycetes that otherwise contains mostly plant pathogens and is not

closely related to other consequential pathogens of humans and animals (e.g., Onygenales, Candida spp.). Support values from a maximum likelihood analysis

are presented for each major group and the tree is rooted with representative pathogenic fungi from the division Basidiomycota; taxa included in the tree are

based on Berbee with some modifications [33]. (B) P. destructans’ life cycle in hibernacula. Transmission of conidia (dormant form of the fungus) from the

hibernacula environment to bats occurs while bats are active (euthermia). Conidia germinate and colonize the skin of torpid bats. Subsequent hyphal

conidiation leads to shedding of conidia into the environment. Conidia remain viable in the hibernacula environment until the following winter, which

perpetuates the cycle of transmission. Figure designed using BioRender (Agreement # BH271RUAM8).

https://doi.org/10.1371/journal.ppat.1012342.g002
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Environmental factors are important modulators of P. destructans’ virulence, and WNS is

more likely to affect bats that roost in warmer and more humid hibernacula and microenvi-

ronments [36,37]. P. destructans is a psychrophilic fungus that grows at temperatures ranging

from 1 to 20˚C (maximum growth rate between 12 and 16˚C), which is within the temperature

range of torpid bats and their hibernacula [38–40]. Above 16˚C, P. destructans undergoes pro-

nounced morphological changes suggestive of heat stress, including increased septation and

thickening of hyphae, as well as conidiation with altered conidial shapes and production of

arthrospores and chlamydospore-like structures [38]. P. destructans’ germination rate, myce-

lial growth, and conidiation also increase with high relative humidity (RH; 70.5% to 81.5% at

13˚C), whereas RH <70% restricts filamentation (but not conidiation) [41].

Transmission

In the absence of bats during late spring-early fall, P. destructans survives in the substrate of

the hibernacula, persisting as a dormant conidium or potentially growing as a saprophyte

(environmental decomposer) [42] (Fig 2B). This saprophytic capacity of P. destructans is lim-

ited, compared with closely related nonpathogenic Pseudogymnoascus spp., due to a marked

reduction in carbohydrate-utilizing enzymes (CAZymes) and predicted secretome, likely as a

consequence of a tradeoff from its acquired parasitic lifestyle [43–45]. During the autumn

swarm, P. destructans is thought to be transmitted to non-contaminated bats through contact

with cave substrates or by interaction with contaminated bats [8,46,47] (Fig 2B). During the

autumn swarm period, highly interactive bats might carry viable P. destructans spores to differ-

ent regional hibernacula, contributing to the geographic spread of the pathogen [47,48]. Fur-

ther transmission can also occur during hibernation when infected bats transmit P.

destructans to uninfected bats during interbout arousals [47] (Fig 2B). On the skin of torpid

bats, P. destructans enters a phase of faster growth and a parasitic lifestyle that is lacking in its

close saprophytic relatives, shedding vast amounts of conidia into the environment by the end

of the hibernation [43,49,50] (Fig 2B). Those conidia remain viable in the cave or mine envi-

ronment until subsequent winters, perpetuating the cycle of reinfection [51,52] (Fig 2B).

Importantly, P. destructans’ environmental reservoir makes disease transmission possible even

at low host densities, increasing the likelihood of population effects [46]. Surviving bats clear

the infection upon emergence from hibernation, and P. destructans detection in bat skin dur-

ing summer months is relatively low [53–55]. Still, residual conidia can survive for months on

their fur at elevated temperatures (24 to 30˚C), making transmission of P. destructans at mater-

nity colonies or summer roosts unlikely but theoretically possible [56].

The disease

P. destructans interactions with skin

The interactions between P. destructans and bat skin throughout the infection and disease pro-

cess can be divided into the following phases: (1) noninvasive colonization; (2) early non-dam-

aging invasion; (3) late damaging invasion; and (4) pathogen clearance and resolution (Fig 3).

