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Abstract

Auditing the use of data in training machine-learning (ML) models

is an increasingly pressing challenge, as myriad ML practitioners

routinely leverage the effort of content creators to trainmodels with-

out their permission. In this paper, we propose a general method

to audit an ML model for the use of a data-owner’s data in training,

without prior knowledge of the ML task for which the data might

be used. Our method leverages any existing black-box member-

ship inference method, together with a sequential hypothesis test

of our own design, to detect data use with a quantifiable, tunable

false-detection rate. We show the effectiveness of our proposed

framework by applying it to audit data use in two types of ML

models, namely image classifiers and foundation models.
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1 Introduction

The advances of machine learning (ML) models hinge on the avail-

ability of massive amounts of training data [16, 26, 32, 33, 38, 46, 82].

For example, Contrastive Language-Image Pre-training (CLIP), de-

veloped by OpenAI, is pretrained on 400 million of pairs of images

and texts collected from the Internet [52], and large language mod-

els like Llama 2, developed byMeta AI, are pretrained and fine-tuned

on trillions of tokens [70]. Although the development of these large

ML models has significantly contributed to the evolution of artifi-

cial intelligence, their developers often do not disclose the origins

of their training data. This lack of transparency raises questions

and concerns about whether appropriate authorization to use this

data to train models was obtained from their owners. At the same

time, recent data-protection regulations, such as the General Data

Protection Regulation (GDPR) in Europe [44], the California Con-

sumer Privacy Act in the US [1], and PIPEDA privacy legislation in
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Canada [14], grant data owners the right to know how their data is

used. Therefore, auditing the use of data in ML models emerges as

an urgent and important problem.

Data auditing refers to methods by which data owners can ver-

ify whether their data was used to train an ML model. Existing

methods include passive data auditing and proactive data auditing.
Passive data auditing, commonly referred as membership infer-

ence [7, 13, 27, 60, 78], infers if a data sample is a member of an

ML model’s training set. However, such passive techniques have an

inherent limitation: they do not provide any quantitative guarantee

for the false-detection of their inference results. In contrast, proac-

tive data auditing techniques embed marks into data before its pub-

lication [24, 35, 36, 55, 69, 74, 77] and can provide detection results

with false-detection guarantees [55]. The existing proactive data au-

diting methods mainly focus on dataset auditing [24, 35, 36, 55, 69],

where the whole training set of the ML model is contributed from

one data owner and thus the data owner has control over the whole

dataset, including, e.g., knowledge of the labels [35, 36, 55]. This

limits their application in a real-world setting where the train-

ing dataset might be collected from multiple data owners or data

sources. In addition, the existing works focus on a particular type

of ML model, e.g., image classifiers [35, 36, 55, 77], and do not di-

rectly generalize to other domains. Therefore, there is a need to

design a general proactive data auditing framework that requires

no assumption on the dataset curation (e.g., data labeling) and can

be applied to effectively audit data across various domains.

In this work, we propose such a proactive data-auditing frame-

work. In a nutshell, the contribution of this framework is to turn

any passive membership-inference technique into a proactive data-

auditing technique with a quantifiable and tunable false-detection

rate (i.e., probability of falsely detecting data use in an ML model).

Our framework consists of a data marking algorithm and a detec-

tion algorithm. The data marking algorithm, which the data owner

applies prior to data publication, generates two versions of each
raw datum; each version is engineered to preserve the utility of the

raw datum from which it is generated, but otherwise the versions

are perturbed with maximally different marks. Taking the example

of an image, the marks are pixel additions to the raw image that

preserve its visual quality but maximize the difference between the

two marked versions. Critically, this marking step is agnostic to the

ML task (including, e.g., labels) in which the data versions might be

used. The data owner then publishes only one of the two versions,

chosen uniformly at random, and keeps the other hidden.

The key insight of our framework is that once the model is ac-

cessible (even in only a black-box way), any “useful” membership-

inference technique should more strongly indicate the use of the

published version than of the unpublished version, if the model

was trained using the data-owner’s published data. If the model

was not trained using the data-owner’s published data, then the
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membership-inference technique might indicate either the pub-

lished or unpublished version as more likely to have been included.

However, because the published version was chosen uniformly, the

version that the membership test more strongly indicates was used

should be equally distributed between the two.

This insight enables us to design a sequential hypothesis test of

the null hypothesis that the ML model was not trained using the

data-owner’s data. Using any membership-inference test, the data

owner queries the model on both the published and unpublished

versions of each datum (possibly obscured to avoid detection, as we

will discuss in Sec. 5.3.3), keeping a count of the times the published

version was reported as having been used with greater likelihood.

We derive a test to determine when the data owner can stop and

reject the null hypothesis, concluding that the model was trained

with her published data, with any desired false-detection rate.
We study the performance of our proposed framework in two

cases: image classifiers and foundation models. An image classifier

is a type of ML model used to assign labels to images based on

their content [16, 25, 61], while foundation models are general-

purpose, large ML models [6, 18, 52, 70]. In the first case, our results

on multiple visual benchmark datasets demonstrate that our pro-

posed framework effectively audits the use of the data-owner’s

data in image classifiers across various settings. Moreover, our

proposed method outperforms the existing state-of-the-art data

auditing methods, notably Radioactive Data [55] and Untargeted

Backdoor Watermark-Clean (UBW-C) [35]. We also investigate

adaptive attacks that the ML practitioner might use to defeat our

auditing method. While our results show that certain adaptive at-

tacks like early stopping and differential privacy can degrade the

detection performance of our method, they do so at the cost of

significantly diminishing the utility of the model. For the case of

foundation models, we extended our evaluation to three types of

foundation models: a visual encoder trained by self-supervised

learning [12], Llama 2 [70], and CLIP [52]. Our results show that

the proposed data auditing framework achieves highly effective

performance across all of these foundation models. Overall, our

proposed framework demonstrates high effectiveness and strong

generalizability across different types of ML models and settings.

To summarize, our contributions are as follows:

• We propose a novel and general framework for proactive data

auditing. Our framework has a simple data-marking algorithm

that is agnostic to any data labeling or ML task, and a novel

detection algorithm that is built upon contrastive membership

inference and a sequential hypothesis test that offers a tunable

and quantifiable false-detection rate.

• We demonstrate the effectiveness of the proposed framework by

applying it to audit the use of data in two types of ML models,

namely image classifiers and foundation models, under various

settings.

Due to space constraints, some of our results are detailed only in

the full paper [28]. A source code implementation of our framework

is available at https://github.com/zonghaohuang007/ML_data_aud

iting.

2 Related Work

2.1 Data Auditing

Data auditing is a type of proactive technique that a data owner
can use to audit the use of her data in a target ML model [24, 35,

36, 55, 69, 74]. Such methods usually include a marking algorithm

that embeds marks into data, and a detection algorithm that tests

for the use of that data in training a model. Radioactive Data [55]

is a state-of-the-art method for auditing an image classifier, which

we consider as one of our baselines in Sec. 5.2. In the marking step,

Radioactive Data randomly samples class-specificmarks and embeds

them into a subset of the training dataset. In the detection step,

it detects if the parameters of the final layer of the target image

classifier are correlated with the selected marks, by a hypothesis

test whose returned p-value is its false-detection rate. However,

Radioactive Data assumes that the data owner has full control over

the training set, including that, e.g., she knows the labels of the

dataset and can train a surrogate model (i.e., a model similar to the

target model) used to craft marked images. In contrast, our work

relaxes the requirement for one data owner to control the entire

training dataset. Another marking-based technique that, like ours,

relaxes this requirement for classifiers is that of Wenger, et al. [77].

However, unlike ours, this technique requires most of marked data

contributed by a data owner to be assigned the same label by the

ML practitioner; does not provide a rigorous guarantee on the false-

detection rate; and to achieve good detection performance in their

reported experiments on image classifiers, needed marks that were

sufficiently visible to diminish image quality.

Another line of works on image dataset auditing [35, 36, 69] is

based on backdoor attacks [23, 57] or other methods (e.g., [24]) to

enable a data-owner to modify her data and then detect its use to

train anMLmodel by eliciting predictable classification results from

the model (e.g., predictable misclassifications of poisoned images

for backdoor-based methods). Their detection algorithms are also

formulated by a hypothesis test, but they do not provide rigorous

guarantees on their false-detection rates. Moreover, these methods

again require the data owner’s full control over the training set, in

contrast to our method. In Sec. 5.2, we consider one backdoor-based

auditing method, namely Untargeted Backdoor Watermark-Clean

(UBW-C) [35], as one of our baselines.

To our knowledge, all existing data auditing methods focus on

a particular type of ML model, e.g., image classifiers [24, 35, 36,

55, 69, 77], language models [76], or text-to-image diffusion mod-

els [74]. So, their proposed techniques do not directly generalize to

other domains. In contrast, the marking algorithm in our proposed

framework does not rely on any prior knowledge of the ML task

(e.g., labels assigned by the ML practitioner), and our framework

can be used to effectively audit data across various domains.

2.2 Membership Inference

Membership inference (MI) is a type of confidentiality attack in ma-

chine learning, which aims to infer if a particular data sample [7, 13,

27, 60, 78] or any data associated with a specific user [11, 47, 65] has

been used to train a target ML model. The existing MI methods can

be classified into shadow model-based attacks [40, 60] and metric-

based attacks [56, 58, 66, 79]. Shadow model-based attacks leverage

shadow models (i.e., models trained on datasets that are similar to
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the training dataset of the target model) to imitate the target model

and so incur high costs to train them. In contrast, metric-based

attacks leverage metrics that are simple to compute (e.g., entropy

of the confidence vector output by the target classifier [58, 66])

while achieving comparable inference performance [56, 58, 79].

MI has been explored for various model types, e.g., image clas-

sifiers [56, 58, 66, 79], visual encoders trained by self-supervised

learning [39], language models [50], reinforcement learning [19],

and facial recognition models [11].

MI can be used as a passive data auditing method that a data

owner can use to infer if her data is used in an ML model. However,

such a passive method does not provide any quantitative guarantee

for its inference results. Our proposed framework uses metric-based

MI to design the score function in the detection algorithm that

provides a quantifiable, tunable guarantee on false detection.

