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Abstract—Transitioning to clean and low-carbon energy is
becoming a crucial goal for many entities in the energy systems
sector such as governments, power utilities, and policymakers.
This shift to clean energy is supported by a diverse portfolio
of data products such as satellite data, smart meter data, power
networks, green energy datasets (e.g., solar installations & electric
vehicles), microgrid networks, and building stock data. Among
these, network datasets are becoming increasingly common in
addressing a wide array of issues in residential energy, especially
in applications that focus on social good. Thus, streamlining
the process of generating different types of networks will be
helpful. In this work, we propose a versatile network synthesis
and analytics pipeline developed using software design principles
that make it modular, scalable, and extensible. Three case studies
are presented to illustrate the significance of network data in
sustainable energy applications.

Index Terms—Network generation and analytics, Modeling &
simulation, Energy systems, Solar adoption, Synthetic population,
Placement of EV charging stations, Scalability

I. INTRODUCTION

A. Energy systems and network data

Entities in the energy sector from local/state governments,
power companies (i.e., utilities), policymakers, researchers, to
different types of energy end users in the residential (e.g.,
household) and commercial (e.g., office buildings) energy
sectors are focusing on tackling the challenges in the energy
systems landscape. Transitioning to sustainable energy systems
is one of the primary goals for achieving net zero carbon
emissions. Examples of sustainable and renewable energy
systems include wind, solar, and hydropower. Interdisciplinary
teams are working towards providing access to clean and
affordable energy for all through different channels such as
improved public policies and innovative economic incentives.
Many researchers are turning to machine learning (ML) and

artificial intelligence (AI) tools to facilitate the development
and operation of energy system analytics and sustainable
energy modeling and simulation (M&S) platforms [1].
The growing interest in the application of ML tools is a re-

sult of energy-related datasets becoming available at a fast rate.
For example, data from smart meters enable energy companies,
consumers, and researchers to learn about household energy
consumption patterns. Satellite data has played a crucial role
in sustainable energy applications such as solar photovoltaic
systems, offshore wind projects, hydropower projects, and
geothermal energy [2]. This valuable information can be
used to design fair energy policies at various spatial and
temporal levels. A Time Of Use pricing scheme has been
implemented in some geographical regions (e.g., California)
in order to incentivize the shifting of load from evening
peak times to non-peak times so as to reduce stress on the
power grid. Household data attributes such as socio-economic
status and affordability can be used to build decision models
and optimization frameworks for retrofitting building stock.
Synthetic energy datasets such as those discussed in [3]–[5] are
becoming popular for building detailed bottom-up modeling
frameworks and/or studying the effects of dynamic pricing,
renewables, and EV.
Apart from demographic, spatial, and socio-economic

data, network/graph datasets have started gaining attention
in the field of sustainable energy (see e.g., [4], [6]–[8]).
Many M&S efforts have focused on studying the effects of
peer/neighborhood networks on energy technology adoption
such as solar [9], [10] and electric vehicles (EV) [11], [12].
Integrating details of the power distribution networks is crucial
in understanding the stability of the power grid with increasing
EV penetration (see e.g., [13]). Networks have also been used
in the literature to identify potential microgrids and peer-
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to-peer energy trading [14]. Du et al. [8] use a weighted
directed social network for modeling the propagation of energy
savings. Bale et al. [6] develop a linear model that calculates
community influence from peer networks along with demo-
graphics to predict whether a household will adopt new energy
technologies.
Many of these frameworks employ similar networks in their

models. For example, references [15] and [10] both employ
similar neighborhood networks in developing solar adoption
models. However, the process for generating these networks is
not streamlined. This is mainly due to the lack of commonality
in the design of these network generation models. To improve
human productivity, it is beneficial to separate and automate
the network generation operations into a workflow/pipeline
for improved efficiency, reproducibility, and scalability using
software design principles. In this work, we propose a network
generation pipeline named NetXpipe for sustainable energy
applications using heterogeneous datasets.