1) Noninvasive colonization starts with the adhesion of P. destructans conidia to the surface

of the stratum corneum, probably mediated by hydrophobic interactions with glycosylpho-

sphatidylinositol- (GPI-) anchored proteins to components of the extracellular matrix

(ECM) [57,58]. Under the right conditions, during torpor, P. destructans conidia swell and

germinate, forming a germ tube and hyphae that progress between corneocytes, likely feed-

ing on the lipid-rich ECM of the stratum corneum while utilizing a repertoire of lipases and

proteases [32,42,59–61]. Unlike dermatophytes, P. destructans is not known to be
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keratinolytic [42]. However, the secretion of aspartyl or serin proteases like Destructin-1

might contribute to the breakdown of ECM and corneodesmosomes (corneocyte’s intercel-

lular junctions) to further colonize the stratum corneum [60]. Whether these enzymes are

constitutively or differentially expressed depending on host factors or temperature shifts

remains uncertain [50,62]. Germination, filamentation, and hyphal progression will be

Fig 3. Proposed model of WNS pathogenesis. Our proposed model of WNS pathogenesis is divided into the following phases: (1) Noninvasive colonization

involves superficial colonization of the epidermis (stratum corneum) without recruitment of inflammatory cells regardless of the hibernation phase (torpor,

arousal, or emergence). (2) Early invasion consists of non-damaging entry into epidermal keratinocytes (deeper epidermis). Infected keratinocytes release

chemokines during the euthermic periods (arousal or emergence) that might lead to recruitment of small numbers of phagocytes into the site of infection.

Limited antimicrobial activity by local and newly recruited immune cells is expected at this stage given the intracellular location of P. destructans and the

absence of cell damage signaling (e.g., alarmins). (3) Late invasion is characterized by increased P. destructans burden in the epidermis that leads to cell damage

and replacement by biofilm-like matrix-embedded fungal clusters (cupping lesions) and up-regulation, during euthermia, of alarmins, chemokines and

cytokines known to promote Th17 antifungal responses. The short duration of arousals likely precludes further recruitment of myeloid and memory T cells,

which could partially explain the lack of IL17A up-regulation detected in these late invasion sites in aroused bats. Memory Th17 cells are likely recruited after a

longer euthermic period (emergence) leading to a more robust antifungal inflammatory response that might lead to IRIS, thrombosis and ischemic necrosis of

infected tissue. (4) Clearance and resolution happen if bats survive the hibernation period and the IRIS by eliminating the fungus and repairing the damaged

tissue. Figure designed using BioRender (Agreement # XE271RUHMM).

https://doi.org/10.1371/journal.ppat.1012342.g003
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interrupted upon each arousal when skin temperature rises above 20˚C. Colonization of the

stratum corneum without further invasion into the non-cornified keratinocyte layer repre-

sents the dominant feature of P. destructans’ infection of less susceptible bat species (e.g.,

Eptesicus fuscus or Myotis myotis) [63–65].

2) Early non-damaging invasion of the epidermis transpires once P. destructans has breached

the corneum stratum and initiates the invasion of non-cornified keratinocytes [59]. P.

destructans can invade bat keratinocytes during both phases of hibernation (i.e., torpor and

arousal) [59] (Fig 4). Invasion can ensue by fungal-mediated active hyphal penetration dur-

ing the torpid phase when skin temperature is optimal for fungal growth (�16˚C) and host

cells are metabolically dormant. Alternatively, P. destructans hyphae and conidia can pas-

sively enter bat keratinocytes through induced endocytosis (host-mediated) during arousals

when P. destructans is inactive and host cells reactivate [59]. Both active hyphal penetration

during torpor and induced endocytosis of hyphae and conidia during arousal are mediated

by the transmembrane tyrosine kinase epidermal growth factor receptor (EGFR) [59].

EGFR facilitates the adhesion of P. destructans hyphae to bat keratinocytes at torpor-like

temperatures (12˚C) and endocytic uptake of P. destructans with pseudopodia formation by

keratinocytes at euthermic-like temperatures (37˚C) [59].