2.3 Data Watermarking

Data watermarking is a technique used to track digital data by

embedding a watermark that contains identifying information of

the data owner. A classical example of image watermarking is zero-

bit watermarking [9] that embeds information into the Fourier

transform of the image. However, this type of traditional water-

marking is not robust to data transformation. Recently, there have

been research efforts on training deep neural networks (DNNs) to

embed and recover watermarks that are robust to data transforma-

tion [4, 43, 68, 84]. DNN-based data watermarking is widely applied

to attribute AI-generated content [21, 81].

Data watermarking can be used to audit data use to train a gen-

erative model [81], since the watermark embedded in the training

images could be transferred to the images generated from the model.

However, this technique cannot be directly applied to other types

of ML models, e.g., an image classifier. In contrast, instead of re-

covering the embedded marks from the ML model, our proposed

auditing method detects the use of published data by analyzing the

outputs of the ML model on the published data and the hidden data.

3 Problem Formulation

We consider two parties: a data owner and a machine learning
practitioner. The data owner holds a set {𝑥1, 𝑥2, . . . , 𝑥𝑁 } of data
that will be published online, e.g., posted on social media to attract

attention. The ML practitioner aims to train a machine learning

model 𝑓 of good utility on a set of training data𝒟 = {𝑎𝑖 }𝑀𝑖=1
of size

𝑀 by solving:

min

𝑓

1

𝑀

𝑀∑︁
𝑖=1

ℓ (𝑓 , 𝑎𝑖 ), (1)

where ℓ is a loss function used to measure the performance of

the ML model on the training samples. The definition of the loss

function depends on the machine learning task. For example, the

loss function in image classification is the cross-entropy loss [45].

3.1 Threat Model

The ML practitioner wants to assemble a training dataset 𝒟 that

can be used to train a useful ML model. He does so by collecting

the data published online from multiple data owners, without their
authorization. As such, a data owner’s data constitutes a subset

of the ML practitioner’s collected dataset (i.e., some portion of

{𝑥1, 𝑥2, . . . , 𝑥𝑁 } or its published version is contained in 𝒟). The

ML practitioner preprocesses the collected data (e.g., labeling it,

if needed), trains an ML model on the preprocessed data using

a learning algorithm specified for his ML task (e.g., supervised

learning for image classification), and deploys it to provide service

to consumers.

The data owner wants to detect the ML practitioner’s use of

her data. To do so, the data owner needs to apply a method to

audit the ML practitioner’s ML model such that if the ML model

uses her published data, then she will detect this fact from the

deployed model. We allow the data owner only black-box access to

the deployed ML model. In other words, she does not necessarily

know the architecture and parameters of the ML model, but can

obtain the outputs of the ML model by providing her queries, e.g.,

predictions or vectors of confidence scores output by an image

classifier given her images as inputs.

3.2 Design Goals

In this work, we aim to design a data auditing framework for a data

owner, which she can apply to detect the ML practitioner’s use of

her data. We have the following design goals for the proposed data

auditing framework:

• Effectiveness: The main goal of the proposed data auditing

framework is to detect the unauthorized use of data in ML model

training. When the published data is used, the proposed method

should successfully detect the use of the owner’s data. More

specifically, the detection success rate (i.e., the probability of

successfully detecting the data use) should growwith the amount

of the owner’s data that the ML practitioner uses in training, and

should approach 100% if most of her data is used.

• Quantifiable false-detection rate: When the ML practitioner

does not use the owner’s data, then detection should occur with

only a quantifiable probability (e.g., ≤ 5%). Such false-detection

rate guarantees that if the ML practitioner does not use the data

owner’s data, then the risk of falsely accusing him is small and

quantifiable.

• Generality: Once the data owner publishes her data online,

the ML practitioner might collect them, label them if needed,

and use them in the ML-model training for his designed ML

task. The generality goal is that the algorithm applied prior to

data publication (i.e., the data-marking algorithm, introduced in

Sec. 4.1) should be agnostic to the data labeling and the ML task,

and that the proposed data auditing framework can be applied

to effectively audit data in any type of ML model (e.g., image

classifier or language model).

• Robustness: Once the ML practitioner realizes that the data

auditing method is applied, he would presumably deploy coun-

termeasures/adaptive attacks to defeat the data auditing method

without sacrificing the utility of the trained ML model signifi-

cantly. The robustness goal requires that the proposed framework

is still effective to detect the unauthorized use of data in model

training even when utility-preserving countermeasures/adaptive

attacks have been applied by the ML practitioner.
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4 The Proposed Framework

In this section, we propose a framework used to detect if an ML

model has been trained on the data owner’s data. In our frame-

work, the data owner does not publish her data {𝑥1, 𝑥2, . . . , 𝑥𝑁 }
directly. Instead, she creates two different marked versions of each

𝑥𝑖 , namely 𝑥0

𝑖
and 𝑥1

𝑖
; uniformly randomly chooses a bit𝑏𝑖

$← {0, 1};
and publishes 𝑥

𝑏𝑖
𝑖

while keeping 𝑥
1−𝑏𝑖
𝑖

private. If the ML practi-

tioner’s ML model 𝑓 is not trained on the published data, it will

behave equally when provided the published data and the unpub-

lished data as input (e.g., for classification). Otherwise, its behavior

will be biased towards the published data due to their memorization

in training [10, 64].

Formally, let 𝑔𝑓 denote a score function 𝑔 with oracle (i.e., black-

box) access to ML model 𝑓 and that is designed for black-box mem-

bership inference [13, 39, 66], so that its output (a real number)

indicates the likelihood that its input was a training sample for 𝑓 .

If the ML model 𝑓 is not trained on the published data 𝑥
𝑏𝑖
𝑖
, then the

probability of the event 𝑔𝑓 (𝑥𝑏𝑖
𝑖
) > 𝑔𝑓 (𝑥1−𝑏𝑖

𝑖
) will be 1

2
; otherwise,

the probability will be larger than
1

2
. The probability

1

2
is due to

the uniformly random sampling of 𝑏𝑖 . As such, we can detect if an

ML model is trained on a dataset containing a subset of published

data by observing the different performance of the ML model on

the published data and the unpublished data. Since we compare the

membership inference scores (likelihoods) of published data and

unpublished data, we refer to this technique as using contrastive
membership inference. When the published data is used in train-

ing, a “useful” membership inference will give a higher score to

published data than to unpublished data, even though both scores

might be high enough to predict them as “members” independently.

More details on how to generate the published data and the unpub-

lished data and how to measure the bias in the ML model will be

discussed later (see Sec. 4.1 and Sec. 4.2, respectively).

Generally, our framework includes a marking algorithm and a

detection algorithm. The marking algorithm is applied in the mark-

ing step before the data publication, while the detection algorithm

is applied in the detection step after the ML model deployment.

4.1 Data Marking

The marking algorithm, applied in the marking step, is used to

generate a pair of published data and unpublished data. Formally,

the marking algorithm takes as input a raw datum 𝑥𝑖 , and outputs

its published version 𝑥
𝑏𝑖
𝑖

and its unpublished version 𝑥
1−𝑏𝑖
𝑖

. The

marking algorithm includes a marked data generation step and a

random sampling step, and its pseudocode is presented in the full

paper [28, App. A]. The marked data generation step creates a pair

(𝑥0

𝑖
, 𝑥1

𝑖
), both crafted from the raw datum 𝑥𝑖 . Taking the example

where 𝑥𝑖 is an image, we set 𝑥0

𝑖
← 𝑥𝑖 + 𝛿𝑖 and 𝑥1

𝑖
← 𝑥𝑖 − 𝛿𝑖 where

𝛿𝑖 is the added mark. The random sampling step selects 𝑏𝑖
$← {0, 1}

and publishes 𝑥
𝑏𝑖
𝑖
, keeping 𝑥

1−𝑏𝑖
𝑖

secret.

Basic requirements. We have the following requirements for the

generated 𝑥0

𝑖
and 𝑥1

𝑖
: utility preservation and distinction.

• Utility preservation: 𝑥0

𝑖
and 𝑥1

𝑖
should provide the same utility

as 𝑥𝑖 to the data owner, for the purposes for which the data

owner wishes to publish 𝑥𝑖 (e.g., to attract attention on social

media). Formally, given a well-defined distance function 𝑢 (·, ·)
measuring the utility difference, utility preservation requires that

𝑢 (𝑥0

𝑖
, 𝑥𝑖 ) ≤ 𝜖 and 𝑢 (𝑥1

𝑖
, 𝑥𝑖 ) ≤ 𝜖 , where 𝜖 is a small scalar. Taking

the example of images, the utility distance function could be

defined as the infinity norm of the difference in the pixel values,

i.e., 𝑢 (𝑥0

𝑖
, 𝑥𝑖 ) =



𝑥0

𝑖
− 𝑥𝑖




∞ and 𝑢 (𝑥1

𝑖
, 𝑥𝑖 ) =



𝑥1

𝑖
− 𝑥𝑖




∞.

• Distinction: 𝑥0

𝑖
and 𝑥1

𝑖
should be different enough such that con-

trastive membership inference can distinguish between a model

trained on one but not the other. Formally, given a well-defined

distance function 𝑑 (·, ·), distinction requires that 𝑑 (𝑥0

𝑖
, 𝑥1

𝑖
) is

maximized. Continuing with the example of images, we could

define 𝑑 (𝑥0

𝑖
, 𝑥1

𝑖
) =



ℎ(𝑥0

𝑖
) − ℎ(𝑥1

𝑖
)




2
, where ℎ is an image feature

extractor, e.g., ResNet18 [25] pretrained on ImageNet [16].
1

There exists a tension between utility preservation and distinc-

tion. Specifically, when the marked data preserves more utility of

the raw data, i.e., by using a smaller 𝜖 , the difference between the

two marked versions is smaller and thus it is harder for contrastive

membership inference to distinguish between a model trained on

one but not the other. In experiments in Sec. 5 and Sec. 6, we show

that we can balance utility preservation and distinction well, by

setting an appropriate 𝜖 . We also analyze and discuss this tension

in Sec. 5.3.

