

SC-W 2023, November 12–17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simone�i, Andrew Hennessee, Ben Tovar, and Douglas Thain

Figure 1: TaskVine Architecture

An application uses the TaskVine API to specify the relationships of

tasks and data. The TaskVine Manager program coordinates multiple

workers running in a cluster to manage local storage, send and receive

files, execute tasks, and report completion.

as archival sources of software and data, which are transformed as
needed until ready for task consumption. A TaskVine workflow is
executed on a set of workers that exploit the local storage, mem-
ory, and compute capabilities of cluster nodes. A manager process
schedules data items and tasks to the workers, seeking to carefully
manage the limited storage and network resources of the cluster.
Frequently used items such as software packages and reference
datasets are kept within the cluster for reuse across similar work-
flows, thus removing substantial load from the shared filesystem.

In this paper, we present the architecture and programming
model of TaskVine, and detail the key mechanisms and strategies
for managing data assets within the cluster: data transformation
from archival sources, storage management on worker nodes, net-
work management across the cluster, and the serverless computing
model. We describe how TaskVine has been applied to four dis-
tinct applications: high throughput genome search (BLAST), data
analysis in high energy physics (TopEFT), AI-guided molecular
simulation (Colmena), and machine learning model optimization
(BGD). In each case, we demonstrate how these workflows exploit
the TaskVinemechanisms tomake effective use of in-cluster storage
resources.

2 ARCHITECTURE

2.1 Overview

Figure 1 shows the general architecture of TaskVine. TaskVine
seeks to effectively manage the local storage on each node in a
cluster, arranging for tasks to execute in close proximity to the
data that they consume and produce. From a user’s perspective,
they declare the data objects and tasks that comprise a workflow,
and they are notified as tasks complete and outputs are produced.
Wherever possible, data is left in place where it is created, moved
only as needed to satisfy replication or output constraints, and
reused between common tasks as much as possible. The scheduling
objective is to replicate and place data first, and then schedule tasks
within the constraints of available data.

Each TaskVine worker is responsible for managing the resources
on a single node: CPUs, GPUs, memory, and storage.Worker storage

Figure 2: Example Workflow

A TaskVine workflow consumes input datasets from archival sources

or a shared filesystem, produces outputs to be consumed by other

tasks, and then only places final outputs back in a reliable shared

filesystem. Common inputs (like software S) are efficiently replicated

while intermediate files (like file T) exist only in ephemeral storage.

(whether HDD, SSD, or NVMe) is organized as a flat cache of data
objects, each with a unique name assigned by the manager. The
worker tracks the size and resources available in the cache, and
informs the manager of every status change of interest. To prevent
cached files from using up all the disk space of a worker’s local
filesystem, the manager tracks which data belongs to which task
and can either delete or relocate that data to another worker, if
appropriate. The worker also manages a queue of pending transfers
assigned by the manager and can either fetch data from remote
data services or from peer workers. Transfers are supervised by the
manager to avoid contention. Distributing assets between nodes
resembles the construction of a peer-to-peer network. File transfer
protocols such as BitTorrent have been evaluated on HPC clusters
with mixed results [16]. One conclusion from this study is that
the unmanaged transfers lead to hot spots in the network, while
"fairness" measures make little sense in a cluster of cooperative
nodes. As we will show, managed peer-to-peer transfers result in a
stable and performant TaskVine system.

Each task in TaskVine represents a unit of execution that must be
scheduled with respect to the data that it consumes and produces.
To manage these relationships, TaskVine requires users to explic-
itly bind each task to its inputs and outputs. When data sources
are used repeatedly by similar tasks, multiple immutable replicas
are made across workers, and then implicitly shared by all tasks
within a given worker. Tasks come in several varieties: A plain
Task indicates a Unix command line executed in a private sandbox
directory; a PythonTask indicates an invocation of a function
accompanied by a self-contained execution environment; a server-
less FunctionCall indicates a remote invocation of a separately
defined and executed LibraryTask. Each of these task modalities
may be mixed within a single workflow. As we show below, an
application can combine together traditional executable programs
with lightweight serverless invocations in one workflow.

