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Abstract
Organic materials have found widespread applications but require doping to overcome their intrinsically low carrier concentration. Doping injects free 
carriers into the polymer, moving the position of the Fermi level, and creates coulombic traps, changing the shape of the electronic density of states 
(DOS). We develop equations to explicitly map the DOS parameters to the Seebeck vs conductivity relationship. At low carrier concentrations, this 
relationship is a universal slope −kB/q , while at higher carrier concentrations, the slope becomes dependent on the shape of the DOS. We conclude 
that, at high doping, a heavy-tailed DOS leads to higher thermoelectric power factors.

Introduction
Since their conception, organic electronics have been an excit-
ing developmental technology. They are flexible, environmen-
tally friendly compared to inorganic semiconductors, and they 
can be solution processed, which makes them relatively cheap 
to manufacture. Organics are, therefore, uniquely suited for 
scalable and innovative electronics. Because of this, they have 
been studied for several applications including photovolta-
ics, wearable electronics, and OLEDs, of which several have 
already reached the market. One promising developing applica-
tion for organic electronics is organic thermoelectric devices.[1] 
Several polymers across the literature have been reported as 
having high Seebeck coefficients ( S) and electrical conduc-
tivities ( σ),[2] giving hope that polymers could be made with 
high thermoelectric conversion efficiency, which is dependent 
on the power factor PF = σS2 . And yet high power factors 
have remained elusive as there is a tradeoff between S and σ
.[3] This tradeoff is controlled by carrier concentration, which 
has opposing effects on the two—increasing carrier concentra-
tion typically increases conductivity but reduces the Seebeck 
coefficient.

Conjugated polymers have low intrinsic carrier concentra-
tions and, thus, conductivities,[4] making doping necessary to 
introduce free carriers and improve conductivity. However, 
the coulombic effects of dopant counterions additionally cre-
ate structural and energetic changes in the polymer, altering the 
shape of the electronic density of states (DOS), widening the 
DOS and incurring band tails.[5] This widening is characterized 
by dopant-induced disorder (DID), which creates trap states, 
reducing both carrier mobility and the Seebeck coefficient, 
lowering the PF.[6] Crucial to attaining high power factors is 
a robust understanding of the relationship between the DOS 
and the charge transport properties of conjugated polymers, 
captured by the S vs σ curve. The relationship between S and 

σ has been studied extensively in the literature, and several 
different behaviors have been observed, including S ∝ ln(σ )

,[7] and S ∝ σ−1/4.[8,9] Several models have been proposed to 
explain these behaviors, such as the Kang-Snyder model which 
posits that S ∝ σ−1/s where s is related to the exponent of the 
transport distribution function σµ(E) ∝ E

s.[10] However, these 
models often require values as large as s = 10 to fit some meas-
urements,[11] which cannot be related to any physical proper-
ties of the polymer and may require varying parameter values 
across the S vs σ curve.[12] To overcome limitations imposed 
by DID, we need a physically interpretable mapping between 
the DOS and transport.

In this work, we relate the shape of the S vs σ curve to the 
properties of the DOS. We use the generalized Gaussian disor-
der model to parameterize the DOS using a fixed width ŴE and 
shape parameter p . For each DOS, we vary the free-carrier con-
centration (n) and compute the corresponding Fermi level EF 
and then simulate transport by solving the Pauli master equa-
tion to find S and σ for each combination of DOS parameters 
and carrier concentration. We find distinct behaviors in the S vs 
σ curve between high and low carrier concentrations, dependent 
on the behaviors of EF and ET  . At low carrier concentrations, 
ET  is far from EF and independent of n . In this regime, we 
find S ∝ − kB

