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Abstract

Organic materials have found widespread applications but require doping to overcome their intrinsically low carrier concentration. Doping injects free
carriers into the polymer, moving the position of the Fermi level, and creates coulombic traps, changing the shape of the electronic density of states
(DOS). We develop equations to explicitly map the DOS parameters to the Seebeck vs conductivity relationship. At low carrier concentrations, this
relationship is a universal slope —kg /g, while at higher carrier concentrations, the slope becomes dependent on the shape of the DOS. We conclude

that, at high doping, a heavy-tailed DOS leads to higher thermoelectric power factors.

Introduction

Since their conception, organic electronics have been an excit-
ing developmental technology. They are flexible, environmen-
tally friendly compared to inorganic semiconductors, and they
can be solution processed, which makes them relatively cheap
to manufacture. Organics are, therefore, uniquely suited for
scalable and innovative electronics. Because of this, they have
been studied for several applications including photovolta-
ics, wearable electronics, and OLEDs, of which several have
already reached the market. One promising developing applica-
tion for organic electronics is organic thermoelectric devices.[!)
Several polymers across the literature have been reported as
having high Seebeck coefficients (.S) and electrical conduc-
tivities (o),”?! giving hope that polymers could be made with
high thermoelectric conversion efficiency, which is dependent
on the power factor PF = ¢S2. And yet high power factors
have remained elusive as there is a tradeoff between S and ¢
B1 This tradeoff is controlled by carrier concentration, which
has opposing effects on the two—increasing carrier concentra-
tion typically increases conductivity but reduces the Seebeck
coefficient.

Conjugated polymers have low intrinsic carrier concentra-
tions and, thus, conductivities,[*! making doping necessary to
introduce free carriers and improve conductivity. However,
the coulombic effects of dopant counterions additionally cre-
ate structural and energetic changes in the polymer, altering the
shape of the electronic density of states (DOS), widening the
DOS and incurring band tails.!! This widening is characterized
by dopant-induced disorder (DID), which creates trap states,
reducing both carrier mobility and the Seebeck coefficient,
lowering the PF.[%] Crucial to attaining high power factors is
a robust understanding of the relationship between the DOS
and the charge transport properties of conjugated polymers,
captured by the S vs o curve. The relationship between S and

o has been studied extensively in the literature, and several
different behaviors have been observed, including S o In(o)
Jand § o o~ 1/4 189 Several models have been proposed to
explain these behaviors, such as the Kang-Snyder model which
posits that S oc o ~!/5 where s is related to the exponent of the
transport distribution function o, (E) oc £4.l'% However, these
models often require values as large as s = 10 to fit some meas-
urements,!'!'! which cannot be related to any physical proper-
ties of the polymer and may require varying parameter values
across the S vs o curve.l'?l To overcome limitations imposed
by DID, we need a physically interpretable mapping between
the DOS and transport.

In this work, we relate the shape of the S vs o curve to the
properties of the DOS. We use the generalized Gaussian disor-
der model to parameterize the DOS using a fixed width 'z and
shape parameter p. For each DOS, we vary the free-carrier con-
centration (n) and compute the corresponding Fermi level Ep
and then simulate transport by solving the Pauli master equa-
tion to find S and o for each combination of DOS parameters
and carrier concentration. We find distinct behaviors in the S vs
o curve between high and low carrier concentrations, dependent
on the behaviors of Er and E7. At low carrier concentrations,
Er is far from Er and independent of n. In this regime, we
find S —%Bln(a), with a universal slope _TkB consistent with
some literature but having an offset dependent on 'z and p.
At high carrier concentrations, E7 is close to Er and transport
is described by the Mott formula. Here, the S vs o curve has a
slope that depends on both the shape parameter p and the I'g.
We conclude that to optimize the power factor, a high p value is
needed at low 'z but a low p value is needed at high I'g. There-
fore, when doping increases energetic disorder, a heavy-tailed
DOS is favorable because it leads to a flatter S vs o curve. By
considering both the shape and the width of the DOS, we see a
new avenue toward more efficient thermoelectrics.
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To decouple the effects of DID and carrier concentration, we
first simulate hopping transport, depicted schematically in
Fig. 1(a), at varying carrier concentrations in a polymer with a
fixed DOS. We model the DOS using the generalized Gauss-
ian disorder model (GGDM), which parameterizes the DOS
as follows