Marked data generation. To craft a pair ofmarked data that satisfy

the basic requirements, we formulate an optimization problem:

max

𝑥0

𝑖
,𝑥1

𝑖

𝑑 (𝑥0

𝑖 , 𝑥
1

𝑖 ) (2a)

subject to: 𝑢 (𝑥0

𝑖 , 𝑥𝑖 ) ≤ 𝜖 and 𝑢 (𝑥1

𝑖 , 𝑥𝑖 ) ≤ 𝜖 (2b)

The definitions of 𝑢 (·, ·) and 𝑑 (·, ·), and how to solve Eq. (2) depend

on the type of data. We will instantiate them in our experiments in

Sec. 5 and Sec. 6.

Random sampling. After crafting the marked data (𝑥0

𝑖
, 𝑥1

𝑖
), the

data owner selects 𝑏𝑖
$← {0, 1}. Then she publishes 𝑥

𝑏𝑖
𝑖
, e.g., on

social media. She keeps 𝑥
1−𝑏𝑖
𝑖

secret to use in the detection step, as

discussed in Sec. 4.2.

4.2 Data-Use Detection

The detection algorithm, applied in the detection step, is used to

detect if a target ML model is trained on a dataset containing the

published data. Formally, given oracle (black-box) access to an ML

model 𝑓 , the detection algorithm takes as input the data owner’s

published data {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

and her unpublished data {𝑥1−𝑏𝑖
𝑖
}𝑁
𝑖=1

, and

outputs a Boolean value. It detects the difference between the out-

puts of the target ML model on the published data and unpublished

data. Specifically, for a given 𝑖 , the data owner measures if

𝑔𝑓 (𝑥𝑏𝑖
𝑖
) > 𝑔𝑓 (𝑥1−𝑏𝑖

𝑖
), (3)

where the score function 𝑔 is a black-box membership inference

algorithm that measures the likelihood of the input being used as

a member of the training set of the target ML model 𝑓 . A higher

score returned by the score function indicates a higher likelihood,

and thus the choice of the score function depends on the type of

1
An image feature extractor is not necessary but helpful to craft marked images. Our

proposed method can audit image data effectively even if no image feature extractor

is used in marked data generation, as shown in the full paper [28, App. G].
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the target ML model; we will give examples in Sec. 5 and Sec. 6.

Under the null hypothesis 𝐻0 that the ML model 𝑓 was not trained

on the data owner’s published data, Eq. (3) holds with probability

𝜋 = 1

2
, where the probability is with respect to the choice of 𝑏𝑖 . If

it was trained on the data owner’s published data (the alternative

hypothesis 𝐻1), however, then it is reasonable to expect that Eq. (3)

holds with probability 𝜋 > 1

2
, since the ML model memorizes the

published data. As such, the detection problem can be formulated

to test the following hypothesis:

• Null hypothesis 𝐻0: 𝜋 = 1

2
.

• Alternate hypothesis 𝐻1: 𝜋 > 1

2
.

We denote the sum of successful measurements in the population as

𝑁 ′, i.e., 𝑁 ′ =
∑𝑁
𝑖=1
I(𝑔𝑓 (𝑥𝑏𝑖

𝑖
) > 𝑔𝑓 (𝑥1−𝑏𝑖

𝑖
)) where I is the indicator

function returning 1 if the input statement is true or returning

0 if the input statement is false. Under 𝐻0, 𝑁
′
follows a binomial

distribution with parameters 𝑁 and 𝑝′ = 1

2
. As such, the data owner

can reject𝐻0 or not based on the measured 𝑁 ′ using a binomial test.

In other words, the data owner detects if the ML model is trained

on her published data according to 𝑁 ′.

4.2.1 Estimate 𝑁 ′ by Sampling Sequentially WoR. Measuring 𝑁 ′

exactly requires querying all the published data and hidden data to

the MLmodel, e.g., via its API interface. When𝑁 is large, this would

be highly costly and time consuming. To address this, we apply a

sequential method: at each time step, the data owner samples an

𝑖 uniformly at random without replacement (WoR) and estimates

𝑁 ′ based on the currently obtained measurements. The classical

sequential hypothesis testing method, namely the sequential prob-

ability ratio test [73], requires knowing the probability 𝜋 in the

alternate hypothesis 𝐻1 and so does not fit our problem.

Sampling WoR problem. There are 𝑁 fixed but unknown objects

in the finite population {𝐼1, . . . , 𝐼𝑁 }, where each 𝐼𝑖 takes on a value

in {0, 1}, specifically 𝐼𝑖 = I(𝑔𝑓 (𝑥𝑏𝑖𝑖 ) > 𝑔
𝑓 (𝑥1−𝑏𝑖

𝑖
)). The data owner

observes one object per time step by sampling it uniformly at ran-

dom WoR from the population, so that:

I𝑡 | {I1, . . . , I𝑡−1} ∼ Uniform({𝐼1, . . . , 𝐼𝑁 } \ {I1, . . . , I𝑡−1}),

where I𝑡 denotes the object sampled at time 𝑡 ∈ {1, 2, . . . , 𝑁 }. As
such, the variable N𝑡 =

∑𝑡
𝑛=1
I𝑛 at time 𝑡 (𝑡 ≤ 𝑁 ) follows a hyper-

geometric distribution:

P
(
N𝑡 = 𝑁

′′) = (
𝑁 ′

𝑁 ′′

) (
𝑁 − 𝑁 ′
𝑡 − 𝑁 ′′

)/ (
𝑁

𝑡

)
,

where 𝑁 ′′ ∈ {0, 1, . . . ,min(𝑁 ′, 𝑡)} is the number of ones from the

obtained observations at 𝑡 , and
(𝑁 ′
𝑁 ′′

)
denotes 𝑁 ′ choose 𝑁 ′′.

Estimate 𝑁 ′ by prior-posterior-ratio martingale (PPRM) [75]. In
the above problem of sampling WoR from a finite population, the

data owner can use a prior-posterior-ratio martingale (PPRM) [75]

to obtain a confidence interval𝐶𝑡 (𝛼) = [𝐿𝑡 (𝛼),𝑈𝑡 (𝛼)] for 𝑁 ′ at the
time 𝑡 , which is a function of the confidence level 𝛼 , e.g., 𝛼 = 0.05.

Such a sequence of confidence intervals {𝐶𝑡 (𝛼)}𝑡 ∈{1,2,...,𝑁 } has the
following guarantee [75]:

P
(
∃𝑡 ∈ {1, 2, . . . , 𝑁 } : 𝑁 ′ ∉ 𝐶𝑡 (𝛼)

)
≤ 𝛼.

In words, the probability that there exists a confidence interval

where 𝑁 ′ is excluded is no larger than 𝛼 .

4.2.2 Detection Algorithm withQuantifiable False-Detection Rate.
We present the pseudocode of our detection algorithm in the full

paper [28, App. A]. At each time step, the data owner samples an

𝑖 ∈ {1, . . . , 𝑁 } uniformly at randomWoR and estimates𝑁 ′ based on
the currently obtained measurements using a prior-posterior-ratio

martingale (PPRM) [75] that takes as inputs the sequence of mea-

surements so far, the size of the population 𝑁 , and the confidence

level 𝛼 . It returns a confidence interval for 𝑁 ′. If the interval (i.e.,
its lower bound) is equal to or larger than a preselected threshold

𝑇 , the data owner stops sampling and rejects the null hypothesis;

otherwise, she continues the sampling.

Since the detection algorithm rejects the null hypothesis as long

as the lower bound of a confidence interval is equal to or larger

than a preselected threshold 𝑇 , the false-detection probability is

P
(
∃𝑡 ∈ {1, 2, . . . , 𝑁 } : 𝐿𝑡 (𝛼) ≥ 𝑇

�� 𝐻0

)
. We prove the following the-

orem in the full paper [28, App. B].

Theorem 1 (False detection rate). For𝑇 ∈ {
⌈
𝑁
2

⌉
, . . . , 𝑁 } and

𝛼 < 𝑝 such that
(

exp

(
2𝑇
𝑁
−1

)(
2𝑇
𝑁

) 2𝑇
𝑁

) 𝑁
2

≤ 𝑝 − 𝛼 , our data-use detection

algorithm has a false-detection rate less than 𝑝 . In other words:

P
(
∃𝑡 ∈ {1, 2, . . . , 𝑁 } : 𝐿𝑡 (𝛼) ≥ 𝑇

�� 𝐻0

)
< 𝑝.

5 Auditing Image Classifiers

In this section, we apply our data-use auditing method to detect

unauthorized use of data to train an image classifier. Image classi-

fication (e.g., [16, 25, 61]) is a fundamental computer-vision task

in which the ML practitioner trains a model (i.e., image classifier)

on training data partitioned into 𝐽 classes. For a newly given im-

age, the ML model predicts a class label for it or, more generally,

a vector of 𝐽 dimensions. The output vector could be a vector of

confidence scores whose 𝑗-th component represents the probability

of the input being from the 𝑗-th class, or a one-hot vector where

only the component of the predicted class is 1 and the others are 0.

Each training sample in the training set 𝒟 is an (image, label) pair,

where the image might be collected online and the label is assigned

by the ML practitioner after the data collection. The loss function

in Eq. (1) is the cross-entropy loss [45].

5.1 Score Function

Here we define the score function 𝑔𝑓 used in our detection algo-

rithm for the image classifier 𝑓 . The score function is a black-box

membership inference test based on the intuition that the MLmodel

is more likely to output a confident and correct prediction for a

perturbed training sample than for a perturbed non-training sam-

ple. This basic idea is similar to existing label-only membership

inference methods (e.g., [13]). The confidence and correctness of

the output are measured by entropy [58] or modified entropy [66]

if the ground-truth label of the input is known. Specifically, we

define the score function as follows: given an input image, we first

randomly generate𝐾 perturbed versions, and then obtain𝐾 outputs

using the perturbed images as inputs to the target ML model. We

average the 𝐾 outputs and use the negative (modified) entropy of

the averaged output vector elements as the score. The details of the

score function are shown in the full paper [28, App. C].
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5.2 Experimental Setup

Datasets. Weused three image benchmarks: CIFAR-10 [32], CIFAR-

100 [32], and TinyImageNet [33]:

• CIFAR-10: CIFAR-10 is a dataset containing 60,000 images of

3×32×32 dimensions partitioned into 𝐽 = 10 classes. In CIFAR-10,

there are 50,000 training samples and 10,000 test samples.

