
Synchronous Dynamical Systems on Directed Acyclic

Graphs: Complexity and Algorithms

DANIEL J. ROSENKRANTZ, University of Virginia, Charlottesville, USA

MADHAV V. MARATHE, University of Virginia, Charlottesville, USA

S. S. RAVI, University of Virginia, Charlottesville, USA

RICHARD E. STEARNS, University of Virginia, Charlottesville, USA

Discrete dynamical systems serve as useful formal models to study diffusion phenomena in social networks.

Several recent articles have studied the algorithmic and complexity aspects of some decision problems on

synchronous Boolean networks, which are discrete dynamical systems whose underlying graphs are directed,

and may contain directed cycles. Such problems can be regarded as reachability problems in the phase space

of the corresponding dynamical system. Previous work has shown that some of these decision problems

become efficiently solvable for systems on directed acyclic graphs (DAGs). Motivated by this line of work, we

investigate a number of decision problems for dynamical systems whose underlying graphs are DAGs. We

show that computational intractability (i.e., PSPACE-completeness) results for reachability problems hold

even for dynamical systems on DAGs. We also identify some restricted versions of dynamical systems on

DAGs for which reachability problem can be solved efficiently. In addition, we show that a decision problem

(namely, Convergence), which is efficiently solvable for dynamical systems on DAGs, becomes PSPACE-

complete for Quasi-DAGs (i.e., graphs that become DAGs by the removal of a single edge). In the process of

establishing the above results, we also develop several structural properties of the phase spaces of dynamical

systems on DAGs.

CCS Concepts: • Theory of computation→ Abstract machines;

Additional Key Words and Phrases: Discrete dynamical systems, directed acyclic graphs, reachability, Con-

vergence Guarantee, complexity, algorithms

ACM Reference Format:

Daniel J. Rosenkrantz, Madhav V. Marathe, S. S. Ravi, and Richard E. Stearns. 2024. Synchronous Dynamical

Systems onDirectedAcyclic Graphs: Complexity andAlgorithms.ACMTrans. Comput. Theory 16, 2, Article 11

(June 2024), 34 pages. https://doi.org/10.1145/3653723

A preliminary version of this article appeared in the Proceedings of AAAI 2021 [38].

This work is partially supported by University of Virginia Strategic Investment Fund Award SIF160, CMMI-1745207 (EA-

GER), OAC-1916805 (CINES), CCF-1918656 (Expeditions) and IIS-1908530.

Authors’ addresses: D. J. Rosenkrantz, M. V. Marathe, S. S. Ravi, and R. E. Stearns, University of Virginia, Biocomplex-

ity Institute, University of Virginia, P. O. Box 400298, Charlottesville, VA 22904, USA; e-mails: drosenkrantz@gmail.com,

marathe@virginia.edu, ssravi0@gmail.com, thestearns2@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1942-3454/2024/06-ART11

https://doi.org/10.1145/3653723

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

https://orcid.org/0000-0002-7044-0197
https://orcid.org/0000-0003-1653-0658
https://orcid.org/0000-0002-0893-4364
https://orcid.org/0000-0001-5058-1999
https://doi.org/10.1145/3653723
mailto:permissions@acm.org
https://doi.org/10.1145/3653723
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3653723&domain=pdf&date_stamp=2024-06-10

11:2 D. J. Rosenkrantz et al.

1 INTRODUCTION

1.1 Background and Motivation

Discrete dynamical systems provide a formal model for the study of diffusion phenomena in net-
works. Examples of such phenomena include diffusion of social contagions (e.g., information, opin-
ions, fads) and epidemics [1, 13, 31, 33]. Informally, such a dynamical system1 consists of an un-
derlying (social or biological) network, with each node having a state value from a domain B. In
this article, we assume that the underlying graph is directed and that the domain is binary (i.e., B
= {0,1}). The propagation of the contagion is modeled by a collection of Boolean local functions,
one per node. For any node v , the inputs to the local function fv at v are the current states of v
and those of its in-neighbors (i.e., the nodes from which v has an incoming edges); the output of
fv is the state of v at the next time instant. We consider the synchronous update model, where
all nodes evaluate their local functions and update their states in parallel. These dynamical sys-
tems are referred to as synchronous dynamical systems (SyDSs) in the literature (e.g., [1] and
[37]). In applications involving systems biology, such systems are also referred to as synchronous
Boolean networks (e.g., [2], [26], and [33]). Throughout this article, we will use the term SyDS to
denote such a system. In general, the local functions may be deterministic (e.g., threshold models
used in social systems [24]) or stochastic (e.g., the SIR model of disease propagation [21]). Our
focus is on deterministic local functions.
For a SyDS with n nodes, the configuration at time τ is a vector (sτ1 , s

τ
2 , . . . , s

τ
n), where s

τ
i is the

state value of node vi at time τ , 1 ≤ i ≤ n. As the nodes evaluate and update their local functions,
the configuration of the system evolves over time. If a SyDS transitions from a configuration C to a
configuration C′ in one time step, we say that C′ is the successor of C and that C is a predecessor
of C′. A configuration C which is its own successor is called a fixed point. Thus, once a SyDS
reaches a fixed point, no further state changes occur at any node.
When using SyDSs as models of social or biological phenomena, it is of interest to studywhether

a given SyDS starting from a specified initial configuration may reach certain (desirable or undesir-
able) configurations. For example, in the context of information propagation, where the state value
1 indicates that a node has received the information propagating through the network, one may be
interested in configurations where many nodes are in state 1. On the other hand, in contexts such
as disease propagation where the state of 1 indicates that a node has been infected, configurations
where many nodes are in state 1 are undesirable. One can study such configuration reachability

problems by considering another directed graph, called the phase space, of the dynamical system
[31]. Each node in the phase space is a configuration and there is a directed edge from a node X
to node Y if the SyDS can transition from the configuration represented by X to that represented
by Y in one step. Thus, the configuration reachability problem becomes a directed path problem
in phase space. For a SyDS with n nodes where the state of each node is from {0, 1}, the number of
possible configurations is 2n ; thus, the size of the phase space of a SyDS is exponential in the size
of the SyDS. There has been a considerable amount of research whose goal is to understand when
such reachability problems are solvable in time that is polynomial in the size of the description of
SyDS and when they are computationally intractable (see, e.g., [2], [7], [13], [32], and [33], and
the references cited therein).
Several papers (e.g., [2] and [32]) have presented computational intractability results for reach-

ability problems for SyDSs on directed graphs. Very recently, Chistikov et al. [13] studied two
reachability problems (called the Convergence and Convergence Guarantee2) in the context of

1A formal definition is provided in Section 2.
2Informal definitions of these problems are provided in Section 1.2; the formal definitions appear in Section 2.5.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:3

opinion propagation. They show that these problems are PSPACE-complete for general directed
graphs. They also show that the Convergence problem can be solved efficiently when the under-
lying directed graph is acyclic (i.e., it does not have any directed cycle) regardless of the local func-
tions at each node. Following standard graph theoretic terminology, we refer to directed acyclic
graphs as DAGs [16]. Many optimization problems (e.g., finding a longest simple directed path)
which are NP-hard for general directed graphs are known to be efficiently solvable for DAGs [23].
Several computational problems for discrete dynamical systems on DAGs have been addressed in
the literature; these problems will be discussed in Section 1.3. Thus, it is of interest to study the
complexity of Reachability and related problems for SyDSs whose underlying graphs are DAGs.
We refer to such SyDSs as DAG-SyDSs and our results are summarized below.

1.2 Summary of Results and Their Significance

(1) Results on the Structure of the Phase Space. For any DAG-SyDS, we show that the length of
every phase space cycle is a power of 2. Further, if the number of levels in the underlying DAG
of a given SyDS is L, then no phase space cycle is longer than 2L , and no transient (i.e., a directed
path leading to a directed cycle in the phase space) is longer than 2L − 1 (Theorem 3.4). Moreover,
we show that these bounds are achievable (Theorem 3.5). As discussed in Item (5) below, such
structural properties of phase spaces are useful in solving reachability problems; if the maximum
lengths of transients and cycles are bounded by polynomial functions of the size of a given SyDS,
then reachability problems for that SyDS can be solved efficiently (by running the SyDS for a
polynomial number of steps).
(2) Complexity of the Reachability Problem for DAG-SyDS. It was shown by Chistikov et al. [13]

that the Convergence problem (i.e., given a SyDS S and an initial configuration C, does S start-
ing from C reach a fixed point?) is PSPACE-complete for SyDSs on directed networks. They also
showed that the Convergence problem can be solved efficiently for DAG-SyDSs, regardless of the
local functions. We show that the reachability problem (i.e., given a SyDS S and two configura-
tions C andD, does S starting from C reachD?), which is similar to the Convergence problem, is
PSPACE-complete for DAG-SyDSs evenwhen each local function is symmetric.3 To our knowledge,
no hardness result is currently known for the Reachability problem for DAG-SyDSs. Our proof of
this result involves two major steps. The first step uses a reduction from the Quantified Boolean

Formulas (QBF) problem [23] to show that the Reachability problem for DAG-SyDSs is PSPACE-
complete even when each local function is r -symmetric4 for some constant r (Theorem 4.1). For
the second step, we define the concept of a configuration embedding of one SyDS into another,
and use this concept to show that for any fixed value of r , the reachability problem for DAG-
SyDSs with r -symmetric local functions is polynomial-time reducible to the Reachability problem
for DAG-SyDSs with symmetric local functions (Corollary 4.6). The PSPACE-completeness of the
Reachability problem for DAG-SyDSs with symmetric local functions (Theorem 4.7) follows di-
rectly from Theorem 4.1 and Corollary 4.6.
The difference between the complexities of Convergence and Reachability problems for DAG-

SyDSs is due to the following: For any DAG-SyDS with L levels, regardless of the local functions,
the length of any transient leading to a fixed point is bounded by L. (This is a slight restatement of
Proposition 1 in [13].) Thus, the Convergence problem for DAG-SyDSs is efficiently solvable. On
the other hand, we show that one can construct DAG-SyDSs with appropriate local functions such
that the length of a transient and that of the cycle the transient leads to are both exponential in L

3Symmetric Boolean functions [17] are defined in Section 2.4.
4The definition of r -symmetric functions is given in Section 2. Symmetric Boolean functions are 1-symmetric. As will be

explained in Section 2, the local functions used in [13] are 2-symmetric.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:4 D. J. Rosenkrantz et al.

(Theorem 3.5). The idea behind this construction enables us to establish PSPACE-hardness result
for the Reachability problem for DAG-SyDSs.
(3) Complexity of the Convergence Problem for Quasi-DAG-SyDSs. As mentioned above, the

Convergence problem is efficiently solvable for DAG-SyDSs regardless of the local functions.
However, we show that the complexity of the problem changes when we consider “Quasi-DAG”-
SyDSs, where the underlying graph becomes a DAG when exactly one directed edge is removed.

Specifically, we show using a reduction from the Reachability problem for DAG-SyDSs that the
Convergence problem is PSPACE-complete for Quasi-DAG-SyDSs with symmetric local functions
(Theorem 5.4).

(4) Complexity of the Convergence Guarantee Problem. It was shown in [13] that the Convergence
Guarantee problem (i.e., given a SyDSS on a directed graph, doesS reach a fixed point from every
initial configuration?) is PSPACE-complete for SyDSs on general directed graphs. For DAG-SyDSs,
we show that the problem is Co-NP-complete, even when restricted to DAGs where each local
function is 2-symmetric (Theorem 6.1). We also show that this result is tight; that is, for DAG-
SyDSs where each local function is symmetric, the Convergence Guarantee problem can be solved
efficiently (Theorem 6.7).
(5) Efficient Solvability of Reachability Problem for Special Classes of DAG-SyDSs. We show that

the Reachability problem is efficiently solvable for DAG-SyDSs whose local functions are from
two specific classes of Boolean functions, namely monotone functions and nested canalyzing

functions5 (NCFs). For DAG-SyDSs with monotone local functions, we show that every cycle in
the phase space is a fixed point (Theorem 7.1). For DAG-SyDSs with NCF local functions, we show
that each phase space cycle is of length at most 2 and that the maximum length of a transient
is 2L − 1, where L is the number of levels in the DAG (Theorem 7.7). These properties imply
the efficient solvability of the Reachability problem for these two cases (Theorems 7.2 and 7.8,
respectively).
(6) Complexity of Garden of Eden Existence for DAG-SyDSs. We show that the Garden of Eden

(GE) Existence problem (i.e., given a DAG-SyDS, does it have a configuration which does not
have a predecessor?) is, in general,NP-complete (Proposition 8.4). However, for DAG-SyDSswhere
each local function is r -symmetric for some fixed r , we show that the GE Existence problem can
be solved efficiently (Corollary 8.7).
(7) Complexity of Other Decision Problems for DAG-SyDSs. We also establish complexity results

for Fixed Point Existence (i.e., given a DAG-SyDS, does it have a fixed point?) and Predecessor
Existence (i.e., given a DAG-SyDS S and a configuration C, does C have a predecessor?). In partic-
ular, these problems are shown to beNP-complete even for two-level DAGs and the corresponding
counting problems are shown to be #P-complete (Propositions 9.1 and 9.2).
Brief statements of the above results are provided in Table 1.

1.3 Related Work

Reachability problems for various models of discrete dynamical systems have been widely studied
in the literature. For example, complexity results for reachability and related problems for Hopfield
neural nets were studied in [22], [34], and [35]. Problems related to the diffusion of opinions and
other contagions have also been studied under various discrete dynamical systems models (see
e.g., [4], [10], [11], [13], and [15] and the references contained therein).
Motivated by dynamical system models for large-scale simulations, Barrett et al. [7] studied the

reachability problem for discrete dynamical systems where the underlying graph is undirected
and the update model is sequential (i.e., nodes compute and update their state values in a specified
order). Synchronous dynamical systems on directed graphs serve as useful models for biological

5This class of Boolean functions will be defined in Section 7.3.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:5

Table 1. Brief Statements of the Main Results Presented in the Paper

Problem Results for DAG-SyDSs

Phase Space

properties

The length of each phase space cycle is a power of 2 and the maximum lengths of any

transient and cycle in the phase space are 2L−1 and 2L respectively, where L is the number

of levels (Theorem 3.4). There are DAG-SyDSs that achieve these bounds (Theorem 3.5).

Reachability (a) PSPACE-complete even for symmetric DAG-SyDSs (Theorem 4.7).

(b) Efficiently solvable for monotone DAG-SyDSs (Theorem 7.2) and for DAG-SyDSs

where each local function is an NCF (Theorem 7.8).

Convergence PSPACE-complete for Quasi-DAG-SyDSs (Theorem 5.4).

Convergence

Guarantee

(a) Co-NP-complete for DAG-SyDSs where each local function is 2-symmetric

(Theorem 6.1).

(b) Efficiently solvable for DAG-SyDSs where each local function is symmetric

(Theorem 6.7).

Garden of Eden

Existence

(a) NP-complete even for two-level DAG-SyDSs (Proposition 8.4).

(b) Efficiently solvable for r -symmetric DAG-SyDS, where r is a fixed integer (Theo-

rem 8.6).