Reliable high-throughput execution of large workflows requires
efficient resource management. Each task is defined to consume a
fixed quantity of resources (cores, memory, disk) which are moni-
tored and enforced at execution time. If a task exceeds the declared
allocation, it is returned to the manager. Depending on the user’s
configuration, the manager will either execute it elsewhere with a
larger allocation, or return it to the user as a failure. This permits
the worker to reliably "pack" a large number of small concurrent

✶�✁�

TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows SC-W 2023, November 12–17, 2023, Denver, CO, USA

1 import taskvine as vine

2 m = vine.Manager()

3 blast_url = m.declare_url("https://.../blast.tar.gz")

4 blast = m.declare_untar(blast_url,cache=worker)

5

6 land_url = m.declare_url("https://.../landmark.tar.gz")

7 land = m.declare_untar(land_url,cache=workflow)

8

9 for i in range(1000):

10 query = m.declare_buffer(make_query(i),cache=task)

11 t = vine.Task("blast/bin/blast -db landmark -q query")

12 t.add_input(query, "query")

13 t.add_input(blast, "blast")

14 t.add_input(land, "landmark")

15 t.add_env("BLASTDB","landmark")

16 m.submit(t)

Figure 3: Example TaskVine Application

A brief example in which 1000 tasks are generated. Each task shares

a common software package (blast) and dataset (land) provided by

archival sources, and also has a unique buffer input (query) provided

by the manager. All three are presented as files in the task sandbox.

tasks on to a node at once without overcommitting and risking the
failure of all tasks. In a similar way, storage resources are enforced
at the worker and controlled by the manager, including the distri-
bution and assignment of data, cache admittance and eviction of a
worker’s persistent cache.

2.2 Components

Figure 2 shows an example of a TaskVine workflow, which con-
sists of an application submitting tasks to be deployed by a single
manager and executed on a pool of workers.

The application is a program written using the TaskVine API
which declares the files and tasks that form the workflow. Each
source data item must be declared to the manager, indicating its
original source. Each task to be executed must also be declared
to the manager with the necessary input and output files to be
attached to the task. Figure 3 shows an example of constructing
a simple workflow consisting of software and data drawn from
an archival source in order to run 1000 tasks that each perform
queries against a BLAST [24] genomics database. If known, the
entire workflow can be stated by the user all at once, or the task
graph can be built incrementally, based on outside information
or results returned from completed tasks. The TaskVine API can
be used to write custom applications in C or Python or as a lower
execution layer for a higher level workflow system, such as Parsl [7]
or Coffea [31].

The manager directs the overall execution by accepting the
workflow definition, dispatching tasks to workers, directing file
transfers to/fromworkers, collecting results, and performing garbage
collection. As a general rule, the manager directs all policy deci-
sions, while the worker provides the mechanisms for execution.
For example, the manager dispatches tasks to specific workers,
which execute them asynchronously; the manager directs files to
specific workers, but the workers transfer them asynchronously.
The manager collects reports from each worker about its available

Figure 4: Worker Storage Management

Each worker maintains a cache of stored objects, each with a

unique generated name. Remote assets are downloaded on demand

when a task requires them. Each task is executed in a sandbox

that maps unique names into a local namespace. Task)1 reads

url-sd698d as data.tar.gz and produces output.txt which be-

comes temp-xyz123. Task)2 later consumes that files as input.txt.

resources, running tasks, cached data, and status of file transfers. As
a result, the manager has a detailed picture of the distributed state
of the system to make informed decisions, such as placing tasks
based on data locality, scheduling transfers to avoid contention,
and duplicating items for reliability.