Keratinocytes are professional endocytic cells that sample the skin environment and kill

internalized microbes by enzymatic digestion in acidic endolysosomes [66–68]. Remark-

ably, endocytosed P. destructans conidia survive inside the keratinocytes during arousal. In

particular, the intracellular killing of P. destructans conidia is thwarted by its 1,8-dihydroxy-

naphthalene (DHN) melanin-containing surface coat, which inhibits endolysosome matu-

ration and acidification [59]. Upon returning to torpor-like conditions, conidia germinate

and colonize neighboring host cells [59]. Notably, the germination rate of intracellular

conidia is significantly higher than that of extracellular conidia. This advantageous intracel-

lular lifestyle indicates a potential biotrophic behavior of P. destructans during early skin

invasion similar to some fungal plant pathogens [32,69] and might shield the fungus from

antimicrobial factors secreted into the extracellular space by keratinocytes or other epider-

mal immune cells [59].

During this early invasive phase, the invaded epithelium remains viable [59]. This lack of

cell damage is partially explained by P. destructans’ nondisruptive penetration of the epithe-

lial cells, which forms transcellular tunnels while preserving the epithelial plasma mem-

branes, as previously described for Candida albicans and Aspergillus fumigatus [59,70,71].

In addition, invading P. destructans inhibits the infected keratinocytes’ programmed cell

death (apoptosis) [59]. This anti-apoptotic effect requires viable P. destructans and direct

interaction between P. destructans and epithelial cells, indicating that it is not mediated by

secreted factors [59]. The epithelial invasion that characterizes this phase of WNS does not

kill host cells and is reminiscent of the invasive commensalism described in early A. fumiga-
tus or C. albicans invasion of epithelial cells before secretion of cytotoxic gliotoxin and can-

didalysin, respectively [70–72].

The host immune response during this early invasive phase is consistent with the expected

response of epithelial cells that recognize the presence of nonpathogenic fungal commen-

sals. This response is restricted to arousal-like temperatures (37˚C) in bats and consists of

mild up-regulation of genes encoding chemokines such as CCL2 and IL8 without up-regu-

lating cell damage-associated mediators (alarmins) such as IL1α, IL1β, or TNFα [59,73–75].

The gene encoding cycloxygenase-2 (COX2), a key enzyme for synthesizing proinflamma-

tory eicosanoids like PGE2, is significantly up-regulated during early invasion of bat epithe-

lium [59,76]. However, none of its proinflammatory products are detected, indicating a
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posttranscriptional blockade of this pathway likely due to lack of calcium flux-induced

activity of phospholipase A2 [77]. These nonproductive, milder responses to the early infec-

tion likely represent the ability of epithelial cells to discriminate between commensal and

pathogenic microbes [78]. This hyporesponsive mode might be essential for a tolerant

Fig 4. Pathogenic features of P. destructans’ skin invasion. During early invasion, P. destructans hyphae enter bat keratinocytes by EGFR-mediated

endocytosis or active penetration at euthermic- (37˚C) or torpor-like temperatures (12˚C), respectively, while P. destructans conidia enter bat

keratinocytes by EGFR-mediated endocytosis at euthermic-like temperatures. Invading P. destructans blocks apoptosis of infected keratinocytes and

1,8-dihydroxynaphthalene (DHN) melanin coating on conidia inhibits acidification and maturation of fungal containing endosomes favoring

intracellular survival. During late invasion, tightly clustered pleomorphic hyphae (h) embedded in electrodense biofilm-like matrix (black arrowheads)

replace dead keratinocytes (white arrowheads) forming cupping lesions. “Late invasion” transmission electron microscopy picture taken from the skin

of a WNS–positive Myotis lucifugus previously sampled in Isidoro-Ayza and Klein [59]. Notice that superficial hyphae are narrower than those in deeper

layers of the skin. Figure designed using BioRender (Agreement # MO271RUM95).

https://doi.org/10.1371/journal.ppat.1012342.g004
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energy-saving response by the host. However, the pathogen might also benefit from it to

colonize bat skin further without facing host opposition.

3) Late damaging invasion occurs following increased fungal burden in the epidermis (Fig 4).