Fixed Point

Existence

NP-complete even for two-level DAG-SyDSs (Proposition 9.1).

Predecessor

Existence

NP-complete even for two-level DAG-SyDSs (Proposition 9.2).

phenomena [26]. Many researchers have studied reachability and related problems for such dy-
namical systems (see, e.g., [2], [32], and [33] and the references cited therein). The results in [37]
readily imply that the Reachability problem for SyDSs whose local functions are NCFs and whose
directed graphs may contain cycles is PSPACE-complete.
Many researchers have presented results for various computational problems for dynamical

systems on DAGs. We now provide a summary of these results. Akutsu et al. [2] showed that the
problem of controlling a synchronous Boolean network so that it reaches a desired configuration
is NP-hard for general directed graphs but is efficiently solvable when the underlying graph is a
directed tree. This problem is different from the reachability problem considered here; in partic-
ular, the variables that are used to control a network are external to the network and the goal of
the controller is to choose appropriate values for those variables at each time step. Materassi and
Salapaka [30] considered the problem of inferring the edges in the underlying DAG for a dynam-
ical system given time-series data. A similar problem is considered by Cliff et al. [14] where the
underlying DAG is assumed to represent relationships between latent variables of a probabilistic
graphical model. Creager et al. [18] point out that dynamical systems on DAGs provide a unifying
framework for studying fairness issues that arise when a learning algorithm must interact with
a dynamically changing environment. Arnold et al. [3] discuss methods for comparing the effec-
tiveness of several modeling approaches when the underlying causal model for an epidemic can
be represented as a DAG. To our knowledge, the reachability problem for DAG-SyDSs was first
considered in [28]. They showed that when each local function is a bi-threshold function (i.e., each
node has two threshold values to control the 0 → 1 and 1 → 0 transitions), the problem can be
solved efficiently. By establishing bounds on the lengths of cycles and transients, they showed that
the reachability problem can be efficiently solved for such DAG-SyDSs.

2 DEFINITIONS AND NOTATION

2.1 Graph Theoretic Definitions and Notation

Given a directed graph, we say that node u directly precedes node v if the graph contains an
edge from u to v , that u precedes v if the graph contains a path (possibly with no edges) from u

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:6 D. J. Rosenkrantz et al.

to v , and that u properly precedes v if the graph contains a path with at least one edge from u
to v . Note that the local transition function for a given node v in a SyDS over a directed graph is
a function of v and the nodes that directly precede v .

Definition 2.1. LetG(V ,E) be a DAG. The level of a nodev inG is the maximum number of edges
in any directed path to v .

Suppose a given DAG G(V ,E) has L levels. For each j, 0 ≤ j < L, we let L j denote the set of
nodes at level j, and let L′

j denote the nodes whose level is at most j.

2.2 SyDSs on Directed Graphs

Let B denote the Boolean domain {0,1}. In this article, a Synchronous Dynamical System

(SyDS) S over B is specified as a pair S = (G,F), where (i)G(V ,E), a directed graph with |V | = n,
represents the underlying graph of the SyDS, with node set V and (directed) edge set E, and (ii)
F = (f1, f2, . . . , fn) is a collection of functions in the system, with fi denoting the local transi-
tion function associated with node vi , 1 ≤ i ≤ n. Each node of G has a state value from B. Each
Boolean function fi specifies the local interaction between node vi and its in-neighbors inG. The
inputs to function fi are the state of vi and those of the in-neighbors of vi in G; function fi maps
each combination of inputs to a value in B. This value becomes the next state of node vi . It is
assumed that each local function can be evaluated in polynomial time. In a SyDS, all nodes com-
pute and update their next state synchronously. Other update disciplines (e.g., sequential updates)
have also been considered in the literature (e.g., [31]). At any time τ , the configuration C of a
SyDS is the n-vector (sτ1 , s

τ
2 , . . . , s

τ
n), where s

τ
i ∈ B is the state of node vi at time τ (1 ≤ i ≤ n). A

DAG-SyDS is a SyDS whose underlying graph is a DAG.

Example. An example of a DAG-SyDS is shown in Figure 1. Here, the local functions at nodes
v1 through v6 are Identity, Complement, Identity, AND, OR, and XOR, respectively. (The Identity
and Complement functions have only one input; they return respectively the input value and its
complement.) The Boolean expression for each local function is shown in the table in Figure 1.
Suppose the initial configuration of the SyDS is (1, 0, 1, 0, 0, 0); that is, at time τ = 0, the states of
nodes v1, v2, v3, v4, v5 and v6 are 1, 0, 1, 0, 0, and 0, respectively. Recall that the inputs to the local
function at a nodev are the current state ofv and those of its in-neighbors (if any). Since the local
functions atv1 andv3 are Identity functions, the states ofv1 andv3 will remain 1 in all subsequent
time steps. Since the local function atv2 is the Complement function, the state ofv2 at time τ = 1 is
1. Using the local functions atv4,v5 andv6, one can verify that their states at time τ = 1 are 0, 1 and
0 respectively. Thus, the configuration at time τ = 1 is (1, 1, 1, 0, 1, 0). Similarly, the configuration
at times τ = 2, τ = 3 and τ = 4 are (1, 0, 1, 0, 1, 0), (1, 1, 1, 0, 1, 1) and (1, 0, 1, 0, 1, 1), respectively.
The configuration at time τ = 5 is the same as the configuration at time τ = 1. So, beginning at
time τ = 1, the SyDS cycles between the four configurations at times τ = 1, 2, 3, 4.

A Note Regarding the SyDS Model. In our SyDS model discussed above, for each nodev , the state
of v is one of the inputs to the local transition function fv at v . Other references that present
results for SyDSs over directed graphs (e.g., [2], [32], and [33]) allow a local function fv to use or
ignore the state of v . We now provide a justification for our model in the context of DAG-SyDSs.
Specifically, we note that the dynamical behavior of DAG-SyDSs where for each node v , the state
of v is not an input to the local function fv , is rather uninteresting. To see why, assume that the
node set of such a DAG-SyDS has been partitioned into k levels, denoted by L0, L1, . . ., Lk−1, as
indicated in Section 2.1. Note that the nodes in L0 have no incoming edges. Thus, when the local
function fv at a node v ∈ L0 does not use the state of v , there is no input to fv ; in other words,

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:7

Fig. 1. An example of a DAG-SyDS. The local functions at nodes v1 through v6 are Identity, Complement,
Identity, AND, OR and XOR respectively. In the figure, we abbreviate Identity as “ID” and Complement as
“COMP”. The table on the right shows the local function at each node as a Boolean formula. In the table, we
use si to denote the state of node vi , 1 ≤ i ≤ 6. The symbol ‘⊕’ denotes the XOR operator.

the function fv is a constant6 function. Thus, the states of the nodes in L0 do not change after
time step 0. The states of the nodes in L1 do not change after time step 1 since their inputs do
not change after time step 0. Inductively, for each i , 0 ≤ i ≤ k , the states of nodes in Li do not
change after time step i . In other words, regardless of the initial configuration, such a DAG-SyDS
reaches a fixed point after k time steps. For this reason, our results are for DAG-SyDSs where for
each node v , the state of v is an input to the local function fv . Many papers that study SyDSs on
undirected graphs (e.g., [7], [27], and [31]) also use this assumption, and the (undirected) self loop
around each node v is not included in the underlying graph. We follow the same convention for
DAG-SyDSs; that is, we omit the (directed) self loops around the nodes.

2.3 Additional Definitions and Notation Regarding SyDSs

We now define some additional concepts related to SyDSs. If there is a one step transition of
a SyDS from a configuration C1 to a configuration C2, we say that C1 is a predecessor of C2

and that C2 is the successor of C1. Since the SyDSs considered in this article are deterministic,
every configuration has a unique successor. However, a configuration may have zero or more
predecessors.
A fixed point of a SyDS is a configuration C which is its own successor. Thus, when a system

reaches a fixed point, it stays in that configuration forever. A garden of Eden (GE) configuration
is one that has no predecessor. Thus, a GE configurationmay only occur as a starting configuration
of a SyDS; it cannot be the successor of any configuration.
Recall that the phase space of a SyDS is a directed graph in which each node represents a

configuration and a directed edge (x ,y) indicates that the configuration represented by y is the
successor of that represented by x . A transient in phase space is a simple directed path P whose
last node is part of a directed cycle which does not contain any other node of P . The length of a
phase space cycle is the number of edges in the cycle, and the length of a phase space transient is
the number of edges in the transient. In the phase space, each fixed point is self-loop (i.e., a cycle
of length 1) and each GE configuration is a node with indegree zero.

Definition 2.2. For the local transition function fv of a given node v of a directed SyDS, we call
the variable corresponding to the source node of each incoming edge to v an incoming variable

of fv , and call the variable corresponding to v the self-variable of fv .

6Note that all local functions considered in this paper are deterministic.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:8 D. J. Rosenkrantz et al.

Let S be a SyDS. For a given configuration C and node v , we let C(v) denote the state of node
v in C. For a given configuration C and set of nodes Y , we let C[Y] denote the projection of C
onto Y . We assume that the initial configuration of the system occurs at time 0. For a given initial
configuration C and nonnegative integer i , we let Ci denote the configuration of S at time i .

For a given initial configuration C, we say that a given node v is stable at time t if for all
i ≥ t , Ci (v) = Ct (v). Also, we say that a given node v is alternating at time t if for all i ≥ 0,

Ct+2i (v) = Ct (v) and Ct+2i+1(v) = Ct (v); in other words, the state ofv alternates between 0 and 1.

2.4 Definitions of Some Classes of Boolean Functions

Here, we provide definitions of several classes of Boolean functions used in this article. These
definitions are from [7], [17], and [26].

Consider assignments α and β to a set of Boolean variables X . We say that α ≤ β if for every
variable x ∈ X , α(x) ≤ β(x). A Boolean function f ismonotone if for every pair of assignments α
and β to its variables, α ≤ β implies that f (α) ≤ f (β). A monotone SyDS is a SyDS whose local
transition functions are all monotone.
A symmetric Boolean function is one whose value does not depend on the order in which the

input bits are specified; that is, the function value depends only on how many of its inputs are
1. For example, the XOR function is symmetric since the value of the function is determined by
the parity of the number of 1’s in the input. A special class of symmetric functions are threshold
functions. For each integer k ≥ 0, a k-threshold function7 has the value 1 iff at least k of the
inputs are 1. A symmetric function with q inputs can be represented by a table of size q + 1, with
entry i of the table specifying the value of the function when the number of 1’s in the input is
i , 0 ≤ i ≤ q.

In symmetric Boolean functions, we don’t knowwhether a specific input is 0 or 1; we only know
the number of 1’s in the input. A similar situation arises in anonymous symmetric pure strategy
graphical games where each player’s strategy is from {0,1}. A player X doesn’t know whether a
specific neighbor chose 0 or 1; X knows how many neighbors chose 1. Convergence in SyDSs
corresponds to reaching a fixed point where everyone is satisfied with the outcome. This is similar
to a Nash equilibrium in the game theoretic setting. In this sense, the convergence problem is
related to the problem of Nash equilibria in such games and reachability is useful in understanding
whether players can achieve certain equilibria (see e.g., [9], [19], [20], and [25]).

A Boolean function f is r -symmetric if the inputs to f can be partitioned into at most r groups
such that the value of f depends only on how many of the inputs in each of the r groups are
1. Note that symmetric functions defined above are 1-symmetric. For each node v , the majority
function used in [13] to study opinion diffusion is defined as follows: Let N (v) denote the set of
in-neighbors of v , that is, nodes from which v has an incoming edge. At any given time step, let
A(v) ⊆ N (v) andD(v) = N (v)−A(v) denote the in-neighbors ofv whose states agree with that ofv
and differ from that ofv, respectively. If |A(v)| ≥ |D(v)|, then the value of the local function atv is
the current state ofv ; otherwise (i.e., |D(v)| > |A(v)|), the value of the function is the complement
of the current state of v . This function can be seen to be 2-symmetric: one group contains just
the node v and the other group contains all the in-neighbors of v . The value of the function is
determined by the number of 1’s in these two groups. However, the function is not symmetric. To
see this, consider a node v with 5 in-neighbors. Suppose we want to specify the value of the local
function at v knowing only that three inputs to the function have the value 1. It can be verified
that the value of the local function in this case is the complement of the current state ofv . In other
words, to specify the value of the function in this case, one needs to know the value of v as well.

7These threshold functions are special forms of weighted threshold functions [17], where the weight of each input is 1.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:9

An r -symmetric function with q inputs can be represented by a table of size O(qr), with each
row specifying the value of the function for one combination of the the number of 1’s in each of
the r groups. A SyDS is r -symmetric if each of its local transition functions is r ′-symmetric for
some r ′ ≤ r .
We also consider DAG-SyDSswhere each local function is from the class of NestedCanalyzing

Functions (NCFs) introduced in [26]. This class of functions is defined in Section 7.3.

2.5 Problem Formulations

We now provide formal specifications of the problems considered in this article. These definitions
are from [6], [7], and [13]. In these problems, it is assumed that each local function is represented
in such a way that the size of the representation is polynomial in the number of inputs. Examples
of such representations are Boolean expressions and table representation of r -symmetric functions
(mentioned in Section 2.4).

(a) Reachability

Instance: A SyDS S specified by an underlying graph G(V ,E) and a local transition function fv
for each node v ∈ V , and two configurations C and D.

Question: Starting from configuration C, does S reach configuration D?

(b) Convergence

Instance: A SyDS S specified by an underlying graph G(V ,E) and a local transition function fv
for each node v ∈ V , and a configuration C.

Question: Starting from configuration C, does S reach a fixed point?

(c) Convergence Guarantee

Instance: A SyDS S specified by an underlying graph G(V ,E) and a local transition function fv
for each node v ∈ V .

Question: Does S reach a fixed point from every initial configuration?

(d) Garden of Eden Existence

Instance: A SyDS S specified by an underlying graph G(V ,E) and a local transition function fv
for each node v ∈ V .

Question: Does S have a GE configuration?

(e) Predecessor Existence

Instance: A SyDS S specified by an underlying graph G(V ,E) and a local transition function fv
for each node v ∈ V ; a configuration C for S.

Question:Does C have a predecessor, that is, is there a configuration C′ such that S has a one step

transition from C′ to C?

(f) Fixed Point Existence

Instance: A SyDS S specified by an underlying graph G(V ,E) and a local transition function fv
for each node v ∈ V .

Question: Does S have a fixed point?

The above problems will be explored for DAG-SyDSs in the subsequent sections of this article.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:10 D. J. Rosenkrantz et al.

2.6 Organization of This Article

The remainder of this article is organized as follows: Section 3 establishes bounds on the lengths
of transients and cycles in the phase spaces of DAG-SyDSs. Section 4 establishes the PSPACE-
completeness of the Reachability problem for DAG-SyDSs. Section 5 shows that the Convergence
problem is PSPACE-complete for Quasi-DAG-SyDSs. Section 6 shows that the Convergence Guar-
antee problem is Co-NP-complete for DAG-SyDSs. Section 7 shows that the Reachability problem
is efficiently solvable for two special classes of DAG-SyDSs. Section 8 presents our results for the
Garden of Eden Existence problem. Section 9 establishes complexity results for Fixed Point Exis-
tence and Predecessor Existence problems. Some conclusions and directions for future work are
provided in Section 10.