The worker receives instructions from the manager to execute
tasks in isolation, manage local storage, and perform file transfers
asynchronously. Figure 4 shows the basic structure of a worker. A
cache directory contains all of the data objects stored on local disk,
each with a unique cache name is generated by the manager. Files
to be transferred from remote sources are held in a pending state
and downloaded by the worker to satisfy task needs. Each task is
executed in a sandbox with a private namespace, with each input
and output file linked in using a user-readable name. The sandbox is
deleted when the task completes, so the only persistent data objects
are those explicitly extracted from the completed task. Commonly
used and shared data items may persist in the cache to be used
by future task executions, and are only deleted at the manager’s
direction. Workers may join and leave the system dynamically as
cluster resources change availability.

2.3 Data Definitions

All data accessed or produced by a TaskVine workflow must be
explicitly declared by the application, so that it can be properly
transferred and presented to each task. For brevity, each named
data object in TaskVine is known as a File, whether it is a single
file, a large container image, or a directory hierarchy with millions
of entries. A File may be one of several subtypes: a LocalFilewhich
names a file or directory in the shared filesystem of the cluster; a
BufferFile which is a (typically) small unit of literal data in the
application’s memory space; a URLFile which is a reference to a
remote data object; a TempFilewhich names an ephemeral file that

✶�✶�

SC-W 2023, November 12–17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simone�i, Andrew Hennessee, Ben Tovar, and Douglas Thain

1 l = m.create_library("/path/to/opt.py", "optimizer")

2 m.install_library(l)

3

4 for i in range(1000):

5 t = vine.FunctionCall("optimizer", "gradient", i)

6 m.submit(t)

Figure 5: Serverless Task Declaration

This application creates a Library object by giving the path to a

Python module and naming it optmizer. A FunctionCall task names

the Library, a function within the library, and the arguments. The

task is then dispatch to invoke the deployed Library on a worker.

1 def declare_xrootd(url, proxy):

2 t = vine.Task("xrdcp {} output".format(url))

3 t.add_input(proxy,"proxy509.pem")

4 t.set_env("X509_USER_PROXY","proxy509.pem")

5 t.add_output(m.declare_temp(),"output"))

6 return m.declare_mini_task(t)

7

8 p = declare_file("proxy.file",cache=task)

9 f = declare_xrootd("xrootd://server/path",p)

Figure 6: MiniTask Definition

A MiniTask defines a program to be executed on demand to generate

a file at the worker. This example shows a MiniTask defined to add

support for XRootD data transfers with user provided credentials.

exists only temporarily within the cluster and is never materialized
outside. In the case of remote files such as URLFiles and TempFiles,
simply declaring the file does not mean it exists yet at the worker. In
these cases, the worker must fetch the URL or create the temporary
file sometime after the task is sent by the manager. Therefore, when
the worker does acquire the file, it will send an asynchronous cache-
update message to inform the manager that the file is present for
scheduling purposes.

TaskVine files are immutable: once created (or transferred), their
contents do not change, thus allowing file replication to needed
tasks without further consistency checks. A given file may exist
on multiple workers simultaneously as needed to satisfy tasks. As
described below, the manager generates a unique name for each
file to ensure that common files are discoverable and reusable. The
application may offer the manager cache hints about the expected
lifetime of each file. A cache lifetime of task indicates that the
file will not be consumed after the task completes, and it can be
discarded immediately. A cache lifetime of workflow (the default)
indicates that the file may be re-used multiple times during the
current workflow run, but may be deleted at its conclusion. A
cache lifetime of worker indicates that the file will be used again
by future workflows, and may be kept on the worker as long as
resources are available. This is typically used for common software
packages and reference datasets, and requires additional effort by
the manager to generate persistent names. In Figure 3, note that
the blast software has a cache hint of worker because it can be
used by many different workflows, while the per-task query text is
task, because it is needed by that task only.

2.4 Task Definitions

A plain Task describes a Unix program and command line argu-
ments to be executed in a private namespace by a worker. All data
needed by the task must be explicitly described: each input file that
it requires must be added with add_input and connected to a data
source. Every output file that it produces must be described with
add_output and connected to a data sink. The executable program
and any libraries or other dependencies needed must be delivered
explicitly via input files. (For example, see the invocation of blast
in Figure 3.) If known, the resources needed by the task (cores,
memory, gpus) should also be described so that the manager can
make appropriate placements. A variety of optional details may be
given to each task to modify fault-tolerance, error propagation, re-
source management and monitoring. Several specialized task types
are then derived from this basic abstraction.