• CIFAR-100: CIFAR-100 is a dataset containing 60,000 images

of 3 × 32 × 32 dimensions partitioned into 𝐽 = 100 classes. In

CIFAR-100, there are 50,000 training samples and 10,000 test

samples.

• TinyImageNet: TinyImageNet is a dataset containing images

of 3 × 64 × 64 dimensions partitioned into 𝐽 = 200 classes. In

TinyImageNet, there are 100,000 training samples and 10,000

validation samples that we used for testing.

Marking setting. In each experiment, we uniformly at random

sampled 𝑁 samples {𝑥𝑖 }𝑁𝑖=1
from the training sample set 𝒳 of a

dataset. The 𝑁 samples are assumed to be owned by a data owner.

Here we set
𝑁
|𝒳 | = 10% as the default, i.e., 𝑁 = 5,000 for CIFAR-10

or CIFAR-100, and 𝑁 = 10,000 for TinyImageNet. We applied our

data marking algorithm to generate the published data {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

and the unpublished data {𝑥1−𝑏𝑖
𝑖
}𝑁
𝑖=1

for {𝑥𝑖 }𝑁𝑖=1
. In Eq. (2), we used

𝜖 = 10 as the default when the pixel range of image is [0, 255].
We defined the two marked versions by 𝑥0

𝑖
← 𝑥𝑖 + 𝛿𝑖 and 𝑥1

𝑖
←

𝑥𝑖 − 𝛿𝑖 (𝛿𝑖 is the mark), utility distance function by 𝑢 (𝑥0

𝑖
, 𝑥𝑖 ) =

𝑥0

𝑖
− 𝑥𝑖




∞ and 𝑢 (𝑥1

𝑖
, 𝑥𝑖 ) =



𝑥1

𝑖
− 𝑥𝑖




∞, and the distance function

by 𝑑 (𝑥0

𝑖
, 𝑥1

𝑖
) =



ℎ(𝑥0

𝑖
) − ℎ(𝑥1

𝑖
)




2
, where we used ResNet18 [25]

pretrained on ImageNet [16] to be the default feature extractor

ℎ. We solved Eq. (2) by projected gradient descent [37]. Then we

uniformly at random sampled a subset (of size 𝑁̂ ) of {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

as

ˆ𝒳 (i.e.,
ˆ𝒳 ⊆ {𝑥𝑏𝑖

𝑖
}𝑁
𝑖=1

) to simulate a general case where the ML

practitioner collected a subset of published data as training samples.

By default, we set 𝑁̂ = 𝑁 . As such, we constituted the training

dataset collected by the ML practitioner as 𝒟 = (𝒳 \ {𝑥𝑖 }𝑁𝑖=1
) ∪ ˆ𝒳

with correct labels (i.e., using the same labels as those in the dataset).

Some examples of marked images are displayed in the full paper [28,

App. D].

Training setting. We used ResNet18 as the default architecture of

the ML model 𝑓 trained by the ML practitioner. We used a standard

SGD algorithm to train 𝑓 , as follows: 𝑓 was trained on normalized

training data with default data augmentation applied [22] using an

SGD optimizer [3] with a weight decay of 5 × 10
−4

for 80 epochs, a

batch size of 128, and an initial learning rate of 0.1 decayed by a

factor of 0.1 when the number of epochs reached 30, 50, or 70.

Detection setting. In each detection experiment, we applied our

data-use detection algorithm to the given ML model 𝑓 using a set of

pairs of generated published data and unpublished data. In the data-

use detection algorithm and the score function, we set 𝛼 = 0.025,

𝑝 = 0.05, and 𝐾 = 16 as the default. (Recall from Thm. 1 that 𝑝

bounds the false-detection rate.)We present results for four different

experimental conditions that define the information available to

the detector, denoted as cg, cḡ, c̄g, and c̄ḡ. We define these four

conditions in Table 1.

Condition Confidence score Ground-truth

cg ✔ ✔

cḡ ✔ ✗

c̄g ✗ ✔

c̄ḡ ✗ ✗

Table 1: Information available to the detector. “Confidence

score” indicates whether the ML model 𝑓 outputs a full con-

fidence vector (“✔”) or just a label, i.e., a one-hot vector (“✗”).

“Ground-truth” indicates whether the true label of a query

to the ML model is known by the detector (“✔”) or not (“✗”).

Baselines. We used two state-of-the-art methods, Radioactive

Data [55], which we abbreviate to RData, and Untargeted Back-

door Watermark-Clean (UBW-C) [35], as baselines. RData requires

knowledge of the class labels for its data. So, we also consider two

variants of RData in which the data owner is presumed to not know

how the ML practitioner will label her data, and so applies the same

mark to all of her data regardless of class (“RData (one mark)”),

or to know only a “coarse” label (superclass) of the class label the

ML practitioner will assign to each (“RData (superclass)”). The de-

tails of baselines and their implementation are described in the full

paper [28, App. E].

Metrics. We used the following metrics to evaluate the methods:

• Test accuracy (acc): acc is the fraction of test samples that are

correctly classified by the ML model 𝑓 . A higher acc indicates a
better performance of the ML model.

• Detection success rate (DSR): DSR is the fraction of detection

experiments returning True (i.e., affirmatively detecting data use).

When the detected ML model did use the published data, a higher

DSR indicates a better performance of the data auditing frame-

work. When the detected ML model did not use the published

data, a lower DSR indicates more robustness to false detections.

• Minimum amount of published data used in training, as a

percentage of the training data set, to trigger detection (𝑃 ):

That is, 𝑃 is the minimum value of 𝑁̂ /𝑀 , expressed as a percent-

age, at which the detection algorithm returns True. Therefore, a

lower 𝑃 indicates a more sensitive detector. However, to find 𝑃 in

each of our settings is costly since we need to exhaustively test

potential values of 𝑁̂ /𝑀 . For this reason, we report an alternative

measure (see below) in place of 𝑃 .

• Query cost (cost): cost is the number of queries to the target ML

model 𝑓 to conclude that 𝑓 was trained on the data-owner’s data.

That is, cost = 2 × 𝐾 × 𝑄 , where 𝑄 (𝑄 ≤ 𝑁 ) is the number of

published data used to query the ML model to detect its training

with the data-owner’s data. It indicates the practical cost used in

the detection step. A lower cost indicates a more cost-efficient

detection method.

• Ratio between the number of queried published data and

the total number of training samples (
𝑄
𝑀
):

𝑄
𝑀

is the ratio

between the number 𝑄 of published data used to query the ML

model (resulting in detection) and the total number 𝑀 of train-

ing samples. In our tests,
𝑄
𝑀

was strongly correlated with 𝑃 (a

Pearson correlation coefficient [15] of 0.66 with high statistical

significance; see the full paper [28, App. B]) and is considerably

1305



A General Framework for Data-Use Auditing of ML Models CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

cheaper to compute than 𝑃 . Moreover, for a fixed 𝐾 and 𝒟, cost
is a linear function of

𝑄
𝑀
. Therefore, when presenting our results,

we use
𝑄
𝑀

as a surrogate for 𝑃 and cost. A lower
𝑄
𝑀

indicates a

lower 𝑃 and a lower cost, and thus it suggests a more detection-

efficient and more cost-efficient method.

5.3 Experimental Results

5.3.1 Overall Performance.

Effectiveness. The detection performance of our proposedmethod

on different visual benchmarks is shown in Table 2. Table 2 demon-

strates that our method is highly effective to detect the use of

published data in training ML models, i.e, yielding a 20/20 DSR in

all settings where the published data is used as a subset of training

samples of the target ML model. In addition, the ML models trained

on the datasets including the published data preserved good util-

ity, i.e., their acc values are only slightly lower (< 1% on average)

than those trained on clean datasets. For detection, we needed a

𝑄
𝑀

ranging from 2.20% to 4.65% for CIFAR-10, from 0.19% to 0.60%

for CIFAR-100, and from 0.14% to 0.67% for TinyImageNet. These

results show that our method achieved more detection efficiency

when applied to a classification task with a large number of classes.

Such ranges of
𝑄
𝑀

also indicate that detection needs a number of

queries to the ML model (i.e., cost) ranging from a hundred to

tens of thousands. Given the current prices of online queries to

pretrained visual AI models (e.g., $1.50 per 1,000 images
2
), the de-

tection cost is affordable, ranging from several dollars to a hundred

dollars. When we have less information on the output of the ML

model (i.e., the outputs are the predictions only) or the queries (i.e.,

the ground-truth labels are unknown) in the detection, we needed

more queries to trigger detection, i.e., yielding a larger
𝑄
𝑀
.

Impact of using published data partially and false-detections. Af-
ter the published data is released online, the ML practitioner might

collect them partially (i.e.,
𝑁̂
𝑁

is smaller than 1.0) and use the col-

lected data in training. Here, we tested the detection performance of

our method on the ML model trained on𝒟 under different ratios of

𝑁̂
𝑁
. The results are shown in Fig. 1. When the ML practitioner used

more published data, DSR was higher. Especially, when he used

≥ 70% published CIFAR-10 data, or ≥ 40% published CIFAR-100

data or published TinyImageNet data, we achieved a DSR of 20/20,

even with the least information (condition c̄ḡ). When the ML prac-

titioner did not use any published data in training (i.e.,
𝑁̂
𝑁

= 0),DSR
was 0/20 under all considered settings, which empirically confirms

the upper bound 𝑝 = 0.05 on false-detection rate of our method.