3 SOME PHASE SPACE PROPERTIES OF DAG-SYDSS

In this section, we present some properties of the phase spaces of DAG-SyDSs. These properties
are independent of the local functions at the nodes of the DAG-SyDS. We begin with two lemmas
that are useful in establishing these properties.

Lemma 3.1. For a given DAG-SyDS, and a given initial configuration, suppose that the node values
of all incoming edges to a given node v are stable at time t . Then node v is either alternating at time
t , or stable at time t + 1.

Proof. Given the stable value of each incoming variable, the local transition function for nodev
at any time t ′, where t ′ ≥ t is a function of only one variable: the self-variablev . The only possible
functions of a single variable are a constant function, the identity function, or the complement
function. If the local transition function forv is a constant function, then the value ofv can possibly
change between t and t + 1, but for any t ′ ≥ t + 1, remains unchanged. If the local transition
function for v is the identity function, then the value of v never changes from its value at time
t . If the local transition function for v is the complement function, then the value of v alternates
between complementary values. �

Lemma 3.2. For any DAG-SyDS, each level 0 node is either alternating at time 0 or stable at time 1.

Proof. A level 0 node has no incoming edges, so the result follows from Lemma 3.1. �

We now show that the phase spaces of DAG-SyDSs may contain exponentially large cycles. The
idea behind the construction used to prove this result is also used later in proving Theorem 3.5.

Proposition 3.3. For every n > 1, there is an n node DAG-SyDS whose phase space graph is a
cycle of length 2n .

Proof. For a given n > 1, we construct the DAG-SyDS Sn to be an n-bit counter as follows: The
underlying graph contains n levels, one node per level. For each node, there is an incoming edge
from the nodes on each of the lower levels. The transition function for each node is the function
that retains the current value of the node if any of the lower order bits is 0, and changes the value
of the node if all of the lower order bits are 1. In particular, we note that the level 0 node alternates.
Suppose a given configuration of Sn is interpreted as the binary encoding of an integer k , 0 ≤

k < 2n . Then, the successor configuration encodes the integer k + 1 (mod 2n). Thus, the phase
space of Sn is a cycle of length 2n . �

For any SyDS, any infinitely long phase space path consists of a transient (possibly of length
0), followed by an infinite number of repetitions of a basic cycle. We now show that for any DAG-
SyDS, the length of every phase space cycle is a power of 2. Moreover, the lengths of the longest

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:11

transient and the longest phase space cycle are each bounded by an exponential function of the
number of levels in the underlying graph of the SyDS.

Theorem 3.4. For a DAG-SyDS, the length of every phase space cycle is a power of 2. Moreover, if
the number of levels of a given DAG-SyDS is L, then no phase space cycle is longer than 2L , and no
transient is longer than 2L − 1.

Proof. The proof is by induction on the number of levels.
Basis. Suppose that there is only one level. Then, the underlying graph has no edges. By

Lemma 3.1, either all phase cycles are of length 1 or all are of length 2. Also, no transient is of
length greater than 1.
Induction Step. Suppose that the result holds for a given value of L, and consider a DAG-SyDS

S with L + 1 levels (numbered 0 through L). Let SL be the DAG-SyDS with L levels obtained by
deleting LL (the nodes in level L) from S. Let C be a given configuration of S.

For non-negative integer i , recall thatCi denotes the configuration of S at time i , when started
from configuration C. Since the underlying graph in S has no edges from the level L nodes to the
nodes in SL , Ci [L

′
L−1] is the configuration at time i when SL starts in configuration C0[L

′
L−1].

From the induction hypothesis, when SL is started in configurationC0[L
′
L−1], the length of the

phase space cycle that is reached is 2k , where 0 ≤ k ≤ L, and the length of the transient leading
to this cycle is some value j such that j ≤ 2L − 1.
Letv be a level L node of S. The sequence of values taken on byv can be classified as belonging

to one of the following three cases:
Case 1. Cj+2k (v) = Cj (v): Then, for every i ≥ j, Ci+2k (v) = Ci (v). Thus, the values of Ci (v),

where i ≥ j, form a cycle, whose period is 2k . So, after a transient of length at most j, where
j ≤ 2L − 1, the value of node v cycles with a cycle whose length is a power of 2 and is at most 2L .

Case 2.Cj+2k (v) = Cj (v) andCj+2k+1 (v) = Cj (v): Then, for every i ≥ j,Ci+2k+1(v) = Ci (v). Thus,

the values ofCi (v), where i ≥ j, form a cycle, whose period divides is 2k+1. So, after a transient of
length at most 2L − 1, the value of node v cycles with a cycle whose length is a power of 2 and is
at most 2L+1.
Case 3. Cj+2k (v) = Cj (v) and Cj+2k+1 (v) = Cj (v): Then, for every i ≥ j + 2k , Ci+2k (v) = Ci (v).

Thus, the values ofCi (v), where i ≥ j + 2k , form a cycle, whose period divides 2k . Note that C j+2k

is part of this cycle. So, after a transient of length at most 2L+1 − 1, the value of node v cycles with
a cycle whose length is a power of 2 and is at most 2L .

Considering all the nodes in S, the length of the transient beginning at C is at most 2k+1 − 1,
and the length of the cycle reached from C divides 2k+1.

Since this holds for all configurations C, the inductive hypothesis holds for S. �

We now show that there are matching lower bounds on cycle and transient length. We show
this by constructing a DAG-SyDS that incorporates the counter from Proposition 3.3 to produce a
long cycle, and repeated applications of Case 3 from the proof of Theorem 3.4 to produce a long
transient.

Theorem 3.5. For every L ≥ 1, there is a DAG-SyDS with L levels whose phase space contains a
transient of length 2L − 1, leading to a cycle of length 2L .

Proof. The constructed SyDS S contains 2L nodes, which we refer to as X = {x0,x1, . . . ,xL−1}
and Y = {y0,y1, . . . ,yL−1}. For each i , nodes xi and yi will occur on level i .

The underlying graph of S has directed edges (xi ,x j) and (xi ,yj) for each i and j such that
0 ≤ i < j < L, and also has directed edges (yi ,yi+1) for each i such that 0 ≤ i < L − 1. An example
of this DAG for L = 4 is shown in Figure 2.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:12 D. J. Rosenkrantz et al.

Fig. 2. An example of the DAG constructed in the proof of Theorem 3.5 with L = 4.

The local transition function at x0 is the complement function so that node x0 alternates. The
local transition function for each other node in X is the function that retains the current value of
the node if any of the incoming variables equals 0, and changes the value of the node otherwise.
Thus, node set X behaves as a counter, similar to the nodes in the construction of Proposition 3.3.

The local transition function for node y0 is the constant function 1. The local transition func-
tion for each node yi , 1 ≤ i ≤ L − 1, is 1 iff (yi = 1) or (yi−1 = 1 and the incoming variables
{x0,x1, . . . ,xi−1} encode the integer 2

i − 2).
Note that the L nodes in X give rise to a phase space cycle of length 2L .
Consider the initial configuration C, where all nodes have the value 0. It can be seen that by

induction on i , for each nodeyi , 0 ≤ i ≤ L−1, and each nonnegative j, C j (yi) equals 0 if j < 2i+1−1,
and equals 1 if j ≥ 2i+1 − 1. Since yL−1 does not change from 0 to 1 until configuration C2L−1, the
length of the transient from C is 2L − 1. �

We will also use the following result which is a slight restatement of Proposition 1 in [13]:

Theorem 3.6. For a DAG-SyDS, the length of a transient leading to a fixed point does not exceed
the number of levels of the SyDS.

4 REACHABILITY

4.1 Overview

In this section, we establish the complexity of the Reachability problem for DAG-SyDSs with sym-
metric local functions. Our proof uses two major steps. In the first step (Section 4.2), we show the
PSPACE-hardness for DAG-SyDSs whose local functions are r -symmetric for a constant value of
r . In the second step (Section 4.3), we show that the Reachability problem resulting from the first
step can be reduced to the same problem for DAG-SyDSs where each local function is symmetric.
We begin with the first step.

4.2 Reachability Problem for DAG-SyDSs with r -Symmetric Local Functions

This section establishes the following result:

Theorem 4.1. The reachability problem is PSPACE-complete for DAG-SyDSs where each local func-
tion is r -symmetric for some r ≤ 6.

Proof. It is easy to see that the problem is in PSPACE. The proof of PSPACE-hardness is
via a reduction from the Quantified Boolean Formulas (QBF) problem which is known to be
PSPACE-complete [23]. Let F denote the given quantified Boolean formula. Let f denote the

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:13

Boolean expression that is quantified. Without loss of generality, we can assume that f is a 3SAT
formula [23]. Let X = {x0,x1, . . . ,xn−1} be the set of variables of f , and {c0, c1, . . . , cm−1} be the
set of clauses of f . Let F be (Qn−1xn−1) · · · (Q1x1)(Q0x0) f , where each Qi is either ∀ or ∃.
We give a reduction where the constructed DAG-SyDS is 6-symmetric (i.e., each local function

is r -symmetric for some r ≤ 6). Our proof uses a sequential evaluation of a QBF; this type of
reduction has been used in the literature (see e.g., [8] and [12]) to establish hardness results for
other problems.
For each i , 0 ≤ i < n, we use the notation ⊗i to denote a binary Boolean operation as follows: If

Qi is ∀, then ⊗i is AND; if Qi is ∃, then ⊗i is OR.
For the reduction, we construct a reachability problem instance whose SyDS S has an underly-

ing graph with 2n +m + 2 nodes, on 2n + 2 levels.
SyDS S contains the following nodes. We let Y = {y0,y1, . . . ,yn} be a set of n + 1 nodes, R =

{r0, r1, . . . , rn−1} be a set of n nodes,W = {w0,w1, . . . ,wm−1} be a set ofm nodes, and h be an extra
node. The initial configuration C for the constructed problem instance has the states of all nodes
equal to 0.
The goal configuration D for the constructed problem instance has h = 1, rn−1 = 1, each ri = 0

for 0 ≤ i < n − 1, each yi = 0, and each w j equal to 1 iff the corresponding clause c j contains a
positive literal.
Node setY will function as a cyclical counter, with incoming edges and local transition functions

similar to those for the n nodes in the construction presented in our proof of Proposition 3.3. For
each i , 0 ≤ i < n, node yi will correspond to the variable xi in f .

Each nodewi ∈W will correspond to clause ci .
Each node ri ∈ R will correspond to the quantified Boolean formula (Qixi) · · · (Q0x0) f . In par-

ticular, at some point in the operation of S, node rn−1 will have the value of the quantified Boolean
formula F .
Node h will serve as a control node. Once the value of node h equals 1, it remains 1 forever more,

forces node rn−1 to retain its value, and forces all the other nodes in R to have value 0.
The underlying graph of S has directed edges (yi ,yj) for each i and j such that 0 ≤ i < j ≤ n.

For each node w j , there are incoming edges from those Y nodes corresponding to the variables
occurring in clause c j . Node h has incoming edges from the n + 1 nodes in Y . Node r0 has an
incoming edge from y0, h, and from each node in W . For each node ri , 1 ≤ i < n, there are
incoming edges from ri−1, h, and each yj where 0 ≤ j ≤ i . An example of the DAG resulting from
this construction is shown in Figure 3.
The local transition function for each node in Y is the function that retains the current value of

the node if any of the incoming variables equals 0, and changes the value of the node otherwise.
The local transition function for each nodewi ∈W is the same as clause ci , but using the values

of the incoming variables.
The local transition function for h is as follows: If h = 1, then 1. If h = 0 and the n + 1 incoming

edges from Y encode the integer 2n + n − 1, then 1. Otherwise, 0.
The local transition function for r0 is as follows: If h = 1, then 0. Otherwise, if y0 = 1, then

the AND of the incoming variables fromW . Otherwise, operation ⊗0 applied to r0 and the AND of
the incoming variables fromW .
The local transition function for ri , 1 ≤ i < n − 1, is as follows: If h = 1, then 0. Otherwise, if

the i + 1 incoming edges from Y encode the integer 2i + i , then ri−1. Otherwise, if the incoming
edges from Y encode the integer i , then operation ⊗i applied to ri and ri−1. Otherwise, ri .
The local transition function for rn−1 is as follows. If h = 0 and the n incoming edges from Y

encode the integer 2n−1 + n − 1, then rn−2. If h = 0 and the n incoming edges from Y encode the
integer n − 1, then operation ⊗n−1 applied to rn−1 and rn−2. Otherwise, rn−1.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:14 D. J. Rosenkrantz et al.

Fig. 3. An example of the DAG constructed in the reduction from the CNF formula of a QBF. The number of
variables (n) and the number of clauses (m) in the CNF formula are 3 and 2 respectively. There are 2n+m = 8

levels in the directed graph, numbered 0 through 7. Nodes y0, y1 and y2 are in levels 0, 1, and 2, respectively.
Nodes y3, w0 and w1 are all in level 3. Node h is in level 4. Nodes r0, r1 and r2 are in levels 5, 6, and 7,
respectively.

Note that SyDS S is 6-symmetric; the local transition functions for nodes ri , 1 ≤ i ≤ n − 1,
contain 6 symmetry classes.
For 0 ≤ i < n, we let Fi be a Boolean function of n − i − 1 variables, as follows:

Fi (xn−1,xn−2, . . . ,xi+1) = (Qixi) · · · (Q1x1)(Q0x0) f (X)

Note that Fn−1 equals F , the value of the given quantified Boolean formula.
Table 2 illustrates the dataflow as the constructed SyDS S for n = 4 goes through its initial

sequence of transitions. Each row of the table corresponds to a configuration ofS, startingwith the
constructed initial configuration C. Each column of the table corresponds to a single node, except
for the column labeledW , which corresponds to the entire node setW . Note that configuration C32

equals the constructed goal configurationD, except possibly for the value of node r3. In particular,
C32 equals D iff the value of the given quantified Boolean formula F is 1.
We now establish the correctness of the reduction.
Let β be a tuple, possibly empty, of Boolean values. Let l(β) denote the degree of β , i.e., the

number of variables in β . Let k(β) denote the integer encoded by β . (If β is empty, then k(β) = 0.)
For β such that l(β) < n, let j(β) = n − l(β) − 1, and let t(β) = (k(β) + 1)2n−l (β) + n − l(β).

In what follows, the tuple β corresponds to the values of the outermostn−i−1 variables, namely
xn−1, xn−2, . . ., xi+1, of the quantified Boolean formula F .

For any t ≥ 0, let X t be the assignment to the variables X of f where X t (xi) = Ct (yi), 0 ≤ i ≤
n − 1. From the proof in Theorem 3.3, the first n nodes of S undergo a phase space cycle whose
length is 2n . Thus, all 2n possible assignments to X occur during this cycle. In particular, all 2n

assignments toX are in the set {X t | 0 ≤ t < 2n}. Specifically, for any assignment α toX ,Xk (α) = α .
For any assignment α to X , letW (α) be the assignment of values to the nodes setW where wi

equals the value of clause ci for assignment α , 0 ≤ i ≤ m−1. Then, for all t ≥ 0, Ct+1[W] =W (X t).