APythonTask is a specialization of a plain Task to execute a self-
contained Python code. Rather than invoking a Unix command line,
a PythonTask names a function (in the body of the application) and
arguments to that function. The function code is serialized along
with the needed Python dependencies, which are sent as inputs for
the task. From there, the PythonTask invokes the python interpreter,
loads the necessary data and function code, and executes it. This
relieves the user of some of the complexities of managing the library
environment, keeps them within the Python programming space,
and still makes available all of the other features surrounding task
management.

For many data analysis applications, the overhead of packing,
sending, and setting up execution environments at a worker node
may be a significant fraction of the total runtime. TaskVine ad-
dresses this overhead by providing a serverless computing model
that allows the reuse of execution environments over many short
running tasks. This model consists of two parts: a LibraryTask and
a FunctionCall. A LibraryTask contains arbitrary user-defined
functions, and is "installed" once by the application, and then trans-
parently deployed to workers where it runs continuously. To invoke
the functions in the Library, a FunctionCall is used which replaces
the UNIX command of a regular task with the name of a Library
function to run. Figure 5 shows an example manager program us-
ing the serverless model by creating LibraryTask from a executable
and then creating FunctionCall Tasks to run a function called func-
tion_name included in that Library.

In many cases data and software needs to be prepared or con-
figured in some way on the worker prior to direct use by a task.
This might be as simple as uncompressing a stream with gzip or as
complex as recompiling a package to take advantage of local accel-
erator architectures. We observe that such transformations require
all the abstractions of a task: a command, input files, output files,
and time and resources needed to perform the transformation. And
so, we define aMiniTask to be a task definition that is executed
on demand in order to produce a File object on a worker as needed.
TaskVine provides wrappers for built-in MiniTasks that perform
common operations such as packaging and compression. For ex-
ample, in Figure 3, the declare_untar call indicates a MiniTask
which unpacks the given url and returns the uncompressed output.

MiniTasks provide a natural way of expanding the capabilities
of TaskVine in a precise manner. Figure 6 shows how to define

✶�✶✶

TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 7: Directory Cache Name Merkle Tree

Cache names for files are generated by hashing the contents of a

file. For a directory, we recursively hash the contents of the directory.

A directory’s cache name is generated by its content’s cache names

a MiniTask that adds the capability to transfer input data via the
XRootD [15] system used in high energy physics. A transfer requires
the xrdcp executable to be invoked, along with an X509 proxy
credential provided by the user, and an environment variable set
appropriately. The user naturally desires that the credential should
not be cached indefinitely, but the data so obtained may be. Once
defined this way, the transfer method becomes a precise component
of the workflow: data produced is assigned a unique name, cached
at workers, and shared among tasks like any other file.

3 TASKVINE IMPLEMENTATION

3.1 Environment Management

TaskVine provides the ability for users to provide and manage vary-
ing execution environments at the task level. Task environments
may include specific libraries, containers, databases and more. En-
vironments often require some startup cost usually in the form of
staging files, or linking libraries. In the scenario where tasks are
not sharing environments, this cost of setup becomes a sizeable
amount of the total runtime of a workflow. From TaskVine’s per-
spective, the necessary steps to setup a task’s environment can be
seen as a task itself. This task has a explicit input requirement such
as a tarball or a container. It also requires the command detailing
how the inputs should be prepared. The resulting output is a ready
environment that can be used by multiple tasks. MiniTasks address
this need for an abstraction that properly stages data for tasks.
Aside from TaskVine’s built-in MiniTasks, user’s can declare their
own MiniTasks which sits in a space in between a task and a file.
MiniTasks require users to explicitly detail its command, input files,
and output files. The value returned by a MiniTask is a standard
file object that can be used as an input.