pAPp) exp{_[A(P)lElr} M
2I'g&(1/p) e ’

where Ny is half of the total number of available sites,
A(p) = VEB/p)/E(1/p), and £ is the gamma function. The
width of the DOS increases with the energetic disorder (I'g),
and the shape varies with shape parameter p from Gaussian to
exponential as p decreases from 2 to 1, as depicted in Fig. 1(b).
To understand the effects of the DOS parameters on transport,
we simulated transport using a series of different DOS curves
with varying I'r and p.

We then used Pauli’s master equation % =0= ZJ[VI/,jPi
(1 — P;) — W;P;(1 — Py)] to calculate Marcus hopping within

g(E) = 2Ny

a simulation space of 41 x 41 x 47 different energy sites, where

2\ . .
Wi = \/MVEOOkBTexp(— (}f{g,ﬁ? ) gives the rate at which an

electron hops from site i to site j. Eg is the Marcus polaronic
activation energy, and AFE is the energy difference between
sites. Pauli’s master equation is solved for the site occupation
probabilities using a non-linear iterative solver. The rates were
then used to simulate carrier transport in the polymer and
extract the Seebeck coefficient, macroscopic conductivity, and
carrier mobility as described Supplemental Information, Sect.
S1.1'31 The hopping probabilities were used to calculate carrier
hopping rates for a polymer with a temperature of 300K, a
Marcus polaronic activation energy of 0.1 eV, and under an
electric field of 10° V/m.

When we vary the carrier concentration without altering the
parameters of the GGDM, we add carriers without changing
the shape of the DOS—an increase carrier concentration simply
increases the Fermi level and transport energy. The Fermi level
was iteratively calculated so that [ g(E)f (E)dE = n where n is
the concentration of free carriers, g(E) is the DOS, and f'(E) is
the Fermi function, as depicted in Fig. 1(b). The transport
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Figure 1. (a) Visualization of carriers hopping between localized energy sites with an energy distribution dictated by the density of states.
The density of states is characterized by a generalized Gaussian with standard deviation 'z and shape parameter p. (b) (Left) Effects of I'g
and p on the shape of the DOS. When a material is doped, it increases I'g and decreases p. (Right) To better understand the effect of I'g
and p on transport, we vary the carrier concentration across each DOS without doping. This changes the Fermi level and transport energy
without changing the shape of the DOS. (c) High and low carrier concentrations can be distinguished by looking at the E(n) and Et(n)
curves. At low carrier concentrations, Et is independent of n and is far from Eg. At very high carrier concentrations, Et and Ef are close
and almost parallel. Moderate carrier concentrations follow a continuum between these extrema. (d) Seebeck vs conductivity for various
energetic disorders from 3 to 9 kT at room T. At low n, the S vs o curves appear parallel, but they start to curve with doping at different

rates depending on the energetic disorder and p value.
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[ Eo, (E)dE
J o, (EYdE
is the transport distribution function and can qualitatively be
understood as the average energy of transporting carriers. To
find the Seebeck coefficient, we first calculate the Fermi level
and transport energy, and then use the relationship
S = —,%T(ET — EF). See Supplemental Information, Sect. S1,
for more details on the calculations of the transport energy and
Fermi level.