B. Background and related work
This section provides relevant background and examples

of software architectures and design principles for devel-
oping pipelines. Architecting scalable, modular, and robust
pipelines (or workflows) using big data, machine learning, and
software-defined infrastructure is gaining widespread atten-
tion in different domains. Microservices-oriented architecture
(MSA) [16]–[18] is one such architectural style that offers
extensibility for accommodating big data design and provides
flexibility for rapid development and integration of multiple
systems/processes. MSA consists of loosely coupled, reusable,
specialized, and independent modules/functions (i.e., microser-
vices) that often work independently of one another. This type
of design is able to work well with complex simulations and
experiment designs by introducing “separation of concerns”
through loose coupling and independence. The microservices
offer the modularity and extensibility to incorporate new
models or behaviors in a large-scale system without having
to make big changes to the existing codebase. Similarly,
the extensibility feature of MSA makes the addition of new
datasets (or data types) to such systems easier in terms of
human hours since components are not tightly coupled and
have a workflow in place for adding specialized services and/or
modifying existing services. In this work, we build a pipeline
using MSA principles for graph synthesis and showcase its
use in sustainable energy applications.
Pipelines have been designed and deployed in various

domains (e.g., bioinformatics, smart grid, IoT, online games)
for automation and organization of tasks, improved efficiency,
modularity, re-usability, and extensibility. We provide four
separate examples below to emphasize the significance of var-
ious aspects of pipeline design in different domains. Cedeno-
Mieles et al. [19] propose a novel pipeline architecture for
networked social science experiments. Their MSA software
system consists of pipelines for data analytics, model property
inference, experiment models and analyses that allow for
human in-loop and repeated network experiments that deal

with detailed human behavior data. The MSA design also
offers automation of tasks such as analyses of experiments,
easy addition of computational models due to a flexible
and extensible pipeline format, and a resilient data model.
In another application, Asaithambi et al. [20] propose a
Microservice-Oriented Big Data Architecture (MOBDA) for
analytics in intelligent transportation systems (ITS). There, the
MSA architecture is exploited to support real-time processing
of massive data. MSA was able to offer better response time,
flexibility, scalability, and seamless integration with hybrid ML
data architectures as compared to traditional ITS architectures.
Thorve et al. [21] propose a suite of five composable

pipeline templates for designing large-scale bottom-up sim-
ulations. The templates are designed for data processing,
modeling, validation, visual analytics, and a pipeline for
parallelizable operations. Each of these encapsulates elements
of some of the most important tasks in modern-day complex
systems. This work shows the application of MSA design by
building a flexible and distributed software tool for large-scale
residential energy simulation. Simmhan et al. [22] provides an
excellent example of intelligent demand response in smart grid
using scalable cloud-based software platforms. The system
is designed to have workflows for dynamic data ingestion,
deployment of machine learning models for peak time demand
forecast, and a visualization portal for exploring consumption
patterns. The use of this system is demonstrated for various
stakeholders in a university campus smart grid for reducing
peak-time energy demand.
Rodrigues et al. [23] employs a graph-based approach for

designing extensible pipelines. They show that pipelines are
able to encapsulate complex analysis tasks by breaking them
down into micro-tasks in tedious experiments, thus making
the complicated tasks easier to debug and update. Du et
al. [24] introduce ‘GraphGT’, a machine learning graph gen-
eration/modeling pipeline that simplifies the process for data
operations, experimental setup, and model evaluation. Their
work generated 36 datasets from 9 domains and made them
publicly available. Purohit et al. [25] describe a data and graph
generation tool for modeling adversary activity. It is a scalable
graph generation and modeling tool to produce realistic and
diverse sets of graphs that are useful in developing subgraph
matching algorithms.
We have described numerous examples of the advantages

of MSA designs in different areas. However, it should be
noted that this architectural style comes with some caveats. For
example, when systems become extremely large and complex,
it is hard to test and debug issues related to service coordi-
nation. It is also challenging to manage such a large number
of microservices. Since microservices are self-contained, they
rely heavily on the network for communication which may
increase network latency and traffic. As this architectural
style is employed in different domains, one should consider
potential trade-offs of MSA with other software design styles
depending on the use case. For example, some drawbacks of
MSA can be addressed by blending MSA principles with other
frameworks thereby providing a hybrid architecture (as shown
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Fig. 1: Abstract view of the proposed graph synthesis pipeline

in Asaithambi et al. [20]).