3.2 Storage Management and Naming

Effective storagemanagement is key to the performance of TaskVine.
In many workflows the same data items will be reused many times,
both within the same workflow and across multiple workflow ex-
ecutions. Reuse is both spatial and temporal. Spatially, multiple
tasks running concurrently on the same worker should share the

same immutable input files, thus avoiding unnecessary transfers
and duplicate storage. Temporally, subsequent tasks running on the
same worker should be able to share the prior input files, and where
possible, consume the outputs of prior tasks. Thus, the worker must
have a persistent storage cache that can serve multiple workflows
and minimize the movement of data to/from the worker.

To implement a persistent cache that will serve multiple work-
flows, files within the cache must be named consistently to ensure
the accurate execution of an application. Simple user-visible file
names are not enough: it is all too easy for two applications to give
the name data.txt to different content. Instead, the manager is
responsible for giving a unique cache name to each file. The scope
of this name depends upon the maximum lifetime of the file stated
by the application. Files with cache lifetime of task or workflow

are only visible within the context of a single workflow and will
never be reused across workflows. In this case, the manager inter-
nally generates a random name, and ensures that no two names
within a single run of a workflow collide. These files are automat-
ically deleted at the conclusion of a workflow, thus avoiding the
possibility of polluting a future run that might choose the same
random names. However, files with the cache lifetime of worker

need a perpetually unique cache name, because they are retained
by the worker when a workflow completes, and may be shared
across multiple workflows controlled by distinct managers. Our
general approach is to use content addressable names that are
computed from the content of a file, and therefore consistent across
workflow executions. However, there is some expense to producing
such names, and thus some variation across file types.

A LocalFile sends a local file or directory as input. A plain
file is hashed using the standard MD5 checksum to create a cache
name. For directories, the contents of the directory must be hashed
recursively to create a cache name, as shown in Figure 7. Each file in
the tree is hashed as normal using the MD5 algorithm. Then, each
directory is treated as a small document consisting of the names
of files (and directories) and their metadata. This document is then
hashed to produce a single name for the entire directory.

A BufferFile consists of the content of a memory buffer in the
manager to be sent as an input file. This cache name is computed
by hashing the buffer contents when it is attached to a task.

A URLFile represents a remote URL for the worker to download
asynchronously and make available to a task when needed. This
presents a naming problem because the manager does not have
direct access to the contents of the file, and downloading for that
purpose would harm performance at workflow construction time.
However, the manager is able to retrieve the HTTP header from
the URL and use the file metadata to generate a strong cache name.
In the ideal case, the header already contain an MD5 or SHA-1
checksum and the manager can employ this as the stable cache
name. However, this is common only for libraries and other archival
institutions. Alternatively, the manager will construct a cachename
by combining the URL address with the E-Tag and Last-Modified

elements of the header, and hash those to produce a cache name.
While this does not produce a true content-derived name, these
header elements are guaranteed to change if the content of the URL
changes, and thus avoid any problem of stale data. In the unlikely
event that none of these header fields are present, the manager will
download the file content, and generate a hash from the local copy.

✶�✶✶

SC-W 2023, November 12–17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simone�i, Andrew Hennessee, Ben Tovar, and Douglas Thain

A MiniTask is a file produced on demand by a task specifica-
tion. Because the content of a MiniTask is unknown prior to its
execution, it cannot simply be named by its content. Instead, its
cachename is computed from the Merkle tree of the task specifi-
cation, encompassing the task’s command, resources, and cache
names of its input files computed recursively. In a similar way, A
TempFile is an ephemeral file that is the output of a normal task,
and is also named by computing the hash of the producing task.

3.3 Transfer Management

Decisions about transfer methods and data distribution have a
profound effect on the outcome of a workflow, especially in cold-
start situations where caching cannot yet be utilized. Since data
movement is a direct consequence of scheduling tasks, transfer
management is tightly coupled with the TaskVine scheduler.