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:15

Table 2. Initial Configuration Sequence of Constructed SyDS for Four Variables

Ci r3 r2 r1 r0 W h y4 y3 y2 y1 y0

C0 = C 0 0 0 0 − − 0 − − 0 0 0 0 0 0
C1 0 0 0 0 W (0000) 0 0 0 0 0 1
C2 0 0 0 f (0000) W (0001) 0 0 0 0 1 0
C3 0 0 0 F0(000) W (0010) 0 0 0 0 1 1
C4 0 0 F0(000) f (0010) W (0011) 0 0 0 1 0 0
C5 0 0 F0(000) F0(001) W (0100) 0 0 0 1 0 1
C6 0 0 F1(00) f (0100) W (0101) 0 0 0 1 1 0
C7 0 F1(00) F1(00) F0(010) W (0110) 0 0 0 1 1 1
C8 0 F1(00) F0(010) f (0110) W (0111) 0 0 1 0 0 0
C9 0 F1(00) F0(010) F0(011) W (1000) 0 0 1 0 0 1
C10 0 F1(00) F1(01) f (1000) W (1001) 0 0 1 0 1 0
C11 0 F2(0) F1(01) F0(100) W (1010) 0 0 1 0 1 1
C12 F2(0) F2(0) F0(100) f (1010) W (1011) 0 0 1 1 0 0
C13 F2(0) F2(0) F0(100) F0(101) W (1100) 0 0 1 1 0 1
C14 F2(0) F2(0) F1(10) f (1100) W (1101) 0 0 1 1 1 0
C15 F2(0) F1(10) F1(10) F0(110) W (1110) 0 0 1 1 1 1
C16 F2(0) F1(10) F0(110) f (1110) W (1111) 0 1 0 0 0 0
C17 F2(0) F1(10) F0(110) F0(111) W (0000) 0 1 0 0 0 1
C18 F2(0) F1(10) F1(11) f (0000) W (0001) 0 1 0 0 1 0
C19 F2(0) F2(1) F1(11) F0(000) W (0010) 0 1 0 0 1 1
C20 F3 F2(1) F1(11) f (0010) W (0011) 1 1 0 1 0 0
C21 F3 0 0 0 W (0100) 1 1 0 1 0 1
... ...

C31 F3 0 0 0 W (1110) 1 1 1 1 1 1
C32 F3 0 0 0 W (1111) 1 0 0 0 0 0

For notational convenience, we use the following convention in the rest of the proof. The
symbol xi denotes a variable when used as part of the given quantified formula F . When xi is used
in the context of the tuple β , xi refers to the Boolean value of the corresponding component of
β . The difference between the usage of xi as a variable and as a Boolean value will be clear from
the context.
For any given tuple β of n − i − 1 Boolean values corresponding to values of the variables xn−1,

xn−2, . . ., xi+1, note that j(β) = i . Moreover, the value of Fj(β)(β) = Fi (xn−1,xn−2, . . . ,xi+1) is deter-

mined by the 2i+1 assignments to X occurring at times k(β)2n−l (β) through (k(β) + 1)2n−l (β) − 1.

Claim 1. For all j ′, 0 ≤ j ′ < n, for all β such that j(β) = j ′, Fj(β)(β) = Ct (β)(r j(β)).

We prove the claim by induction on j ′.

Basis Step. Suppose that j ′ = 0. Consider any β such that j(β) = 0. Then, l(β) = n − 1,
t(β) = 2k(β) + 3, and the variables in β are (xn−1,xn−2, . . . ,x1). By definition,

F0(xn−1,xn−2, . . . ,x1) = (Q0x0) f (xn−1,xn−2, . . . ,x1,x0).

Thus,
F0(xn−1,xn−2, . . . ,x1) = f (xn−1,xn−2, . . . ,x1, 0) ⊗0 f (xn−1,xn−2, . . . ,x1, 1).

Given the values xn−1,xn−2, . . . ,x1 occurring in β , let γ 0 = (xn−1,xn−2, . . . ,x1, 0) and γ 1 =

(xn−1,xn−2, . . . ,x1, 1). Then, F0(β) = f (γ 0) ⊗0 f (γ 1). Note that γ 0 = X k (γ 0) and γ 1 = X k (γ 1). Also,

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:16 D. J. Rosenkrantz et al.

k(γ 0) = 2k(β) and k(γ 1) = 2k(β)+1. Thus, at time 2k(β)+1,W =W [γ 0]; and at time 2k(β)+2,W =
W [γ 1]. Since at time 2k(β)+1,h = 0, andy0 = 0, the local transition function for r0 sets C2k (β)+2(r0)
to be the AND of the values of the incoming edges fromW at time 2k(β) + 1. Thus, C2k (β)+2(r0) =
f (γ 0). Since at time 2k(β)+2, h = 0, andy0 = 0, the local transition function for r0 sets C2k (β)+3(r0)
to be result of ⊗i applied to C2k (β)+2(r0) and the AND of the values of the incoming edges fromW
at time 2k(β) + 2. Thus, C2k (β)+3(r0) = f (γ 0) ⊗i f (γ

1) = F0(β). This proves the claim for j ′ = 0.

Inductive Step. Now assume that the claim holds for a given value of j ′, 0 ≤ j ′ < n − 1. We want
to prove that the claim holds for j ′ + 1. Consider any β such that j(β) = j ′ + 1. We need to show
that Fj′+1(β) = Ct (β)(r j′+1). We first note that l(β) = n − j ′ − 2, t(β) = (k(β) + 1)2j

′+2 + j ′ + 2,
and the variables in β are (xn−1,xn−2, . . . ,x j′+2). (If j

′ = n − 2, then β contains no variables.) By
definition, Fj′+1(β) = (Q j′+1x j′+1) · · · (Q1x1)(Q0x0)f (X). Thus, referring to the values of variables
xn−1,xn−2, . . . ,x j′+2 in β ,

Fj′+1(xn−1,xn−2, . . . ,x j′+2) = Fj′ (xn−1,xn−2, . . . ,x j′+2, 0) ⊗j′+1 Fj′ (xn−1,xn−2, . . . ,x j′+2, 1).

Given the values of xn−1,xn−2, . . . ,x j′+2 occurring in β , let γ 0 = (xn−1,xn−2, . . . ,x j′+2, 0) and
γ 1 = (xn−1,xn−2, . . . ,x j′+2, 1). Then,

Fj′+1(β) = Fj′ (γ
0) ⊗j′+1 Fj′ (γ

1).

Note that t(γ 0) = (k(γ 0) + 1)2j
′+1 + j ′ + 1. Since k(γ 0) = 2k(β), t(γ 0) = (2k(β) + 1)2j

′+1 + j ′ + 1 =
k(β)2j

′+2 + 2j
′+1 + j ′ + 1. Also, k(γ 1) = 2k(β) + 1, and t(γ 1) = (k(γ 1) + 1)2j

′+1 + j ′ + 1 =
(2k(β) + 2)2j

′+1 + j ′ + 1 = (k(β) + 1)2j
′+2 + j ′ + 1. By the inductive hypothesis,

Fj′ (γ
0) = Ct (γ 0)(r j(γ 0)) = Ct (γ 0)(r j′), and Fj′ (γ

1) = Ct (γ 1)(r j(γ 1)) = Ct (γ 1)(r j′).

At time t(γ 0) = k(β)2j
′+2 + 2j

′+1 + j ′ + 1, the j ′ + 2 incoming edges to r j′+1 from Y encode

the integer 2j
′+1 + j ′ + 1, so the local transition function for r j′+1 evaluates to be the value of r j′ .

Thus, Ct (γ 0)+1(r j′+1) = Ct (γ 0)(r j′) = Fj′ (γ
0). The local transition function for r j′+1 has r j′+1 retain

its current value until t(γ 1) = (k(β) + 1)2j
′+2 + j ′ + 1. At time t(γ 1) = (k(β) + 1)2j

′+2 + j ′ + 1,
the j ′ + 2 incoming edges to r j′+1 from Y encode the integer j ′ + 1, so the local transition
function for r j′+1 evaluates to be the result of applying operation ⊗j′+1 to r j′+1 and r j′ . Thus,
Ct (γ 1)+1(r j′+1) = Ct (γ 1)(r j′+1) ⊗j′+1 Ct (γ 1)(r j′) = Fj′ (γ

0) ⊗j′+1 Fj′ (γ
1) = Fj′+1(β). However, note

that t(β) = (k(β) + 1)2j
′+2 + j ′ + 2 = t(γ 1) + 1. Thus, Fj′+1(β) = Ct (β)(r j′+1), and Claim 1 follows.

Note that each node in Y andW cycles with a period that divides 2n+1. Since D has all nodes
in Y equal to 0, and this only occurs at a time that is a multiple of 2n+1, D is reachable iff it is
reachable at a time that is a multiple of 2n+1.

Note that C(h) = 0 andD(h) = 1. Furthermore, nodeh is stable with value 1 at time 2n+n, andh
is equal to 0 at all prior times. Thus,D is reachable iff it is reachable at a time t such that t ≥ 2n +n.
Considering node setY ,D is reachable iff it is reachable at a time that is a nonzero multiple of 2n+1.

Note that every node of S has the same value for every time that is a nonzero multiple of 2n+1.
Thus, D is reachable iff it is reachable at time 2n+1, i.e., iff D = C2n+1 .

Recall that D(h) = C2n+1 (h) and D[Y] = C2n+1 [Y]. Since C2n+1−1[Y] consists of all 1’s,
each C2n+1 (w j) equals 1 iff the corresponding clause c j contains a positive literal. Thus,
D[W] = C2n+1 [W]. The nodes in R − {rn−1} are stable with value 0 at time 2n +n + 1, and so have
the same value in D and C2n+1 . Thus, D = C2n+1 iff D(rn−1) = C2n+1 (rn−1). Since D(rn−1) = 1,
D = C2n+1 iff C2n+1 (rn−1) = 1.
Note that node rn−1 is stable at time 2n + n, so C2n+1 (rn−1) = C2n+n(rn−1). Thus, D is reachable

iff C2n+n(rn−1) = 1. Let β be the empty tuple. As has been shown above, Fj(β)(β) = Ct (β)(r j(β)).

Note that l(β) = 0, k(β) = 0, j(β) = n − 1, and t(β) = (k(β) + 1)2n−l (β) + n − l(β) = 2n + n. Thus,

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:17

C2n+n(rn−1) = Fn−1, which is the value of the given quantified Boolean formula F . Thus, F is true
iff D is reachable from C, and this completes our proof of Theorem 4.1. �

4.3 Reducing the Number of Symmetry Classes

In this section, we show how the Reachability problem for r -symmetric SyDSs (for any fixed r) can
be reduced to the Reachability problem for symmetric SyDSs.Moreover, whenwe start with a DAG-
SyDS, the reduction produces aDAG-SyDS. Our approach uses the idea of configuration embedding,
which is defined below. In discussing configuration embeddings, for a pair of configurations C and
D, the notation C −→ D indicates that D is the successor of C.

Definition 4.2. Given a pair of SyDSs S = (G(V ,E),F) and S′ = (G ′(V ′,E ′),F ′), let h be an
onto function from V ′ to V . Let ψh be the function that maps each configuration C of S into the
configuration C′ of S′ such that for each node v ′ ∈ V ′, C′(v ′) = C(h(v ′)). We say that ψh is a
configuration embedding of S into S′ if the following condition holds: for every configuration
C of S, letting D denote the configuration such that C −→ D in S,ψh(C) −→ ψh(D) in S′.

Example. Let S = (G(V ,E),F), where V = {v1,v2,v3}, E = {(v2,v1), (v3,v1)} and F =

((v1 ∧ v2) ∨ v3, v2, v3). Let S′ = (G ′(V ′,E ′),F ′), where V ′ = {u1,u2,u3,u4,u5}, E
′ =

{(u2,u1), (u3,u1), (u4,u1), (u5,u1)} and F ′ = (fu1 ,u2,u3,u4,u5), where fu1 is 1 iff at least two in-
puts are 1. Let h be the following function from V ′ to V : u1 �→ v1,u2 �→ v2,u3 �→ v3,u4 �→

v3,u5 �→ v3. Consider the configuration C = (0, 1, 1) of S. Note that (0, 1, 1) −→ (1, 0, 1) in S,
ψh(C) = (0, 1, 1, 1, 1), ψh((1, 0, 1)) = (1, 0, 1, 1, 1), and that indeed (0, 1, 1, 1, 1) −→ (1, 0, 1, 1, 1) in
S′. More generally, let C be an arbitrary configuration of S. Inψh(C), nodes u3, u4, and u5 all have
the value of C(v3). Thus, the evaluation of local function fu1 of S

′, given configurationψh(C), will
produce the same result as the evaluation of local function fv1 of S. Consequently, it can be seen
thatψh is a configuration embedding.

Suppose that, in the above example, local function fv1 is an arbitrary 2-symmetric function
where one symmetry class consists ofv1 andv2, and the other symmetry class consists ofv3. Note
that functionψh has the property that every configuration C of S maps into a configurationψh(C)
of S′ where the number of inputs of fu1 that equal 1 indicates how many members of each of the
symmetry classes of fv1 equal 1. Thus, fu1 can be designed so that all the local functions of S are
symmetric, andψh is a configuration embedding.

The next lemma shows a key property of configuration embeddings.

Lemma 4.3. LetS = (G(V ,E),F) andS′ = (G ′(V ′,E ′),F ′) be two SyDSs. Leth be an onto function
fromV ′ toV such thatψh is a configuration embedding of S into S′. For every pair of configurations
C and D of S, S starting from C reaches D iff S′ starting fromψh(C) reachesψh(D).

Proof. Since h is an onto function, ψh is injective. For every configuration C of S and every
t ≥ 0, by simple induction on t , it can be seen that ψh(Ct) = (ψh(C))t . Thus, given any pair of
configurations C andD of S, the SyDS S starting from C reachesD iff the SyDS S′ starting from
the configurationψh(C) reaches the configurationψh(D). �

Definition 4.4. A generalized neighbor of a given node v in a directed graph is a node that is
either the source node of an incoming edge to v , or the node v itself.

We now show that given S, a suitable S′ and h can be constructed efficiently.

Theorem 4.5. For any fixed value of r , there is a polynomial time algorithm that given a directed
SyDS

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:18 D. J. Rosenkrantz et al.

S = (G(V ,E),F) with r -symmetric local functions, constructs a directed SyDS S′ = (G ′(V ′,E ′),F ′)

with symmetric local functions, and an onto function h from V ′ to V , such thatψh is a configuration
embedding of S into S′. Moreover, if G is acyclic, then so is G ′.