C. Contributions
In this work, we present a network generation pipeline

named NetXpipe for sustainable energy applications for
streamlining the process of generating networks for sustainable
and social good applications in the energy domain. Although
we focus on sustainable energy applications, NetXpipe can be
easily used in other domains as well.
We employ a microservices-oriented architecture (MSA)

for developing NetXpipe. The network generation pipeline,
which is modular, scalable, and extensible, is designed for
plugging in network-style data in M&S systems in different
applications. We have made 21 networks generated using
NetXpipe public through the net.science platform.1.
The value of the network generation pipeline is demon-

strated through three case studies. The first case study con-
siders retrofitting as a social contagion and studies the spread
of adoption of this energy technology over different types of
population networks with varying edge probability generated
by our pipeline. This study highlights the extensibility and
scalability of the pipeline. The second case study illustrates the
use of the pipeline for studying the influence of peer effects
on solar adoption in rural regions. This study highlights the
scalability and modularity of the pipeline. The third case study
builds an innovative network using synthetic populations and
data on EV charging stations to study the accessibility of EV
chargers for all types of dwellings in a region. This case study
shows that the pipeline is able to work with different types of
data sources and formats in generating networks.

1https://net.science/files/resources/datasets/NetXpipe graphs wsc2023/

D. Paper outline
The proposed network generation pipeline is described in

Section II for applications in sustainable energy. Next, we
present three case studies in Section III to demonstrate the
usefulness of the network generation pipeline in different
settings and conclude in Section IV.

II. NETWORK GENERATION PIPELINE (NETXPIPE)
A. System Overview
Figure 1 shows a logical view of the proposed system.

The graph processing system has a data warehouse that stores
multiple types of data from different sources that are useful
in generating networks. The datasets are analyzed to discover
entities and their features. Then, this information is cataloged
in the system to create a set of nodes V and an attribute list
Av for each v 2 V. For example, if each node v represents
a house in a city, attributes associated with v may include its
coordinates (i.e., latitude and longitude values), its address,
number of people living in the house, household income,
whether the house has solar panels, etc. We have designed
several network generation modules (highlighted in green in
Figure 1) that are suitable for generating different types of
networks with the current datasets. Users can choose a type
of network, node(s) and the attributes that are used for edge
generation.
The goal of the proposed pipeline NetXpipe is to construct

a graph G(V,E) given user preferences. Let v be an object
represented by a vertex/node in a network. As mentioned
above, for each v 2 V, there is an attribute list Av that can
be utilized in generating networks. Let av,k be the kth node
attribute in Av . Let f(vi, vj) be a predicate which is a function
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Fig. 2: Network generation pipeline NetXpipe overview. The text in each rectangle defines the goal of the microservices bundled
in the pipeline. The colors depicted in the legend describe the different types of microservices employed in the pipeline. Note
that, not only the pipeline NetXpipe itself is extensible, modular, and flexible, but also the individual components can be easily
replaced/updated or new graph generation models can be incorporated into the pipeline.

that determines whether there should be an edge between
two nodes vi and vj . The predicate can be deterministic
or probabilistic. In the deterministic case, the edge {vi, vj}
is added to the network if the value f(vi, vj) is TRUE. In
the probabilistic case, there is an additional input, namely a
probability value p. If the function f returns the value TRUE,
then the edge {vi, vj} is added to the network with probability
p. We now present two examples of such predicates.

Example 1: Suppose a user wants to generate a peer network
of households in Arlington, VA. The pipeline identifies the
network type as a ‘peer network’ where each node corresponds
to a house. We first consider the deterministic case. Let the
function f denote the following simple condition: add an
edge between vi and vj if the distance between the houses
represented by the two nodes is at most 5 miles. Let ‘location’
denote the name of the attribute representing the coordinates of
a house. Thus, the coordinates of the house are represented by
vi are given by the attribute value avi,location. Let D denote the
function that returns the distance between two locations. Thus,
the function f(vi, vj) is represented within the pipeline by the
condition “D(avi,location, avj ,location)  distance constraint”,
where the the system variable distance constraint has the value
5. If a user chooses the probabilistic version and specifies a
probability value (say) 0.7, then the edge {vi, vj} gets added
with probability 0.7 when the above condition is TRUE.

Example 2: This example specifies a condition involving two
attributes for adding edges. As in Example 1, assume that a
user wants to generate a peer network of households. Here,
the function f(vi, vj) represents the following condition: the
annual income of each household is at most $40,000 and the

distance between the houses is at most 2 miles. Using system
variables income constraint to represent the value $40,000 and
distance constraint to represent the value 2, the conditions
specified by f can be represented using node attributes as
follows.