In order to provide coordination, the manager must be able to
locate files in the cluster and track the movement of data. Files
are located at workers by the manager through the internal File
Replica Table, which presents a unified view of the cluster stor-
age consisting of the files present at all connected workers. The
movement of data is monitored through the manager’s Current
Transfer Table. Each scheduled file transfer is stored at the man-
ager with a UUID that the worker will respond with in its cache
update message, indicating the transfer has completed. This al-
lows the scheduler to observe how many concurrent connections a
source is supporting, in turn allowing the use of defined scheduling
limits to avoid hotspots.

The user initiates the management of data as soon as they declare
data dependencies for a task. Each declaration creates a type of file
that may be attached to a task. Before the manager dispatches a task
to a worker, it must know the worker is in possession of any input
file dependencies. The manager will send the file to the worker,
or instruct the worker on how to obtain it. It is in this period of
time that the scheduler is offered decisions over task placement
and transfer management.

An effective scheduler in this context must assign data and tasks
to workers while considering several issues that are in inherent
tension. We aim to efficiently reuse data, however we also wish
to duplicate data to increase concurrency. We provide the ability
to use workers as sources of shared input files, yet we must not
abuse a specific source. To address these considerations, we have
developed a conservative scheduling strategy that respects the basic
system design principles as follows:

Tasks are scheduled primarily tomatch the cached files present at
each worker, where a worker who possesses the most dependencies
for a task will be chosen to receive the task. In the case where an
optimal worker is not available, we assign the task to an arbitrary
worker, and move on to scheduling file transfers.

In the case where files are not present on the worker, file trans-
fers are scheduled by the manager shortly before task dispatch. A
task will have a "fixed" source for its input files, such as a remote-
URL or the manager. For every input file in the task, the manager
will consider where the file is currently replicated at other workers
in the system using the File Replica Table. If the file is located on
another worker, and this worker is not currently over the provided

Figure 8: Serverless Execution

A normal task)4 executes alongside a Library Instance !5 and

FunctionCall �6. Library Instance �5 is a Task that brings data assets as

normal, but runs continuously, waiting for invocations. FunctionCall

�6 is invoked by the worker sending the function arguments to Library

Instance !5, which forks and then begins running the already-loaded

code. The results of �6 are returned as a normal Task.

transfer limit, the manager will modify the task description, direct-
ing the target worker to retrieve the file from the new source. This
conservative approach always prioritizes worker transfers over the
original task description. In the case where there is no opportunity
to schedule a worker transfer, we consult the defined limit on con-
current transfers from the original source, being the remote-URL
or the manager. The limits defined on concurrent transfers from
the original source and each worker are configurable by the user.

Future considerations for scheduling optimization include deci-
sions based on task execution time, bandwidth at specific workers,
and the corresponding cost of transferring a dependency over the
network. If a task is short-running, yet it depends on a complex
environment that is created on the worker, it may be better to wait
for a worker to become available that has the dependencies already
in its cache. While scheduling files, we may be presented with a
set of workers who are available to share an input file. Rather than
choosing the first available worker, it may benefit us to collect some
information about previous interactions to select a source that has
a history of high-bandwidth transfers.

3.4 Serverless Computing

In many scientific workflows, similar tasks are executed many
times with slight variations in input parameters. This can result
in an excessive duplication of the same initialization work, such
as starting a container, loading common libraries, or reading a
dataset from storage. In extreme cases, the initialization overhead
can become a significant portion of the overall workflow, as seen
in Figure 9. This problem is amplified on a shared file system when
many tasks access the same files and everything slows to a crawl.

Figure 8 shows the TaskVine serverless [6, 11, 18, 19] computing
model, which enables low latency function invocations alongside
regular tasks. Serverless tasks prevent repeatedly performing ini-
tialization work by creating persistent processes on a worker that
exist over the course of a workflow. The persistent processes mean
that expensive operations, like reading a data set into memory, only

✶�✶✶

TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows SC-W 2023, November 12–17, 2023, Denver, CO, USA

AVAILABILITY

TaskVine is open source software available at:
http://ccl.cse.nd.edu/software/taskvine.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant OCI-1931348.