P. destructans hyphae tightly cluster within the epidermis, forming cupping lesions embed-

ded within a biofilm-like matrix and necrotic debris, likely accumulating secreted cytotoxic

P. destructans’ metabolites (e.g., riboflavin) and hydrolytic enzymes (e.g., Destructin-1) that

build up as a result of impaired tissue drainage due to reduced blood flow during torpor

[60,79,80]. Along with the high concentration of cytotoxic substances, mechanical stress by

an increased number of invasive hyphae might also lead to breaches of the cell membrane

and local release of pro-death signals [70,72,81]. Whether the fungus nutritionally benefits

from this necrotic environment (necrotrophic behavior) or it is counterproductive for its

physiological needs remains unknown [69]. During this phase, P. destructans often breaches

the epidermal basement membrane and progresses into the collagen-rich dermis, poten-

tially using the same enzymatic machinery (e.g., Destructin-1) [60,65,79]. This later phase

of WNS has been more frequently described than the early invasive phase, with cupping

lesions becoming a diagnostic hallmark of WNS and the ultraviolet light fluorescence

induced by fungal metabolites (e.g., riboflavin, siderophores) being harnessed for noninva-

sive diagnosis of WNS and to target P. destructans-infected skin for in vivo RNA sequenc-

ing studies [62,79,80,82–84]. Fungal structures in these cupping lesions are highly

pleomorphic with slender and thin-walled superficial hyphae and bulbous, thick-walled

hyphae in deeper areas of the lesion like those described under heat stress [38] (Fig 4).

These morphological changes of P. destructans in different skin layers might be caused by

nutritional or hypoxic stress in highly colonized skin areas or by host-secreted antimicro-

bial products [85,86]. Alternatively, hyphal cell wall thickening and broadening might be a

heat stress response to higher arousal frequency induced by WNS [38,87]. The intense epi-

dermal disruption of the wing membrane during this phase translates into physiological

changes, including acidosis (elevated pCO2 or reduced bicarbonate levels in blood) from

reduced excretion of CO2 or increased metabolic rate; hypotonic dehydration, including

elevated hematocrit and decreased Na2+ concentration secondary to increased evaporative

water loss and electrolyte leakage; and hyperkalemia (elevated K+ in blood) due to the extra-

cellular shift of potassium secondary to acidosis or the leakage of intracellular K+ ions from

necrotic cells into the bloodstream [26,88–90].

One of the most counterintuitive observations in the skin of susceptible Nearctic bats (i.e.,

M. lucifugus) with advanced P. destructans infections is the small number of leukocytes at

sites of fungal invasion despite the local up-regulation during arousals of genes encoding

innate immune mediators (i.e., alarmins [IL1α, IL1β, TNFα]) involved in activation and

recruitment of phagocytes (i.e., neutrophils and macrophages) [62,79,91–93]. Likewise,

genes encoding cytokines known to polarize T cells towards a Th17 response (i.e., TGFβ1,

IL6, IL23) are up-regulated in the P. destructans-infected skin without induction of IL-17A

(Th17 cytokine product), which is otherwise up-regulated in regional lymph nodes of

WNS–positive bats [62,91–93]. These cytokine patterns indicate that local immune and

nonimmune cells respond to advanced invasive WNS with proinflammatory mediators and

an attempt to shape the host response towards a Th17-type antifungal response. However,

proper local innate and adaptive responses might be undermined by the torpor-induced

inability of sequestered phagocytes and lymphoid cells to migrate to the skin and the short

window of time when these leukocytes are fully functional [14–20].

Despite the relative paucity of effector cells, locally expressed pyrogenic and proinflamma-

tory cytokines (i.e., IL1α, IL1β, TNFα) are likely systemically released upon arousal, leading
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to activation of the acute phase response (A2M, C3, PF, and TF), which might lead to an

energetically draining febrile state [94–96]. Like during early invasion, COX2 is one of the

most up-regulated genes during this later invasive phase [59,62,91,92]. Although untested,

proinflammatory COX2 products such as prostaglandins or thromboxanes are likely

expressed under these more damaging circumstances [76,77]. In that scenario, PGE2,

known to induce arousal in ground squirrels, might be partially responsible for increased

arousal frequency during advanced WNS [97]. These immunological changes and the other

physiological changes caused by skin barrier disruption (described above) result in

increased arousal frequency, which leads to positive feedback loops worsening the physio-

logical imbalance and causing loss of fat stores, starvation, and in many cases, death, which

in M. lucifugus occurs around 88 to 114 days postinfection in captive settings [26,35,88–

90,98].