Proof. For a given node v ∈ V , suppose that local function fv contains rv classes. Note that
1 ≤ rv ≤ r . Let дv0 ,д

v
1 , . . . ,д

v
rv−1

be these classes, where дv0 is the class that contains self-variable

v . We assume that function fv is represented as a rv -dimensional table Tv , accompanied by a
list of which nodes are in each class. Table Tv gives the value of fv for each tuple of the form
(j0, j1, . . . , jrv−1), where for each i , 0 ≤ ji ≤ |дvi |.
We construct S′ as follows: Let Δ be the cardinality of the largest class in F . Let q = Δ + 1.
Node setV ′ and functionh are constructed as follows: For each nodev ∈ V , node setV ′ contains

qr−1 nodes, each of which is mapped into v by h.
Edge set E ′ is constructed as follows: For a given nodev ′ ∈ V ′, suppose that h(v ′) = v . Consider

each incoming edge (u,v) ∈ E. Suppose that u ∈ дvi . Then, q
i nodes in h−1(u) are selected, and an

incoming edge to v ′ from each of these nodes is added to E ′.
Note that for each edge (x ,y) in E ′, (h(x),h(y)) is an edge of E. Thus, if G is acyclic, then so is

G ′.
The tables representing the set of symmetric local functions F ′ are constructed as follows: Con-

sider a given node v ′ ∈ V ′. Let v = h(v ′). Let cv =
∑rv−1

i=0 qi |дvi |. Since v lies in class дv0 , the
number of incoming edges into v ′ is cv − 1. Thus, table Tv ′ specifying symmetric function fv ′ is
a one-dimensional table with an entry for each value j such that 0 ≤ j ≤ cv . Table Tv ′ is filled
in so that for each tuple (j0, j1, . . . , jrv−1) corresponding to an entry in the fv table, the value of

Tv [j0, j1, . . . , jrv−1] is copied into the Tv ′ table entry Tv ′ [
∑rv−1

i=0 qi ji]. More precisely, table Tv ′ is
constructed as follows:
Consider the Tv ′ entry for a given j, 0 ≤ j ≤ cv . For each i such that 0 ≤ i < rv , values ki

and ji are computed as follows: Set k0 = j, and then for 1 ≤ i < rv , set ki =
ki−1/q�. Then, for
0 ≤ i < rv , set ji = ki mod q. If each ji satisfies the requirement that ji ≤ |дvi |, we let ĵ be the

rv -tuple (j0, j1, . . . , jrv−1), and we setTv ′ [j] equal toTv [ĵ]. Otherwise, we setTv ′ [j] equal to 0. Note
that all nodes v ′ such that h(v ′) = v have the same table.

Since r is fixed, the above construction of S′ can be done in polynomial time.
We now argue that ψh is indeed a configuration embedding of S into S′. Consider a given

configuration C of S. Let D be the successor configuration of C. Let C′ = ψh(C), and let D′ be
the successor configuration of C′.
Consider a given node v ′ ∈ V ′. Suppose that h(v ′) = v . For each i , 0 ≤ i < rv , let ji be the

number of generalized neighbors of v that are in class дvi and have value 1 in C. Then D(v) =
Tv [j0, j1, . . . , jrv−1]. Consider a given class дvi of fv . Let u be a generalized neighbor of v such that

u ∈ дvi . Then, node v
′ has qi generalized neighbors u ′ such that h(u ′) = u. Since C′ = ψh(C), for

each of these qi nodesu ′, C′(u ′) = C(u). Since the number of generalized neighbors ofv from class
дvi with value 1 in C is ji , the number of generalized neighbors of v ′ that map into members of дvi
under h and have value 1 in C′ is qi ji . Considering all the classes of fv , the number of generalized

neighbors of v ′ that have value 1 in C′ is j =
∑rv−1

i=0 qi ji , so D′(v ′) = Tv ′ [j]. By the construction
of S′, Tv ′ [j] = Tv [j0, j1, . . . , jrv−1]. Thus, D

′(v ′) = D(v).
Since the above applies to every node v ′ ∈ V ′, we have that D′ = ψh(D). Thus,ψh is a configu-

ration embedding of S into S′. �

The following is the main result of Section 4.3.

Corollary 4.6. For any fixed value of r , the Reachability problem for directed r -symmetric SyDSs
is polynomial-time reducible to the Reachability problem for directed symmetric SyDSs, and the

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:19

Reachability problem for r -symmetric DAG-SyDSs is polynomial-time reducible to the Reachability
problem for symmetric DAG-SyDSs.

Proof. From Lemma 4.3 and Theorem 4.5. �

Theorem 4.1 and Corollary 4.6 together imply the following main result of Section 4.

Theorem 4.7. The Reachability problem for DAG-SyDS with symmetric local functions is PSPACE-
complete.

5 CONVERGENCE PROBLEM FOR QUASI-DAG-SYDSS

We define a quasi-DAG to be a directed graph that is not a DAG, but can be turned into a DAG by
the deletion of one edge.We use the termQuasi-DAG-SyDS for a SyDSwhose underlying graph is a
quasi-DAG. As shown in [13], the Convergence problem for DAG-SyDSs is efficiently solvable. The
results in this section show that the complexity of the Convergence problem changes significantly
when one considers Quasi-DAG-SyDSs.

For convenience, we define the following computational problem, which we call Positive Reach-
ability . An instance of the Positive Reachability problem consists of a SyDS S = (G(V ,E),F), an
initial configuration C, and a nonempty set of distinguished nodesW ⊆ V . The computational
question is the following: Starting from configuration C, does S reach a configuration in which
all the nodes inW equal 1?

Lemma 5.1. The Positive Reachability problem is PSPACE-hard for DAG-SyDSs where each local
function is 6-symmetric.

Proof. Consider the reduction in the proof of Theorem 4.1, from quantified Boolean formulas
to the Reachability problem for DAG-SyDSs where each local function is 6-symmetric. Let n be the
number of variables in the given quantified Boolean formula F . LetS, C, andD be the constructed
DAG-SyDS, initial configuration, and final configuration, respectively. Note that Ct (h) = 1 iff
t ≥ 2n + n. Also note that for all t ≥ 2n + n, Ct (rn−1) equals the value of F . Thus, F = 1 iff S,
starting in configuration C, reaches a configuration in which h and rn−1 both equal 1.

Consider an instance of the Positive Reachability problem with the same SyDS S, the same
initial configuration C, and distinguished node setW = {h, rn−1}. Then, F = 1 iff the constructed
instance of the Positive Reachability problem has answer “YES”. Thus, the Positive Reachability
problem for DAG-SyDSs with 6-symmetric local functions is PSPACE-hard. �

Lemma 5.2. For any fixed value of r , the Positive Reachability problem for r -symmetric DAG-SyDSs
is polynomial-time reducible to the Positive Reachability problem for symmetric DAG-SyDSs.

Proof. Consider an instance of the Positive Reachability problem consisting of a r -symmetric
DAG-SyDS S = (G(V ,E),F), initial configuration C, and setW of distinguished nodes. Since r is
fixed, from Theorem 4.5, in polynomial time we can construct a DAG SyDS S′ = (G ′(V ′,E ′),F ′)

with symmetric local functions, and a function h from V ′ onto V such that ψh is a configuration
embedding of S into S′.
LetW ′ be the set of nodesw of S′ such that h(w) is inW . Let C′ beψh(C).
For any configurationD ofS, letD′ denote the configurationψh(D). Sinceh is an onto function,

configuration D of S has all nodes inW equal to 1 iff configuration D′ of S′ has all nodes inW ′

equal to 1. Sinceψh is a configuration embedding, D is reachable from C iff D′ is reachable from
C′. Consider the Positive Reachability problem instancewith SyDSS′, initial configuration C′, and
distinguished node setW ′. Then, SyDS S, starting from configuration C, reaches a configuration
in which all the nodes inW equal 1, iff S′, starting from configuration C′, reaches a configuration
in which all the nodes inW ′ equal 1. �

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:20 D. J. Rosenkrantz et al.

Lemma 5.3. The Positive Reachability problem for DAG-SyDSs with symmetric local functions is
polynomial-time reducible to the Convergence problem for Quasi-DAG-SyDSs with symmetric local
functions.

Proof. Consider an instance of the Positive Reachability problem for a DAG-SyDS, with given
SyDS S = (G(V ,E),F), where every function in F is symmetric, initial configuration C, and set
W of distinguished nodes.

The reduction constructs an instance of the Convergence problem, consisting of a Quasi-DAG-
SyDS S′ = (G ′(V ′,E ′),F ′) and initial configuration C′, as follows:

Let Δ be the maximum node degree inG. Let Y be a set of Δ+ 2 new nodes. Letv0,va , andvq be
three additional new nodes. Node set V ′ = V ∪ Y ∪ {v0,va ,vq}. Edge set E

′ includes all the edges
from E, an edge from v0 to va , an edge from v0 to each node in Y , an edge from vq to v0, an edge
from each node in Y to each node inV , and an edge from each node inW to vq . Note that deletion
of the edge from vq to v0 makes G ′ a DAG, so G ′ is a quasi-DAG.
The local function for v0 is v0 OR vq .
The local function for va is v0 NOR va .
The local function f ′q for vq is a threshold function with threshold |W |; that is, f ′q equals 1 iff at

least |W | of its variables equal 1.
The local function for each node y in Y is v0 OR y.
The local function f ′i for each node vi in V is a modification of function fi from S, as follows:

Let δi denote the degree of vi in G. If at most δi + 1 of the variables of f
′
i equal 1, then f ′i has the

same value as fi ; if at least δi + 2 of the variables of f
′
i equal 1, then f ′i equals 1.

The initial configuration C′ for S′ is as follows: The nodes in V have the same value as in C.
The nodes in V ′ −V have value 0.

Suppose that the given Positive Reachability problem instance has answer “YES”. Let τ be the
earliest time when S, starting from configuration C, reaches a configuration Cτ where all the
nodes in W have value 1. Then, when S′ starts in configuration C′, C′

τ [W] consists of all 1’s.
Consequently, C′

τ+1(vq) = 1. Then, C′
τ+2(v0) = 1. Since the local function for v0 is OR, for all

t ≥ τ +2, C′
t (v0) = 1. Since the local function forva isNOR, for all t ≥ τ +3, C′

t (va) = 0. Moreover,
since the local function for each nodey in Y isOR, for each nodey in Y and all t ≥ τ +3, C′

t (y) = 1.
Consequently, for each node vi in V , including every node inW , and all t ≥ τ + 4, C′

t (vi) = 1.
Then, for all t ≥ τ + 5, C′

t (vq) = 1. Thus, C′
τ+5 is a fixed point of S′, so the constructed instance

of the Convergence problem has the answer “YES”.
Now suppose that the given Positive Reachability problem instance has answer “NO”. Then S′

starting in configuration C′ always has vq and v0 equal to 0. Thus, node va is alternating at time
0, so the constructed instance of the Convergence problem has answer “NO”.
Thus, the answer to the given Positive Reachability problem instance is “YES” iff the an-

swer to the constructed Convergence problem instance is “YES”. This completes our proof of
Lemma 5.3. �

Theorem 5.4. The Convergence problem for Quasi-DAG-SyDSs is PSPACE-complete, even when
each local function is symmetric.

Proof. It is easy to see that the problem is in PSPACE. PSPACE-harness follows from
Lemmas 5.1–5.3. �

6 CONVERGENCE GUARANTEE PROBLEM FOR DAG-SYDSS

6.1 Overview

As mentioned earlier, Chistikov et al. [13] showed that the Convergence Guarantee problem
is PSPACE-complete for SyDSs on general directed graphs. However, they did not address the

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:21

Fig. 4. A schematic of the DAG constructed in the proof ofTheorem 6.1.

convergence guarantee problem for DAG-SyDSs. Here, we show that this problem remains com-
putationally intractable for DAG-SyDSs, even when each local function is 2-symmetric. We also
show that this result is tight; that is, when each local function is symmetric, the Convergence
Guarantee problem for DAG-SyDSs can be solved efficiently.

6.2 Hardness of Convergence Guarantee for DAG-SyDSs with 2-Symmetric Local

Functions

Theorem 6.1. The Convergence Guarantee problem for DAG-SyDSs is Co-NP-complete, even when
restricted to DAGs with three levels and 2-symmetric functions.

Proof. The Convergence Guarantee for DAG-SyDSs is in Co-NP since the “NO” answer can be
checked in polynomial time by guessing an initial configuration C and verifying that the given
DAG-SyDS does not reach a fixed point by simulating the system for L time steps, where L is the
number of levels in the underlying DAG.
To prove NP-hardness, we use a reduction from 1-IN-3 3SAT, where each clause contains only

positive literals [23]. The constructed SyDS S has a level zero node for each variable, a level
one node for each clause, and a single level two node. We denote these three sets of nodes as
{x1,x2, . . . ,xn}, {c1, c2, . . . , cm}, and {y}, respectively.
There is a directed edge from each level zero node, say for variable xi , to each of the level one

nodes for the clauses involving variable xi . There is a directed edge from each level one node to
node y. A schematic of the resulting DAG is shown in Figure 4.
The local function for each level zero node xi (1 ≤ i ≤ n) is the identity function, which is

symmetric. The local function for each level one node c j (1 ≤ j ≤ m) is the function that equals 1
if exactly 1 of the incoming variables equals 1. This function is 2-symmetric with node c j in one
class and the inputs to c j from level 0 in the other class. The local function for y is the function
y ∧ c1 ∧ c2 ∧ · · · ∧ cm . This function is 2-symmetric, with the variable y in one class and the
remaining variables in the other class.
Note that for every initial configuration, the level zero nodes are all stable at time 0, and the

level one nodes are all stable at time 1.
Suppose the given problem instance has a satisfying 1-in-3 assignment. Then any initial configu-

ration ofS where the level zero nodes have values corresponding to a satisfying 1-in-3 assignment
results in node y being alternating at time 1. Suppose the given problem instance has no satisfying
1-in-3 assignment. Then, for every initial configuration, node y is stable with value 0 at time 2.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:22 D. J. Rosenkrantz et al.

Thus, S reaches a fixed point from every initial configuration, i.e., convergence is guaranteed
for S, iff the given problem instance has no satisfying 1-in-3 assignment. �

6.3 Efficient Solvability of Convergence Guarantee for DAG-SyDSs with Symmetric

Local Functions

Here, we show that the Convergence Guarantee problem for DAG-SyDSs in which each local
function is symmetric can be solved in polynomial time.
Additional Notation. We assume that the symmetric local function fv for a node v with Δv

incoming variables is represented by a table Tv with Δv + 2 entries. The value of the entry Tv [i],
0 ≤ i ≤ Δv + 1, gives the value of fv when exactly i of its Δv + 1 variables equal 1.
Note that fv is a constant function iff the entries in Tv are either all 0 or all 1; fv is a threshold

function iff there is no i , 0 ≤ i ≤ Δv , such thatTv [i] = 1 andTv [i +1] = 0; and fv is a nonthreshold
function iff there is an i , 0 ≤ i ≤ Δv , such thatTv [i] = 1 andTv [i + 1] = 0. In particular, symmetric
function fv is a threshold function iff it is monotone. If fv is a threshold function, we refer to
v as a threshold node, and let τv denote its threshold. Note that a threshold function fv is a
nonconstant threshold function iff 1 ≤ τv ≤ Δv + 1. If fv is not a threshold function, we refer to
v as a nonthreshold node.

