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Abstract

Auditing the use of data in training machine-learning (ML) models
is an increasingly pressing challenge, as myriad ML practitioners
routinely leverage the effort of content creators to train models with-
out their permission. In this paper, we propose a general method
to audit an ML model for the use of a data-owner’s data in training,
without prior knowledge of the ML task for which the data might
be used. Our method leverages any existing black-box member-
ship inference method, together with a sequential hypothesis test
of our own design, to detect data use with a quantifiable, tunable
false-detection rate. We show the effectiveness of our proposed
framework by applying it to audit data use in two types of ML
models, namely image classifiers and foundation models.
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1 Introduction

The advances of machine learning (ML) models hinge on the avail-
ability of massive amounts of training data [16, 26, 32, 33, 38, 46, 82].
For example, Contrastive Language-Image Pre-training (CLIP), de-
veloped by OpenAl, is pretrained on 400 million of pairs of images
and texts collected from the Internet [52], and large language mod-
els like Llama 2, developed by Meta Al are pretrained and fine-tuned
on trillions of tokens [70]. Although the development of these large
ML models has significantly contributed to the evolution of artifi-
cial intelligence, their developers often do not disclose the origins
of their training data. This lack of transparency raises questions
and concerns about whether appropriate authorization to use this
data to train models was obtained from their owners. At the same
time, recent data-protection regulations, such as the General Data
Protection Regulation (GDPR) in Europe [44], the California Con-
sumer Privacy Act in the US [1], and PIPEDA privacy legislation in
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Canada [14], grant data owners the right to know how their data is
used. Therefore, auditing the use of data in ML models emerges as
an urgent and important problem.

Data auditing refers to methods by which data owners can ver-
ify whether their data was used to train an ML model. Existing
methods include passive data auditing and proactive data auditing.
Passive data auditing, commonly referred as membership infer-
ence [7, 13, 27, 60, 78], infers if a data sample is a member of an
ML model’s training set. However, such passive techniques have an
inherent limitation: they do not provide any quantitative guarantee
for the false-detection of their inference results. In contrast, proac-
tive data auditing techniques embed marks into data before its pub-
lication [24, 35, 36, 55, 69, 74, 77] and can provide detection results
with false-detection guarantees [55]. The existing proactive data au-
diting methods mainly focus on dataset auditing [24, 35, 36, 55, 69],
where the whole training set of the ML model is contributed from
one data owner and thus the data owner has control over the whole
dataset, including, e.g., knowledge of the labels [35, 36, 55]. This
limits their application in a real-world setting where the train-
ing dataset might be collected from multiple data owners or data
sources. In addition, the existing works focus on a particular type
of ML model, e.g., image classifiers [35, 36, 55, 77], and do not di-
rectly generalize to other domains. Therefore, there is a need to
design a general proactive data auditing framework that requires
no assumption on the dataset curation (e.g., data labeling) and can
be applied to effectively audit data across various domains.

In this work, we propose such a proactive data-auditing frame-
work. In a nutshell, the contribution of this framework is to turn
any passive membership-inference technique into a proactive data-
auditing technique with a quantifiable and tunable false-detection
rate (i.e., probability of falsely detecting data use in an ML model).
Our framework consists of a data marking algorithm and a detec-
tion algorithm. The data marking algorithm, which the data owner
applies prior to data publication, generates two versions of each
raw datum; each version is engineered to preserve the utility of the
raw datum from which it is generated, but otherwise the versions
are perturbed with maximally different marks. Taking the example
of an image, the marks are pixel additions to the raw image that
preserve its visual quality but maximize the difference between the
two marked versions. Critically, this marking step is agnostic to the
ML task (including, e.g., labels) in which the data versions might be
used. The data owner then publishes only one of the two versions,
chosen uniformly at random, and keeps the other hidden.

The key insight of our framework is that once the model is ac-
cessible (even in only a black-box way), any “useful” membership-
inference technique should more strongly indicate the use of the
published version than of the unpublished version, if the model
was trained using the data-owner’s published data. If the model
was not trained using the data-owner’s published data, then the
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membership-inference technique might indicate either the pub-

lished or unpublished version as more likely to have been included.

However, because the published version was chosen uniformly, the

version that the membership test more strongly indicates was used

should be equally distributed between the two.

This insight enables us to design a sequential hypothesis test of
the null hypothesis that the ML model was not trained using the
data-owner’s data. Using any membership-inference test, the data
owner queries the model on both the published and unpublished
versions of each datum (possibly obscured to avoid detection, as we
will discuss in Sec. 5.3.3), keeping a count of the times the published
version was reported as having been used with greater likelihood.
We derive a test to determine when the data owner can stop and
reject the null hypothesis, concluding that the model was trained
with her published data, with any desired false-detection rate.

We study the performance of our proposed framework in two
cases: image classifiers and foundation models. An image classifier
is a type of ML model used to assign labels to images based on
their content [16, 25, 61], while foundation models are general-
purpose, large ML models [6, 18, 52, 70]. In the first case, our results
on multiple visual benchmark datasets demonstrate that our pro-
posed framework effectively audits the use of the data-owner’s
data in image classifiers across various settings. Moreover, our
proposed method outperforms the existing state-of-the-art data
auditing methods, notably Radioactive Data [55] and Untargeted
Backdoor Watermark-Clean (UBW-C) [35]. We also investigate
adaptive attacks that the ML practitioner might use to defeat our
auditing method. While our results show that certain adaptive at-
tacks like early stopping and differential privacy can degrade the
detection performance of our method, they do so at the cost of
significantly diminishing the utility of the model. For the case of
foundation models, we extended our evaluation to three types of
foundation models: a visual encoder trained by self-supervised
learning [12], Llama 2 [70], and CLIP [52]. Our results show that
the proposed data auditing framework achieves highly effective
performance across all of these foundation models. Overall, our
proposed framework demonstrates high effectiveness and strong
generalizability across different types of ML models and settings.

To summarize, our contributions are as follows:

e We propose a novel and general framework for proactive data
auditing. Our framework has a simple data-marking algorithm
that is agnostic to any data labeling or ML task, and a novel
detection algorithm that is built upon contrastive membership
inference and a sequential hypothesis test that offers a tunable
and quantifiable false-detection rate.

o We demonstrate the effectiveness of the proposed framework by
applying it to audit the use of data in two types of ML models,
namely image classifiers and foundation models, under various
settings.

Due to space constraints, some of our results are detailed only in
the full paper [28]. A source code implementation of our framework
is available at https://github.com/zonghaohuang007/ML_data_aud
iting.
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2 Related Work
2.1 Data Auditing

Data auditing is a type of proactive technique that a data owner
can use to audit the use of her data in a target ML model [24, 35,
36, 55, 69, 74]. Such methods usually include a marking algorithm
that embeds marks into data, and a detection algorithm that tests
for the use of that data in training a model. Radioactive Data [55]
is a state-of-the-art method for auditing an image classifier, which
we consider as one of our baselines in Sec. 5.2. In the marking step,
Radioactive Data randomly samples class-specific marks and embeds
them into a subset of the training dataset. In the detection step,
it detects if the parameters of the final layer of the target image
classifier are correlated with the selected marks, by a hypothesis
test whose returned p-value is its false-detection rate. However,
Radioactive Data assumes that the data owner has full control over
the training set, including that, e.g., she knows the labels of the
dataset and can train a surrogate model (i.e., a model similar to the
target model) used to craft marked images. In contrast, our work
relaxes the requirement for one data owner to control the entire
training dataset. Another marking-based technique that, like ours,
relaxes this requirement for classifiers is that of Wenger, et al. [77].
However, unlike ours, this technique requires most of marked data
contributed by a data owner to be assigned the same label by the
ML practitioner; does not provide a rigorous guarantee on the false-
detection rate; and to achieve good detection performance in their
reported experiments on image classifiers, needed marks that were
sufficiently visible to diminish image quality.

Another line of works on image dataset auditing [35, 36, 69] is
based on backdoor attacks [23, 57] or other methods (e.g., [24]) to
enable a data-owner to modify her data and then detect its use to
train an ML model by eliciting predictable classification results from
the model (e.g., predictable misclassifications of poisoned images
for backdoor-based methods). Their detection algorithms are also
formulated by a hypothesis test, but they do not provide rigorous
guarantees on their false-detection rates. Moreover, these methods
again require the data owner’s full control over the training set, in
contrast to our method. In Sec. 5.2, we consider one backdoor-based
auditing method, namely Untargeted Backdoor Watermark-Clean
(UBW-C) [35], as one of our baselines.

To our knowledge, all existing data auditing methods focus on
a particular type of ML model, e.g., image classifiers [24, 35, 36,
55, 69, 77], language models [76], or text-to-image diffusion mod-
els [74]. So, their proposed techniques do not directly generalize to
other domains. In contrast, the marking algorithm in our proposed
framework does not rely on any prior knowledge of the ML task
(e.g., labels assigned by the ML practitioner), and our framework
can be used to effectively audit data across various domains.