q
ln(σ ) , with a universal slope −kB

q
 consistent with 

some literature but having an offset dependent on ŴE and p . 
At high carrier concentrations, ET  is close to EF and transport 
is described by the Mott formula. Here, the S vs σ curve has a 
slope that depends on both the shape parameter p and the ŴE . 
We conclude that to optimize the power factor, a high p value is 
needed at low ŴE but a low p value is needed at high ŴE . There-
fore, when doping increases energetic disorder, a heavy-tailed 
DOS is favorable because it leads to a flatter S vs σ curve. By 
considering both the shape and the width of the DOS, we see a 
new avenue toward more efficient thermoelectrics.
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Methods
To decouple the effects of DID and carrier concentration, we 
first simulate hopping transport, depicted schematically in 
Fig. 1(a), at varying carrier concentrations in a polymer with a 
fixed DOS. We model the DOS using the generalized Gauss-
ian disorder model (GGDM), which parameterizes the DOS 
as follows

where N0 is half of the total number of available sites, 
A(p) =

√
ξ(3/p)/ξ(1/p) , and ξ is the gamma function. The 

width of the DOS increases with the energetic disorder ( ŴE) , 
and the shape varies with shape parameter p from Gaussian to 
exponential as p decreases from 2 to 1, as depicted in Fig. 1(b). 
To understand the effects of the DOS parameters on transport, 
we simulated transport using a series of different DOS curves 
with varying ŴE and p.

We then used Pauli’s master equation dPi
dt

= 0 =
∑

j
[WijPi(

1− Pj

)
−WjiPj(1− Pi)] to calculate Marcus hopping within 

(1)g(E) = 2N
0

pA(p)

2ŴEξ(1/p)
exp

{

−
[
A(p)|E|
ŴE

]
p
}

,

a simulation space of 41 × 41 × 47 different energy sites, where 
Wij = v0√

4πE0kBT
exp

(
− (E0+�E)2

4E0kBT

)
 gives the rate at which an 

electron hops from site i to site j . E0 is the Marcus polaronic 
activation energy, and �E is the energy difference between 
sites. Pauli’s master equation is solved for the site occupation 
probabilities using a non-linear iterative solver. The rates were 
then used to simulate carrier transport in the polymer and 
extract the Seebeck coefficient, macroscopic conductivity, and 
carrier mobility as described Supplemental Information, Sect. 
S1.[13] The hopping probabilities were used to calculate carrier 
hopping rates for a polymer with a temperature of 300K  , a 
Marcus polaronic activation energy of 0.1 eV , and under an 
electric field of 105 V/m.

When we vary the carrier concentration without altering the 
parameters of the GGDM, we add carriers without changing 
the shape of the DOS—an increase carrier concentration simply 
increases the Fermi level and transport energy. The Fermi level 
was iteratively calculated so that 

∫
g(E)f (E)dE = n where n is 

the concentration of free carriers, g(E) is the DOS, and f (E) is 
the Fermi function, as depicted in Fig. 1(b). The transport 

Figure 1.   (a) Visualization of carriers hopping between localized energy sites with an energy distribution dictated by the density of states. 
The density of states is characterized by a generalized Gaussian with standard deviation ŴE and shape parameter p . (b) (Left) Effects of ŴE 
and p on the shape of the DOS. When a material is doped, it increases ŴE and decreases p . (Right) To better understand the effect of ŴE 
and p on transport, we vary the carrier concentration across each DOS without doping. This changes the Fermi level and transport energy 
without changing the shape of the DOS. (c) High and low carrier concentrations can be distinguished by looking at the EF (n) and ET (n) 
curves. At low carrier concentrations, ET is independent of n and is far from EF . At very high carrier concentrations, ET and EF are close 
and almost parallel. Moderate carrier concentrations follow a continuum between these extrema. (d) Seebeck vs conductivity for various 
energetic disorders from 3 to 9 kT at room T. At low n , the S vs σ curves appear parallel, but they start to curve with doping at different 
rates depending on the energetic disorder and p value.
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energy is defined as ET =
∫
Eσµ(E)dE∫
σµ(E)dE

 where E is energy and σµ 
is the transport distribution function and can qualitatively be 
understood as the average energy of transporting carriers. To 
find the Seebeck coefficient, we first calculate the Fermi level 
and transport energy, and then use the relationship 
S = − 1

qT
(ET − EF ) . See Supplemental Information, Sect. S1, 

for more details on the calculations of the transport energy and 
Fermi level.