We will show in Theorem 7.1 that for a DAG-SyDS where every local function is monotone,
every configuration leads to a fixed point. So, if every node of a DAG-SyDS is a threshold node,
the answer to the Convergence Guarantee problem is “YES”.
We refer to a DAG node with no incoming edges as a source node of the DAG. Note that for

every source node v that is a nonconstant threshold node, fv is the identity function.

Definition 6.2. Given aDAG-SyDSS and nodey ofS, we letSy denote theDAG-SyDS consisting
of all the nodes that precede y (including node y itself), the edges between these nodes, and their
local functions. Given a DAG-SyDS S, a node y such that every node in Sy is a nonconstant
threshold node, source node u in S, and Boolean value b, we say that u b-forces y if u is in Sy ,
and, if so, for every configuration C ofSy such that C[u] = b, the fixed point configuration reached
from C has y equal to b.

Suppose thatu is in Sy and every node in Sy is a nonconstant threshold node. Let Cy,u,b denote

the configuration of Sy where source node u has value b, and every other node in Sy has value b.
Note that since every local function inSy is monotone,u b-forcesy iff the fixed point configuration

reached from Cy,u,b has y equal to b.
Suppose that, for a given nonsource nodew of a DAG-SyDS, every nodev that properly precedes

w is a nonconstant threshold node. For source node u and Boolean value b, we let qw,u
b

denote the
number of nodes y that directly precedew such that u b-forces y.

Lemma 6.3. LetS be a DAG-SyDS. Letu be any source node, andw be any nonsource node. Suppose
that every node that properly precedesw is a nonconstant threshold node. Then, qw,u

0 +qw,u
1 ≤ Δw +1.

Moreover, ifw is a nonconstant threshold node, then u does not both 0-forcew and 1-forcew .

Proof. The proof is by induction on the level of w . Let L denote the level of w . Since w is a
nonsource node, L ≥ 1.
Basis Step. Suppose L = 1. Then the Δw nodes that directly precede w are all source nodes,

and their local functions are all the identity function. Suppose that u 0-forces w . Then u directly
precedesw , fw is the AND function, and τw = Δw + 1. Suppose that u 1-forcesw . Then u directly
precedes w , fw is the OR function, and τw = 1. Since Δw ≥ 1, fu has at least two variables, so u
does not both 0-forcew and 1-forcew .

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:23

Induction Step. Suppose the result holds for all levels ≤ L. Suppose the level of w is L + 1. If
u directly precedes w , then fu is the identity function, so u both 0-forces u and 1-forces u. For
any other source node v that directly precedes w , u neither 0-forces v nor 1-forces v . For any
nonsource nodev that directly precedesw , from the induction hypothesis,u does not both 0-force
v and 1-force v . Thus,

qw,u
0 + qw,u

1 ≤ Δw + 1. (1)

Now supposew is a nonconstant threshold node.
Suppose that u 1-forcesw . Then, Tw [q

w,u
1] = 1. Thus, qw,u

1 ≥ τw .
Suppose that u 0-forces w . Then, Tw [Δw + 1 − qw,u

0] = 0. Thus, Δw + 1 − qw,u
0 < τw . I.e.,

qw,u
0 > Δw + 1 − τw .
Suppose that u both 0-forcesw and 1-forcesw . Then ,qw,u

0 > Δw + 1− τw and qw,u
1 ≥ τw , which

together imply that qw,u
0 +qw,u

1 > Δw +1, contradicting Equation (1). Thus,u does not both 0-force
w and 1-forcew . This completes the induction step, thereby proving the lemma. �

In the remainder of this section, for any pair of SyDSs S and S′, we use the notation S ≡ S′

to indicate S and S′ are identical; that is, they have the same set of nodes, the same underlying
graph and each pair of corresponding nodes in the two SyDSs have the same local function.

Definition 6.4. A critical DAG-SyDS is a DAG-SyDS where every local function is a nonconstant
symmetric function, and there is at least one nonthreshold node. A simple critical DAG-SyDS is
a critical SyDS S such that there is exactly one nonthreshold node w and S ≡ Sw . We call the
nonthreshold node of a simple critical DAG-SyDS S the critical node of S.

Lemma 6.5. Let S be a simple critical DAG-SyDS. The phase space of S contains a cycle of
length 2.

Proof. The proof is by induction on the number of nodes in S. Let w denote the critical node
of S.
Basis Step. Suppose thatS contains only 1 node. Then, critical nodew is the only node inS. Sincew
has no incoming variables and its local function is a nonthreshold function, fw is the complement
function. Thus, the phase space of S consists of a cycle of length 2.
Induction Step. Suppose that the result holds for all simple critical SyDSs with at most n nodes, for
some n ≥ 1. Suppose that S contains n + 1 nodes.

Let u be any source node of S. Since S ≡ Sw , u does not have an incoming edge from w , and
u is a threshold node. Thus, fu is a nonconstant threshold function, so fu is the identity function.
For Boolean value b, we define the DAG-SyDS Su=b , as follows. Su=b has the same set of nodes
and edges as S, except that every threshold nodev such that u b-forcesv is deleted, along with all
edges incident on v . For every nondeleted node y, the table T ′

y for y in Su=b is defined as follows:

First, note that q
y,u

b
of the incoming edges to y are deleted, so the number of incoming edges Δ′

y

of y in Su=b is Δ′
y = Δy −q

y,u

b
. If b = 0, then for each i , 0 ≤ i ≤ Δ′

y + 1,T
′
y [i] = Ty [i]. If b = 1, then

for each i , 0 ≤ i ≤ Δ′
y + 1, T

′
y [i] = Ty [i + q

y,u
1]. This completes the definition of Su=b .

Let y be a node that is retained in Su=b , such that y is not the critical node of S. So, y is a
nonconstant threshold node in S. Since y is retained in Su=b , the local function for y in Su=b

is not a constant function. If b = 0, then τy ≤ Δy′ + 1, and T ′
y represents a threshold function

with threshold τy . If b = 1, then τy > q
y,u
1 , and T ′

y represents a threshold function with threshold

τy −q
y,u
1 . In either case, every threshold node that is not deleted remains a nonconstant threshold

node in Su=b .

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:24 D. J. Rosenkrantz et al.

Consider critical nodew . We define a critical index forTw to be an integer j, 0 ≤ j ≤ Δw , such
thatTw [j] = 1, andTw [j +1] = 0. Sincew is a nonthreshold node, there is at least one critical index
for Tw .
Suppose thatTw contains a critical index j such that j ≥ qw,u

1 . Then, we let S′ be the DAG-SyDS
[Su=1]

w . Otherwise, we note that there is at least one critical index j such that j < qw,u
1 , and we

let S′ be the DAG-SyDS [Su=0]
w .

We claim that S′ is a simple critical DAG-SyDS. First, note that every node in S′ other than
w is a nonconstant threshold node. Second, note that S′ ≡ [S′]w . Finally, we claim that w is a
nonthreshold node in S′. Consider the two cases of how S′ is obtained from S. Suppose that
S′ ≡ [Su=1]

w , so thatTw contains a critical index j such that j ≥ qw,u
1 . Since in tableTw ,Tw [j] = 1

and Tw [j + 1] = 0, in table T ′
w we have that T ′

w [j − qw,u
1] = 1 and T ′

w [j + 1 − q
y,u
1] = 0. So, in S′,

w is a nonthreshold node. Suppose instead that S′ ≡ [Su=0]
w , so that Tw contains a critical index

j such that j < qw,u
1 . Since every node that properly precedes w is a nonconstant threshold node,

from Lemma 6.3, qw,u
0 + qw,u

1 ≤ Δw + 1. Thus, qw,u
1 ≤ Δw + 1 − qw,u

0 = Δ′
w + 1. Since j < qw,u

1 ,
it follows that j + 1 ≤ Δ′

w + 1. Thus, table T ′
w contains entries for j and j + 1. Since in table Tw ,

Tw [j] = 1 and Tw [j + 1] = 0, in table T ′
w we have that T ′

w [j] = 1 and T ′
w [j + 1] = 0. So, in S′,w is a

nonthreshold node. Thus, S′ is a simple critical DAG-SyDS.
From the induction hypothesis, the phase space of S′ contains a cycle of length 2. Thus, there

is a configuration C′ of S′ that is part of a phase space cycle of length two in S′. Let b be the
Boolean value such that S′ ≡ [Su=b]

w . Let C be the extension of C′ to S where every node that
is in S but not in S′ has value b. Note that in configuration C of S, every node other than w is a
stable node at time 0 while w is alternating at time 0. Thus, C is part of a cycle of length 2 in the
phase space of S. �

Lemma 6.6. LetS be a critical DAG-SyDS. Then. the answer to the Convergence Guarantee Problem
for S is “NO”.

Proof. Let w be a nonthreshold node of S, such that no nonthreshold node of S occurs at a
lower level thanw . Then, Sw is a simple critical DAG-SyDS. From Lemma 6.5, the phase space of
Sw contains a cycle of length 2. Let C′ be a configuration of Sw that leads to a phase space cycle
of length 2. Let C be any extension of C′ to all the nodes of S. Then C is a configuration of S that
leads to a phase space cycle of length 2, so the answer to the Convergence Guarantee Problem for
S is “NO”. �

Theorem 6.7. The Convergence Guarantee Problem for DAG-SyDSs where each local function is
symmetric can be solved in polynomial time.

Proof. Let S be a given DAG-SyDSs where each local function is symmetric. An algorithm
for the Convergence Guarantee Problem can proceed as follows, by first eliminating all nodes for
constant functions, and then checking to see if the local function for any of the remaining nodes
is a nonthreshold function.
The algorithm first performs a loop where it removes nodes whose local function is a constant

function. Each iteration of the loop proceeds as follows: If every local function is a nonconstant
function, the loop is completed. Otherwise, the current iteration selects a node v whose local
function is a constant function. Let b be the value of this constant function, i.e., the value in all
entries in tableTv is b. The current loop iteration modifies S to produce SyDS S′, as follows: Node
v and all its incident edges are deleted. Consequently, each node y for which S had an incoming
edge from v has this edge deleted. Table Ty is modified as follows: If b = 0, the last entry of the
table is deleted. If b = 1, the first entry of the table is deleted. The current loop iteration then sets
S to be S ′, and the next loop iteration begins.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:25

Consider S after the loop has exited. If S contains any nonthreshold node, then S is a critical
DAG-SyDS, so from Lemma 6.6, the answer to the Convergence Guarantee Problem for S is “NO”.
So, the algorithm reports “NO”, and terminates.
Otherwise, every node in S is a nonconstant threshold function, so the algorithm reports “YES”,

and terminates. (Note that it is possible that after the loop has exited, S contains no nodes, in
which case all initial configurations for the original given DAG-SyDS lead to the same fixed point
configuration.) �

7 REACHABILITY FOR SPECIAL CLASSES OF DAG-SYDSS

7.1 Overview

In this section, we show that the Reachability problem can be solved efficiently for two special
classes of DAG-SyDSs. In one class, which we call monotone DAG-SyDSs, all local functions
are assumed to be monotone (as defined in Section 2.4). In the other class, all the local functions
are assumed to be nested canalyzing functions (NCFs). The definition of this class of Boolean
functions is given in Section 7.3. For both classes of SyDSs, efficient algorithms are obtained by
establishing bounds on the lengths of transients and cycles in the corresponding phase spaces.

7.2 Reachability for Monotone DAG-SyDSs

Theorem 7.1. For any monotone DAG-SyDS, every cycle is a fixed point, and the length of any
transient does not exceed the number of levels.

Proof. We show by induction on the number of levels that for each level i , every level i node
is stable after at most i steps.
From Lemma 3.2, every level 0 node is either stable or alternating at time 1. The complement

function is not monotone, so a level 0 node cannot be alternating, and thus is stable at time 1.
Suppose that all the incoming edges to a given node v have stable values at time t . From

Lemma 3.1, node v is either stable or alternating at time t + 1. Since the local function for node
v is monotone, and all the incoming edges have stable values at time t , node v is stable at time
t + 1. �

We observe that that for every L ≥ 0, there exists a monotone DAG-SyDS with a transient of
length L. Consider the SyDS whose underlying graph is a directed chain of L nodes. The local
function of the level 0 node is the constant 1, and of every other node is the or of its value and the
value from the incoming edge. The configuration of all zeros takes L steps to reach the fixed point
of all ones.
Theorem 6.7 shows that for DAG-SyDSs where each local function is symmetric, the Conver-

gence Guarantee problem can be solved efficiently. Theorem 7.1 points out that for DAG-SyDSs
where the local functions are monotone, the answer to the Convergence Guarantee problem is
always “YES”. Moreover, from any initial configuration, such a SYDS reaches a fixed point in a
number of steps bounded by the number of levels of the underlying DAG.
The following result is a direct consequence of Theorem 7.1 and Theorem 3.6:

Theorem 7.2. The Reachability problem for monotone DAG-SyDSs can be solved in polynomial
time.

7.3 Reachability Problem for NCF-DAG-SyDSs

7.3.1 Nested Canalizing Functions and Generalized Nested Canalizing Functions. The class of
Nested Canalizing Functions (NCFs) was introduced in [26] as a model for the behavior of

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:26 D. J. Rosenkrantz et al.

certain biological systems. We follow the presentation in [29] in defining NCFs. As usual, for a

Boolean value b, the complement is denoted by b.

Definition 7.3. Let X = {x1,x2, . . . ,xn} denote a set of n Boolean variables. Let π be a permu-
tation of {1, 2, . . . ,n}. A Boolean function f (x1,x2, . . . ,xn) over X is nested canalizing in the
variable order xπ (1),xπ (2), . . . ,xπ (n) with canalizing values a1,a2, . . . ,an and canalized values

b1,b2, . . . ,bn if f can be expressed in the following form:

f (x1,x2, . . . ,xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 if xπ (1) = a1

b2 if xπ (1) � a1 and xπ (2) = a2
...
...

bn if xπ (1) � a1 and . . . xπ (n−1) � an−1 and xπ (n) = an

bn if xπ (1) � a1 and . . . xπ (n) � an

For convenience, we will use a notation introduced in [39] to represent NCFs. For 1 ≤ i ≤ n,
line i of this representation has the form

xπ (i) : ai −→ bi

with xπ (i) being the canalizing variable that is tested in line i , and ai and bi being respectively
the canalizing and canalized values in line i , 1 ≤ i ≤ n. Each such line is called a canalization
rule. When none of the conditions “xπ (i) = ai ” is satisfied, we have line n + 1 with the “Default”

rule for which the canalized value is bn :

Default: bn

As in [39], we will refer to the above specification of an NCF as the simplified representation

and assume (without loss of generality) that each NCF is specified in this manner. Note that the
default value is always the complement of the canalized value in the last canalizing rule.

Example. Consider the function f (x1,x2,x3) = x1∨(x2∧x3). This function is nested canalizing
using the identity permutation π on {1, 2, 3} with canalizing values 1, 1, 0 and canalized values
1, 0, 0. A simplified representation of this function is as follows:

x1 : 1 −→ 1

x2 : 1 −→ 0

x3 : 0 −→ 0

Default: 1

NCFs can be seen as a special form of decision lists studied in [36]. We will also consider a gener-
alization of NCFs, as defined in [39].