4) Death or resolution. Bats with severe WNS that survive until emergence from hibernation

present with an overwhelmingly high fungal antigen burden and proinflammatory media-

tors. Upon reconstitution of the immune response, both innate and adaptive responses

become hyperactivated and lead to an immune reconstitution inflammatory syndrome

(IRIS), characterized by severe tissue damage and pathology, including exuberant pyogra-

nulomatous inflammatory infiltrates, pustules, abscesses, thrombosis and infarction of skin

tissues, or shock [54,99]. Emergent bats that survive the IRIS clear P. destructans, the

necrotic debris, and the degenerated inflammatory infiltrates, replacing them with newly

formed epithelium and expelling the debris and degenerated cells onto the skin surface,

forming crusts that are finally shed. Deeper lesions involving extensive basement mem-

brane disruption are likely replaced by scar tissue [55].

P. destructans interactions with the microbiome

The skin surface hosts microbial communities (microbiome) that establish mostly neutral or

beneficial interactions with the host [100]. Diverse microbiomes offer a more protective envi-

ronment against invasive microbial pathogens [101]. However, microbial diversity in the skin

of Nearctic bats is typically determined by the microbial composition of the hibernacula envi-

ronment and does not correlate with susceptibility to WNS [102]. Conversely, P. destructans’
colonization of bat skin greatly lowers the skin bacterial (but not fungal) diversity of the highly

susceptible little brown bat (M. lucifugus) but not of other WNS-affected species like the big

brown bat (E. fuscus) and the tricolored bat (Perimyotis subflavus) [102]. Despite the lack of

correlation between microbiome diversity and susceptibility to WNS, specific components of

the microbiome might still inhibit P. destructans invasion through the production of antimi-

crobial compounds, modulation of the host immune system, or competition for adherence

sites and metabolic niches [103,104]. In this regard, several bacterial and fungal species can

inhibit P. destructans’ growth. For example, bacteria in the genus Pseudomonas, commonly

found on bat skin, inhibit the growth of P. destructans both in vitro and in vivo [105–108].

Also, the bacterium Rhodococcus rhodochrous and a yeast differentially abundant in WNS-

resistant bat species, Cutaneotrichosporon moniliiforme, inhibit P. destructans’ growth in vitro

[109,110].

Factors that influence the severity of WNS

Infection severity is the result of the host’s inherent susceptibility, environmental factors, and

the pathogen’s intrinsic virulence, which are factors that collectively modulate host–pathogen

interactions [111].
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Host intrinsic factors

Immune response. Differences in susceptibility to WNS between bat species and popula-

tions have been shown [6]. Palearctic bats like the greater mouse-eared bat (M. myotis) are not

reported to suffer mortalities from WNS, while populations of some Nearctic species, like M.

lucifugus, have plummeted in the last 18 years because of WNS [6]. One of the most remark-

able differences between these two related species is M. myotis’ milder local immune response

to P. destructans invasion [112]. This dampened response could result from developed toler-

ance (reduced immune reactivity) to P. destructans [112,113]. However, the small number of

P. destructans invasion sites in M. myotis indicates that efficient constitutive antimicrobial

mechanisms might halt early fungal progression through the skin, precluding extensive epider-

mal damage and induction of inflammation. Moreover, M. lucifugus populations that persist

after exposure to P. destructans and a North American bat species less affected by WNS (E. fus-
cus) have been found to respond to P. destructans with gene induction patterns similar to

those observed in pre-epidemic naïve M. lucifugus [112]. It is, therefore, unclear if disparities

in the antifungal immune response are critical for survival to WNS, and additional studies are

needed to determine whether subtle qualitative and quantitative differences could explain dis-

ease outcome.