Comparison with baselines. Table 3 summarizes the comparison

between our method and baselines. Compared with the baselines,

our method is more effective in the detection of data use, i.e., yield-

ing a higher DSR and a higher acc. More importantly, different

from the two state-of-the-art methods (i.e., RData and UBW-C), our

method does not need the labeling of training samples before data

publication or the white-box access to the ML model (i.e., knowing

the parameters of the ML model). The variants of RData denoted as

2
https://cloud.google.com/vision/pricing
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Figure 1: The impact of
𝑁̂
𝑁

on the detection performance

(the default
𝑁̂
𝑁

is 1.0). The results from
𝑁̂
𝑁

= 0 are the false-

detections of our method.

“one mark” and “superclass” do not need the complete information

on labeling, but their DSR dropped significantly.

Multiple data owners. Here we consider a general real-world set-

ting where there are multiple data owners applying data auditing

independently, each of which set the upper bound on the false-

detection rate as 𝑝 = 0.05. In these experiments, each data owner

had 5,000 CIFAR-100 data items (i.e., 10% of the training samples

collected by the ML practitioner) to publish. Each applied an audit-

ing framework to generate her marked data and to detect its use in

the deployed ML model independently. The detection results with

our method and with the state-of-the-art method, RData (with full

information on data labeling), are shown in Table 4. Compared with

RData, whose detection performance degraded with a larger num-

ber of data owners, our method was much more effective, yielding

a 100% DSR in all cases.

The results in Table 2, Fig. 1, Table 3, Table 4 demonstrate that

ourmethod achieves our effectiveness goal defined in Sec. 3.2. Table 3
and Table 4 show the advantages of our proposed method over the

baselines. Table 4 presents interesting results under real-world set-

tings where multiple data owners independently audit an MLmodel

for use of their data.

5.3.2 Impact of ML Model Architecture and Hyperparameters. In
this section, we explore the impact of the ML practitioner’s model

architecture and the data owner’s hyperparameters on detection,

such as the utility bound 𝜖 , the feature extractor ℎ used to generate

marked data, the upper bound 𝑝 on the false-detection rate, and the

number 𝐾 of sampled perturbations per image in detection. Due to

the space limit, we present results in the full paper [28, App. G].

5.3.3 Robustness to Countermeasures/Adaptive Attacks. When the

ML practitioner knows that a data owner marked her data, he

might utilize countermeasures/adaptive attacks to defeat the au-

diting method. His goal is to decrease DSR without degrading the

performance of the trained ML model significantly. We evaluated

the robustness of the proposed method to three types of counter-

measures/adaptive attacks, described below.

Limiting the information from the ML model output. Since our
detection method measures the difference between outputs of the

ML model on the published data and unpublished data, the ML

practitioner can limit the output (e.g., the vector of confidence

scores) of the deployed ML model, aiming to degrade our detection.

Here we considered two countermeasures of this type:
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acc% △acc% cg cḡ c̄g c̄ḡ

DSR 𝑄
𝑀

DSR 𝑄
𝑀

DSR 𝑄
𝑀

DSR 𝑄
𝑀

CIFAR-10 93.64 −0.05 20/20 2.20% 20/20 2.67% 20/20 4.22% 20/20 4.65%

CIFAR-100 74.29 −0.76 20/20 0.19% 20/20 0.20% 20/20 0.59% 20/20 0.60%

TinyImageNet 59.13 −0.16 20/20 0.14% 20/20 0.13% 20/20 0.59% 20/20 0.67%

Table 2: Overall performance of our proposed method on different image benchmarks, with an upper bound of 𝑝 = 0.05 on

the false-detection rate. All results are averaged over 20 experiments. The numbers in the △acc% column are the differences

between averaged accuracies of ML models trained on marked datasets and those of ML models trained on clean datasets.

Labeling White Bounded 1% 2% 5% 10%

known box FDR DSR acc % DSR acc % DSR acc % DSR acc %

CIFAR-10

Our method (c̄ḡ) ✔ 8/20 93.79 11/20 93.71 19/20 93.70 20/20 93.64
RData ✔ 1/20 93.65 2/20 93.56 2/20 93.29 4/20 93.26

RData (one mark) ✔ 0/20 93.75 0/20 93.60 0/20 93.42 0/20 93.25

UBW-C (𝜏 = 0.25) ✗ 0/20 93.50 0/20 93.14 0/20 92.67 2/20 92.73

UBW-C (𝜏 = 0.20) ✗ 1/20 93.50 8/20 93.15 7/20 92.46 15/20 92.52

CIFAR-100

Our method (c̄ḡ) ✔ 20/20 75.01 20/20 74.94 20/20 74.60 20/20 74.29
RData ✔ 5/20 74.66 14/20 74.57 20/20 73.81 20/20 73.53

RData (superclass) ✔ 4/20 74.76 10/20 74.46 14/20 73.99 19/20 73.42

RData (one mark) ✔ 0/20 74.70 0/20 74.51 1/20 74.05 0/20 73.51

UBW-C (𝜏 = 0.25) ✗ 0/20 74.60 0/20 74.16 16/20 73.30 20/20 72.32

UBW-C (𝜏 = 0.20) ✗ 19/20 74.60 20/20 74.33 20/20 73.21 20/20 72.47

TinyImageNet

Our method (c̄ḡ) ✔ 20/20 59.32 20/20 59.24 20/20 59.17 20/20 59.13
RData ✔ 8/20 59.14 18/20 58.94 20/20 58.59 20/20 58.13

RData (superclass) ✔ 7/20 59.14 14/20 59.03 20/20 58.71 20/20 58.09

RData (one mark) ✔ 2/20 59.12 1/20 58.98 0/20 58.61 0/20 58.29

UBW-C (𝜏 = 0.25) ✗ 0/20 59.01 0/20 58.80 0/20 58.43 0/20 57.78

UBW-C (𝜏 = 0.20) ✗ 0/20 59.01 0/20 58.62 6/20 58.41 17/20 57.63

Table 3: Comparison between our proposed method and baselines under different rates of
𝑁̂
𝑀
∈ {1%, 2%, 5%, 10%}. The results of

our method come from the setting with least information available to the data owner, i.e., c̄ḡ. In UBW-C, 𝜏 is a hyperparameter

of its detection algorithm. In the columns of “Labeling known” and “White box”, “ ” indicates that the information is needed;

“ ” means that information is not needed; “ ” means that partial information is needed. In the column “bounded FDR”, “✔”

(“✗”) indicates that the method provides (does not provide) a provable bound on the false-detection rate. Results are averaged

over 20 experiments. The bold results are the best ones among the compared methods.

Data owners

1 2 5 10

Our method (c̄ḡ) 20/20 40/40 100/100 200/200

RData 20/20 38/40 64/100 90/200

Table 4: Comparison between our method and RData (which

requires knowledge of data labeling), both under an upper

bound of 𝑝 = 0.05 on the false-detection rate, when multiple

data owners applied data auditing independently. Each owner

contributed 10% of the training dataset. Results are the total

detections over all detection attempts (by all data owners) in

20 experiments.

• Outputting only the top 𝜅 confidence scores (Top𝜅): This coun-
termeasure allows the deployed ML model to output the top 𝜅

confidence scores, masking out the others in the output vector.

Here we considered 𝜅 = 1 and 𝜅 = 5.

• Adding perturbation into the output (MemGuard [29]): This

countermeasure adds carefully crafted perturbations into the

ML model output to limit the information given. We considered

MemGuard proposed by Jia, et al. [29] to design the perturbation,
where we used a moderate distortion budget of 0.5.

Note that these countermeasures can be applied only in the ML

model deployment where the output is a vector of confidence scores

instead of a prediction/label.

Reducing memorization of training samples. Intuitively, the ML

practitioner can apply methods to discourage memorization of

training samples by the ML model, so that the published data and

the unpublished data will have similar scores by the defined score

function. As such, reducing memorization of training samples could

render the detection method to be less effective. We considered

three such countermeasures:

• Differential privacy (DP [20]):DP is a standard privacy definition

that limits the information leaked about any training input in the
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output of the algorithm. To achieve DP, the ML practitioner clips

the gradients of each training batch and adds Gaussian noise

(with standard deviation of 𝜎) into the clipped gradients during

ML model training [2].

• Early stopping (EarlyStop): In this countermeasure, the ML prac-

titioner trains the ML model for a small number of epochs to

prevent the ML model from overfitting to the training samples.

Here we trained ML models for 20, 40, and 60 epochs, denoted as

EarlyStop(20), EarlyStop(40), and EarlyStop(60), respectively.
• Adversarial regularization (AdvReg [49]): Adversarial regular-

ization is a strategy to generalize the ML model. It does so by

alternating between training theMLmodel tominimize the classi-

fication loss and training it to maximize the gain of a membership

inference attack. In the implementation of AdvReg, we set the
adversarial regularization factor to be 1.0 [49].

Other attacks. We also considered some other adaptive attacks

that aim to defeat our auditing method:

• Detecting pairs of published data and unpublished data in queries

(PairDetect): The intuition behind this pair detection is that if

the deployment can detect queries of a pair of published data and

unpublished data, then it will return the same output to evade

detection. We design such a pair detection method as follows:

we maintain a window of queries in the history and their ML

model outputs, and we compare each new query with those in

the window to decide what to output. If the infinity norm of the

pixel difference between the new query and a previous query

is smaller than 2𝜖 , we return the output of the previous query;

otherwise, we return the output for the new query.

• Adding Gaussian noise into the training samples (Gaussian(𝜎)):
This method adds noise into each training sample to mask the

added mark. The added noise is sampled from a Gaussian distri-

bution with standard deviation 𝜎 .

• Avoiding data augmentation in training (NoTrainAug): Excluding
data augmentation in ML model training will degrade the effec-

tiveness of the label-only membership inference that we apply

as the score function for the image classifier, as demonstrated by

previous works (e.g., [13]).