To analyze the effects of DID on transport, we numerically
calculated the DOS to include Coulomb interactions between
carriers and dopants according to the Arkhipov model, as
described in our recent work.[’! We used the Arkhipov model
to compute the DOS as a function of doping across a broad
range of doping concentration, which was subsequently used
to simulate hopping transport as described above. To analyze
the impact of DID on the DOS, we compare the dopant-induced
DOS with the GGDM and extract the 'z, the standard deviation
of the DOS, using T2 = [ E*g(E)dE/ [ g(E)dE. For a given
DOS, p was found by solving sz/Mj — (1 4+ p) =0 using
a secant method, where M, is the rth absolute moment of the
DOS.[" A minimum dopant carrier separation of 0.3 nm and
a dopant diameter of 0.2 nm were used when calculating the
coulombic interactions between carrier and dopant counter-ion.
Our model can capture a wide range of polymers and dopants,
including capturing dopant size and spacing; however, our
starting point here is a set of parameters consistent with our
recent work that compared our calculations with measurements
on P3HT, a widely used semiconducting conjugated polymer
with high carrier mobility, doped with iodine.’”) Our terminol-
ogy is summarized in Table S1 in Sect. S1 of the Supplemental
Information.

energy is defined as Er = where E is energy and o,

Results and discussion

To understand the effects of the DOS parameters 'z and p on
the S vs o curve, we parameterized S(o, 'g,p). Our overall
strategy is as follows: We started by parameterizing Er (n) and
w(n) and substituting these into the definition of conductiv-
ity 0 = qun. These terms rely on the parameter y, which we
defined as the exponent of o o n” and which we express in
terms of I'g and p. We then relate Er and o and substitute into
known expressions for S(EF), giving us a parameterization for
S(o).

We begin by examining the S vs ¢ curve over a large range
of carrier concentrations, where we observe distinct transport
behaviors. These behaviors are delineated by the relationship
of the Fermi Level Er and transport energy E7 in response to
carrier injection. We first analyze low carrier concentrations in
the range 0f 0.001-0.1%. At these low carrier concentrations, the
transport energy is constant and independent of the free-carrier
concentration. Additionally, the Fermi level and transport energy
are relatively well separated because the Seebeck coefficient is
high. In contrast, at high carrier concentrations (10 — 25%), the
Fermi level and transport energy are very close, and the Seebeck

coefficient is relatively small. Unlike at low carrier concentra-
tions, the transport energy is a function of » in this range. We see
from Fig. 1(c) that the response of the Fermi level and transport
energies to free-carrier injection depend on the energetic disor-
der and p value, which is also reflected by the S vs o curves in
Fig. 1(d). This means that the distinction between “low doping”
and “high doping” is disorder dependent, such that two different
polymers at the same doping concentrations may have different
S'vs o behavior, which may explain some of the disagreement in
the literature when comparing polymers with different intrinsic
disorder.

As is seen in Fig. 1(d), at low n, the S vs o curves are paral-
lel regardless of the energetic disorder I'z or shape parameter p.
This gives us a hint about the form of the S vs o relationship—
the slope is independent of energetic disorder and p value and
S o In(o). We use this observation to develop an expression for
S vs o using the strategy discussed above. We start by analyzing
carrier mobility p in terms of n, shown in Fig. 2(a). We find that
w vs nis linear on a log—log plot, indicating a power-law relation-
ship of the form:

n 7!
n = psat(T'E) (%) 5 ()

where [igq¢ is defined as the maximum mobility achievable by
a polymer with a given energetic disorder. This power-law
dependence had been noted before in the literature, but the
exponent and intercept had not been connected to the shape of
the DOS. qt is the saturation mobility, found at high carrier
concentrations, and will be discussed in a later section.

The Fermi Level as a function of free-carrier concentration
is plotted in Fig. 2(a), where we observe a linear relationship,
indicating a logarithmic relationship that we fit by

Ep = kaTln<i) — 1.75T . 3)
No

The slope of EF is proportional to y, which we realized know-
ing that y must cancel out of the Er vs o relationship for the S vs
o lines to be parallel. Equation 3 has excellent agreement with
the data, and the appearance of y in the slope of Er (n) suggests
that y is a fundamental transport parameter that encapsulates the
properties of the DOS. We also find the empirical relationship
for the exponent

y =1~ 25 — kgT)’ 4)
by extracting the slope of the u vs n curve on a log—log scale,
and the results of this fit are shown in Supplemental Informa-
tion, Sect. S2.