C1: D(avi,location, avj ,location)  distance constraint
C2.1: avi,income  income constraint
C2.2: avj ,income  income constraint

if (C1 and C2.1 and C2.2) then add edge {vi, vj} (1)

The algorithm for generating a peer network is quite straight-
forward for the given input (Equation (1)). The algorithm
selects all households within the distance threshold and adds
other conditions enforced by the user input to generate the
predicate function. For a pair of nodes vi and vj , If the
value of f(vi, vj) is TRUE, then an edge is generated between
the two nodes. In the probabilistic case, when the value
of f is TRUE, a simple Bernoulli trial with the specified
probability is used to decide whether or not the edge {vi, vj} is
added. While the above examples presented simple predicates
for edge generation, one can also use a complex algorithm
(e.g., [26]) that determines if two nodes should be connected
by an edge. In general, there can be more than one node
type in a graph. The above examples describe a simple but
popular type of network that has a wide array of applications
in different domains. The individual case studies presented in
later sections describe how specific datasets are instantiated to
generate particular networks.
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TABLE I: Examples of networks generated by NetXpipe and used in case studies.

Name Region Edge
prob. #Nodes #Edges Avg.

degree
Max.
kcore

Edge
direction

Size of smallest
connected component

Size of largest
connected component

Prosocial 1 003;540 1 54,222 70,463,774 2599 3066 undirected 3 54,215
Prosocial 2 003;540 0.75 54,220 52,854,071 1949.6 2265 undirected 2 54,214
Prosocial 3 003;540 0.1 48,975 701,145 28.6 29 undirected 2 43,384
Prosocial 4 003;540 0.01 36,675 69,694 3.8 4 undirected 2 30,148
Prosocial 5 003;540 1 54,203 22,282,078 822.1 1289 undirected 2 51,682
Prosocial 6 003;540 0.1 43,158 218,666 10.1 10 undirected 2 51,494
Peer 1 157 1 3,131 812,591 519.1 416 undirected 3,131 3,131
Peer 2 157 1 3,130 108,922 69.6 152 undirected 3,130 3,130
EVCS home VA 1 2,115,494 2,458,208 2.3 39 directed 1 1
EVCS work VA 1 1,267,455 6,464,725 10.2 54 directed 12 1,267,394
EVCS VA 1 512,317 1,698,959 6.6 53 directed 2 45,994

B. Pipeline architecture
In this section, we focus on MSA design and software-

defined infrastructure for developing NetXpipe. Recall that the
goal of the pipeline is to generate a network based on user
selections of network type and constraints on node attributes.
The structure of NetXpipe is illustrated in Figure 2.
The pipeline accepts the user input in the form of a JSON

(Javascript Object Notation) object that has been customized
for the pipeline. The JSON object contains the following in-
formation: type of network (e.g., peer network, solar network,
EV network), geographical region, node(s), node attributes,
constraints for edge generation, and an option of a deter-
ministic or probabilistic way of generating the graph. First,
the pipeline verifies the input and then proceeds to invoke
the specified graph generation model. Examples of graph
generation models are shown in Figure 1 (green colored corner
snipped rectangles).
The first step in generating the networks is to verify the

input. The input consists of a selection of nodes, attributes
and conditions, and a graph module that describes the type
of network and the method to generate the graph. In the
next step, the system processes this input and assembles
the datasets required for generating the graph. This step is
executed by the “Verify graph generation function” service
of Figure 2. The “Fetch relevant data for graph generation”
service gathers all the necessary data and then invokes the
“Graph generation” module. These models are encapsulated
as services that accept the required data as input and generate
a network as output. Creating certain types of networks can
be time-consuming; hence, these components (blue-colored
rectangles in Figure 2) are designed to harness the power of
high-performance computing architectures whenever possible.
Once the network is generated, the output is verified and
written to the file system. The current format for storing
networks is an adjacency list, a standard representation for
executing many graph algorithms [27]. Currently, we have
employed preliminary software-related graph verification steps
(E.g., check if correct algorithm is invoked, if network was
generated successfully).
The input datasets currently used in the system are in text

and relational database formats. These datasets are obtained
from trustworthy sources and are validated extensively. When

a researcher wants to add a new graph generation algorithm
or an additional dataset, a subpipeline is invoked (shown in
orange in Figure 2). As shown, once the graph model is
tested, it is packaged as a service and added to the deployed
models component. Once deployed, it is available for user
selection. Note that the graph generation model service can
be a sequential or a parallel algorithm. For adding a dataset,
the authenticity of the dataset is verified manually. The dataset
is cataloged for valid node entities and attributes that can be
employed in graph generation.
Two noteworthy advantages provided by NetXpipe are flex-

ibility and extensibility. The proposed pipeline works in a
standalone setting as well as in a setting where it is plugged
into an existing ecosystem. The pipeline is robust and modular
since all network generation functions are packaged as services
that require specific inputs and generate specific outputs.