To analyze the effects of DID on transport, we numerically 
calculated the DOS to include Coulomb interactions between 
carriers and dopants according to the Arkhipov model, as 
described in our recent work.[5] We used the Arkhipov model 
to compute the DOS as a function of doping across a broad 
range of doping concentration, which was subsequently used 
to simulate hopping transport as described above. To analyze 
the impact of DID on the DOS, we compare the dopant-induced 
DOS with the GGDM and extract the ŴE , the standard deviation 
of the DOS, using Ŵ2

E
=

∫
E
2
g(E)dE/

∫
g(E)dE  . For a given 

DOS, p was found by solving M2p/M
2

p
− (1+ p) = 0 using 

a secant method, where Mr is the r th absolute moment of the 
DOS.[14] A minimum dopant carrier separation of 0.3 nm and 
a dopant diameter of 0.2 nm were used when calculating the 
coulombic interactions between carrier and dopant counter-ion. 
Our model can capture a wide range of polymers and dopants, 
including capturing dopant size and spacing; however, our 
starting point here is a set of parameters consistent with our 
recent work that compared our calculations with measurements 
on P3HT, a widely used semiconducting conjugated polymer 
with high carrier mobility, doped with iodine.[5] Our terminol-
ogy is summarized in Table S1 in Sect. S1 of the Supplemental 
Information.

Results and discussion
To understand the effects of the DOS parameters ŴE and p on 
the S vs σ curve, we parameterized S(σ ,ŴE , p) . Our overall 
strategy is as follows: We started by parameterizing EF (n) and 
µ(n) and substituting these into the definition of conductiv-
ity σ = qµn . These terms rely on the parameter γ  , which we 
defined as the exponent of σ ∝ n

γ and which we express in 
terms of ŴE and p . We then relate EF and σ and substitute into 
known expressions for S(EF ) , giving us a parameterization for 
S(σ ).

We begin by examining the S vs σ curve over a large range 
of carrier concentrations, where we observe distinct transport 
behaviors. These behaviors are delineated by the relationship 
of the Fermi Level EF and transport energy ET in response to 
carrier injection. We first analyze low carrier concentrations in 
the range of 0.001–0.1%. At these low carrier concentrations, the 
transport energy is constant and independent of the free-carrier 
concentration. Additionally, the Fermi level and transport energy 
are relatively well separated because the Seebeck coefficient is 
high. In contrast, at high carrier concentrations ( 10− 25%) , the 
Fermi level and transport energy are very close, and the Seebeck 

coefficient is relatively small. Unlike at low carrier concentra-
tions, the transport energy is a function of n in this range. We see 
from Fig. 1(c) that the response of the Fermi level and transport 
energies to free-carrier injection depend on the energetic disor-
der and p value, which is also reflected by the S vs σ curves in 
Fig. 1(d). This means that the distinction between “low doping” 
and “high doping” is disorder dependent, such that two different 
polymers at the same doping concentrations may have different 
S vs σ behavior, which may explain some of the disagreement in 
the literature when comparing polymers with different intrinsic 
disorder.

As is seen in Fig. 1(d), at low n, the S vs σ curves are paral-
lel regardless of the energetic disorder ŴE or shape parameter p. 
This gives us a hint about the form of the S vs σ relationship—
the slope is independent of energetic disorder and p value and 
S ∝ ln(σ ) . We use this observation to develop an expression for 
S vs σ using the strategy discussed above. We start by analyzing 
carrier mobility µ in terms of n , shown in Fig. 2(a). We find that 
µ vs n is linear on a log–log plot, indicating a power-law relation-
ship of the form:

where µsat is defined as the maximum mobility achievable by 
a polymer with a given energetic disorder. This power-law 
dependence had been noted before in the literature, but the 
exponent and intercept had not been connected to the shape of 
the DOS. µsat is the saturation mobility, found at high carrier 
concentrations, and will be discussed in a later section.