Skin barrier. Besides immunological factors, genomic analysis of WNS-naïve versus per-

sisting M. lucifugus populations have highlighted a positive selection of genes involved in skin

regeneration and wound healing in WNS survivors [114]. As discussed earlier, epidermal dam-

age in the wing membrane likely contributes to physiological disruption and host death. In

addition, genes involved in keratinocyte differentiation and wound healing are enriched dur-

ing the late phase of WNS, likely as an attempt to restore the structural gap caused by the fun-

gus [92]. Therefore, enhanced healing capacity by certain bat species or populations might

minimize disruption of skin homeostasis and increase their chances of surviving WNS.

Ecological factors

Inoculum size. Bat colonies can acquire P. destructans infections by interacting with the con-

taminated environment. Therefore, it follows that bat populations occupying sites with abundant

environmental P. destructans loads have lower population growth [115]. Overall, the prevalence of

P. destructans in Eurasian hibernacula is lower than in North American caves or mines. In addi-

tion, environmental P. destructans loads in Palearctic hibernacula sharply decrease during the

summer, while pathogen loads remain constantly high in Nearctic hibernacula [46]. Conse-

quently, the higher levels of environmental contamination in North American hibernation sites

likely translate to higher inoculum size and may explain higher infection rates, earlier disease

onset, and higher disease severity and mortality rates by the end of the winter.

Relative humidity. As discussed earlier, P. destructans germination and growth are higher

at high RH%, and hibernating bat species that are highly susceptible to WNS select wintering

sites with high humidity (typically 60% to 100%) to prevent dehydration [116,117]. Species

more affected by WNS are also more susceptible to water loss (e.g., M. lucifugus, Myotis septen-
trionalis, and P. subflavus) and select microclimates for hibernation with the highest RH%

(often their skin is covered by condensed water), a favorable environment for P. destructans to

thrive [26,116].

Clustering and bat density. Communal hibernation and clustering are other behaviors

that lead to higher WNS severity. Clustering is frequently observed in highly populated hiber-

nacula, like those of pre-epidemic M. lucifugus populations. Clustering during hibernation

minimizes heat and evaporative water loss but also increases transmission of P. destructans by

causing increased contact between infected and noninfected bats [26,116–118]. Therefore, the
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lower impact of WNS in roosting sites with lower bat densities in Europe or caves hosting per-

sisting (but decimated) North American populations of M. lucifugus might be partially

explained by a lower transmission rate in sparsely populated hibernacula.

Sex-based behavior. Female bats exhibit higher infection rates, higher pathogen burdens,

and lower survival rates [119]. In autumn, male bats mate with torpid females, while females

prioritize torpor to conserve energy for spring reproduction [13]. Hence, the increased activity

of male bats during autumn and their shorter hibernation period likely results in reduced opti-

mal conditions for P. destructans’ replication and infection.

Temperature. Bats that select warmer microclimates closer to the temperature range opti-

mal for P. destructans growth (12 to 16˚C) have higher fungal loads and suffer greater WNS

effects than those that select cooler roosts [120]. However, prolonged exposure of P. destruc-
tans to temperatures above 20˚C (its upper critical temperature) is unfavorable for the fungus’

growth. Consistent with this, healthy, uninfected big brown bats (E. fuscus), a species with low

WNS-related mortalities, undergo higher arousal frequencies and shorter bouts of torpor dur-

ing hibernation than those from the susceptible species M. lucifugus; these longer euthermic

periods in E. fuscus might halt fungal progression and retard pathogenesis [64].