REFERENCES
[1] Enis Afgan, Dannon Baker, Bérénice Batut, Marius Van Den Beek, Dave Bouvier,

Martin Čech, John Chilton, Dave Clements, Nate Coraor, Björn A Grüning, et al.
2018. The Galaxy platform for accessible, reproducible and collaborative biomed-
ical analyses: 2018 update. Nucleic acids research 46, W1 (2018), W537–W544.

[2] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Make-
flow: A Portable Abstraction for Data Intensive Computing on Clusters, Clouds,
and Grids. InWorkshop on Scalable Workflow Enactment Engines and Technologies
(SWEET) at ACM SIGMOD. doi: 10.1145/2443416.2443417.

[3] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham,
Robert Ross, Lee Ward, and Ponnuswamy Sadayappan. 2009. Scalable I/O for-
warding framework for high-performance computing systems. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, 1–10.

[4] Altair. [n. d.]. Altair Grid Engine. https://altair.com/grid-engine. Accessed:
2023-03-24.

[5] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludäscher,
and Stephen Mock. 2004. Kepler: An Extensible System for Design and Execution
of Scientific Workflows. In Proceedings of the International Conference on Scientific
and Statistical Database Management, SSDBM, Vol. 16. 423 – 424. https://doi.org/
10.1109/SSDBM.2004.44

[6] Inc Amazon.com. [n. d.]. Amazon Lambda. https://aws.amazon.com/lambda/
[7] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/
3307681.3325400

[8] Aashwin Basnet, Kenneth Bloom, Florencia Canelli, Sergio Sanchez Cruz, Jose
Enrique Palencia Cortezon, Juan Rodrigo González Fernández, Andrea Trapote
Fernandez, Reza Goldouzian, Barbara Alvarez Gonzalez, Michael Hildreth, Kevin
Lannon, John Lawrence, Sascha Pascal Liechti, Christopher Edward Mcgrady,
Kelci Mohrman, Hannah Nelson, Benjamin Tovar, Yuyi Wan, Andrew Wightman,
Brian Winer, Furong Yan, Brent R. Yates, Henry Yockey, and Mateusz Zarucki.
2021. TopEFT/topcoffea: TopCoffea 0.1. https://doi.org/10.5281/zenodo.5258003.
https://doi.org/10.5281/zenodo.5258003
Source code: https://github.com/TopEFT/topcoffea.

[9] Lei Cao, Bradley W. Settlemyer, and John Bent. 2017. To Share or Not to Share:
Comparing Burst Buffer Architectures. In Proceedings of the 25th High Performance
Computing Symposium (Virginia Beach, Virginia) (HPC ’17). Society for Computer
Simulation International, San Diego, CA, USA, Article 4, 10 pages.

[10] Sean Cochrane, Ken Kutzer, and LMcIntosh. 2009. Solving theHPC I/O bottleneck:
Sun™ Lustre™ storage system. Sun BluePrints™ Online, Sun Microsystems (2009).

[11] Microsoft Corporation. [n. d.]. Microsoft Azure. https://azure.microsoft.com/en-
us

[12] Ewa Deelman and Ann Chervenak. 2008. Data management challenges of data-
intensive scientific workflows. In 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID). IEEE, 687–692.

[13] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology 35, 4 (2017), 316–319.

[14] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and Policy-
Free System for Software Deployment.. In LISA, Vol. 4. 79–92.

[15] Alvise Dorigo, Peter Elmer, Fabrizio Furano, and Andrew Hanushevsky. 2005.
XROOTD-A Highly scalable architecture for data access. WSEAS Transactions on
Computers 1, 4.3 (2005), 348–353.

[16] Matthew G. F. Dosanjh, Patrick G. Bridges, Suzanne M. Kelly, James H. Laros, and
Courtenay T. Vaughan. 2014. An Evaluation of BitTorrent’s Performance in HPC
Environments. In Proceedings of the 4th International Workshop on Runtime and
Operating Systems for Supercomputers (Munich, Germany) (ROSS ’14). Association
for Computing Machinery, New York, NY, USA, Article 8, 8 pages. https://doi.
org/10.1145/2612262.2612269

[17] Python Software Foundation. 2008. Python Package Index - PyPI.
https://pypi.org/.