Definition 7.4. A generalized NCF is a function that can be represented as either a constant or
an NCF representation of a subset (not necessarily proper) of the function’s variables.

Example. Consider a Boolean function f1(x1,x2,x3,x4) whose generalized NCF representation
is as follows:

x2 : 1 −→ 0

x3 : 0 −→ 1

Default: 0

Note that the function f1 depends only on the variables x2 and x3.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:27

We now show that generalized NCFs are closed under projection, i.e., if some of the variables of
a generalized NCF are assigned constant values, the resulting function of the remaining variables
is also a generalized NCF.

Lemma 7.5. Generalized NCFs are closed under projection.

Proof. We focus on showing that if a single variable of a generalized NCF f is assigned a
specified constant value, then the projection onto the remaining variables is a generalized NCF.
The lemma follows by induction on the number of variables assigned constant values.

So, consider the projection fx=a , where a variable x is assigned value a, and consider a given
generalized NCF representation of f .

Case 1:Variable x does not occur in any line of the representation of f . Then, fx=a is a generalized
NCF, with the same representation as f .

Case 2: Variable x is the canalizing variable in some line of the representation of f . We call this
line critical line. Let b denote the canalized value in the critical line.
Case 2A: The canalizing value in the critical line is a.

Case 2A(i): No canalization rule with canalized value b precedes the critical line. Then
fx=a is the constant b.

Case 2A(ii):There is a canalization rule preceding the critical line for which the canalized

value isb. Let the last line that precedes the critical line and for which the canalized value

is b, be called the semicritical line. Then a generalized NCF representation of fx=a can
be obtained from the representation of f by deleting all lines after the semicritical line,
and making the default value be b.

Case 2B: The canalizing value in the critical line is a.
Case 2B(i): The critical line contains the last canalization rule in the representation of f

(so that the default value is b), and every canalization rule other than the the one in the

critical line has canalized value b. Then fx=a is the constant b.
Case 2B(ii): Either there is a canalization rule after the critical line, or the critical line
is immediately preceded by a line containing a canalization rule with canalized value b.
Then, a generalized NCF representation of fx=a can be obtained from the representation
of f by deleting the critical line.
Case 2B(iii): The critical line contains the last canalization rule in the representation

of f (so that the default value is b), is immediately preceded by a line containing a

canalization rule with canalized value b, and there is at least one other line containing
a canalization rule with canalized value b. Let the last line that precedes the critical line
and for which the canalized value is b, be called the semicritical line.
Then a generalized NCF representation of fx=a can be obtained from the representation

of f by deleting all lines after the semicritical line, andmaking the default value beb. �

7.3.2 The Reachability Problem for Generalized-NCF-DAG-SyDSs. We are now ready to discuss
our result for the Reachability problem for DAG-SyDSs where each local function is a generalized
NCF. We refer to such SyDSs as Generalized-NCF-DAG-SyDSs. We begin with a lemma that points
out a timing property of certain nodes.

Lemma 7.6. Let S be a generalized-NCF-DAG-SyDS. For a given initial configuration, let v be a
node such that each incoming variable of v is either stable or alternating at time t . Then, for that
initial configuration, v is either stable or alternating at time t + 2.

Proof. Let V ′ be the set of nodes with incoming edges to v , such that they are alternating at
time t , and letV ′′ = V −V ′ be the set of nodes with incoming edges to v , such that they are stable

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:28 D. J. Rosenkrantz et al.

at time t . Let дv be the generalized-NCF obtained from fv by replacing the variables in V ′′ with
their stable values, shortening and deleting lines from the representation of the NCF as appropriate.
Note that дv determines the transitions of node v for all times t ′ such that t ′ ≥ t .

Let α be the assignment of Boolean values toV ′ where each node is assigned its value at time t ,
and let α be the assignment of Boolean values toV ′ where each node is assigned the complement
of its value in α . Note that for every q ≥ 0, α corresponds to the values of the nodes in V ′ at time
t + 2q, and α corresponds to the values of the nodes in V ′ at time t + 2q + 1.

The proof proceeds by a case analysis of дv . Consider a given generalized NCF representation
of дv .

Case 1: Variable v does not occur in any line in the representation of дv . If дv (α) = дv (α), then
node v is stable at time t + 1. If дv (α) � дv (α), then node v is alternating at time t + 1.

Case 2: Variable v occurs in the representation of дv , but is not the canalizing variable in the
first line of the representation. Let u be the canalizing variable in the first line of дv , with
canalizing value au , and canalized value bu . Since u is alternating at time t , and assignments
α and α are complementary, u equals au in either α or α . If u equals au in α , then Ct+1(v)
and Ct+3(v) both equal bu , so v is either stable or alternating at time t + 1. If u equals au in
α , then Ct+2(v) and Ct+4(v) both equal bu , so v is either stable or alternating at time t + 2.

Case 3: Variable v is the canalizing variable in the first line of the representation of дv .
Case 3A: The first line of дv is the following, for some canalizing value a:

v : a −→ a
IfCt+q(v) = a for someq ≥ 0, then nodev is stable with value a at time t+q. In particular, if
Ct+q(v) = a, thenv is stable with value a at time t . Otherwise, ifCt (v) = a butCt+1(v) = a,
then v is stable with value a at time t + 1. Otherwise, if Ct (v) = a and Ct+1(v) = a, but
Ct+2(v) = a, then v is stable with value a at time t + 2. Otherwise, Ct (v), Ct+1(v) and
Ct+2(v) all equal a; consequently v is stable with value a at time t .
Case 3B: The first line of дv is the following, for some canalizing value a:

v : a −→ a
Case 3B1: SupposeCt (v) = a. ThenCt+1(v) = a. IfCt+2(v) = a, then nodev is alternating
at time t . So, suppose that Ct+2(v) = a. If Ct+3(v) = a, then node v is stable with value
a at time t + 1. If Ct+3(v) = a, then Ct+4(v) = a, so node v is alternating at time t + 2.
Case 3B2: Suppose Ct (v) = a. If Ct+1(v) = a, then Ct+2(v) = a, and v is alternating
at time t . If Ct+1(v) = a and Ct+2(v) = a, then node v is alternating at time t + 1. If
Ct+1(v) = a and Ct+2(v) = a, then node v is stable at time t .

This completes all the cases, and the lemma follows. �

The above lemma enables us to prove bounds on the maximum lengths of transients and cycles
in the phase space of a Generalized-NCF-DAG-SyDS.

Theorem 7.7. For a generalized-NCF-DAG-SyDSS, the length of every phase space cycle is at most
2. Moreover, if the number of levels of S is L, no transient is longer than 2L − 1.

Proof. From Lemma 3.2, each level 0 node is either stable or alternating at t = 1.
From Lemma 7.6, for each subsequent level, each node at that level is either stable or alternating

at most two steps after all the nodes at lower levels have become stable or alternating.
Since each node of S eventually becomes either stable or alternating, the length of every phase

space cycle is at most 2. Moreover, a node at a given level j becomes either stable or alternating
after at most 2j + 1 steps. Since S contains L levels, any directed path leading to a fixed point or a
cycle of length 2 can contain at most 2L − 1 configurations. �

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:29

Since Theorem 7.7 provides a polynomial bounds on the lengths of transients and cycles in the
phase space of any Generalized-NCF-DAG-SyDS, the following result is immediate:

Theorem 7.8. The Reachability problem is efficiently solvable for Generalized-NCF-DAG-SyDSs.

8 GARDEN OF EDEN EXISTENCE PROBLEM

Recall that a Garden of Eden (GE) configuration of a SyDS is one which has no predecessor. In this
section, we present our results for the GE existence problem for DAG-SyDSs. To do this, we begin
with an observation and some definitions for directed SyDSs, that is, SyDSs whose underlying
graph are directed, but not necessarily acylic.

Observation 8.1. A directed SyDS has a GE configuration iff there exist two distinct configurations
with the same successor.

Proof. Let S be a directed SyDS with n nodes. Since S is deterministic, each configuration has
a unique successor. Thus, the outdegree of each of the 2n nodes in the phase of S is 1 and so the
number of directed edges in the phase space is also 2n . To prove the “if” direction, suppose there
are two distinct configurations C1 and C2 ofS such that they have the same successor, say C. Thus,
indegree of C is ≥ 2. If there is no GE configuration, then each of the 2n − 1 nodes of the phase
space (i.e., each node except C) has an indegree of at least 1 and C has an indegree of at least 2;
that is, the number of directed edges in the phase space is at least 2n + 1, a contradiction. Thus, S
must have a GE configuration. For the “only if” part, let C′ be a GE configuration. Thus, we have
2n configurations for which there are only 2n − 1 successors. Hence, by the pigeonhole principle,
there must be two configurations with the same successor. �

Definition 8.1. For a node v of a directed SyDS, an incoming assignment is an assignment of a
value to each of the incoming variables of v

For a nodev , Boolean value a and incoming assignment α , we use the notation fv (a,α) to denote
the value of local function fv when v = a and the incoming variables have the values in α .

Definition 8.2. A variable x of a Boolean function f is fully essential to f if for every assignment
to the other variables of f , the value of f depends on the value of x .
The local function fv of a node v of a given directed SyDS is fully self-essential if self-variable v

is fully essential to fv ; that is, for every incoming assignment α , fv (0,α) � fv (1,α).

Theorem 8.3. A DAG-SyDS S has a Garden of Eden configuration iff at least one of its local
functions is not fully self-essential.

Proof. If: Suppose that S has at least one local function that is not fully self-essential. Letv be
a node whose local function is not fully self-essential. Let α be an incoming assignment to v , such
that fv (0,α) = fv (1,α). Let j be the level ofv . Let C be any configuration ofL′

j such that that C has

the values from α on the incoming variables ofv . LetD be the configuration onL′
j that is identical

to C, except that D(v) � C(v). Since C and D differ only in the value of v , they have the same
successor configuration on L′

j . Since there are two configurations of L′
j with the same successor,

there is at least one configuration of L′
j with no predecessor configuration. Any extension of this

configuration to a full configuration of S has no predecessor, and so is a GE configuration of S.
Only If: Suppose that all the local functions of S are fully self-essential. We now argue that every
pair of distinct configurations of S has distinct successors. Let C andD be distinct configurations
of S. Let j be the lowest level number of S such that C[L j] � D[L j]. Thus, C[L

′
j−1] = D[L′

j−1].

Letv be a level j node such that C[v] � D[v]. SinceC[L′
j−1] = D[L′

j−1], the incoming assignment
to v is the same in C and D. Let C1 denote the successor of C, and D1 denote the successor of

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:30 D. J. Rosenkrantz et al.

D. Since the local function of node v is fully self-essential, C1(v) � D1(v). Thus, every pair of
distinct configurations of S has distinct successors. Consequently, by Observation 8.1, S has no
GE configuration. �

We now establish the complexity of the GE Existence problem for DAG-SyDSs.

Proposition 8.4. The GE existence problem for DAG-SyDSs whose local functions are specified as
Boolean formulas is NP-complete, even when restricted to DAGs with two levels.

Proof. The membership in NP of the GE existence problem for all directed SyDSs follows from
Observation 8.1.
The proof of NP-hardness is via a reduction from 3SAT. Let f denote the given 3SAT Boolean

formula. Let n be the number of variables in f . For the reduction, we construct a SyDS S with n+1
nodes. LetX denote the first n nodes of S, all of which are in layer zero. The local function of each
of these nodes is the identity function. Node xn+1 has an incoming edge from each of the other n
nodes. Its local function is: xn+1 ∨ f .

Note that the local function for each node in X is fully self-essential. Also note that every as-
signment to the nodes inX is an incoming assignment to node xn+1. We also observe that the local
function for xn+1 can change the value of xn+1 only if xn+1 = 0 and the values of the other variables
satisfy f .
Suppose that formula f is satisfiable. Let α be a satisfying assignment for f . Then, fxn+1 (0,α) =

fxn+1 (1,α) = 1, so fxn+1 is not fully self-essential.
Now suppose that formula f is unsatisfiable. Then, the local function for xn+1 is the identity

function, which is fully self-essential.
Thus, formula f is satisfiable iff the local function for xn+1 is not fully self-essential Conse-

quently, from Theorem 8.3, f is satisfiable iffS has a Garden of Eden configuration. This completes
the proof of Proposition 8.4. �

We now consider the GE problem for DAG-SyDSs whose local functions are each represented
as an r -symmetric table, accompanied by a list of the nodes in each of the r groups. We denote
these groups as д0,д1, . . . ,дr−1. Such a table gives the value of the function for each tuple of the
form (j0, j1, . . . , jr−1), where for each i , 0 ≤ ji ≤ |дi |.

Lemma 8.5. Suppose an r -symmetric function f is represented as an r -dimensional tableT , accom-
panied by a list of which variables are in each group. The problem of determining whether a given
variable x is fully essential to f can be solved in time that is linear in the size of the input. Moreover,
if x is not fully essential to f , an assignment α to the variables of f other than x , such that f has
the same value when α is extended to a complete assignment by setting x to either 0 or 1, can be
constructed in time that is linear in the size of the input.

Proof. Let дk be the group containing x . Then x is fully essential to f iff for all tuples
(j0, j1, . . . , jr−1), where 0 ≤ jk < |дk | and for each i � k , 0 ≤ ji ≤ |дi |,

T [j0, j1, . . . , jk−1, jk , jk+1, . . . , jr−1] � T [j0, j1, . . . , jk−1, jk + 1, jk+1, . . . , jr−1].

This property can be tested for in time linear in the size of the input. Moreover, if there is a tuple
such that

T [j0, j1, . . . , jk−1, jk , jk+1, . . . , jr−1] = T [j0, j1, . . . , jk−1, jk + 1, jk+1, . . . , jr−1],

such a tuple can be can be found in time that is linear in the size of the input. From this tuple, an
assignment to the variables of f such that f has the same value whether or not x is complemented
in the assignment, can be constructed in time that is linear in the size of the input. �

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:31

Theorem 8.6. Given a DAG-SyDSs S whose local functions are specified as r -symmetric tables for
some r , the GE existence problem can be solved in time that is linear in the size of the input. Moreover,
if a GE configuration exists, one can be constructed in time that is linear in the size of the input.

Proof. From Theorem 8.3, S has a GE configuration iff at least one of its local functions is not
fully self-essential. From Lemma 8.5, each local function table for S can be tested for the property
of being fully self-essential, in time linear in the size of the table for that node. Thus, the GE
existence problem can be solved in time linear in the size of the description of S.

Suppose that at least one local function is not fully self-essential. A GE configuration can be
found as follows. Letv be a node whose local function is not fully self-essential, but the local func-
tions of all nodes whose level is below that of v are fully self-essential. Let j denote the level of v .
Thus, all nodes inL′

j−1 are fully self-essential, so, from Theorem 8.3,L′
j−1 has no GE configuration.