2.2 Membership Inference

Membership inference (MI) is a type of confidentiality attack in ma-
chine learning, which aims to infer if a particular data sample [7, 13,
27, 60, 78] or any data associated with a specific user [11, 47, 65] has
been used to train a target ML model. The existing MI methods can
be classified into shadow model-based attacks [40, 60] and metric-
based attacks [56, 58, 66, 79]. Shadow model-based attacks leverage
shadow models (i.e., models trained on datasets that are similar to
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the training dataset of the target model) to imitate the target model
and so incur high costs to train them. In contrast, metric-based
attacks leverage metrics that are simple to compute (e.g., entropy
of the confidence vector output by the target classifier [58, 66])
while achieving comparable inference performance [56, 58, 79].
MI has been explored for various model types, e.g., image clas-
sifiers [56, 58, 66, 79], visual encoders trained by self-supervised
learning [39], language models [50], reinforcement learning [19],
and facial recognition models [11].

MI can be used as a passive data auditing method that a data
owner can use to infer if her data is used in an ML model. However,
such a passive method does not provide any quantitative guarantee
for its inference results. Our proposed framework uses metric-based
MI to design the score function in the detection algorithm that
provides a quantifiable, tunable guarantee on false detection.

2.3 Data Watermarking

Data watermarking is a technique used to track digital data by
embedding a watermark that contains identifying information of
the data owner. A classical example of image watermarking is zero-
bit watermarking [9] that embeds information into the Fourier
transform of the image. However, this type of traditional water-
marking is not robust to data transformation. Recently, there have
been research efforts on training deep neural networks (DNNs) to
embed and recover watermarks that are robust to data transforma-
tion [4, 43, 68, 84]. DNN-based data watermarking is widely applied
to attribute Al-generated content [21, 81].

Data watermarking can be used to audit data use to train a gen-
erative model [81], since the watermark embedded in the training
images could be transferred to the images generated from the model.
However, this technique cannot be directly applied to other types
of ML models, e.g., an image classifier. In contrast, instead of re-
covering the embedded marks from the ML model, our proposed
auditing method detects the use of published data by analyzing the
outputs of the ML model on the published data and the hidden data.

3 Problem Formulation

We consider two parties: a data owner and a machine learning
practitioner. The data owner holds a set {x1,x3,...,xN} of data
that will be published online, e.g., posted on social media to attract
attention. The ML practitioner aims to train a machine learning
model f of good utility on a set of training data D = {ai}?i | of size
M by solving:
1 M

min 3 Zl 0. @), M
where ¢ is a loss function used to measure the performance of
the ML model on the training samples. The definition of the loss
function depends on the machine learning task. For example, the
loss function in image classification is the cross-entropy loss [45].

3.1 Threat Model

The ML practitioner wants to assemble a training dataset D that
can be used to train a useful ML model. He does so by collecting
the data published online from multiple data owners, without their
authorization. As such, a data owner’s data constitutes a subset
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of the ML practitioner’s collected dataset (i.e., some portion of
{x1,%2,...,xN} or its published version is contained in D). The
ML practitioner preprocesses the collected data (e.g., labeling it,
if needed), trains an ML model on the preprocessed data using
a learning algorithm specified for his ML task (e.g., supervised
learning for image classification), and deploys it to provide service
to consumers.

The data owner wants to detect the ML practitioner’s use of
her data. To do so, the data owner needs to apply a method to
audit the ML practitioner’s ML model such that if the ML model
uses her published data, then she will detect this fact from the
deployed model. We allow the data owner only black-box access to
the deployed ML model. In other words, she does not necessarily
know the architecture and parameters of the ML model, but can
obtain the outputs of the ML model by providing her queries, e.g.,
predictions or vectors of confidence scores output by an image
classifier given her images as inputs.

3.2 Design Goals

In this work, we aim to design a data auditing framework for a data

owner, which she can apply to detect the ML practitioner’s use of

her data. We have the following design goals for the proposed data
auditing framework:

o Effectiveness: The main goal of the proposed data auditing
framework is to detect the unauthorized use of data in ML model
training. When the published data is used, the proposed method
should successfully detect the use of the owner’s data. More
specifically, the detection success rate (i.e., the probability of
successfully detecting the data use) should grow with the amount
of the owner’s data that the ML practitioner uses in training, and
should approach 100% if most of her data is used.

¢ Quantifiable false-detection rate: When the ML practitioner
does not use the owner’s data, then detection should occur with
only a quantifiable probability (e.g., < 5%). Such false-detection
rate guarantees that if the ML practitioner does not use the data
owner’s data, then the risk of falsely accusing him is small and
quantifiable.

o Generality: Once the data owner publishes her data online,
the ML practitioner might collect them, label them if needed,
and use them in the ML-model training for his designed ML
task. The generality goal is that the algorithm applied prior to
data publication (i.e., the data-marking algorithm, introduced in
Sec. 4.1) should be agnostic to the data labeling and the ML task,
and that the proposed data auditing framework can be applied
to effectively audit data in any type of ML model (e.g., image
classifier or language model).

e Robustness: Once the ML practitioner realizes that the data
auditing method is applied, he would presumably deploy coun-
termeasures/adaptive attacks to defeat the data auditing method
without sacrificing the utility of the trained ML model signifi-
cantly. The robustness goal requires that the proposed framework
is still effective to detect the unauthorized use of data in model
training even when utility-preserving countermeasures/adaptive
attacks have been applied by the ML practitioner.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

4 The Proposed Framework

In this section, we propose a framework used to detect if an ML
model has been trained on the data owner’s data. In our frame-
work, the data owner does not publish her data {x1,x,...,xN}
directly. Instead, she creates two different marked versions of each
x;, namely x? and xl.lg uniformly randomly chooses a bit b; Al {0,1};
and publishes xf’i while keeping xl.1 —bi private. If the ML practi-
tioner’s ML model f is not trained on the published data, it will
behave equally when provided the published data and the unpub-
lished data as input (e.g., for classification). Otherwise, its behavior
will be biased towards the published data due to their memorization
in training [10, 64].

Formally, let gf denote a score function g with oracle (i.e., black-
box) access to ML model f and that is designed for black-box mem-
bership inference [13, 39, 66], so that its output (a real number)
indicates the likelihood that its input was a training sample for f.

If the ML model f is not trained on the published data xf’i, then the
probability of the event g/ (xf’i) > g/ (xl.lfb") will be %; otherwise,
the probability will be larger than % The probability % is due to
the uniformly random sampling of b;. As such, we can detect if an
ML model is trained on a dataset containing a subset of published
data by observing the different performance of the ML model on
the published data and the unpublished data. Since we compare the
membership inference scores (likelihoods) of published data and
unpublished data, we refer to this technique as using contrastive
membership inference. When the published data is used in train-
ing, a “useful” membership inference will give a higher score to
published data than to unpublished data, even though both scores
might be high enough to predict them as “members” independently.
More details on how to generate the published data and the unpub-
lished data and how to measure the bias in the ML model will be
discussed later (see Sec. 4.1 and Sec. 4.2, respectively).

Generally, our framework includes a marking algorithm and a
detection algorithm. The marking algorithm is applied in the mark-
ing step before the data publication, while the detection algorithm
is applied in the detection step after the ML model deployment.

4.1 Data Marking

The marking algorithm, applied in the marking step, is used to
generate a pair of published data and unpublished data. Formally,
the marking algorithm takes as input a raw datum x;, and outputs
its published version xf’i and its unpublished version xl.l_bi . The
marking algorithm includes a marked data generation step and a
random sampling step, and its pseudocode is presented in the full
paper [28, App. A]. The marked data generation step creates a pair
(x?, xil), both crafted from the raw datum x;. Taking the example
where x; is an image, we set x? «— xj + 0; and xl.1 «— x; — 0; where

d; is the added mark. The random sampling step selects b; & {0,1}
and publishes xf" , keeping xl.l_bi secret.

Basic requirements. We have the following requirements for the
generated x? and xl.lz utility preservation and distinction.
o Utility preservation: x? and xi1 should provide the same utility
as x; to the data owner, for the purposes for which the data
owner wishes to publish x; (e.g., to attract attention on social

1303

Zonghao Huang, Neil Zhenqgiang Gong, & Michael K. Reiter

media). Formally, given a well-defined distance function u(-, -)
measuring the utility difference, utility preservation requires that
u(x?, xij) < € and u(xl.l,xi) < €, where € is a small scalar. Taking
the example of images, the utility distance function could be
defined as the infinity norm of the difference in the pixel values,
ie., u(x?,xi) = ||xl(.) - xiHDo and u(xl.l,xi) = szl - xi“oo'

e Distinction: x? and x; should be different enough such that con-
trastive membership inference can distinguish between a model
trained on one but not the other. Formally, given a well-defined
distance function d(-, -), distinction requires that d(x?,xil) is
maximized. Continuing with the example of images, we could
define d(x?, xil) = ”h(x?) - h(xil)Hz, where h is an image feature
extractor, e.g., ResNet18 [25] pretrained on ImageNet [16].!
There exists a tension between utility preservation and distinc-

tion. Specifically, when the marked data preserves more utility of

the raw data, i.e., by using a smaller ¢, the difference between the
two marked versions is smaller and thus it is harder for contrastive
membership inference to distinguish between a model trained on
one but not the other. In experiments in Sec. 5 and Sec. 6, we show
that we can balance utility preservation and distinction well, by
setting an appropriate e. We also analyze and discuss this tension
in Sec. 5.3.