[18] The Apache Software Foundation. [n. d.]. Apache OpenWhisk. https:
//openwhisk.apache.org/

[19] Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
2017. Status of serverless computing and function-as-a-service (faas) in industry
and research. arXiv preprint arXiv:1708.08028 (2017).

[20] IBM. [n. d.]. Load Sharing Facility. https://www.ibm.com/products/hpc-workload-
management. Accessed: 2023-03-24.

[21] Anaconda Inc. 2020. Anaconda Software Distribution.
https://docs.anaconda.com/.

[22] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PloS one 12, 5 (2017), e0177459.

[23] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and computation: Practice and
experience 18, 10 (2006), 1039–1065.

[24] Tom Madden. 2003. The BLAST sequence analysis tool. The NCBI handbook
(2003).

[25] Dirk Merkel et al. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux j 239, 2 (2014), 2.

[26] Suraj Pandey, Karan Vahi, Rafael Ferreira da Silva, and Ewa Deelman. 2018.
Event-Based Triggering and Management of Scientific Workflow Ensembles. In
HPCAsia.

[27] Loïc Pottier, Rafael Ferreira da Silva, Henri Casanova, and Ewa Deelman. 2020.
Modeling the Performance of Scientific Workflow Executions on HPC Platforms
with Burst Buffers. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER). 92–103. https://doi.org/10.1109/CLUSTER49012.2020.00019

[28] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In SciPy.

[29] Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel file system for Linux
clusters. In Proceedings of the 4th annual Linux showcase and conference. 391–430.

[30] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters. FAST 2, 19 (2002).

[31] Nicholas Smith, Lindsey Gray, Matteo Cremonesi, Bo Jayatilaka, Oliver Gutsche,
Allison Hall, Kevin Pedro, Maria Acosta Flechas, Andrew Melo, Stefano Belforte,
and Jim Pivarski. 2020. Coffea - Columnar Object Framework For Effective
Analysis. CoRR abs/2008.12712 (2020). arXiv:2008.12712 https://arxiv.org/abs/
2008.12712
Source code: https://github.com/CoffeaTeam/coffea.git.

[32] Douglas Thain, Todd Tannenbaum, and Miron Livny. 2005. Distributed Comput-
ing in Practice: The Condor Experience. Concurrency and Computation: Practice
and Experience 17, 2-4 (2005), 323–356. doi: 10.1002/cpe.v17:2/4.

[33] Sagar Thapaliya, Purushotham Bangalore, Jay Lofstead, Kathryn Mohror, and
Adam Moody. 2016. Managing I/O Interference in a Shared Burst Buffer System.
In 2016 45th International Conference on Parallel Processing (ICPP). 416–425. https:
//doi.org/10.1109/ICPP.2016.54

[34] Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael J.
Franklin, and Ion Stoica. 2014. The Power of Choice in Data-Aware Cluster
Scheduling. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (Broomfield, CO) (OSDI’14). USENIX Association,
USA, 301–316.

[35] Logan Ward. 2021 [Online]. Colmena. ExaLearn and Parsl Teams. Available:
https://colmena.readthedocs.io/en/latest/index.html.

[36] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In FAST, Vol. 8. 1–17.

[37] Orcun Yildiz, Amelie Chi Zhou, and Shadi Ibrahim. 2017. Eley: On the Ef-
fectiveness of Burst Buffers for Big Data Processing in HPC Systems. In 2017
IEEE International Conference on Cluster Computing (CLUSTER). 87–91. https:
//doi.org/10.1109/CLUSTER.2017.73

[38] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing.

[39] Farid Zakaria, Thomas RW Scogland, Todd Gamblin, and Carlos Maltzahn. 2022.
Mapping out the HPC dependency chaos. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

✶�✶✶