The Fermi Level as a function of free-carrier concentration 
is plotted in Fig. 2(a), where we observe a linear relationship, 
indicating a logarithmic relationship that we fit by

The slope of EF is proportional to γ  , which we realized know-
ing that γ must cancel out of the EF vs σ relationship for the S vs 
σ lines to be parallel. Equation 3 has excellent agreement with 
the data, and the appearance of γ in the slope of EF (n) suggests 
that γ is a fundamental transport parameter that encapsulates the 
properties of the DOS. We also find the empirical relationship 
for the exponent

by extracting the slope of the µ vs n curve on a log–log scale, 
and the results of this fit are shown in Supplemental Informa-
tion, Sect. S2.

Solving for n(EF ) and substituting into σ = qµn , we get the 
dependence of conductivity on carrier concentration and DOS 
parameters σ = qµsatN0

(
n

N0

)γ
 . Rearranging this to solve for EF , 

we get the expression:

(2)µ = µsat(ŴE)

(
n

N0

)γ−1

,

(3)EF = γ kBTln

(
n

N0

)

− 1.75ŴE .

(4)γ − 1 ≈ 25(ŴE − kBT )
p

(5)EF = kBT ln

(
σ

σsat

)

− 1.75ŴE ,
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where the saturation conductivity is related to saturation mobil-
ity through σsat = qµsatN0 . Notice that γ from the exponent 
of mobility cancels with γ from the slope of the Fermi Level, 
making the EF vs σ curves parallel as seen in Fig. 2(b).

Finally, we find that we can approximate the transport 
energy as a constant dependent only on the DOS parameters, 
such that

Equation 6 gives excellent agreement with hopping transport 
simulations, as shown in Supplemental Information, Sect. S3. 
Combining Eqs. 5 and 6 with the definition of the Seebeck coeffi-
cient S = 1

qT
(EF − ET ), we can put everything together to obtain

(6)ET ≈ −(ŴE − kBT )exp

(
2

p

)

.

(7)S = −
kB

q

ln

(
σ

σsat

)

−
(Ŵ

E
− kBT )

qT

exp

(
2

p

)

−
1.75

qT

ŴE .

Our expression in Eq. 7 predicts a universal slope of −kB/q 
for S vs ln(σ ) , which has been observed in the literature for 
low carrier concentrations[10,15] and is observed in our data in 
Fig. 2(c). To better understand Eq. 7, Fig. 2(c) shows the simu-
lated S vs σ curves and the approximations given by Eq. 7 as we 
increase ŴE and p . The S vs σ curve shifts left as ŴE increases 
and shifts toward the bottom right as p increases. We see that 
Eq. 7 gives nearly flawless agreement the data at p = 2 but 
deviates at p = 1 at high energetic disorders. It seems that for 
higher p values, there is a regular ŴE-dependent spacing, but 
at low p values, the S vs σ curves merge into each other and 
converge in a way Eq. 7 fails to account for. However, as dis-
cussed later, most polymers will still have high p values and 
low energetic disorders at low doping, at which Eq. 7 predicts 
S vs σ almost perfectly.

We can also relate the Seebeck to the carrier  
concentration by combining Eqs.  4  and 6  to reach 

Figure 2.   (a) (Top) Mobility vs carrier concentration at p = 2. The top line is mobility at ŴE = 1kT , which we define as µ1kT so that 

µsat = kT · µ1kT /ŴE . µsat is relatively independent of p, and we use it to approximate mobility as µ ≈ µsat