Marked data generation. To craft a pair of marked data that satisfy
the basic requirements, we formulate an optimization problem:

01
)1(1(}2’1()5 d(x;,x;) (2a)
subject to: u(x?,xi) <e and u(xl-l,x,-) <e (2b)

The definitions of u(-, -) and d(-, -), and how to solve Eq. (2) depend
on the type of data. We will instantiate them in our experiments in
Sec. 5 and Sec. 6.

Random sampling. After crafting the marked data (x?, xil), the

data owner selects b; & {0, 1}. Then she publishes xf’i, e.g., on
social media. She keeps xil_bi

discussed in Sec. 4.2.

secret to use in the detection step, as

4.2 Data-Use Detection

The detection algorithm, applied in the detection step, is used to
detect if a target ML model is trained on a dataset containing the
published data. Formally, given oracle (black-box) access to an ML
model f, the detection algorithm takes as input the data owner’s
published data {xf" }{i ; and her unpublished data {xl.lfb" }fi 1»and
outputs a Boolean value. It detects the difference between the out-
puts of the target ML model on the published data and unpublished
data. Specifically, for a given i, the data owner measures if

UCA Rt 3
where the score function g is a black-box membership inference
algorithm that measures the likelihood of the input being used as
a member of the training set of the target ML model f. A higher

score returned by the score function indicates a higher likelihood,
and thus the choice of the score function depends on the type of
! An image feature extractor is not necessary but helpful to craft marked images. Our

proposed method can audit image data effectively even if no image feature extractor
is used in marked data generation, as shown in the full paper [28, App. G].
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the target ML model; we will give examples in Sec. 5 and Sec. 6.
Under the null hypothesis Hy that the ML model f was not trained
on the data owner’s published data, Eq. (3) holds with probability
= %, where the probability is with respect to the choice of b;. If
it was trained on the data owner’s published data (the alternative
hypothesis H1), however, then it is reasonable to expect that Eq. (3)
holds with probability 7 > 1, since the ML model memorizes the
published data. As such, the detection problem can be formulated
to test the following hypothesis:

e Null hypothesis Hy: 7 = %

o Alternate hypothesis Hy: 7 > %

We denote the sum of successful measurements in the population as
N’,ie, N’ Zlﬁl ]I(gf(xf") > gf(xl.l_bi)) where I is the indicator
function returning 1 if the input statement is true or returning
0 if the input statement is false. Under Hy, N’ follows a binomial
distribution with parameters N and p’ = % As such, the data owner
can reject Hy or not based on the measured N’ using a binomial test.
In other words, the data owner detects if the ML model is trained
on her published data according to N”.

4.2.1 Estimate N’ by Sampling Sequentially WoR. Measuring N’
exactly requires querying all the published data and hidden data to
the ML model, e.g., via its API interface. When N is large, this would
be highly costly and time consuming. To address this, we apply a
sequential method: at each time step, the data owner samples an
i uniformly at random without replacement (WoR) and estimates
N’ based on the currently obtained measurements. The classical
sequential hypothesis testing method, namely the sequential prob-
ability ratio test [73], requires knowing the probability = in the
alternate hypothesis H; and so does not fit our problem.

Sampling WoR problem. There are N fixed but unknown objects
in the finite population {I3, ..., In}, where each I; takes on a value
in {0, 1}, specifically I; = ]I(gf(xf’i) > gf(xil_b”)). The data owner
observes one object per time step by sampling it uniformly at ran-
dom WoR from the population, so that:

I | {1y, . I NI T ),

where [; denotes the object sampled at time ¢ € {1,2,...,N}. As
such, the variable N; = 22:1 I, at time ¢ (t < N) follows a hyper-
geometric distribution:

. I4—1} ~ Uniform({I3, .

N’\(N - N’ N
P(N; =N") = :
=) = ) ) )
where N’ € {0,1,...,min(N’, t)} is the number of ones from the

obtained observations at ¢, and ( IJ\\]],/,) denotes N’ choose N”’.

Estimate N’ by prior-posterior-ratio martingale (PPRM) [75]. In
the above problem of sampling WoR from a finite population, the
data owner can use a prior-posterior-ratio martingale (PPRM) [75]
to obtain a confidence interval C¢(a) = [L; (@), U ()] for N’ at the
time ¢, which is a function of the confidence level a, e.g., & = 0.05.
Such a sequence of confidence intervals {Ct(@)};e(1,2,..,n} has the
following guarantee [75]:

P(3te{1,2...,N}: N ¢Ci(a)) < a.

In words, the probability that there exists a confidence interval
where N’ is excluded is no larger than a.
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4.2.2  Detection Algorithm with Quantifiable False-Detection Rate.
We present the pseudocode of our detection algorithm in the full
paper [28, App. A]. At each time step, the data owner samples an
i € {1,..., N} uniformly at random WoR and estimates N’ based on
the currently obtained measurements using a prior-posterior-ratio
martingale (PPRM) [75] that takes as inputs the sequence of mea-
surements so far, the size of the population N, and the confidence
level a. It returns a confidence interval for N’. If the interval (i.e.,
its lower bound) is equal to or larger than a preselected threshold
T, the data owner stops sampling and rejects the null hypothesis;
otherwise, she continues the sampling.

Since the detection algorithm rejects the null hypothesis as long
as the lower bound of a confidence interval is equal to or larger
than a preselected threshold T, the false-detection probability is
P(Ite{L2....,N} : Li(a) 2T | Hy). We prove the following the-
orem in the full paper [28, App. B].

THEOREM 1 (FALSE DETECTION RATE). ForT € {{%] ,...,N} and
N
2L _q)\ 2
a < p such that (M) < p — a, our data-use detection
2T\'N

algorithm has a false-detection rate less than p. In other words:

P(3t e {L2,....N}: Li(a) > T | Ho) < p.

5 Auditing Image Classifiers

In this section, we apply our data-use auditing method to detect
unauthorized use of data to train an image classifier. Image classi-
fication (e.g., [16, 25, 61]) is a fundamental computer-vision task
in which the ML practitioner trains a model (i.e., image classifier)
on training data partitioned into J classes. For a newly given im-
age, the ML model predicts a class label for it or, more generally,
a vector of J dimensions. The output vector could be a vector of
confidence scores whose j-th component represents the probability
of the input being from the j-th class, or a one-hot vector where
only the component of the predicted class is 1 and the others are 0.
Each training sample in the training set D is an (image, label) pair,
where the image might be collected online and the label is assigned
by the ML practitioner after the data collection. The loss function
in Eq. (1) is the cross-entropy loss [45].

5.1 Score Function

Here we define the score function gf used in our detection algo-
rithm for the image classifier f. The score function is a black-box
membership inference test based on the intuition that the ML model
is more likely to output a confident and correct prediction for a
perturbed training sample than for a perturbed non-training sam-
ple. This basic idea is similar to existing label-only membership
inference methods (e.g., [13]). The confidence and correctness of
the output are measured by entropy [58] or modified entropy [66]
if the ground-truth label of the input is known. Specifically, we
define the score function as follows: given an input image, we first
randomly generate K perturbed versions, and then obtain K outputs
using the perturbed images as inputs to the target ML model. We
average the K outputs and use the negative (modified) entropy of
the averaged output vector elements as the score. The details of the
score function are shown in the full paper [28, App. C].
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5.2 Experimental Setup

Datasets. We used three image benchmarks: CIFAR-10 [32], CIFAR-

100 [32], and TinyImageNet [33]:

e CIFAR-10: CIFAR-10 is a dataset containing 60,000 images of
3%32x%32 dimensions partitioned into J = 10 classes. In CIFAR-10,
there are 50,000 training samples and 10,000 test samples.

o CIFAR-100: CIFAR-100 is a dataset containing 60,000 images
of 3 X 32 X 32 dimensions partitioned into J = 100 classes. In
CIFAR-100, there are 50,000 training samples and 10,000 test
samples.

e TinyImageNet: TinyImageNet is a dataset containing images
of 3 X 64 X 64 dimensions partitioned into J = 200 classes. In
TinylmageNet, there are 100,000 training samples and 10,000
validation samples that we used for testing.