Pathogen factors

Intrinsic genetic differences in virulence between strains of P. destructans are not currently

considered significant determinants of disease severity. However, this could be due to the

small number of strains of P. destructans that have been used in experimental studies. One

experiment in which M. lucifugus was infected with a P. destructans isolate from either Europe

or North America led to comparable pathology and mortality rates [34,35]. However, many

strains of P. destructans have yet to be assessed in comparative virulence studies. North Ameri-

can isolates of P. destructans are expanding clonally (i.e., they are essentially genetically homo-

geneous) and are likely to be similar in virulence [34]. However, future introduction of the

MAT1-2 idiomorph might favor sexual reproduction, leading to increased diversity and the

emergence of new virulence attributes that favor the adaptation of P. destructans to the host

[121]. The higher plasticity of P. destructans could lead to less virulent genotypes that are non-

pathogenic commensal mutualists or more virulent genotypes that cause even more severe and

lethal infections.

Conclusions and future of WNS pathogenesis research

Since the first report of WNS in 2006, substantial progress has been made in understanding

WNS pathogenesis [9,11]. Initial descriptions of WNS cases and isolation of P. destructans as

the presumptive causative agent were followed by experimental infections to confirm Koch’s

postulates and to better understand disease progression and host responses in different bat

species [8,35,54,62,65,79,91–93,95,112,122]. Because P. destructans represented the first major

animal pathogen within the Leotiomycetes, there was little baseline information on which to

infer basic biology, host–pathogen interactions, and fungal virulence mechanisms. A substan-

tial body of research was conducted to address these gaps, including genomic comparisons

and in vitro determination of nutritional and environmental needs and enzymatic activity

[34,38,41–43,45,61,123]. In vitro characterization of P. destructans’ secretome and gene expres-

sion comparison between nonpathogenic (P. destructans grown in culture media) and patho-

genic (in vivo infection) settings have hinted at potential virulence factors [50,60,62].

These early studies nurtured the field with numerous hypotheses on host–P. destructans
interactions, such as the protective, tolerant response of Palearctic bats versus the immuno-

pathogenic response of Nearctic bats such as M. lucifugus. Many of these hypotheses remain
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untested, partly due to limitations to studying these interactions in vivo [112,113]. Some of

these limitations are due to (1) technical challenges of reproducing hibernation conditions in

captivity that capture the inherent variability found within a natural hibernaculum; (2) limited

availability of bats for terminal experiments due to ethical concerns and the legal conservation

status of those species; and (3) genetic, epigenetic, and microbiome diversity between popula-

tions and individuals that increase variability, statistical error, and reproducibility between

experiments.

More recently, in vitro cell culture models of host–pathogen interactions have been devel-

oped and validated, providing more reproducible systems that allow fine dissection and under-

standing of molecular and cellular mechanisms involved in the pathogenesis of WNS [59]. In

vitro systems offer many additional advantages in modeling the pathogenesis of WNS. First, in

a more controlled in vitro setting, various parameters, such as cell types (e.g., keratinocytes

versus leukocytes), fungal life stage and burden, and environmental conditions (e.g., tempera-

ture and humidity), can be readily manipulated. Second, in vitro versatility increases experi-

mental resolution and makes it easier to identify dependent variables such as the activation of

receptors, expression of fungal ligands, or virulence factors. Third, in vitro models offer a

higher reproducibility level while allowing the manipulation of genetic and molecular factors

in either the pathogen (e.g., virulence factors) or host cells (key components of host response

and susceptibility). Fourth, these models allow rapid testing of many compounds to identify

those with promising effects, such as chemical inhibitors of different receptors on pathogen–

host interactions. Fifth, they are often more cost-effective given the specialized type of atten-

tion needed to work with wild hibernating bats. Lastly, conducting preliminary studies in vitro

and only advancing promising and thoroughly validated hypotheses in live bats is ethically

more appropriate. This is particularly important given the critical conservation status of most

bat species, especially those sensitive to WNS.

Despite the many advantages of in vitro cell culture models, findings from such work

would ideally be validated with more complex in vitro and ex vivo models. Although such

complex models await development and validation, they might include organoids or stratified

skin models with multiple cell types, ex vivo models like skin explants, and immune chimeras

(i.e., transfer of bat immune cells to immune-deficient mouse hosts) [124,125]. Finally, in vivo

experimental infections in bats, like those described above, or larger field studies could be used

to ensure the relevance of the in vitro discoveries at the individual and population levels.