• Using our marking algorithm (with the default hyperparameters)

to perturb training samples (MarkPerturb): This countermeasure

applies our marking algorithm (with the default hyperparame-

ters) to craft two perturbed versions of each training sample and

randomly selects one to use in training.
3

Results. We summarize the robustness of our method to these

countermeasures/adaptive attacks in Table 5. As shown in Table 5,

masking (Top5, Top1,MemGuard) had limited impact on our detec-

tion effectiveness, yielding a slightly higher
𝑄
𝑀

but not changing

DSR at all. DP and EarlyStop did decrease DSR. However, these
countermeasures damaged the utility of the trained ML model,

yielding a much smaller acc. Specifically, the application of differ-

ential privacy needed a high level of privacy guarantee to defeat

our method and so added a large amount of Gaussian noise into the

training process to do so. The added noise affected the performance

of the MLmodel, decreasing acc to 64.11%, more than 10 percentage

3
We could use both perturbed versions in training but we would need to reduce the

number of epochs to half (i.e., 40 epochs) for fair comparison.

points lower than acc with the default training method. Likewise,

to degrade the detection performance of our method, early stopping

needed to stop the training when reaching a small number of train-

ing epochs, at the cost of low accuracy as well, e.g., acc = 67.10%

at 20 epochs. Among the other attacks, detecting queried pairs and

excluding data augmentation in ML model training were not useful

to counter our method. Pair detection (PairDetect) did not work

well to detect queried pairs because we only queried the ML model

with their randomly cropped versions, which evaded pair detection.

Excluding data augmentation in training did not reduce DSR but

diminished the accuracy of the ML model significantly, yielding a

low acc of 61.59%. Adding sufficient Gaussian noise to mask the

marks before training reduced the detection effectiveness of our

method but, again, it also destroyed the utility of the ML model. For

example, adding Gaussian noise with 𝜎 = 30 into marked CIFAR-

100 data reduced DSR from 20/20 to 6/20 in condition c̄ḡ but also

decreased acc to 62.10%. The last adaptive attack, i.e., applying our

marking algorithm to add perturbations, did not decrease DSR but

increased
𝑄
𝑀
, at the cost of achieving a lower acc of 70.49%. This

is because the perturbed published data created by the marking

algorithm was still closer to the published data than to the unpub-

lished data, which caused the published data to appear more likely

to have been used in the training of the ML model trained on the

perturbed published data.

In summary, countermeasures/adaptive attacks we considered

in this work did not defeat our auditing method or did so at the

cost of sacrificing the utility of the trained ML model; i.e., none

achieved a low DSR and a high acc at the same time. Therefore, we

conclude that our method achieves the robustness goal defined in

Sec. 3.2 for image classifiers.

6 Auditing Foundation Models

In this section, we apply our data auditing method to detect unau-

thorized use of data in foundation models. Foundation models are a

class of large, deep neural networks for general-purpose use that are

pretrained on large-scale unlabeled data by unsupervised learning

or self-supervised learning [6, 12, 18, 52–54, 70]. Examples of foun-

dation models include visual encoders trained by self-supervised

learning (e.g., SimCLR [12]), large language models (LLMs) (e.g.,

ChatGPT [53]), and multimodal models (e.g., CLIP [52]). These

models can be used as backbones in various ML tasks, e.g., image

classification [16, 25], object detection [83], sentiment analysis [51],

text generation [71], and question answering [18], by being fine-

tuned on small datasets for these tasks.

We studied the effectiveness of our proposed method on auditing

data-use in foundation models by considering three case studies: a

visual encoder trained by SimCLR [12], Llama 2 [70], and CLIP [52].

6.1 Visual Encoder

We consider visual encoder, which is a type of foundation model

used to learn the general representations of images. A visual en-

coder can be used as a feature extractor to extract features of images

in many vision recognition tasks, e.g., image classification and ob-

ject detection. A visual encoder is an ML model that takes as input

an image and outputs its representation as a feature vector. It is
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acc%
cg cḡ c̄g c̄ḡ

DSR 𝑄
𝑀

DSR 𝑄
𝑀

DSR 𝑄
𝑀

DSR 𝑄
𝑀

No adaptive attack 74.29 20/20 0.19% 20/20 0.20% 20/20 0.59% 20/20 0.60%

Masking output

Top5 74.29 20/20 0.21% 20/20 0.21% - - - -

Top1 74.29 20/20 0.24% 20/20 0.24% - - - -

MemGuard 74.29 20/20 1.57% 20/20 1.65% - - - -

Memorization reduction

DP(𝜎 = 0.001) 70.01 20/20 0.65% 20/20 5.17% 20/20 0.83% 20/20 3.67%

DP(𝜎 = 0.002) 64.11 20/20 3.98% 1/20 9.99% 20/20 5.74% 2/20 9.97%

DP(𝜎 = 0.003) 59.25 18/20 8.14% 0/20 10.00% 10/20 9.34% 0/20 10.00%

EarlyStop(60) 73.50 20/20 0.25% 20/20 0.28% 20/20 0.51% 20/20 0.63%

EarlyStop(40) 69.15 20/20 0.70% 20/20 3.27% 20/20 1.48% 20/20 3.29%

EarlyStop(20) 67.10 20/20 3.18% 1/20 10.00% 20/20 5.68% 3/20 9.51%

AdvReg 60.18 20/20 0.74% 20/20 1.78% 20/20 0.91% 20/20 2.90%

Other attacks

PairDetect 74.29 20/20 0.20% 20/20 0.20% 20/20 0.64% 20/20 0.74%

NoTrainAug 61.59 20/20 0.19% 20/20 0.30% 20/20 0.51% 20/20 0.85%

Gaussian(𝜎 = 10) 70.64 20/20 0.40% 20/20 0.45% 20/20 1.72% 20/20 2.08%

Gaussian(𝜎 = 20) 65.97 20/20 1.02% 20/20 1.56% 20/20 5.31% 19/20 7.12%

Gaussian(𝜎 = 30) 62.10 20/20 4.03% 20/20 6.64% 16/20 8.93% 6/20 9.90%

MarkPerturb 70.49 20/20 0.52% 20/20 0.56% 20/20 3.00% 20/20 3.29%

Table 5: Robustness of our proposed method on CIFAR-100 against countermeasures/adaptive attacks. The most effective

countermeasure to degrade the detection performance of our method is differential privacy, but it also destroyed the utility of

the ML model. All results were averaged over 20 experiments.

trained by self-supervised learning (e.g., SimCLR [12]) on unla-

beled data (i.e., each instance in 𝒟 is an image). The loss function

used by SimCLR is Normalized Temperature-scaled Cross Entropy

(NT-Xent) [12].

6.1.1 Score Function. We defined the score function 𝑔𝑓 used in the

detection algorithm targeting the self-supervised visual encoder

using a black-box membership inference method introduced in En-

coderMI [39]. The intuition behind it is that the visual encoder 𝑓

generates more similar feature vectors of two perturbed versions

of a training sample than of a non-training sample [39]. In other

words, if 𝑥
𝑏𝑖
𝑖

was used in training 𝑓 while 𝑥
1−𝑏𝑖
𝑖

was not, then

cosim(𝑓 (𝑥𝑏𝑖
𝑖,1
), 𝑓 (𝑥𝑏𝑖

𝑖,2
)) > cosim(𝑓 (𝑥1−𝑏𝑖

𝑖,1
), 𝑓 (𝑥1−𝑏𝑖

𝑖,2
)) where cosim

denotes the cosine similarity, 𝑥
𝑏𝑖
𝑖,1

and 𝑥
𝑏𝑖
𝑖,2

are two perturbed ver-

sions of 𝑥
𝑏𝑖
𝑖
, and 𝑥

1−𝑏𝑖
𝑖,1

and 𝑥
1−𝑏𝑖
𝑖,2

are two perturbed versions of

𝑥
1−𝑏𝑖
𝑖

. As such, we defined the score function 𝑔𝑓 as follows: given

an input image, we first randomly generate 𝐾 of its perturbed ver-

sions (e.g., by random cropping and flipping), and then obtain 𝐾

feature vectors using the perturbed images as inputs to the target

visual encoder; second, we compute the cosine similarity of every

pairs of feature vectors and return the sum of cosine similarities as

the score. The score function 𝑔𝑓 is summarized in the full paper [28,

App. C].

6.1.2 Experimental Setup.

Datasets. We used three image benchmark datasets: CIFAR-10,

CIFAR-100, and TinyImageNet, as introduced in Sec. 5.2.

Marking setting. We followed the setup introduced in Sec. 5.2 to

generate the marked dataset, without labels needed. Our using the

same marking setup indicates that the application of our marking

algorithm is agnostic to the ML task.

Training setting. We followed the previous work (e.g., [12]) to

train theMLmodel by SimCLR, which takes as inputs a base encoder

and a projection head (i.e., a multilayer perceptron with one hidden

layer). We used ResNet18 as the default architecture of the base

encoder. The SimCLR algorithm works as follows: at each training

step, we randomly sampled a min-batch (i.e., of size 512) of images

from the training set and generated two augmented images from

each sampled instance by random cropping and resizing, random

color distortion, and random Gaussian blur. The parameters of the

base encoder and the projection head were updated by minimizing

the NT-Xent loss among the generated augmented images, i.e.,

maximizing the cosine similarity between any positive pair (i.e.,

two augmented images generated from the same sampled instance)

and minimizing the cosine similarity between any negative pair (i.e.,

two augmented images generated from different sampled instances).

We used SGD with Nesterov Momentum [67] of 0.9 and a weight

decay of 10
−6

as the optimizer, and applied a cosine annealing

schedule [41] to update the learning rate, which was set to 0.6

initially. We trained the base encoder and the projection head by

1,000 epochs as the default, and returned the base encoder as the

visual encoder 𝑓 deployed by the ML practitioner.

Detection setting. In the detection algorithm and the score func-

tion, we set 𝛼 = 0.025, 𝑝 = 0.05, and 𝐾 = 64 as the default.

Metrics. We used the following metrics for evaluation:

• Test accuracy of downstream classifier (acc): acc is the frac-
tion of test samples that are correctly classified by a downstream

classifier that uses the visual encoder as the backbone and is
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fine-tuned on a small set of data. We followed previous work

(e.g., [12]) to fine-tune the downstream classifier on 10% of the

clean training samples with their labels (i.e., 5,000 clean CIFAR-10

data, 5,000 clean CIFAR-100 data or 10,000 clean TinyImageNet

data). A higher acc indicates a better performance of the visual

encoder.