(
n
N0

)γ−1

 which shows good 
agreement. (Bottom) The Fermi level is proportional to the doping concentration, and the slope is surprisingly also dependent on γ . (b) At 
low carrier concentrations, γ dependence of the mobility and Fermi level cancels out such that the EF vs σ curves are parallel. This is 
ultimately what gives us parallel S vs σ curves. (c) S vs σ at p = 2 (inset) and at p = 1, main fig, along with our approximation for S vs σ 
shown by the dashed lines. Using this approximation, we get a fantastic fit for S vs σ at low carrier concentrations and high p values, 
which is the relevant range for low doping concentrations. (d) Looking at S vs n , we see that for a constant energetic disorder and p value, 
the S vs n slope is constant, but in general, the slope of S vs n depends on γ and, thus, ŴE and p.
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S(n) = 1

qT

[
−γ k

B
T ln

(
n

N0

)
− 1.75ŴE − (ŴE − kBT )exp

(
2

p

)]
 , 

which is shown in Fig. 2(d) as dashed lines alongside hop-
ping transport results. We see that the slope of S(n) is propor-
tional to γ  , meaning that, in general, the slope depends on 
the energetic disorder and p value. Polymers in the disorder-
free limit, however, should have a constant slope of −kB/q 
as has been observed in the literature.[16,17]

At high carrier concentrations, the Fermi level approaches 
the transport energy and the assumptions for the Mott for-
mula become valid.[18] The Mott formula is given by 
S = −π2

3

k
2

B
T

q

dlnσµ
dE

 where σµ is the transport distribution func-
tion (TDF). From the generalized Einstein relation, we express 
the TDF as σµ = q

2
g(E)D(E) . Because the microscopic dif-

fusivity D(E) is relatively weakly varying with carrier concen-
trations, we can replace it with a constant D0 which disappears 
in the Mott Formula once we take the logarithmic derivative. 
Substituting the generalized Gaussian DOS from Eq. 1 into the 
Mott Formula, we get

This formula gives a good fit for moderate p values, as 
shown in Fig. 3(a), but does fail in the limit of p ≤ 1 due to the 
p− 1 term in the exponent of the Fermi level. Equation 8 gives 
an expression relating S and EF  , and we can once again use the 
strategy described earlier to find S vs σ for high n.

As seen in Fig. 3(b), at high carrier concentrations, the mobil-
ity saturates and becomes somewhat independent of n . Because 
of this, we can take mobility as a constant dependent only on the 
normalized energetic disorder ̂Ŵ = ŴE/kT and the mobility at 1kT  
of disorder ( µ1kT ) such that µsat = µ

1kT

Ŵ̂
 , as shown in Fig. 3(c). 

This relationship is surprisingly simple—a polymer achieves its 
maximum mobility in the disorderless limit, ŴE = 1kT  , relatively 
independent of the p value. This disorderless limit of mobility 
µ1kT is material dependent and contains all the effects besides 
energetic disorder, such as positional disorder, partial carrier 

(8)S ≈
π2

3

k
2

B
Tp ·

∣
∣
∣
∣
AEF

ŴE

∣
∣
∣
∣

p−1

·
A

ŴE

.

Figure 3.   (a) The expression for S(EF ) given by the Mott Formula works gives a decent qualitative fit at high n for polymers at moderate 
p values and high energetic disorders, which are the values we expect at high doping. (b) Compared to low carrier concentrations, the 
mobility is relatively independent of n at high carrier concentrations. We call the final mobility the saturation mobility, which is shown for 
multiple values of ŴE and p = 1.5 . (c) We see that the saturation mobility is nearly linear in 1/ŴE and relatively independent of p , varying 
only by a factor < 2. (d) The slope of EF (σ ) is well captured by γ at high carrier concentrations, before the Seebeck nosedive which is omit-
ted for visibility.