C. Examples of networks generated from NetXpipe

Table I lists some of the examples of the types of networks
generated using NetXpipe. Over 20 networks have been gener-
ated, and are available for public use through the net.science
platform. The networks described here use a combination
of four datasets: synthetic populations, energy-use data for
households, EV charging station database, and census data.
The ‘Region’ column in Table I represents the geographic area
for which the network is generated. Region code ‘003;540’
represents Albemarle county and Charlottesville city in Vir-
ginia, and ‘157’ is Rappahannock county in Virginia.
Recall that the k-core of a graph G is the subgraph H of G

with the largest number of nodes such that the degree of every
node in H is � k. For each graph in Table I, the largest value
of k for which the k-core of the graph is nonempty is given in
column labeledMax.kcore. The networks Prosocial 1 through
Prosocial 4 have a distance threshold of 1 mile while the net-
works Prosocial 5 and Prosocial 6 have a distance threshold
of 0.5 miles. Similarly, both peer networks and the three EVCS
networks were generated by varying distance thresholds.

III. CASE STUDIES

In this section, we describe three sustainable energy-related
applications that employ network data. First, we consider
retrofitting, a crucial effort towards sustainable energy goals
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since it focuses on refurbishing an existing dwelling to re-
duce the carbon footprint and environmental impact of the
building [28]. In the first case study, graphs generated by
NetXpipe are used to study retrofitting scenarios by developing
a contagion modeling experiment. The next sustainable energy
application here is solar adoption in the residential sector.
Solar adoption is increasing in households as a green energy
tool to tackle extreme heat events, reduce peak time demands,
and so on. Thus, in the second case study, the generated
peer networks are plugged into an existing solar adoption
simulation system to model which households are ideal for
solar adoption. The third application considers another green
technology, namely electric vehicles (EV). A major hurdle in
EV adoption is the availability of an EV charging station at
home or within a feasible distance. We study the problem of
accessibility of current EV charging infrastructure in different
locations such as home and work locations and area types such
as urban and rural areas.

A. Retrofitting as a contagion
This case study demonstrates the pipeline’s extensibility and

scalability by using the generated networks in contagion mod-
eling frameworks such as CSonNet [29], [30]. We simulate
retrofitting as a social contagion that spreads over 30 years
(from 2019 to 2049). We chose 2019 chosen as the starting
point since the currently available data is for that year.
To model this scenario, we consider four networks of pro-

social households within 1-mile distance threshold in Albe-
marle County, VA, including the City of Charlottesville. We
follow the ‘pro-social household’ concept defined in Pillai et
al. [31] as households favoring retrofitting if it satisfies at least
one of the following conditions: (i) low-income household
with about 30% of monthly income going towards monthly
energy bills, (ii) single detached dwelling, (iii) old dwelling
and (iv) the presence of children in the household. The inputs
to develop the pro-social network are (i) synthetic popula-
tion [32] and (ii) residential energy consumption data [5].
The networks differ in the probability of adding an edge
between a pair of nodes; probability values 0.01, 0.1, 0.75, and
1.0 were used in this study. The reasoning behind analyzing
various probability distributions is that they allow us to capture
the degree of influence a household may have on neighbor-
ing households in propagating the retrofitting contagion. The
structural properties of the generated networks (Prosocial 1,
Prosocial 2, Prosocial 3, Prosocial 4) are in Table I. In the
table, the difference in the numbers of nodes of these four
networks is due to the fact that after generating each network,
we retained only the nodes with degree � 1.