Solving for n(Er) and substituting into o = gun, we get the
dependence of conductivity on carrier concentration and DOS
parameters 6 = qtsatNo (Ni()) y. Rearranging this to solve for Er,

we get the expression:

Ep = kgTln (i> — 75T, )

Osat
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Figure 2. (a) (Top) Mobility vs carrier concentration at p = 2. The top line is mobility at 'g = 1kT, which we define as w147 so that

HMsat

= KT - u1x7/ TE- 1sat is relatively independent of p, and we use it to approximate mobility as u ~ ugat NL

" which shows good

agreement. (Bottom) The Fermi level is proportional to the doping concentration, and the slope is surprisingly also dependent on y. (b) At
low carrier concentrations, y dependence of the mobility and Fermi level cancels out such that the Eg vs o curves are parallel. This is
ultimately what gives us parallel S vs o curves. (c) S vs o at p = 2 (inset) and at p = 1, main fig, along with our approximation for S vs o
shown by the dashed lines. Using this approximation, we get a fantastic fit for S vs o at low carrier concentrations and high p values,
which is the relevant range for low doping concentrations. (d) Looking at S vs n, we see that for a constant energetic disorder and p value,
the S vs n slope is constant, but in general, the slope of S vs n depends on y and, thus, I'r and p.

where the saturation conductivity is related to saturation mobil-
ity through og = qusatNo. Notice that y from the exponent
of mobility cancels with y from the slope of the Fermi Level,
making the Er vs o curves parallel as seen in Fig. 2(b).

Finally, we find that we can approximate the transport
energy as a constant dependent only on the DOS parameters,
such that

2
Er =~ —Tg —kgT)exp (1;) (6)

Equation 6 gives excellent agreement with hopping transport
simulations, as shown in Supplemental Information, Sect. S3.
Combining Egs. 5 and 6 with the definition of the Seebeck coeffi-
cient§ = LT (EF — ET), we can put everything together to obtain

k 'y —kgT 2 1.75
o ks, ( o ) _ Mexl?( > EEIE NS
q  \Osa qT p qr
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Our expression in Eq. 7 predicts a universal slope of —kp /g
for S vs In(o'), which has been observed in the literature for
low carrier concentrations!'%!> and is observed in our data in
Fig. 2(c). To better understand Eq. 7, Fig. 2(c) shows the simu-
lated S vs o curves and the approximations given by Eq. 7 as we
increase I'g and p. The S vs o curve shifts left as ' increases
and shifts toward the bottom right as p increases. We see that
Eq. 7 gives nearly flawless agreement the data at p = 2 but
deviates at p = 1 at high energetic disorders. It seems that for
higher p values, there is a regular I'g-dependent spacing, but
at low p values, the S vs o curves merge into each other and
converge in a way Eq. 7 fails to account for. However, as dis-
cussed later, most polymers will still have high p values and
low energetic disorders at low doping, at which Eq. 7 predicts
S vs o almost perfectly.

We can also relate the Seebeck to the carrier
concentration by combining Eqs. 4 and 6 to reach
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Figure 3. (a) The expression for S(Eg) given by the Mott Formula works gives a decent qualitative fit at high n for polymers at moderate

p values and high energetic disorders, which are the values we expect at high doping. (b) Compared to low carrier concentrations, the
mobility is relatively independent of n at high carrier concentrations. We call the final mobility the saturation mobility, which is shown for
multiple values of I'r and p = 1.5. (c) We see that the saturation mobility is nearly linear in 1/ 'z and relatively independent of p, varying
only by a factor<2. (d) The slope of Ef (o) is well captured by y at high carrier concentrations, before the Seebeck nosedive which is omit-

ted for visibility.