Marking setting. In each experiment, we uniformly at random
sampled N samples {xi}{i , from the training sample set X" of a
dataset. The N samples are assumed to be owned by a data owner.
Here we set % = 10% as the default, i.e., N = 5,000 for CIFAR-10
or CIFAR-100, and N = 10,000 for TinyImageNet. We applied our
data marking algorithm to generate the published data {xf’i }f\i 1
and the unpublished data {xilfb" }f\il for {xi}ﬁ\il. In Eq. (2), we used
€ = 10 as the default when the pixel range of image is [0, 255].
We defined the two marked versions by x? «— x; +6; and xl.1 —
x;j — & (6; is the mark), utility distance function by u(x?,xi) =
||x? - x,-”OO and u(xil, xi) = ”le - xi“oo’ and the distance function
by d(x?,xl.l) = ||h(x?) - h(xil) ‘2, where we used ResNet18 [25]
pretrained on ImageNet [16] to be the default feature extractor
h. We solved Eq. (2) by projected gradient descent [37]. Then we

uniformly at random sampled a subset (of size N) of {xf’i }f\i ,as

X (e, X C {xf’i}l{‘il) to simulate a general case where the ML
practitioner collected a subset of published data as training samples.
By default, we set N = N. As such, we constituted the training
dataset collected by the ML practitioner as D = (X" \ {xi}ﬁl) uXx
with correct labels (i.e., using the same labels as those in the dataset).
Some examples of marked images are displayed in the full paper [28,
App. D].

Training setting. We used ResNet18 as the default architecture of
the ML model f trained by the ML practitioner. We used a standard
SGD algorithm to train f, as follows: f was trained on normalized
training data with default data augmentation applied [22] using an
SGD optimizer [3] with a weight decay of 5 x 10™* for 80 epochs, a
batch size of 128, and an initial learning rate of 0.1 decayed by a
factor of 0.1 when the number of epochs reached 30, 50, or 70.

Detection setting. In each detection experiment, we applied our
data-use detection algorithm to the given ML model f using a set of
pairs of generated published data and unpublished data. In the data-
use detection algorithm and the score function, we set & = 0.025,
p = 0.05, and K = 16 as the default. (Recall from Thm. 1 that p
bounds the false-detection rate.) We present results for four different
experimental conditions that define the information available to
the detector, denoted as cG, cG, CG, and ¢G. We define these four
conditions in Table 1.
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Condition Confidence score Ground-truth

CcG (%4 v
cG (%4 X
cG X v
CG X X

Table 1: Information available to the detector. “Confidence
score” indicates whether the ML model f outputs a full con-
fidence vector (“v"”) or just a label, i.e., a one-hot vector (“X”).
“Ground-truth” indicates whether the true label of a query
to the ML model is known by the detector (“¢v”) or not (“X”).

Baselines. We used two state-of-the-art methods, Radioactive
Data [55], which we abbreviate to RData, and Untargeted Back-
door Watermark-Clean (UBW-C) [35], as baselines. RData requires
knowledge of the class labels for its data. So, we also consider two
variants of RData in which the data owner is presumed to not know
how the ML practitioner will label her data, and so applies the same
mark to all of her data regardless of class (“RData (one mark)”),
or to know only a “coarse” label (superclass) of the class label the
ML practitioner will assign to each (“RData (superclass)”). The de-
tails of baselines and their implementation are described in the full
paper [28, App. E].

Metrics. We used the following metrics to evaluate the methods:

e Test accuracy (acc): acc is the fraction of test samples that are
correctly classified by the ML model f. A higher acc indicates a
better performance of the ML model.

e Detection success rate (DSR): DSR is the fraction of detection
experiments returning True (i.e., affirmatively detecting data use).
When the detected ML model did use the published data, a higher
DSR indicates a better performance of the data auditing frame-
work. When the detected ML model did not use the published
data, a lower DSR indicates more robustness to false detections.

e Minimum amount of published data used in training, as a
percentage of the training data set, to trigger detection (P):
That is, P is the minimum value of N/M, expressed as a percent-
age, at which the detection algorithm returns True. Therefore, a
lower P indicates a more sensitive detector. However, to find P in
each of our settings is costly since we need to exhaustively test
potential values of N/ M. For this reason, we report an alternative
measure (see below) in place of P.

e Query cost (cost): cost is the number of queries to the target ML
model f to conclude that f was trained on the data-owner’s data.
That is, cost = 2 X K X Q, where Q (Q < N) is the number of
published data used to query the ML model to detect its training
with the data-owner’s data. It indicates the practical cost used in
the detection step. A lower cost indicates a more cost-efficient
detection method.

¢ Ratio between the number of queried published data and
the total number of training samples (A—%): 1\2/1 is the ratio
between the number Q of published data used to query the ML
model (resulting in detection) and the total number M of train-
ing samples. In our tests, % was strongly correlated with P (a
Pearson correlation coefficient [15] of 0.66 with high statistical
significance; see the full paper [28, App. B]) and is considerably
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cheaper to compute than P. Moreover, for a fixed K and D, cost

is a linear function of % Therefore, when presenting our results,
Q Q

we use 37 as a surrogate for P and cost. A lower 3
lower P and a lower cost, and thus it suggests a more detection-
efficient and more cost-efficient method.

indicates a

5.3 Experimental Results

5.3.1 Overall Performance.

Effectiveness. The detection performance of our proposed method
on different visual benchmarks is shown in Table 2. Table 2 demon-
strates that our method is highly effective to detect the use of
published data in training ML models, i.e, yielding a 20/20 DSR in
all settings where the published data is used as a subset of training
samples of the target ML model. In addition, the ML models trained
on the datasets including the published data preserved good util-
ity, i.e., their acc values are only slightly lower (< 1% on average)
than those trained on clean datasets. For detection, we needed a
% ranging from 2.20% to 4.65% for CIFAR-10, from 0.19% to 0.60%
for CIFAR-100, and from 0.14% to 0.67% for TinyImageNet. These
results show that our method achieved more detection efficiency
when applied to a classification task with a large number of classes.
Such ranges of % also indicate that detection needs a number of
queries to the ML model (i.e., cost) ranging from a hundred to
tens of thousands. Given the current prices of online queries to
pretrained visual Al models (e.g., $1.50 per 1,000 imagesz), the de-
tection cost is affordable, ranging from several dollars to a hundred
dollars. When we have less information on the output of the ML
model (i.e., the outputs are the predictions only) or the queries (i.e.,
the ground-truth labels are unknown) in the detection, we needed

more queries to trigger detection, i.e., yielding a larger %
Impact of using published data partially and false-detections. Af-

ter the published data is released online, the ML practitioner might

collect them partially (i.e., % is smaller than 1.0) and use the col-
lected data in training. Here, we tested the detection performance of
our method on the ML model trained on D under different ratios of
%. The results are shown in Fig. 1. When the ML practitioner used
more published data, DSR was higher. Especially, when he used
> 70% published CIFAR-10 data, or > 40% published CIFAR-100
data or published TinyImageNet data, we achieved a DSR of 20/20,
even with the least information (condition ¢G). When the ML prac-

titioner did not use any published data in training (i.e., % =0), DSR
was 0/20 under all considered settings, which empirically confirms
the upper bound p = 0.05 on false-detection rate of our method.

Comparison with baselines. Table 3 summarizes the comparison
between our method and baselines. Compared with the baselines,
our method is more effective in the detection of data use, i.e., yield-
ing a higher DSR and a higher acc. More importantly, different
from the two state-of-the-art methods (i.e., RData and UBW-C), our
method does not need the labeling of training samples before data
publication or the white-box access to the ML model (i.e., knowing
the parameters of the ML model). The variants of RData denoted as

Zhttps://cloud.google.com/vision/pricing
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Figure 1: The impact of % on the detection performance

(the default % is 1.0). The results from % = 0 are the false-
detections of our method.

“one mark” and “superclass” do not need the complete information
on labeling, but their DSR dropped significantly.

Multiple data owners. Here we consider a general real-world set-
ting where there are multiple data owners applying data auditing
independently, each of which set the upper bound on the false-
detection rate as p = 0.05. In these experiments, each data owner
had 5,000 CIFAR-100 data items (i.e., 10% of the training samples
collected by the ML practitioner) to publish. Each applied an audit-
ing framework to generate her marked data and to detect its use in
the deployed ML model independently. The detection results with
our method and with the state-of-the-art method, RData (with full
information on data labeling), are shown in Table 4. Compared with
RData, whose detection performance degraded with a larger num-
ber of data owners, our method was much more effective, yielding
a100% DSR in all cases.

The results in Table 2, Fig. 1, Table 3, Table 4 demonstrate that
our method achieves our effectiveness goal defined in Sec. 3.2. Table 3
and Table 4 show the advantages of our proposed method over the
baselines. Table 4 presents interesting results under real-world set-
tings where multiple data owners independently audit an ML model
for use of their data.