Multiple gaps in the knowledge of WNS pathogenesis warrant further investigation. Some

of these are (1) identification of P. destructans virulence factors; (2) characterization of host

immune components and responses involved in pathogenesis; and (3) elucidation of unique

features of bat immunometabolism during hibernation.

1. Identification of P. destructans’ virulence factors: Genetic manipulation of P. destructans
using protoplast- or agrobacterium-mediated transformation followed by classic homologous

recombination or a high-throughput approach such as CRISPR/Cas9 could be used for identi-

fication of virulence factors using a literature-based or unbiased (CRISPR/Cas9 library screen-

ing) approach. As discussed earlier, these loss-of-function experiments could be paired with

phenotypic screening utilizing in vitro systems and further validated ex vivo and in vivo.

2. Characterization of host immune components and responses involved in pathogenesis.

Further work identifying receptors and pathways that favor P. destructans invasion and sur-

vival in the host and protective versus deleterious responses to this infection may enable the

identification of therapeutic or preventive approaches to manage WNS. Additionally, foun-

dational profiling of skin immune cells and responses from susceptible versus resistant or

tolerant bat species or populations using either bulk or single-cell RNA sequencing or
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proteomics could be instrumental in identifying molecules and pathways that can be rigor-

ously interrogated in in vitro systems followed by in vivo validation.

3. Elucidation of unique features of bat immunometabolism during hibernation. Unique

features of their biology have shaped bats’ coevolution with microbes. One of these traits is

their capacity to hibernate. Open questions on how hibernation influences immune

responses to microbes, including fungi, are numerous. Particularly relevant is the likely

connection between unique metabolic changes experienced by hibernating bats during the

different stages of their life history (torpor versus euthermia) and their antimicrobial

responses (immunometabolism).

This proposed endeavor to understand WNS pathogenesis can help lead to groundbreaking

discoveries with applications in bat conservation and human and veterinary medicine.
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95. Hecht-Höger AM, Braun BC, Krause E, Meschede A, Krahe R, Voigt CC, et al. Plasma proteomic pro-

files differ between European and North American myotid bats colonized by Pseudogymnoascus

destructans. Mol Ecol. 2020; 29(9):1745–55. https://doi.org/10.1111/mec.15437 PMID: 32279365

96. Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response

syndrome. Ann Intensive Care. 2012; 2. https://doi.org/10.1186/2110-5820-2-27 PMID: 22788849

97. Prendergast BJ, Freeman DA, Zucker I, Nelson RJ. Periodic arousal from hibernation is necessary for

initiation of immune responses in ground squirrels. Am J Physiol-Reg I. 2002; 282(4):R1054–R62.

https://doi.org/10.1152/ajpregu.00562.2001 PMID: 11893609

98. Lilley TM, Johnson JS, Ruokolainen L, Rogers EJ, Wilson CA, Schell SM, et al. White-nose syndrome

survivors do not exhibit frequent arousals associated with infection. Front Zool. 2016; 13. https://doi.

org/10.1186/s12983-016-0143-3 PMID: 26949407

99. Shelburne SA, Hamill RJ, Rodriguez-Barradas MC, Greenberg SB, Atmar RL, Musher DM, et al.

Immune reconstitution inflammatory syndrome—Emergence of a unique syndrome during highly

active antiretroviral therapy. Medicine. 2002; 81(3):213–27. https://doi.org/10.1097/00005792-

200205000-00005 PMID: 11997718

100. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011; 9(4):244–53. https://doi.org/10.

1038/nrmicro2537 PMID: 21407241

101. Mallon CA, van Elsas JD, Salles JF. Microbial Invasions: The process, patterns, and mechanisms.

Trends Microbiol. 2015; 23(11):719–29. https://doi.org/10.1016/j.tim.2015.07.013 PMID: 26439296

102. Ange-Stark M, Parise KL, Cheng TL, Hoyt JR, Langwig KE, Frick WF, et al. White-nose syndrome

restructures bat skin microbiomes. Microbiol Spectr. 2023. https://doi.org/10.1128/spectrum.02715-23

PMID: 37888992
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