	

6         MRS COMMUNICATIONS · VOLUME XX · ISSUE xx · www.mrs.org/mrc

delocalization, overlap between the wavefunctions of neighboring 
states, and the phonon-assisted attempt-to-hop rate. The satura-
tion mobility is inversely proportional to the normalized energetic 
disorder and describes the maximum achievable mobility for a 
polymer having a given energetic disorder. Additionally, this 
means that the maximum achievable conductivity for a polymer 
is dictated solely by ŴE and nearly independent of the DOS shape 
parameter p because σsat = qµsatN0 = qµ1kTN0

(
kBT

ŴE

)
 which is 

shown as follows.
Next, to find EF (σ ) , we reuse Eq. 4—the relationship between 

EF and n for low n—and use σ = qµn , where µ is now set equal 
to µsat . We obtain

where the EF vs σ curves are no longer parallel but instead pro-
portional to γ  . The performance of Eq. 9 is surprisingly good, 
as Eq. 4 underpredicts the slope of EF (n) at high n , but Eq. 9 
describes the slope of EF (σ ) well, as shown in Fig. 3(d). A 

(9)EF ∝ γ k
B
Tln

(
σ

σsat

)

,

more detailed discussion of Eq. 9 is given in the Supplemental 
Information, Sect. S4.

Finally, to establish a relationship between S and σ for high 
n , we combine Eqs. 8 and 9 to find

This equation gives a qualitative fit of the data as shown 
in Fig. 4(a). Equation 10 shows us that unlike at low n , the 
slope of S vs σ at high n is heavily affected by both the ŴE 
and p values. The term p

(
A

Ŵ̂

)
p

γ p−1 controls the slope of the 
curve, which decreases with ŴE and increases with p , and 
the p− 1 exponent to ln

(
σsat
σ

)
 controls the curvature. For 

large values of σ approaching σsat , the logarithm is approxi-
mately linear, such that our equation shows S ∝ σ−(p−1)

. 
From this, we would relate the DOS shape parameter to the 
Kang-Snyder exponent via s ≈ 1/(p− 1) . We examine the 
relationship between the slope of S vs σ and the DOS shape 
parameter p value more closely in Fig. 4(b), with the inset 

(10)S ≈
π2

3

kB

q

p

(
A

Ŵ̂

)
p

γ p−1

[
ln

(σsat

σ

)]
p−1

.

Figure 4.   (a) Solid lines are hopping transport results while dashed lines depict Eq. 10, our approximation of S(σ ) . The approximation 
fails at p = 1.0 due to the p− 1 term inherited from the Mott formula, but it shows good agreement above ŴE = 3kT , in the range of most 
polymers. (b) Plotting all S vs σ curves across p and ŴE , we see that at high doping the maximum conductivity is dictated by the energetic 
disorder, and at high energetic disorders the slope is controlled by the p value, with a flatter slope for lower p values. (c) The energetic and 
dopant-induced disorders are shown as a function of the number of dopants. The total disorder reaches a common peak with doping, 
upon which further doping decreases the disorder through disorder compensation. (d) The p value is shown as a function of the number 
of dopants. p starts near 2 and decreases with doping, but then seems to increase back to 2 or even higher at high doping.
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showing that p can be related to the Kang-Snyder exponent 
more accurately through s = 4/(p− 0.8) . A purely Gaussian 
DOS (p = 2) would correspond to s ≈ 3.33 while s = 4 and 8 
map closely to p = 1.75 and 1.25, respectively. Therefore, a 
higher exponent corresponds to a more heavy-tailed DOS.

These effects can be seen quite clearly by looking at 
the S  vs σ curves across all ŴE and p values as shown in 
Fig. 4(b). Here, we see again that the maximum conductivity 
σsat is controlled almost entirely by the energetic disorder 
and independent of the p value, as predicted previously, so 
that lower ŴE consistently gives a higher conductivity and a 
higher power factor. The slope of S vs σ becomes flatter and 
more p dependent as ŴE increases, with a larger p giving a 
steeper slope. Above ∼ 5kBT  of energetic disorder, there is a 
crossover point where S vs σ at p = 1 is greater than at p = 2 
at the highest conductivities, such that the power factor is 
higher for p = 1 . This means that at low energetic disorder, 
a high p value is desirable, but at high energetic disorder, 
it is favorable to have a lower p value. The power factor is 
plotted for these same values in Fig. S5 of the Supplemental 
Information.