5.3.2  Impact of ML Model Architecture and Hyperparameters. In
this section, we explore the impact of the ML practitioner’s model
architecture and the data owner’s hyperparameters on detection,
such as the utility bound e, the feature extractor h used to generate
marked data, the upper bound p on the false-detection rate, and the
number K of sampled perturbations per image in detection. Due to
the space limit, we present results in the full paper [28, App. G].

5.3.3 Robustness to Countermeasures/Adaptive Attacks. When the
ML practitioner knows that a data owner marked her data, he
might utilize countermeasures/adaptive attacks to defeat the au-
diting method. His goal is to decrease DSR without degrading the
performance of the trained ML model significantly. We evaluated
the robustness of the proposed method to three types of counter-
measures/adaptive attacks, described below.

Limiting the information from the ML model output. Since our
detection method measures the difference between outputs of the
ML model on the published data and unpublished data, the ML
practitioner can limit the output (e.g., the vector of confidence
scores) of the deployed ML model, aiming to degrade our detection.
Here we considered two countermeasures of this type:
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acc% Aacc% e e e c6
¢ ¢ Q Qo Q Q
DSR i DSR i DSR i DSR i
CIFAR-10 93.64 —0.05 20/20 2.20% 20/20 2.67% 20/20 4.22% 20/20 4.65%
CIFAR-100 74.29 —0.76 20/20 0.19% 20/20 0.20% 20/20 0.59% 20/20 0.60%

TinyImageNet 59.13 —0.16 20/20 0.14% 20/20 0.13% 20/20 0.59% 20/20 0.67%

Table 2: Overall performance of our proposed method on different image benchmarks, with an upper bound of p = 0.05 on
the false-detection rate. All results are averaged over 20 experiments. The numbers in the Aacc% column are the differences
between averaged accuracies of ML models trained on marked datasets and those of ML models trained on clean datasets.

Labeling White Bounded 1% 2% 5% 10%
known box FDR DSR  acc% DSR acc% DSR acc% DSR acc%

Our method (CG) o o (4 8/20 93.79 11/20 93.71 19/20 93.70 20/20 93.64

RData ° ° v 1/20  93.65 2/20  93.56 2/20  93.29 4/20  93.26

CIFAR-10 RData (one mark) o . v 0/20 9375  0/20 93.60  0/20 93.42  0/20 93.25
UBW-C (r = 0.25) ° o X 0/20  93.50 0/20 93.14 0/20  92.67 2/20  92.73

UBW-C (r = 0.20) . o X 1/20 9350  8/20 93.15  7/20 9246 15/20 92.52

Our method (CG) o] o v 20/20 75.01 20/20 74.94 20/20 74.60 20/20 74.29

RData ° ° (4 5/20  74.66 14/20 7457 20/20 73.81 20/20 73.53

CIFAR-100 RData (superclass) o . v 4/20 7476 10/20 7446  14/20 73.99  19/20 73.42
RData (one mark) o . v 0/20 7470  0/20 7451  1/20 74.05  0/20 73.51

UBW-C (r = 0.25) o o X 0/20 74.60  0/20 74.16 16/20 73.30  20/20 72.32

UBW-C (r = 0.20) . o X 19/20 74.60 20/20 74.33 20/20 7321 20/20 72.47

Our method (G&) o o v 20/20 59.32 20/20 59.24 20/20 59.17 20/20 59.13

RData ° ° v 8/20 59.14 18/20 58.94 20/20 5859 20/20 58.13

TinyTmageNet RData (superclass) © . v 7/20 59.14 14/20 59.03 20/20 58.71 20/20 58.09
RData (one mark) o o v 2/20  59.12  1/20 5898  0/20 58.61  0/20 58.29

UBW-C (r = 0.25) . o X 0/20 59.01  0/20 58.80 0/20 5843  0/20 57.78

UBW-C (r = 0.20) . o X 0/20 59.01  0/20 58.62 6/20 5841 17/20 57.63

Table 3: Comparison between our proposed method and baselines under different rates of % € {1%, 2%, 5%, 10%}. The results of
our method come from the setting with least information available to the data owner, i.e., €G. In UBW-C, 7 is a hyperparameter
of its detection algorithm. In the columns of “Labeling known” and “White box”, “e” indicates that the information is needed;
“0” means that information is not needed; “o” means that partial information is needed. In the column “bounded FDR”, “v'”
(“X”) indicates that the method provides (does not provide) a provable bound on the false-detection rate. Results are averaged

over 20 experiments. The bold results are the best ones among the compared methods.

e Adding perturbation into the output (MemGuard [29]): This

Data owners countermeasure adds carefully crafted perturbations into the
1 2 5 10 ML model output to limit the information given. We considered
Our method (6G) 20/20 40/40 100/100  200/200 MemGuard proposed by Jia, et al. [29] to design the perturbation,
RData 20/20 38/40  64/100  90/200 where we used a moderate distortion budget of 0.5.
Note that these countermeasures can be applied only in the ML
Table 4: Comparison between our method and RData (which model deployment where the output is a vector of confidence scores
requires knowledge of data labeling), both under an upper instead of a prediction/label.

bound of p = 0.05 on the false-detection rate, when multiple
data owners applied data auditing independently. Each owner
contributed 10% of the training dataset. Results are the total
detections over all detection attempts (by all data owners) in
20 experiments.

Reducing memorization of training samples. Intuitively, the ML
practitioner can apply methods to discourage memorization of
training samples by the ML model, so that the published data and
the unpublished data will have similar scores by the defined score
function. As such, reducing memorization of training samples could

e Outputting only the top k confidence scores (Topk): This coun- render the detection method to be less effective. We considered
termeasure allows the deployed ML model to output the top x three such countermeasures:
confidence scores, masking out the others in the output vector. e Differential privacy (DP [20]): DP is a standard privacy definition
Here we considered k = 1 and x = 5. that limits the information leaked about any training input in the
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output of the algorithm. To achieve DP, the ML practitioner clips
the gradients of each training batch and adds Gaussian noise
(with standard deviation of o) into the clipped gradients during
ML model training [2].

Early stopping (EarlyStop): In this countermeasure, the ML prac-
titioner trains the ML model for a small number of epochs to
prevent the ML model from overfitting to the training samples.
Here we trained ML models for 20, 40, and 60 epochs, denoted as
EarlyStop(20), EarlyStop(40), and EarlyStop(60), respectively.
Adversarial regularization (AdvReg [49]): Adversarial regular-
ization is a strategy to generalize the ML model. It does so by
alternating between training the ML model to minimize the classi-
fication loss and training it to maximize the gain of a membership
inference attack. In the implementation of AdvReg, we set the
adversarial regularization factor to be 1.0 [49].

Other attacks. We also considered some other adaptive attacks
that aim to defeat our auditing method:
Detecting pairs of published data and unpublished data in queries
(PairDetect): The intuition behind this pair detection is that if
the deployment can detect queries of a pair of published data and
unpublished data, then it will return the same output to evade
detection. We design such a pair detection method as follows:
we maintain a window of queries in the history and their ML
model outputs, and we compare each new query with those in
the window to decide what to output. If the infinity norm of the
pixel difference between the new query and a previous query
is smaller than 2e, we return the output of the previous query;
otherwise, we return the output for the new query.
Adding Gaussian noise into the training samples (Gaussian(o)):
This method adds noise into each training sample to mask the
added mark. The added noise is sampled from a Gaussian distri-
bution with standard deviation o.
Avoiding data augmentation in training (NoTrainAug): Excluding
data augmentation in ML model training will degrade the effec-
tiveness of the label-only membership inference that we apply
as the score function for the image classifier, as demonstrated by
previous works (e.g., [13]).
Using our marking algorithm (with the default hyperparameters)
to perturb training samples (MarkPerturb): This countermeasure
applies our marking algorithm (with the default hyperparame-
ters) to craft two perturbed versions of each training sample and
randomly selects one to use in training.®

Results. We summarize the robustness of our method to these
countermeasures/adaptive attacks in Table 5. As shown in Table 5,
masking (Top5, Top1, MemGuard) had limited impact on our detec-
tion effectiveness, yielding a slightly higher A_Q/l but not changing
DSR at all. DP and EarlyStop did decrease DSR. However, these
countermeasures damaged the utility of the trained ML model,
yielding a much smaller acc. Specifically, the application of differ-
ential privacy needed a high level of privacy guarantee to defeat
our method and so added a large amount of Gaussian noise into the
training process to do so. The added noise affected the performance
of the ML model, decreasing acc to 64.11%, more than 10 percentage

3We could use both perturbed versions in training but we would need to reduce the
number of epochs to half (i.e., 40 epochs) for fair comparison.
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points lower than acc with the default training method. Likewise,
to degrade the detection performance of our method, early stopping
needed to stop the training when reaching a small number of train-
ing epochs, at the cost of low accuracy as well, e.g., acc = 67.10%
at 20 epochs. Among the other attacks, detecting queried pairs and
excluding data augmentation in ML model training were not useful
to counter our method. Pair detection (PairDetect) did not work
well to detect queried pairs because we only queried the ML model
with their randomly cropped versions, which evaded pair detection.
Excluding data augmentation in training did not reduce DSR but
diminished the accuracy of the ML model significantly, yielding a
low acc of 61.59%. Adding sufficient Gaussian noise to mask the
marks before training reduced the detection effectiveness of our
method but, again, it also destroyed the utility of the ML model. For
example, adding Gaussian noise with ¢ = 30 into marked CIFAR-
100 data reduced DSR from 20/20 to 6/20 in condition ¢G but also
decreased acc to 62.10%. The last adaptive attack, i.e., applying our
marking algorithm to add perturbations, did not decrease DSR but

increased % at the cost of achieving a lower acc of 70.49%. This
is because the perturbed published data created by the marking
algorithm was still closer to the published data than to the unpub-
lished data, which caused the published data to appear more likely
to have been used in the training of the ML model trained on the
perturbed published data.