We perform the contagion propagation experiment using an
agent-based simulator called CSonNet [29], [30]. CSonNet
is a lightweight framework that runs simulations using an
extensible set of user-defined state transition rules to form
contagion models. Serial and parallel execution modes are
available in CSonNet. We created a new heterogeneous model
in CSonNet for this study, inspired by the model of Bale et
al. [6]. The utility function defined in our work is influenced

by the personal benefit component and the social component in
adopting energy policies. The transition from 0 (non-adopting
state) to 1 (adopting state) happens if the utility function value
is greater than a predefined threshold. The state transition is
progressive; that is once a node changes to state 1, it doesn’t
change back to 0. These models help to capture the personal
advantage of adopting specific policies along with the social
influence in contrast to conventional threshold models [33]
used to analyze the spread of social contagions. The utility
function for household i is expressed as ui = w1 ·pi+w2 · si.
Here, w1 is the weight for personal benefit, w2 is the weight for
social influence, pi and si are respectively the personal benefit
value and the social influence value for a household i. We
assign personal benefit value based on how many pro-social
conditions household i satisfies and the value si is obtained
based on the neighbors of household i in state 1. The node
threshold is defined based on the ability of the household to
adopt retrofitting. Here, it is based on the income level of
the households. We also use a node probability parameter,
denoted by np, to account for the stochastic behavior of nodes.
Thus, when the utility function exceeds the node threshold, a
household adopts retrofitting with probability np.

Our experiments vary the node threshold, personal benefit,
and social influence values based on household attributes. We
keep the weights and the node probability the same for all
nodes. We perform sensitivity analysis for different values
of node probability and weights. We performed experiments
varying node probabilities, keeping the weights constant, vary-
ing the weights keeping the node probability value constant,
and the fraction of nodes infected for various networks as in
Figure 3. We used the data analysis and plotting modules in
CSonNet [34] to analyze and visualize the results.
Figure 3(a) shows that the fraction of nodes infected (i.e.,

the number of households that choose to retrofit) at the end of
30 time steps varies between 0.79 to 1.0 as node probabilities
are varied between 0.1 and 0.4. While the cumulative number
of infections hasn’t reached a plateau by 30 time steps when
the node probability is 0.1, all the nodes got infected within 16
time steps (years) when the node probability is 0.4, indicating
a complete adoption of retrofitting. Interestingly, the curve did
not take off when the personal weight (w1) was zero and social
weight (w2) was ten, as in Figure 3(b). This phenomenon
indicates the necessity of having a personal benefit irrespective
of the social influence to adopt sustainable energy policies.
When the personal weight was less than the social weight, only
26% of the pro-social population adopted retrofitting by 2049.
Our study on different networks obtained by varying the edge
probabilities as in Figure 4(a) shows that the number of nodes
in a network plays a crucial role in retrofitting more houses.
Here, the network with an edge probability of 0.75 has 54220
nodes and about 52 million edges while the network with edge
probability 1.0 has 54222 nodes and about 70 million edges.
Though the number of edges is higher in the latter network,
the number of houses retrofitted is similar. In Figure 4(b), we
varied the number of seed nodes (number of houses retrofitted)
from 10 to 200 for different edge probabilities in a pro-social
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(a) Varying node probabilities (b) Varying weights

Fig. 3: Each simulation was performed for 50 iterations and 30 time steps. The number of initial seed nodes is 10 selected
randomly. (a) Cumulative infection curve for a pro-social network with edge probability of 0.75, with the number of years
along the X-axis and fraction of nodes that adopted retrofitting along the Y-axis for constant personal weights (w1) and social
weight (w2) of 0.5 and 0.5 respectively. (b) Cumulative infection curve for a pro-social network with edge probability of 0.75
and node probability .
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(b) Varying seed nodes

Fig. 4: Average number of houses retrofitted with ± one standard deviation for different edge probabilities in a pro-social
network. Each simulation was performed for 50 iterations and 30 time steps. (a) Different node probabilities along the X-axis
and number of houses retrofitted along the Y-axis with personal weight (w1) and social weight (w2) of 0.5 and 0.5 respectively.
(b) Different number of seed nodes selected at random along the X-axis and number of houses retrofitted along the Y-axis for
a node probability (np) at 0.2 and personal weight (w1) and social weight (w2) of 0.5 and 0.5 respectively.

network. The selection of different numbers of seed nodes had
a lesser impact on the number of houses getting retrofitted. The
seed nodes are selected at random for each iteration. Thus, for
each simulation, we have 50 different sets of randomly selected
houses as seed nodes. This accounts for the uncertainty in
the number of houses getting retrofitted due to the differences
in initial seeding. The standard deviations for each point in
Figure 4(b) show a negligible difference in the total number
of retrofitted houses.