From Lemma 8.5, in linear time an incoming assignment α tov can be found such that fv (0,α) =
fv (1,α). Let α

′ be any extension of α to all the nodes in L′
j−1. Let β be the successor configuration

ofα ′ onL′
j−1. SinceL

′
j−1 has noGE configuration,α

′ is the only predecessor configuration of β . Let

b = fv (0,α). Letγ be any configuration ofS such thatγ (v) = b̄ andγ [L′
j−1] = β . Sinceγ [L′

j−1] = β ,

any predecessor of γ must equal α ′ on L′
j−1. Since γ (v) = b̄, any predecessor of γ cannot equal α ′

on L′
j−1. Thus, γ has no predecessor configuration, so γ is a GE configuration of S. �

When an r -symmetric local function fv with k variables is specified by giving the table repre-
sentation, the size of the given table is O(kr). As noted in the following corollary, when r is fixed,
the size of the representation of SyDS S and the running time of the Theorem 8.6 algorithm for
solving the GE existence problem and constructing a GE configuration when a GE configuration
exists are both polynomial functions of n, the number of nodes. However, even when r is not fixed,
while the size of the input and the running time of the algorithm are not necessarily polynomial
functions of n, the running time remains linear in the input size, i.e., linear in the size of the given
representation of S.

Corollary 8.7. For any fixed value of r , given a DAG-SyDSs S whose local functions are specified
as r -symmetric tables, the GE existence problem can be solved in time that is polynomial inn. Moreover,
if a GE configuration exists, one can be constructed in time that is polynomial in n.

9 COMPUTATIONALLY HARD PROBLEMS FOR TWO-LEVEL DAG-SYDSS

In this section, we consider the Fixed Point Existence and Predecessor Existence problems for
DAG-SyDSs. (These problems were defined in Section 2.5.) We show the decision versions of these
problems are NP-complete and their counting versions are #P-complete even for SyDSs whose
underlying DAGs have only two levels. In proving the hardness results for the counting problems,
we use the definitions of #P and #P-completeness from [23]. Specifically, a counting problem Π
is in #P if the number of accepting computations of a polynomial-time bounded nondeterministic
Turing machine for the corresponding decision problem is equal to the number of solutions to the
problem. A counting problem Π is #P-complete if Π ∈ #P and for all Π′ ∈ #P, there is a polynomial
time Turing reduction from Π′ to Π. Such a reduction allows us to efficiently compute the number
of solutions to each instance I ′ of Π′ from the number of solutions to the instance I of Π resulting
from the reduction. One special form of Turing reduction is a parsimonious reduction. A polynomial
time parsimonious reduction from a counting problem Π′ to a counting problem Π is such that for
each instance I ′ ∈ Π′, the number of solutions to I ′ is equal to that of the instance I of Π produced
by the reduction. Our reductions to prove NP-hardness also serve as Turing reductions.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:32 D. J. Rosenkrantz et al.

Proposition 9.1. The Fixed Point Existence problem for DAG-SyDSs is NP-complete, even when
restricted to DAGs with two levels and maximum node degree 3. Further, the problem of counting the
number of fixed points of such DAG-SyDSs is #P-complete.

Proof. It can be seen that the Fixed Point Existence problem is in NP and the corresponding
counting problem is in #P. To prove NP-hardness, we use a reduction from 3SAT. The constructed
SyDS S has a level-zero node for each variable, and a level-one node for each clause. There is
a directed edge from a level-zero node for a given variable to each of the nodes for the clauses
involving that variable. The local function for each level-zero node is the identity function. The
local function for each level-one node is the function that equals 1 if the value of the node is 0, or
if the value of at least one of the incoming edges makes the clause true.
Suppose the given 3SAT problem instance is satisfiable. Then the configuration of S where the

level-zero nodes have values corresponding to a satisfying assignment, and the level-one nodes all
have value 1, is a fixed point.
Suppose that SyDS S has a fixed point. In a fixed point, the level-one nodes all have value 1, and

the values of the level-zero nodes in each fixed point constitute a satisfying assignment.
Thus, S has a fixed point iff the given 3SAT problem instance is satisfiable.
We observe that the above reduction is parsimonious; that is, the number of fixed points

of the constructed DAG-SyDS is equal to the number of satisfying assignments of the given
3SAT instance. Therefore, by carrying out the above reduction from #3SAT establishes the #P-
completeness of counting the number of fixed points of a DAG-SyDS. �

Proposition 9.2. The predecessor existence problem for DAG-SyDSs is NP-complete, even when
restricted to DAGs with two levels and maximum node degree 3. Further, the problem of counting the
number of predecessors of such DAG-SyDSs is #P-complete.

Proof. The Predecessor Existence problem and its counting version are clearly in NP and #P,
respectively. To prove NP-hardness, we use a reduction from 3SAT. The underlying graph of the
constructed SyDS S is the same as the underlying graph constructed in the proof of Proposition 9.1.
The local function for each level-zero node is the constant function 1. The local function for each
level-one node is the function that equals 1 iff the value of at least one of the incoming edges makes
the clause true. The configuration C for the constructed predecessor existence problem instance
is the configuration where all nodes have value 1.
Suppose the given 3SAT problem instance is satisfiable. Then any configuration of S where the

level-zero nodes have values corresponding to a satisfying assignment, and the level-one nodes
have arbitrary values, is a predecessor of configuration C .

Suppose that C has a predecessor, say configuration C0. Since all the level-one nodes in C have
value 1, the values of the level-zero nodes in C0 constitute a satisfying assignment.

Thus, C has a predecessor iff the given 3SAT problem instance is satisfiable.
Suppose the the given 3SAT problem instance containsm clauses. Then, for any satisfying assign-

ment for the the given 3SAT problem instance,C contains 2m predecessors. Thus, the above reduc-
tion also serves as a Turing reduction to establish the #P-completeness of the counting version. �

10 SUMMARY AND FUTURE RESEARCH DIRECTIONS

We considered a number of decision problems for DAG-SyDSs and established complexity and
efficient solvability results. In particular, while previous work [13] showed that the Convergence
problem is efficiently solvable for DAG-SyDSs, we showed that the Reachability problem remains
PSPACE-complete even for symmetric DAG-SyDSs.We also showed that the Convergence problem
is PSPACE-complete for SyDSswhose underlying graphs are Quasi-DAGs (i.e., directed graphs that

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

Synchronous Dynamical Systems on DAGs 11:33

become DAGs by the deletion of a single edge). We also identified some special classes of DAG-
SyDSs for which the Reachability problem can be solved efficiently. In the process of proving the
above results, we established bounds on the lengths of transients and directed cycles in the phase
spaces of DAG-SyDSs.
We close by presenting some directions for future research. It will be of interest to establish

bounds on the lengths of transients and phase space cycles for other restricted classes of DAG-
SyDSs (e.g., DAG-SyDSs in which each node has bounded indegree, DAG-SyDSs where nodes have
positive or negative weights and the local functions are weighted threshold functions). Investigat-
ing the complexity of Reachability and other problems for these restricted classes of DAG-SyDSs
is also an interesting direction. We limited our focus to deterministic local functions. SyDSs where
the local functions are stochastic have also been considered in the literature (e.g., [5]). The hard-
ness results for deterministic DAG-SyDSs readily extend to stochastic SyDSs; it will be interesting
to study whether the efficient solvability results for the deterministic case can be extended to the
stochastic case.

ACKNOWLEDGMENTS

We thank the referees for a thorough review. Their suggestions helped us to significantly improve
the paper.

REFERENCES

[1] A. Adiga, C. J. Kuhlman, M. V. Marathe, H. S. Mortveit, S. S. Ravi, and A. Vullikanti. 2019. Graphical dynamical systems

and their applications to bio-social systems. Springer International Journal of Advances in Engineering Sciences and

Applied Mathematics 11, 2 (2019), 153–171.

[2] T. Akutsu, M. Hayashida,W. Ching, andM. K. Ng. 2007. Control of Boolean networks: Hardness results and algorithms

for tree structured networks. Journal of Theoretical Biology 244 (2007), 670–679.

[3] K. F. Arnold, W. J. Harrison, A. J. Heppenstall, and M. S. Gilthorpe. 2019. DAG-informed regression modelling, agent-

based modelling and microsimulation modelling: A critical comparison of methods for causal inference. International

Journal of Epidemiology 48, 1 (2019), 243–253.

[4] V. Auletta, D. Ferraioli, and G. Greco. 2018. Reasoning about consensus when opinions diffuse through majority dy-

namics. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18). ijcai.org, Online
publisher, 49–55.

[5] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. 2011. Modeling and analyzing

social network dynamics using stochastic discrete graphical dynamical systems. Theoretical Computer Science 412,

30 (2011), 3932–3946.

[6] C. Barrett, H. B. Hunt III, M. V Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, and M. Thakur. 2007. Predecessor

existence problems for finite discrete dynamical systems. Theoretical Computer Science 386, 1 (2007), 3–37.

[7] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. 2006. Complexity of

reachability problems for finite discrete dynamical systems. J. Comput. System Sci. 72, 8 (2006), 1317–1345.

[8] D. A. Barrington. 1989. Bounded-width polynomial-size branching programs recognize exactly those languages in

NC1. J. Computer and System Sciences 38 (1989), 150–164.

[9] M. Blonski. 1999. Anonymous games with binary actions. Games and Economic Behavior 28, 2 (1999), 171–180.

[10] S. Botan, U. Grandi, and L. Perrussel. 2019. Multi-issue opinion diffusion under constraints. In Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’19). IFAAMAS, Online publisher,

828–836.

[11] R. Bredereck and E. Elkind. 2017. Manipulating opinion diffusion in social networks. In Proc. IJCAI. ijcai.org, Online
publisher, 894–900.

[12] J.-Y. Cai and M. Furst. 1991. PSPACE survives constant-width bottlenecks. Intl. J. Foundations of Computer Science 2,

1 (1991), 67–76.

[13] D. Chistikov, G. Lisowski, M. Paterson, and P. Turrini. 2020. Convergence of opinion diffusion is PSPACE-complete.

In Proc. AAAI. AAAI Press, Online publisher, 7103–7110.

[14] O. M. Cliff, M. Prokopenko, and R. Fitch. 2020. Inferring Coupling of Distributed Dynamical Systems via Transfer

Entropy. ArXiv Report: 1611.00549v1.

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

11:34 D. J. Rosenkrantz et al.

[15] R. Colley and U. Grandi. 2022. Spread of opinions via Boolean networks. In Proceedings of the 19th European Conference

on Multi-Agent Systems (EUMAS ’22). Dorothea Baumeister and Jörg Rothe (Eds.). Springer, Berlin, Germany, 96–115.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms (Second ed.). MIT Press and

McGraw-Hill, Cambridge, MA.

[17] Y. Crama and P. Hammer. 2011. Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press,

New York, NY.

[18] E. Creager, D. Madras, T. Pitassi, and R. Zemel. 2020. Causal modeling for fairness in dynamical systems. In Proceedings

of the International Conference on Machine Learning (PMLR), San Francisco, CA, 2185–2195.

[19] C. Daskalakis and C. H. Papadimitriou. 2007. Computing equilibria in anonymous games. In Proceedings of the 48th

Annual IEEE FOCS. IEEE, Los Vequeros, CA, 83–93.

[20] C. Daskalakis and C. H. Papadimitriou. 2015. Approximate Nash equilibria in anonymous games. Journal of Economic

Theory 156 (2015), 207–245.

[21] D. Easley and J. Kleinberg. 2010.Networks, Crowds, andMarkets: ReasoningAbout a Highly ConnectedWorld. Cambridge

University Press, New York, NY.

[22] P. Floréen and P. Orponen. 1989. On the computational complexity of analyzing Hopfield nets. Complex Systems 3,

6 (1989), 577–587.

[23] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. W. H.

Freeman & Co., San Francisco.

[24] M. Granovetter. 1978. Threshold models of collective behavior. Amer. J. Sociology 83, 6 (1978), 1420–1443.

[25] M. O. Jackson. 2010. Social and Economic Networks. Princeton University Press, Princeton, NJ.

[26] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. 2003. Random Boolean network models and the yeast tran-

scriptional network. Proc. National Academy of Sciences (PNAS) 100, 25 (Dec. 2003), 14796–14799.

[27] S. Kosub and C. M. Homan. 2007. Dichotomy results for fixed point counting in Boolean dynamical systems. In Pro-

ceedings of the 10th Italian Conference on Theoretical Computer Science. Springer-Verlag, Berlin, 163–174.

[28] C. J. Kuhlman, A. Kumar, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. 2013. Analysis problems for

special classes of bi-threshold dynamical systems. In Proceedings of the Workshop on Multi-Agent Interaction Networks

(MAIN 2013), held in conjunction with the 12th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), (Minneapolis, MN, May 2013). IFAAMAS, Online publisher, 26–33.

[29] L. Layne. 2011. Biologically Relevant Classes of Boolean Functions. Ph. D. Dissertation. Department of Mathematics,

Clemson University.

[30] D. Materassi and M. V. Salapaka. 2013. Reconstruction of directed acyclic networks of dynamical systems. In Proceed-

ings of the 2013 American Control Conference. IEEE Press, Los Vaqueros, CA, 4687–4692.

[31] H. Mortveit and C. Reidys. 2007. An Introduction to Sequential Dynamical Systems. Springer Science & Business Media,

New York, NY.

[32] M. Ogihara and K. Uchizawa. 2017. Computational complexity studies of synchronous Boolean finite dynamical sys-

tems on directed graphs. Inf. Comput. 256 (2017), 226–236.

[33] M. Ogihara and K. Uchizawa. 2020. Synchronous Boolean finite dynamical systems on directed graphs over XOR

functions. In Proceedings of the 45th MFCS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Online publisher,

76:1–76:13.

[34] P. Orponen. 1993. On the computational power of discrete hopfield nets. In Proceedings of the International Colloquium

on Automata, Languages and Programming (ICALP ’93) (Lecture Notes in Computer Science, Vol. 700). Springer, Hei-

delberg, Germany, 215–226.

[35] P. Orponen. 1994. Neural networks and complexity theory. Nord. J. Comput. 1, 1 (1994), 94–110.

[36] R. L. Rivest. 1987. Learning decision lists. Machine Learning 2, 3 (1987), 229–246.

[37] D. J. Rosenkrantz, M. V. Marathe, S. S. Ravi, and R. E. Stearns. 2018. Testing phase space properties of synchronous

dynamical systems with nested canalyzing local functions. In Proceedings of the 17th International Conference on Au-

tonomous Agents and MultiAgent Systems (AAMAS 2018) (Stockholm, Sweden, July 10–15, 2018). IFAAMAS, Online

publisher, 1585–1594.

[38] D. J. Rosenkrantz, M. V. Marathe, S. S. Ravi, and R. E. Stearns. 2021. Synchronous dynamical systems on directed

acyclic graphs (DAGs): Complexity and algorithms. In Proceedings of the 35th AAAI Conference (AAAI ’21). AAAI

Press, Online publisher, 11334–11342.

[39] R. E. Stearns, D. J. Rosenkrantz, S. S. Ravi, and Madhav V. Marathe. 2018. A characterization of nested canalyzing

functions with maximum average sensitivity. Discrete Applied Mathematics 251 (2018), 5–14.

Received 21 February 2023; revised 20 March 2024; accepted 21 March 2024

ACM Trans. Comput. Theory, Vol. 16, No. 2, Article 11. Publication date: June 2024.