• Detection success rate (DSR): please see the description of this

metric in Sec. 5.2.

• Ratio between the number of queried published data and

the total number of training samples (
𝑄
𝑀
): please see the

description of this metric in Sec. 5.2.

6.1.3 Experimental Results. The overall experimental results on

three visual benchmarks are presented in Table 6. As shown in

Table 6, our proposed method achieved highly effective detection

performance on auditing data in visual encoders, yielding a 19/20

DSR for CIFAR-10 and a 20/20 DSR for CIFAR-100 and TinyIma-

geNet.

DSR 𝑄
𝑀

CIFAR-10 19/20 7.12%

CIFAR-100 20/20 7.28%

TinyImageNet 20/20 7.82%

Table 6: Results on auditing data in visual encoder trained

by SimCLR, under an upper bound of 𝑝 = 0.05 on the false-

detection rate. 10% of training samples were marked. All

results were averaged over 20 experiments.

We investigated the impact of training epochs of visual encoder

on the detection performance of the auditing method. We trained

visual encoders on marked CIFAR-100 by epochs of 200, 400, 600,

800, and 1,000 (1,000 is the default number of epochs). As shown

in Fig. 2, when we trained the encoder with a smaller number

of epochs, the encoder memorized the training samples less and

thus we had a lower DSR. However, training encoder with fewer

epochs yielded modestly lower encoder utility, measured by the

test accuracy of the downstream classifier (i.e., acc). This suggests
that early stopping (i.e., training with a small number of epochs)

can degrade the detection performance of our method, but cannot

completely alleviate the trade-off between evading detection and

encoder utility.

6.2 Llama 2

In this section, we study the application of data auditing to a large

language model (LLM). An LLM is a type of large ML model that

can understand and generate human language. Here we consider

Llama 2 [70] published byMeta AI in 2023, which is an open-sourced

LLM with notable performance and, more importantly, is free for

research [70]. Specifically, Llama 2 is a family of autoregressivemod-

els that generate text by predicting the next token based on the pre-

vious ones. They are designed with a transformer architecture [71]

with parameters ranging from 7 billion to 70 billion, and pretrained

and fine-tuned on massive text datasets containing trillions of to-

kens collected from public sources [70]. Considering Llama 2 as

the ML model 𝑓 in Eq. (1), each instance in the training dataset
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Figure 2: The impact of epochs on the detection performance

and encoder utility. The evaluated encoder was trained by

SimCLR on marked CIFAR-100 (10% are marked). The results

are averaged over 20 experiments.

or fine-tuning dataset is a sequence of tokens (e.g., by a tokenizer

defining a token vocabulary 𝒱) of length 𝐿, i.e., 𝑎𝑖 = 𝑐1

𝑖
𝑐2

𝑖
. . . 𝑐𝐿

𝑖

(𝑐𝑙
𝑖
∈ 𝒱 for any 𝑙 ∈ {1, 2, . . . , 𝐿}) and the loss function is defined as:

ℓ (𝑓 , 𝑎𝑖 ) =
𝐿∑︁
𝑙=1

− log

[
𝑓 (𝑐1

𝑖 . . . 𝑐
𝑙−1

𝑖 )
]
𝑐𝑙
𝑖
, (4)

where

[
𝑓 (𝑐1

𝑖
. . . 𝑐𝑙−1

𝑖
)
]
𝑐𝑙
𝑖
denotes the 𝑐𝑙

𝑖
-th component of vector

𝑓 (𝑐1

𝑖
. . . 𝑐𝑙−1

𝑖
).

It is challenging to conduct lab-level experiments on auditing

data in a pretrained Llama 2 because pretraining Llama 2 on a

massive text corpus needs a huge amount of computing resources.

Therefore, instead of applying our data auditing method to the

pretrained Llama 2, we mainly focus on a Llama 2 fine-tuning

setting.

6.2.1 Score Function. We used the negative loss, a simple and ef-

fective membership inference metric [8], as the score function.

Formally, given a text sample 𝑥
𝛽

𝑖
, we have 𝑔𝑓 (𝑥𝛽

𝑖
) = −ℓ (𝑓 , 𝑥𝛽

𝑖
),

where ℓ (𝑓 , 𝑥𝛽
𝑖
) is defined in Eq. (4).

6.2.2 Experimental Setup.

Datasets. We used three text datasets: SST2 [62], AG’s news [82],

and TweetEval (emoji) [48]:

• SST2: SST2 is a dataset containing sentences used for sentiment

analysis (i.e., there are 2 classes, “Negative” and “Positive”). In

SST2, there are 67,300 training samples and 872 validation sam-

ples that we used for testing.

• AG’s news: AG’s news is a dataset containing sentences parti-

tioned into 4 classes, “World”, “Sports”, “Business”, and “Sci/Tech”.

In AG’s news, there are 120,000 training samples and 7,600 test

samples.

• TweetEval (emoji): TweetEval (emoji) is a dataset containing

sentences partitioned into 20 classes. In TweetEval (emoji), there

are 100,000 training samples and 50,000 test samples.

Marking setting. In each experiment, we uniformly at random

sampled a subset of training samples of a dataset as 𝒳 (e.g., |𝒳 | =
10,000). From 𝒳 , we uniformly at random sampled 𝑁 = 1,000 sen-

tences {𝑥𝑖 }𝑁𝑖=1
assumed to be owned by a data owner.We applied our

data marking algorithm to generate the published data {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

and
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the unpublished data {𝑥1−𝑏𝑖
𝑖
}𝑁
𝑖=1

for {𝑥𝑖 }𝑁𝑖=1
. In Eq. (2), we defined

the distance function by Levenshtein distance [34] and the utility

difference function by semantic dissimilarity [18]. Instead of solving

Eq. (2) exactly, we approximated it by using a paraphraser model

(e.g., [72]) to generate two semantically similar but distinct sen-

tences. We set
ˆ𝒳 = {𝑥𝑏𝑖

𝑖
}𝑁
𝑖=1

. As such, we constituted the training

dataset collected by the ML practitioner as 𝒟 = (𝒳 \ {𝑥𝑖 }𝑁𝑖=1
) ∪ ˆ𝒳 ,

labeled correctly (i.e., using their original labels).

Fine-tuning setting. Weused Llama-2-7b-chat-hf Llama 2model

released in Hugging Face
4
as the base model. We used QLoRA [17]

to fine-tune the Llama 2 model on the marked dataset, where we

applied AdamW [42] as the optimizer that was also used to pretrain

Llama 2 by Meta AI [70]. We fine-tuned the model with a learning

rate of 2 × 10
−4
. The fine-tuned Llama 2 is the ML model deployed

by the ML practitioner.

Detection setting. In the detection algorithm, we set 𝛼 = 0.025

and 𝑝 = 0.05.

Metrics. We used the following metrics to evaluate methods:

• Test accuracy (acc): acc is the fraction of test samples that

were correctly classified by the fine-tuned Llama 2. A higher acc
indicates a better performance of the fine-tuned model.

• Detection success rate (DSR): please see the description of this

metric in Sec. 5.2.

• Ratio between the number of queried published data and

the total number of training samples (
𝑄
𝑀
): please see the

description of this metric in Sec. 5.2.

6.2.3 Experimental Results. The results on applying our auditing

method to the fine-tuned Llama 2 on three marked datasets are

presented in Table 7. As shown in Table 7, when we tested the de-

tection method on the pretrained Llama 2 (i.e., in the row of “Epoch

0”), we obtained a DSR of 0/20, indicating that the Llama 2 is not

pretrained on the published data. If true, this result empirically

confirms the bounded false-detection rate of our method. When

we fine-tuned Llama 2 on the marked datasets by only 1 epoch, the

accuracy of the fine-tuned Llama 2 model increased from 63.07% to

95.33% for SST2, from 28.41% to 91.69% for AG’s news, and from

16.58% to 40.49% for TweetEval. At the same time, our method

achieved a DSR of 20/20 on the fine-tuned model, which demon-

strates the effectiveness of our method. Fine-tuning Llama 2 with

more epochs increased the accuracy slightly (e.g., from 95.33% to

95.56% for SST2, from 91.69% to 92.33% for AG’s news, and from

40.49% to 43.03% for TweetEval) but leads to a much lower
𝑄
𝑀
. This

is because fine-tuning the model for more epochs memorizes the

fine-tuning samples more and the detection method needs fewer

queries to the model to detect their use.

6.3 CLIP

In this section, we apply data auditing to a multimodal model [52,

54]. A multimodal model is a type of ML model that can understand

and process various types of data, e.g., image, text, and audio. We

considered Contrastive Language-Image Pretraining (CLIP) [52],

developed by OpenAI in 2021, as our study case. CLIP is a vision-

language model consisting of a visual encoder and a text encoder

4
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

used to extract the features of the input image and text, respectively.

It takes as inputs an image and a text and returns their correspond-

ing feature vectors. CLIP is known for its notable performance in

image-text similarity and zero-shot image classification [52]. As

in Eq. (1), each instance is an image with its caption (i.e., a pair of

image and text) and the loss function is the cross entropy loss used

to push matched images and texts closer in the shared latent space

while pushing unrelated pairs apart.

The CLIP model released by OpenAI was pretrained on 400

million image and text pairs collected from the Internet [52]. While

it is challenging to pretrain such a large model on a huge number

of pairs using lab-level computing resources, we aim to fine-tune

the CLIP on a small (marked) dataset and test our auditing method

on the fine-tuned CLIP.

6.3.1 Score Function. We defined the score function 𝑔𝑓 by a re-

cently proposed membership inference on CLIP [31]. It uses cosine

similarity between the two feature vectors returned by the CLIP

model as the inference metric [31]. Formally, given an image-text

sample 𝑥
𝛽

𝑖
= ( ¤𝑥𝛽

𝑖
, ¥𝑥𝛽

𝑖
), we have 𝑔𝑓 (𝑥𝛽

𝑖
) = cosim(𝑓 ′ ( ¤𝑥𝛽

𝑖
), 𝑓 ′′ ( ¥𝑥𝛽

𝑖
)),

where 𝑓 ′ and 𝑓 ′′ are the visual encoder and text encoder of 𝑓 , and

cosim denotes cosine similarity.