B. Peer networks in solar adoption

This case study highlights the pipeline’s modularity and
extensibility features. We demonstrate that NetXpipe can re-
place an existing network generation process and be used in
an existing M&S system with ease. We specifically focus
on peer network generation for modeling household-level
solar panel adoption in regions of the state of Virginia. The
pipeline generates networks and plugs them into an existing
solar adoption diffusion model described in [9], [15]. This
model predicts whether a household will adopt solar panels

depending on socio-demographic and peer attributes. For the
sake of completeness, we summarize the solar adoption model
here. The model simulates the diffusion process for 15 time
steps and employs three peer networks for 1-mile, 3-mile, and
4-mile radii to examine the propagation of solar adoption in
the network(s) across the time horizon. The peer effect (i.e.,
neighborhood effect) is computed from the peer networks. It
is the number of adopters within a 1-mile, 3-mile, and 4-mile
radius of each household. At the end of each time step, the
peer effects are updated in the model. For further details, we
refer the reader to the ‘Virginia Model’ described in [9].
We ran the above solar adoption model for Rappahannock

county in Virginia. It has ⇡ 3300 households. Previously,
the peer networks were generated manually by querying a
relational database. Now, we replace the manual process with
NetXpipe. From the data warehouse shown in Figure 1, we
utilize the ‘synthetic populations’ dataset for generating the
networks. First, an input is generated for the pipeline in
JSON format. Once the input is verified by the pipeline, the
data processing module will assemble the synthetic population
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(a) Network measures across replicates (b) Strong scaling

Fig. 5: (a) The network measures show stability across graph replicates for a given edge probability.
(b) The curve shows strong scaling as the number of cores for computing the network increases.

for the given region. Then, the pipeline invokes the specific
network generation component depending upon the input.
Here, the algorithm for generating the graph is straightforward
– households within the enforced distance threshold are con-
nected with an edge. When carried out sequentially, this task
is time-consuming; hence, in this case study, we parallelize it.
Once the network is generated, it is verified by the pipeline
and stored as an adjacency list to be used as an input for the
solar adoption model.
Peer networks are commonly used in diverse applications.

We show that our pipeline is able to generate such networks
with ease. The same network can be plugged into a solar
adoption model or into a disaster evacuation model without
running the pipeline again. Thus, when complex processing
tasks such as network generation can be streamlined using
software-defined infrastructure such as MSA, it increases
human productivity. Figure 5(a) shows the stability of 4-
mile radius peer networks for Rappahannock across replicates.
Figure 5(b) shows the strong scaling behavior of the graph
generation method as the number of cores is increased.

C. Accessibility of current EV charging infrastructure from
synthetic households

The goal of this case study is to demonstrate that NetXpipe
can work with multiple types of node entities and diverse data
sources. Here, we examine the accessibility of the current EV
Charging Stations (EVCS) from households in a given region.
In this instance, the pipeline assembles data from synthetic
populations and an EV charger location database2 for the given
region. As an example, we focus on the state of Virginia (VA)
in this case study. The number of synthetic households in VA
is ⇡ 3 million. The number of public EVCS in VA is 1124.
Three network generation scenarios are considered in this case
study.
Scenario 1 - Public only : In this scenario, households are

assumed to not have the facility to charge their EVs at home
and thus rely only on public EV charging infrastructure. Two
types of nodes are used in the construction of this network –
(i) households (attributes: home location) and (ii) EV charger

2https://afdc.energy.gov/stations/\#/find/nearest

stations (attributes: location). The resulting network is a bi-
partite graph G(V,E) where the node set V is partitioned into
two subsets V1 (households), and V2 (EV chargers) and each
edge e 2 E connects a node in V1 to a node in V2. All the
results for this scenario are shown in red in Figure 6c.
Scenario 2 - Home+Public : In this scenario, we allow

certain households to have the ability to charge their EVs
at home (e.g., detached households with a garage). A recent
survey from the International Council on Clean Transportation
(Nicholas et al. [35]) shows that 95% of EV adopters from
detached and attached households charge their EVs at home
in the U.S. Hence, in this case, this network will provide
for charging accessibility at home and public EVCS. Thus,
nodes in the construction of this network are of two types: (i)
household (attributes: home location, dwelling type) and (ii)
EVCS (attributes: location). All the results for this scenario
are shown in blue in Figure 6c.
Scenario 3 - Home+Work+Public : This scenario provides