In summary, countermeasures/adaptive attacks we considered
in this work did not defeat our auditing method or did so at the
cost of sacrificing the utility of the trained ML model; i.e., none
achieved a low DSR and a high acc at the same time. Therefore, we
conclude that our method achieves the robustness goal defined in
Sec. 3.2 for image classifiers.

6 Auditing Foundation Models

In this section, we apply our data auditing method to detect unau-
thorized use of data in foundation models. Foundation models are a
class of large, deep neural networks for general-purpose use that are
pretrained on large-scale unlabeled data by unsupervised learning
or self-supervised learning [6, 12, 18, 52-54, 70]. Examples of foun-
dation models include visual encoders trained by self-supervised
learning (e.g., SimCLR [12]), large language models (LLMs) (e.g.,
ChatGPT [53]), and multimodal models (e.g., CLIP [52]). These
models can be used as backbones in various ML tasks, e.g., image
classification [16, 25], object detection [83], sentiment analysis [51],
text generation [71], and question answering [18], by being fine-
tuned on small datasets for these tasks.

We studied the effectiveness of our proposed method on auditing
data-use in foundation models by considering three case studies: a
visual encoder trained by SimCLR [12], Llama 2 [70], and CLIP [52].

6.1 Visual Encoder

We consider visual encoder, which is a type of foundation model
used to learn the general representations of images. A visual en-
coder can be used as a feature extractor to extract features of images
in many vision recognition tasks, e.g., image classification and ob-
ject detection. A visual encoder is an ML model that takes as input
an image and outputs its representation as a feature vector. It is
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acc% CG CcG CG CG

DSR £ DDk £ DR £ DR £
No adaptive attack 74.29 20/20 0.19% 20/20 0.20% 20/20 0.59% 20/20 0.60%
Top5 74.29 20/20 0.21% 20/20 0.21% - - - -
Masking output Top1 74.29 20/20 0.24% 20/20 0.24% - - - -
MemGuard 74.29 20/20 1.57% 20/20 1.65% - - - -
DP(s =0.001) 70.01 20/20 0.65% 20/20 5.17% 20/20 0.83% 20/20 3.67%
DP(s =0.002) 64.11 20/20 3.98% 1/20 9.99% 20/20 5.74%  2/20 9.97%
DP(o = 0.003) 59.25 18/20 8.14%  0/20 10.00% 10/20 9.34%  0/20 10.00%
Memorization reduction EarlyStop(60) 73.50 20/20 0.25% 20/20 0.28% 20/20 0.51% 20/20 0.63%
EarlyStop(40) 69.15 20/20 0.70% 20/20 3.27% 20/20 1.48% 20/20 3.29%
EarlyStop(20) 67.10 20/20 3.18%  1/20 10.00% 20/20 5.68%  3/20 9.51%
AdvReg 60.18 20/20 0.74% 20/20 1.78% 20/20 0.91% 20/20 2.90%
PairDetect 74.29 20/20 0.20% 20/20 0.20% 20/20 0.64% 20/20 0.74%
NoTrainAug 61.59 20/20 0.19% 20/20 0.30% 20/20 0.51% 20/20 0.85%
Other attacks Gaussian(o = 10) 70.64 20/20 0.40% 20/20 0.45% 20/20 1.72% 20/20 2.08%
Gaussian(o = 20) 65.97 20/20 1.02% 20/20 1.56% 20/20 5.31% 19/20 7.12%
Gaussian(o = 30) 62.10 20/20 4.03% 20/20 6.64% 16/20 8.93%  6/20 9.90%
MarkPerturb  70.49 20/20 0.52% 20/20 0.56% 20/20 3.00% 20/20 3.29%

Table 5: Robustness of our proposed method on CIFAR-100 against countermeasures/adaptive attacks. The most effective
countermeasure to degrade the detection performance of our method is differential privacy, but it also destroyed the utility of
the ML model. All results were averaged over 20 experiments.

trained by self-supervised learning (e.g., SImCLR [12]) on unla-
beled data (i.e., each instance in D is an image). The loss function
used by SimCLR is Normalized Temperature-scaled Cross Entropy
(NT-Xent) [12].

6.1.1  Score Function. We defined the score function gf used in the
detection algorithm targeting the self-supervised visual encoder
using a black-box membership inference method introduced in En-
coderMI [39]. The intuition behind it is that the visual encoder f
generates more similar feature vectors of two perturbed versions
of a training sample than of a non-training sample [39]. In other

bi

words, if x?" was used in training f while xl.l_ was not, then

cosim(f(xf’i),f(xz;)) > cosim(f(xl.l’l_bi),f(xil’;bi)) where cosim

denotes the cosine similarity, xlb’l and xlb‘2 are two perturbed ver-

b; b;

. b; 1- 1- .
sions of x;' and X and X;, ' are two perturbed versions of

xi1 ~bi_ As such, we defined the score function g/ as follows: given
an input image, we first randomly generate K of its perturbed ver-
sions (e.g., by random cropping and flipping), and then obtain K
feature vectors using the perturbed images as inputs to the target
visual encoder; second, we compute the cosine similarity of every
pairs of feature vectors and return the sum of cosine similarities as
the score. The score function gf is summarized in the full paper [28,
App. C].

6.1.2  Experimental Setup.

Datasets. We used three image benchmark datasets: CIFAR-10,
CIFAR-100, and TinyImageNet, as introduced in Sec. 5.2.

Marking setting. We followed the setup introduced in Sec. 5.2 to
generate the marked dataset, without labels needed. Our using the
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same marking setup indicates that the application of our marking
algorithm is agnostic to the ML task.

Training setting. We followed the previous work (e.g., [12]) to
train the ML model by SimCLR, which takes as inputs a base encoder
and a projection head (i.e., a multilayer perceptron with one hidden
layer). We used ResNet18 as the default architecture of the base
encoder. The SimCLR algorithm works as follows: at each training
step, we randomly sampled a min-batch (i.e., of size 512) of images
from the training set and generated two augmented images from
each sampled instance by random cropping and resizing, random
color distortion, and random Gaussian blur. The parameters of the
base encoder and the projection head were updated by minimizing
the NT-Xent loss among the generated augmented images, i.e.,
maximizing the cosine similarity between any positive pair (i.e.,
two augmented images generated from the same sampled instance)
and minimizing the cosine similarity between any negative pair (i.e.,
two augmented images generated from different sampled instances).
We used SGD with Nesterov Momentum [67] of 0.9 and a weight
decay of 107 as the optimizer, and applied a cosine annealing
schedule [41] to update the learning rate, which was set to 0.6
initially. We trained the base encoder and the projection head by
1,000 epochs as the default, and returned the base encoder as the
visual encoder f deployed by the ML practitioner.

Detection setting. In the detection algorithm and the score func-
tion, we set & = 0.025, p = 0.05, and K = 64 as the default.

Metrics. We used the following metrics for evaluation:

o Test accuracy of downstream classifier (acc): acc is the frac-
tion of test samples that are correctly classified by a downstream
classifier that uses the visual encoder as the backbone and is
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fine-tuned on a small set of data. We followed previous work
(e.g., [12]) to fine-tune the downstream classifier on 10% of the
clean training samples with their labels (i.e., 5,000 clean CIFAR-10
data, 5,000 clean CIFAR-100 data or 10,000 clean TinyImageNet
data). A higher acc indicates a better performance of the visual
encoder.

e Detection success rate (DSR): please see the description of this
metric in Sec. 5.2.

e Ratio between the number of queried published data and
the total number of training samples (%): please see the
description of this metric in Sec. 5.2.