Lastly, we turn our attention to the amount of DID as a 
function of doping. Figure 4(c) shows the energetic disorder 
as function of doping, extracted from the standard devia-
tion of the DOS computed from the Arkhipov model, as 
described in Methods. The total energetic disorder increases 
to a maximum that is largely independent of the intrinsic 
disorder, then decreases due to disorder compensation.[19] 
Carrier screening can also impact the energetic disorder 
at high doping.[20] We also note that the amount of DID is 
greater when the intrinsic energetic disorder is small. How-
ever, the total energetic disorder for all cases is above 5kBT  
at high doping, implying that most doped polymers are in 
a range where the slope of the S − σ curve is controlled by 
the p value.

Figure 4(d) shows the p value as a function of doping. 
We observe that DID reduces the p value from the initial 
value of p = 2 , which indicates a gaussian intrinsic DOS, 
to values around 1, indicative of a heavy exponential tail. 
The amount of reduction in p value is greater if the intrinsic 
energetic disorder is small—if we start out with a narrow 
DOS, then DID will affect it more by creating a pronounced 
tail. On the other hand, when the intrinsic DOS is a wide 
gaussian, the tail is less pronounced, and the DOS retains its 
gaussian shape. Consequently, polymers with lower intrinsic 
disorder will have a lower p value, resulting in a flatter slope 
of the S vs σ curve, as was shown in our earlier work[5] and 
confirmed in Supplemental Fig. S6. Ultimately, at high dop-
ing, the p value recovers back up to and above the initial 
value of p = 2 , reaching higher p values for higher intrinsic 
disorders, but this occurs at very high doping concentrations 
where the Seebeck coefficient begins to abruptly decrease as 
the Fermi level reaches the flat top of the DOS.

Conclusion
We have carefully analyzed the impacts of carrier concentra-
tion, the width, and the shape of the electronic DOS on trans-
port and the S vs σ curve. We find distinct S vs σ behavior at 
low vs high carrier concentrations n . At low n , the transport 
energy is independent of n and far from the Fermi level. We 
show the EF (n) and σ(n) curves have a ŴE and p dependence, 
with their slope depending on the parameter γ (ŴE , p) , such 
that the dependence cancels and the slope of EF vs σ is con-
stant, producing a universal S vs σ slope of −kB/q . At high 
n , where the Fermi level and transport energy are close and 
nearly parallel, the mobility µ saturates to a nearly constant 
value µsat such that σ ∝ γEF and the S vs σ slopes are no 
longer constant but instead have a ŴE and p dependence. We 
show that the Mott Formula works qualitatively well here, 
allowing us to derive an expression capturing the ŴE and 
p dependence of the slope. We also show that a polymer’s 
maximum attainable conductivity is inversely proportional to 
the energetic disorder but largely independent of DOS shape 
parameter.

It is important to note that the equations we derive in this 
paper describe S vs σ for a fixed DOS at a specific carrier 
concentration. When doping a polymer, the shape of the 
DOS evolves with doping. Deriving analytical expressions 
for ŴE(n) and p(n) could allow us to describe the evolution of 
the S vs σ curve in a system with DID, but it is left for future 
work. Instead, we correlate both energetic disorder and the 
DOS shape to doping via the Arkhipov model and find that, 
at high carrier concentrations, the S vs σ curve is highly p 
dependent, such that low p produces a higher power factor. 
Thus, finding ways to maintain a low p value could increase 
the maximum efficiency of heavily doped thermoelectrics. 
One way this may be achieved is by starting from a polymer 
with very low intrinsic energetic disorder, which produces a 
heavier tail and flatter S vs σ curve but may result in higher 
power factors. We believe that by providing an understanding 
for the underlying effects of carrier injection and the DOS 
shape on the S vs σ curve, we may better mitigate the S vs σ 
tradeoff and find better thermoelectric materials.
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