6.3.2 Experimental Setup.

Datasets. We used the Flickr30k [80] dataset, which contains

more than 31,000 images with captions. We used the first 25,000 as

training samples and the remaining as test samples.

Marking setting. In each experiment, we uniformly at random

sampled 𝑁 images with captions from training samples 𝒳 . We set

𝑁
|𝒳 | = 10%, i.e., 𝑁 = 2,500. We assumed these 𝑁 captioned images

are owned by a data owner. We applied our data marking algorithm

to generate the published data {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

and the unpublished data

{𝑥1−𝑏𝑖
𝑖
}𝑁
𝑖=1

for {𝑥𝑖 }𝑁𝑖=1
. In themarking algorithm, given a raw datum

(i.e., an image with its caption), we followed the marking setting in

Sec. 5.2 to generate twomarked images and then randomly sampled

one with its original caption as the published data, keeping the

other as the unpublished data. We set
ˆ𝒳 = {𝑥𝑏𝑖

𝑖
}𝑁
𝑖=1

. As such, we

constituted the training dataset collected by the ML practitioner as

𝒟 = (𝒳 \ {𝑥𝑖 }𝑁𝑖=1
) ∪ ˆ𝒳 .

Fine-tuning setting. We used the CLIP model released by Ope-

nAI
5
as the base model. We fine-tuned the CLIP model on the

marked dataset 𝒟, following the pretraining algorithm used by

OpenAI [52]. We used a batch size of 256 and applied Adam [30]

with a learning rate of 10
−5

as the optimizer. The fine-tuned CLIP

including the visual encoder and text encoder is the ML model

deployed by the ML practitioner.

Detection setting. In the detection algorithm, we set 𝛼 = 0.025

and 𝑝 = 0.05.

Metrics. We used the following metrics for evaluation:

• Test accuracy (acc): We randomly divided the test samples into

batches (each is 256 at most). For each batch, we measured the

fraction of texts correctly matched to images and the fraction

of images correctly matched to texts, by the (fine-tuned) CLIP

5
https://github.com/openai/CLIP
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acc% DSR 𝑄
𝑀

acc% DSR 𝑄
𝑀

acc% DSR 𝑄
𝑀

Epoch 0 63.07 0/20 10.00% 28.41 0/20 10.00% 16.58 0/20 10.00%

Epoch 1 95.33 20/20 2.87% 91.69 20/20 2.97% 40.49 20/20 3.89%

Epoch 2 95.26 20/20 0.22% 91.68 20/20 0.23% 41.88 20/20 0.26%

Epoch 3 95.56 20/20 0.12% 92.33 20/20 0.12% 43.03 20/20 0.12%

Table 7: Overall performance of our proposed method on Llama 2 fine-tuned

on marked text datasets (10% of fine-tuning samples were marked) for different

numbers of epochs, under an upper bound of 𝑝 = 0.05 on the false-detection rate.

All results were averaged over 20 experiments.

acc% DSR 𝑄
𝑀

Epoch 0 80.73 0/20 10.00%

Epoch 1 88.44 20/20 6.99%

Epoch 2 88.53 20/20 2.31%

Epoch 3 88.53 20/20 1.21%

Table 8: Overall performance of our pro-

posed method on CLIP fine-tuned on

marked Flickr30k (10% of fine-tuning sam-

ples were marked) for different numbers

of epochs, under an upper bound of 𝑝 =

0.05 on the false-detection rate. All results

were averaged over 20 experiments.

model. We used the fraction of correct matching averaged over

batches as the test accuracy acc.
• Detection success rate (DSR): please see the description of this

metric in Sec. 5.2.

• Ratio between the number of queried published data and

the total number of training samples (
𝑄
𝑀
): please see the

description of this metric in Sec. 5.2.

6.3.3 Experimental Results. The overall performance of our data

auditing method applied in fine-tuned CLIP is presented in Table 8.

As shown in Table 8, when we audited the CLIP model released

by OpenAI, we obtained a 0/20 DSR, which indicates that the pre-

trained CLIP model was not trained on our published data. If it is

true that the CLIP model is not, this result empirically confirms

the upper bound on the false-detection rate of our method. When

we fine-tuned the CLIP model by the marked Flickr30k dataset,

acc increased from 80.73% to 88.44% while DSR increased to 20/20,

which demonstrates that our method is highly effective to detect

the use of published data in the fine-tuned CLIP even when it is

fine-tuned by only 1 epoch. When we fine-tuned the model for

more epochs (e.g, 3 epochs), acc did not significantly increase. With

more fine-tuning epochs, we still got a DSR of 20/20 but a smaller

𝑄
𝑀
. Fine-tuning by more epochs made the model memorize the

fine-tuning samples more and thus we needed fewer queries to the

model in the detection step.

7 Discussion and Limitations

7.1 Minimal Number of Marked Data Required

in Auditing

The minimal number of marked (published) data for which our

method can detect its use depends on two factors: the memoriza-

tion of training data by the ML model and the effectiveness of (con-

trastive) membership inference. For example, as shown in Sec. 5.3,

the CIFAR-100 and TinyImagenet classifiers memorized their train-

ing samples more than the CIFAR-10 classifier, and so the data

owner needed much less marked data to audit for data use in the

CIFAR-100 and TinyImagenet classifiers than in the CIFAR-10 clas-

sifier. The effectiveness of (contrastive) membership inference also

affects the minimal number of data items for which our method can

detect use, i.e., a stronger membership inference method will allow

our method to detect the use of fewer data. Therefore, we believe

that any developed stronger membership inference methods in the

future will benefit our technique.

7.2 Adaptive Attacks to Data Auditing Applied

in Foundation Models

Once the ML practitioner realizes that the data auditing is being

applied, he might utilize adaptive attacks aiming to defeat the au-

diting method when training his foundation models. Some adaptive

attacks we considered for the image classifier (see Sec. 5.3.3) like

early stopping, regularization, and differential privacy, can be used

to mitigate the memorization of training/fine-tuning samples of

foundation models. Therefore, these adaptive attacks could degrade

the effectiveness or efficiency of our detection method. In addition,

there are some methods used to mitigate membership inference

in LLMs, e.g., model parameter quantization/rounding [50]. Any

defense against membership inference in foundation models can be

used as an adaptive attack. However, the application of these adap-

tive attacks will decrease the utility of the foundation models [50].

Since developers of foundation models usually aim to develop

a powerful foundation model, they might hesitate to apply these

adaptive methods since they will lose some model utility. As such,

our data auditing method can pressure those developers of large

foundation models to seek data-use authorization from the data

owners before using their data.

7.3 Cost of Experiments on Foundation Models

In our experiments on auditing data use in foundation models

(e.g., Llama 2 in Sec. 6.2 and CLIP in Sec. 6.3), we only considered

model fine-tuning due to our limited computing resources. From

the results shown in Sec. 6.2.3 and Sec. 6.3.3, our proposed method

achieves good performance on detecting the use of data in fine-

tuning Llama 2 and CLIP. We do believe that the effective detection

performance of our method can be generalized to other types of

foundation models and the settings where we audit the use of data

in pretrained foundation models. This is because large foundation

models memorize their training samples and thus are vulnerable

to membership inference and other privacy attacks, as shown by

existing works (e.g., [8, 31, 39, 50, 59]).
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7.4 Toward Verifiable Machine Unlearning

One direct application of our data-auditing method is to verify

machine unlearning. Machine unlearning is a class of methods that

enable an ML model to forget some of its training samples upon the

request of their owners. While there are recent efforts to develop

machine unlearning algorithms [5], few focus on the verification of

machine unlearning, i.e., verifying if the requested data has indeed

been forgotten by the target model [63]. Our proposed method can

be a good fit for verifying machine unlearning. Specifically, each

data owner utilizes our marking algorithm to generate published

data and hidden data. Upon the approval of data owners, a ML

practitioner collects their published data and trains an ML model

that can be verified by the data owner using our detection algorithm.

If a data owner sends a request to the ML practitioner to delete her

data from the ML model, the ML practitioner will utilize a machine

unlearning algorithm to remove her data from his ML model and

then inform the data owner of the successful removal. The data

owner can utilize the detection algorithm to verify if the updated

ML model still uses her published data. Our results in Sec. 5.3.1

show that our auditing method remains highly effective even when

multiple data owners audit their data independently.

7.5 Proving a Claim of Data Use

Though our technique enables a data owner to determine whether

an ML practitioner used her data without authorization, it alone

does not suffice to enable the data owner to convince a third party.

To convince a third party, the data owner should commit to {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

and {𝑥1−𝑏𝑖
𝑖
}𝑁
𝑖=1

prior to publishing the former, e.g., by escrowing a

cryptographic commitment to these data with the third party. Upon

detecting use of her data by an ML practitioner, the data owner

can open these commitments to enable the third party perform our

hypothesis test on the ML model itself, for example. To enable a

third party to replicate the data-owner’s test result exactly, the data

owner could provide the seed to a random number generator to

drive the sequence of selections (WoR) from {𝐼1, . . . , 𝐼𝑁 } in the test

(see Sec. 4.2.1). However, to protect an ML practitioner from being

framed by a malicious data owner, the data owner should be unable

to freely choose this seed; e.g., it could be set to be a cryptographic

hash of the commitments to {𝑥𝑏𝑖
𝑖
}𝑁
𝑖=1

and {𝑥1−𝑏𝑖
𝑖
}𝑁
𝑖=1

.

8 Conclusion

In this paper, we proposed a general framework allowing a data

owner to audit ML models for the use of her data. Our data auditing

framework leverages any membership-inference technique, folding

it into a sequential hypothesis test for which we can quantify the

false-detection rate. Through evaluations of our proposed frame-

work in the cases of an image classifier and various foundation

models, we showed that it is effective, robust, and general across

different types of ML models and settings. We thus believe our

proposed framework provides a useful tool for data owners to audit

ML models for the use of their data.
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