three options for charging EVs: at home, EVCS near home
and EVCS near a person’s work location. Thus, this network
will be comprised of three types of nodes – (i) household
(attributes: home location, dwelling type), (ii) EV charger
station (attributes: location), (iii) person (attributes: work lo-
cation). All the results for this scenario are shown in green
in Figure 6c. Note that if detailed data such as a person’s
work location is unavailable, it is possible to use POI (point
of interest) datasets that recognize commercial and industrial
buildings/zones. Literature has shown that people have time
and distance preferences for accessibility from an EVCS when
charging their vehicle [36]. For each scenario, we generated
two networks, one for each distance threshold: 0.25 miles and
0.5 miles. These networks have a large number of nodes since
we consider the entire population of VA in this case study.
Analyses of the six resulting graphs are shown in Figure 6.

The overall household node coverage for access to EV charg-
ing increases from 77% to 84% when the distance is increased
from 0.25 to 0.5 miles (refer to the green bars in Figures 6(a)
and (b)). If only public infrastructure access is considered
(Scenario 1: public only), the number of households that will
gain access to EVCS increase from 6% to 16% when access
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(a) Accessibility within 0.25 miles (b) Accessibility within 0.5 miles (c) Edge weight distribution

Fig. 6: Parts (a) and (b) show the number of households (i.e., a node type in the graph) that have access to one or more ways of
charging (i.e., at home, at public EVCS, and/or at work) within a 0.25-mile radius and 0.5-mile radius, respectively. Figure (c)
shows the histogram for edge weights i.e. distance of household/work location nodes to EVCS under Scenario 2 and Scenario
3 for 0.5-mile radius. We observe that many people from urban areas have access to EV charging at work locations. This is
also evident in the green urban area bar in (b).

distance increases from 0.25 to 0.5 miles (refer to the red
bars in Figures 6(q)a and (b)). It is evident from the bar
charts that home charging will play an important role in EV
charging. Note the increase from Scenario 1: public only to
Scenario 2: home+public (compare the heights of red bars
and blue bars). It is observed that rural households benefit
more from charging at home than at work or in public spaces
given the current infrastructure, whereas households in urban
areas have access to more work location chargers than their
rural counterparts. Figures 6(a) and (b) focused on household
accessibility (i.e., node coverage) to EVCS at home, near
home, and near work. Figure 6(c) focuses on the edge weights
in graphs; i.e., the distance between (i) household location and
public EVCS locations and (ii) work locations + public EVCS
locations within a 0.5 mile radius. Many households in urban
areas have access to EV chargers within 0.2 to 0.5 mile of
work locations. The peak close to zero in both histograms
indicates the availability of home chargers for a large number
of households. We acknowledge that access to detailed data
(e.g. household locations) may not be openly available due
to customer privacy concerns. In that case, we can conduct a
similar analysis using block group or census tract data that is
openly available from U.S. Census.

IV. CONCLUSIONS

Network data is becoming increasingly common in address-
ing a wide variety of topics in energy systems. To support
this work, we have developed an extensible, scalable, and
modular network synthesis pipeline based on MSA principles.
NetXpipe can be integrated into an existing system for network
synthesis or can be used as a standalone tool for generating
networks. The pipeline generates large-scale networks with
multiple entity types in a deterministic or stochastic manner.
Researchers/developers can add new algorithms for generating
graphs as a “service” in NetXpipe. We illustrated the benefits
of this pipeline through three case studies. Although we have
focused on sustainable energy applications in this work, graphs
generated from NetXpipe can be used in other applications as
shown in Qiu et al. [37] and Chen et al. [38].

Future work includes making enhancements to the pipeline
and extending the pipeline to support other social impact
applications. For example, one enhancement involves adding
more complex functions for inserting edges into the network
to allow the generation of specific classes of networks such
as small-world networks and scale-free networks [39]. Other
enhancements would be to provide facilities to generate tem-
poral networks (where the nodes/edges vary over time) and
multi-layer networks (where each layer captures a different
form of interaction among the nodes) which are useful in
many applications (e.g., [40], [41]). Another useful addition
is a verification module to test for privacy concerns.
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