6.1.3 Experimental Results. The overall experimental results on
three visual benchmarks are presented in Table 6. As shown in
Table 6, our proposed method achieved highly effective detection
performance on auditing data in visual encoders, yielding a 19/20
DSR for CIFAR-10 and a 20/20 DSR for CIFAR-100 and TinyIma-
geNet.

DSR %
CIFAR-10 19/20 7.12%
CIFAR-100 20/20 7.28%
TinyImageNet 20/20 7.82%

Table 6: Results on auditing data in visual encoder trained
by SimCLR, under an upper bound of p = 0.05 on the false-
detection rate. 10% of training samples were marked. All
results were averaged over 20 experiments.

We investigated the impact of training epochs of visual encoder
on the detection performance of the auditing method. We trained
visual encoders on marked CIFAR-100 by epochs of 200, 400, 600,
800, and 1,000 (1,000 is the default number of epochs). As shown
in Fig. 2, when we trained the encoder with a smaller number
of epochs, the encoder memorized the training samples less and
thus we had a lower DSR. However, training encoder with fewer
epochs yielded modestly lower encoder utility, measured by the
test accuracy of the downstream classifier (i.e., acc). This suggests
that early stopping (i.e., training with a small number of epochs)
can degrade the detection performance of our method, but cannot
completely alleviate the trade-off between evading detection and
encoder utility.

6.2 Llama?2

In this section, we study the application of data auditing to a large
language model (LLM). An LLM is a type of large ML model that
can understand and generate human language. Here we consider
Llama 2 [70] published by Meta Al in 2023, which is an open-sourced
LLM with notable performance and, more importantly, is free for
research [70]. Specifically, Llama 2 is a family of autoregressive mod-
els that generate text by predicting the next token based on the pre-
vious ones. They are designed with a transformer architecture [71]
with parameters ranging from 7 billion to 70 billion, and pretrained
and fine-tuned on massive text datasets containing trillions of to-
kens collected from public sources [70]. Considering Llama 2 as
the ML model f in Eq. (1), each instance in the training dataset
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Figure 2: The impact of epochs on the detection performance
and encoder utility. The evaluated encoder was trained by
SimCLR on marked CIFAR-100 (10% are marked). The results
are averaged over 20 experiments.

or fine-tuning dataset is a sequence of tokens (e.g., by a tokenizer

defining a token vocabulary V) of length L, i.e., a; = c}c? ek

1

(cf € Vforany!l € {1,2,...,L}) and the loss function is defined as:
L

¢(f,a;) = Z —log [f(c} ...cg_l)]cf,

I=1

©

where [f(cl1 . cf_l)]cg denotes the cf—th component of vector

flel. =t

It is challenging to conduct lab-level experiments on auditing
data in a pretrained Llama 2 because pretraining Llama 2 on a
massive text corpus needs a huge amount of computing resources.
Therefore, instead of applying our data auditing method to the
pretrained Llama 2, we mainly focus on a Llama 2 fine-tuning
setting.

6.2.1 Score Function. We used the negative loss, a simple and ef-
fective membership inference metric [8], as the score function.

B we have gf(xiﬁ) = —f(f,xiﬁ),

i

where £(f, x'iB) is defined in Eq. (4).

Formally, given a text sample x

6.2.2 Experimental Setup.

Datasets. We used three text datasets: SST2 [62], AG’s news [82],
and TweetEval (emoji) [48]:
SST2: SST2 is a dataset containing sentences used for sentiment
analysis (i.e., there are 2 classes, “Negative” and “Positive”). In
SST2, there are 67,300 training samples and 872 validation sam-
ples that we used for testing.
AG’s news: AG’s news is a dataset containing sentences parti-
tioned into 4 classes, “World”, “Sports”, “Business”, and “Sci/Tech”.
In AG’s news, there are 120,000 training samples and 7,600 test
samples.
TweetEval (emoji): TweetEval (emoji) is a dataset containing
sentences partitioned into 20 classes. In TweetEval (emoji), there
are 100,000 training samples and 50,000 test samples.

Marking setting. In each experiment, we uniformly at random
sampled a subset of training samples of a dataset as X (e.g., |X| =
10,000). From X', we uniformly at random sampled N = 1,000 sen-
tences {x; }f\i ; assumed to be owned by a data owner. We applied our
data marking algorithm to generate the published data {xf" }fi ,and
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the unpublished data {xl.lfb" }£1 for {xi}ﬁl. In Eq. (2), we defined

the distance function by Levenshtein distance [34] and the utility
difference function by semantic dissimilarity [18]. Instead of solving
Eq. (2) exactly, we approximated it by using a paraphraser model
(e.g., [72]) to generate two semantically similar but distinct sen-
tences. We set X' = {xib" }i\il As such, we constituted the training
dataset collected by the ML practitioner as D = (X" \ {xi}fi D X,
labeled correctly (i.e., using their original labels).

Fine-tuning setting. We used L1ama-2-7b-chat-hf Llama 2 model
released in Hugging Face? as the base model. We used QLoRA [17]
to fine-tune the Llama 2 model on the marked dataset, where we
applied AdamW [42] as the optimizer that was also used to pretrain
Llama 2 by Meta Al [70]. We fine-tuned the model with a learning
rate of 2 X 10~%. The fine-tuned Llama 2 is the ML model deployed
by the ML practitioner.

Detection setting. In the detection algorithm, we set & = 0.025
and p = 0.05.

Metrics. We used the following metrics to evaluate methods:
Test accuracy (acc): acc is the fraction of test samples that
were correctly classified by the fine-tuned Llama 2. A higher acc
indicates a better performance of the fine-tuned model.
Detection success rate (DSR): please see the description of this
metric in Sec. 5.2.

Ratio between the number of queried published data and
the total number of training samples (%): please see the
description of this metric in Sec. 5.2.

6.2.3 Experimental Results. The results on applying our auditing
method to the fine-tuned Llama 2 on three marked datasets are
presented in Table 7. As shown in Table 7, when we tested the de-
tection method on the pretrained Llama 2 (i.e., in the row of “Epoch
0”), we obtained a DSR of 0/20, indicating that the Llama 2 is not
pretrained on the published data. If true, this result empirically
confirms the bounded false-detection rate of our method. When
we fine-tuned Llama 2 on the marked datasets by only 1 epoch, the
accuracy of the fine-tuned Llama 2 model increased from 63.07% to
95.33% for SST2, from 28.41% to 91.69% for AG’s news, and from
16.58% to 40.49% for TweetEval. At the same time, our method
achieved a DSR of 20/20 on the fine-tuned model, which demon-
strates the effectiveness of our method. Fine-tuning Llama 2 with
more epochs increased the accuracy slightly (e.g., from 95.33% to
95.56% for SST2, from 91.69% to 92.33% for AG’s news, and from
40.49% to 43.03% for TweetEval) but leads to a much lower % This
is because fine-tuning the model for more epochs memorizes the
fine-tuning samples more and the detection method needs fewer
queries to the model to detect their use.

6.3 CLIP

In this section, we apply data auditing to a multimodal model [52,
54]. A multimodal model is a type of ML model that can understand
and process various types of data, e.g., image, text, and audio. We
considered Contrastive Language-Image Pretraining (CLIP) [52],
developed by OpenAl in 2021, as our study case. CLIP is a vision-
language model consisting of a visual encoder and a text encoder

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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used to extract the features of the input image and text, respectively.
It takes as inputs an image and a text and returns their correspond-
ing feature vectors. CLIP is known for its notable performance in
image-text similarity and zero-shot image classification [52]. As
in Eq. (1), each instance is an image with its caption (i.e., a pair of
image and text) and the loss function is the cross entropy loss used
to push matched images and texts closer in the shared latent space
while pushing unrelated pairs apart.

The CLIP model released by OpenAl was pretrained on 400
million image and text pairs collected from the Internet [52]. While
it is challenging to pretrain such a large model on a huge number
of pairs using lab-level computing resources, we aim to fine-tune
the CLIP on a small (marked) dataset and test our auditing method
on the fine-tuned CLIP.

6.3.1 Score Function. We defined the score function gf by a re-
cently proposed membership inference on CLIP [31]. It uses cosine
similarity between the two feature vectors returned by the CLIP
model as the inference metric [31]. Formally, given an image-text
sample xiﬁ = (xlﬂxlﬂ) we have gf(xf) = cosim(f'()'ciﬁ),f”(jc'iﬂ)),
where f’ and f”” are the visual encoder and text encoder of f, and
cosim denotes cosine similarity.

6.3.2 Experimental Setup.

Datasets. We used the Flickr30k [80] dataset, which contains
more than 31,000 images with captions. We used the first 25,000 as
training samples and the remaining as test samples.

Marking setting. In each experiment, we uniformly at random
sampled N images with captions from training samples X'. We set
N _ 10%, i.e., N = 2,500. We assumed these N captioned images

a[fel owned by a data owner. We applied our data marking algorithm
to generate the published data {xf’i }f\i , and the unpublished data
{xl.1 ~bi }f\i 1 for {x; }f\i ;- In the marking algorithm, given a raw datum
(i.e., an image with its caption), we followed the marking setting in
Sec. 5.2 to generate two marked images and then randomly sampled
one with its original caption as the published data, keeping the
other as the unpublished data. We set X = {xibi }f\i 1- As such, we
constituted the training dataset collected by the ML practitioner as
D= (X\{x}) U

Fine-tuning setting. We used the CLIP model released by Ope-
nAP as the base model. We fine-tuned the CLIP model on the
marked dataset D, following the pretraining algorithm used by
OpenAl [52]. We used a batch size of 256 and applied Adam [30]
with a learning rate of 107> as the optimizer. The fine-tuned CLIP
including the visual encoder and text encoder is the ML model
deployed by the ML practitioner.

Detection setting. In the detection algorithm, we set @ = 0.025
and p = 0.05.

Metrics. We used the following metrics for evaluation:

e Test accuracy (acc): We randomly divided the test samples into
batches (each is 256 at most). For each batch, we measured the
fraction of texts correctly matched to images and the fraction
of images correctly matched to texts, by the (fine-tuned) CLIP

Shttps://github.com/openai/CLIP
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SST2 AG’s news TweetEval (emoji) acc% DSR ]\%
acc% DSR  § acch DSR  § accn DSR Epoch0 80.73 0/20 10.00%
Epoch0 63.07 0/20 10.00% 28.41 0/20 10.00% 16.58 0/20 10.00% Epoch1 88.44 20/20  6.99%
Epoch1 95.33 20/20 2.87% 91.69 20/20 2.97% 40.49 20/20  3.89% Epoch2 88.53 20/20  2.31%
Epoch2 9526 20/20  0.22% 91.68 20/20 0.23% 41.88 20/20  0.26% Epoch3 8853 20/20 1.21%
Epoch3 95.56 20/20  0.12% 92.33 20/20 0.12% 43.03 20/20  0.12%

Table 8: Overall performance of our pro-

Table 7: Overall performance of our proposed method on Llama 2 fine-tuned
on marked text datasets (10% of fine-tuning samples were marked) for different
numbers of epochs, under an upper bound of p = 0.05 on the false-detection rate.

All results were averaged over 20 experiments.

model. We used the fraction of correct matching averaged over
batches as the test accuracy acc.

e Detection success rate (DSR): please see the description of this
metric in Sec. 5.2.

o Ratio between the number of queried published data and

the total number of training samples (%): please see the
description of this metric in Sec. 5.2.

6.3.3 Experimental Results. The overall performance of our data
auditing method applied in fine-tuned CLIP is presented in Table 8.
As shown in Table 8, when we audited the CLIP model released
by OpenAl, we obtained a 0/20 DSR, which indicates that the pre-
trained CLIP model was not trained on our published data. If it is
true that the CLIP model is not, this result empirically confirms
the upper bound on the false-detection rate of our method. When
we fine-tuned the CLIP model by the marked Flickr30k dataset,
acc increased from 80.73% to 88.44% while DSR increased to 20/20,
which demonstrates that our method is highly effective to detect
the use of published data in the fine-tuned CLIP even when it is
fine-tuned by only 1 epoch. When we fine-tuned the model for
more epochs (e.g, 3 epochs), acc did not significantly increase. With
more fine-tuning epochs, we still got a DSR of 20/20 but a smaller
%. Fine-tuning by more epochs made the model memorize the
fine-tuning samples more and thus we needed fewer queries to the
model in the detection step.

7 Discussion and Limitations

7.1 Minimal Number of Marked Data Required
in Auditing

The minimal number of marked (published) data for which our
method can detect its use depends on two factors: the memoriza-
tion of training data by the ML model and the effectiveness of (con-
trastive) membership inference. For example, as shown in Sec. 5.3,
the CIFAR-100 and TinyImagenet classifiers memorized their train-
ing samples more than the CIFAR-10 classifier, and so the data
owner needed much less marked data to audit for data use in the
CIFAR-100 and TinyImagenet classifiers than in the CIFAR-10 clas-
sifier. The effectiveness of (contrastive) membership inference also
affects the minimal number of data items for which our method can
detect use, i.e., a stronger membership inference method will allow
our method to detect the use of fewer data. Therefore, we believe
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posed method on CLIP fine-tuned on
marked Flickr30k (10% of fine-tuning sam-
ples were marked) for different numbers
of epochs, under an upper bound of p =
0.05 on the false-detection rate. All results
were averaged over 20 experiments.

that any developed stronger membership inference methods in the
future will benefit our technique.

7.2 Adaptive Attacks to Data Auditing Applied
in Foundation Models

Once the ML practitioner realizes that the data auditing is being
applied, he might utilize adaptive attacks aiming to defeat the au-
diting method when training his foundation models. Some adaptive
attacks we considered for the image classifier (see Sec. 5.3.3) like
early stopping, regularization, and differential privacy, can be used
to mitigate the memorization of training/fine-tuning samples of
foundation models. Therefore, these adaptive attacks could degrade
the effectiveness or efficiency of our detection method. In addition,
there are some methods used to mitigate membership inference
in LLMs, e.g., model parameter quantization/rounding [50]. Any
defense against membership inference in foundation models can be
used as an adaptive attack. However, the application of these adap-
tive attacks will decrease the utility of the foundation models [50].

Since developers of foundation models usually aim to develop
a powerful foundation model, they might hesitate to apply these
adaptive methods since they will lose some model utility. As such,
our data auditing method can pressure those developers of large
foundation models to seek data-use authorization from the data
owners before using their data.

7.3 Cost of Experiments on Foundation Models

In our experiments on auditing data use in foundation models
(e.g., Llama 2 in Sec. 6.2 and CLIP in Sec. 6.3), we only considered
model fine-tuning due to our limited computing resources. From
the results shown in Sec. 6.2.3 and Sec. 6.3.3, our proposed method
achieves good performance on detecting the use of data in fine-
tuning Llama 2 and CLIP. We do believe that the effective detection
performance of our method can be generalized to other types of
foundation models and the settings where we audit the use of data
in pretrained foundation models. This is because large foundation
models memorize their training samples and thus are vulnerable
to membership inference and other privacy attacks, as shown by
existing works (e.g., [8, 31, 39, 50, 59]).
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7.4 Toward Verifiable Machine Unlearning

One direct application of our data-auditing method is to verify
machine unlearning. Machine unlearning is a class of methods that
enable an ML model to forget some of its training samples upon the
request of their owners. While there are recent efforts to develop
machine unlearning algorithms [5], few focus on the verification of
machine unlearning, i.e., verifying if the requested data has indeed
been forgotten by the target model [63]. Our proposed method can
be a good fit for verifying machine unlearning. Specifically, each
data owner utilizes our marking algorithm to generate published
data and hidden data. Upon the approval of data owners, a ML
practitioner collects their published data and trains an ML model
that can be verified by the data owner using our detection algorithm.
If a data owner sends a request to the ML practitioner to delete her
data from the ML model, the ML practitioner will utilize a machine
unlearning algorithm to remove her data from his ML model and
then inform the data owner of the successful removal. The data
owner can utilize the detection algorithm to verify if the updated
ML model still uses her published data. Our results in Sec. 5.3.1
show that our auditing method remains highly effective even when
multiple data owners audit their data independently.

7.5 Proving a Claim of Data Use

Though our technique enables a data owner to determine whether
an ML practitioner used her data without authorization, it alone
does not suffice to enable the data owner to convince a third party.
To convince a third party, the data owner should commit to {xibi }f\i 1
and {xi1 b }{i 1 prior to publishing the former, e.g., by escrowing a
cryptographic commitment to these data with the third party. Upon
detecting use of her data by an ML practitioner, the data owner
can open these commitments to enable the third party perform our
hypothesis test on the ML model itself, for example. To enable a
third party to replicate the data-owner’s test result exactly, the data
owner could provide the seed to a random number generator to
drive the sequence of selections (WoR) from {Ij, ..., IN} in the test
(see Sec. 4.2.1). However, to protect an ML practitioner from being
framed by a malicious data owner, the data owner should be unable
to freely choose this seed; e.g., it could be set to be a cryptographic
agHR

: bi\N
hash of the commitments to {x;’};; and {x;

8 Conclusion

In this paper, we proposed a general framework allowing a data
owner to audit ML models for the use of her data. Our data auditing
framework leverages any membership-inference technique, folding
it into a sequential hypothesis test for which we can quantify the
false-detection rate. Through evaluations of our proposed frame-
work in the cases of an image classifier and various foundation
models, we showed that it is effective, robust, and general across
different types of ML models and settings. We thus believe our
proposed framework provides a useful tool for data owners to audit
ML models for the use of their data.
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