Sy = & [—kaTln(NLO) —1.75Tf — (g — kgT)exp (5)}
which is shown in Fig. 2(d) as dashed lines alongside hop-
ping transport results. We see that the slope of S(n) is propor-
tional to y, meaning that, in general, the slope depends on
the energetic disorder and p value. Polymers in the disorder-
free limit, however, should have a constant slope of —kp/q
as has been observed in the literature.['®!7)

At high carrier concentrations, the Fermi level approaches
the transport energy and the assumptions for the Mott for-
mula become valid.['®] The Mott formula is given by
S = a2 kél dlnoy,

3 g dE
tion (TDF). From the generalized Einstein relation, we express
the TDF as 0, = ¢*g(E)D(E). Because the microscopic dif-
fusivity D(E) is relatively weakly varying with carrier concen-
trations, we can replace it with a constant Dy which disappears
in the Mott Formula once we take the logarithmic derivative.
Substituting the generalized Gaussian DOS from Eq. 1 into the
Mott Formula, we get

where o0, is the transport distribution func-

=1 4 @
g’ )

AEF

2

T
S~ I3Tp -
3 BiP Ty

This formula gives a good fit for moderate p values, as
shown in Fig. 3(a), but does fail in the limit of p < 1due to the
p — lterm in the exponent of the Fermi level. Equation 8 gives
an expression relating S and Er, and we can once again use the
strategy described earlier to find S vs o for high n.

As seen in Fig. 3(b), at high carrier concentrations, the mobil-
ity saturates and becomes somewhat independent of n. Because
of this, we can take mobility as a constant dependent only on the
normalized energetic disorder F=r £/kT and the mobility at 1kT
of disorder (u147) such that pg = %, as shown in Fig. 3(c).
This relationship is surprisingly simple—a polymer achieves its
maximum mobility in the disorderless limit, 'y = 1kT, relatively
independent of the p value. This disorderless limit of mobility
w1kr s material dependent and contains all the effects besides
energetic disorder, such as positional disorder, partial carrier
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Figure 4. (a) Solid lines are hopping transport results while dashed lines depict Eqg. 10, our approximation of S(o). The approximation

fails at p=1.0 due to the p — 1term inherited from the Mott formula, but it shows good agreement above I'e = 3kT, in the range of most
polymers. (b) Plotting all S vs o curves across p and I'g, we see that at high doping the maximum conductivity is dictated by the energetic
disorder, and at high energetic disorders the slope is controlled by the p value, with a flatter slope for lower p values. (c) The energetic and
dopant-induced disorders are shown as a function of the number of dopants. The total disorder reaches a common peak with doping,
upon which further doping decreases the disorder through disorder compensation. (d) The p value is shown as a function of the number
of dopants. p starts near 2 and decreases with doping, but then seems to increase back to 2 or even higher at high doping.

delocalization, overlap between the wavefunctions of neighboring
states, and the phonon-assisted attempt-to-hop rate. The satura-
tion mobility is inversely proportional to the normalized energetic
disorder and describes the maximum achievable mobility for a
polymer having a given energetic disorder. Additionally, this
means that the maximum achievable conductivity for a polymer
is dictated solely by ' and nearly independent of the DOS shape
parameter p because oyt = gsatNo = gL 17 No (kle—ET) which is

shown as follows.

Next, to find Er (o), we reuse Eq. 4—the relationship between
Er and n for low r—and use 0 = gun, where u is now set equal
to Wsat. We obtain

=)

Er « kaTln(— )
Ogat

where the Er vs o curves are no longer parallel but instead pro-

portional to y. The performance of Eq. 9 is surprisingly good,

as Eq. 4 underpredicts the slope of Er(n) at high n, but Eq. 9

describes the slope of Er(o) well, as shown in Fig. 3(d). A
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more detailed discussion of Eq. 9 is given in the Supplemental
Information, Sect. S4.

Finally, to establish a relationship between S and o for high
n, we combine Egs. 8 and 9 to find

Yo ()

This equation gives a qualitative fit of the data as shown
in Fig. 4(a). Equation 10 shows us that unlike at low #, the
slope of S vs o at high 7 is heavily affected by both the I'r
and p values. The term p(%)pyp’l controls the slope of the

A
(10)

curve, which decreases with I'z and increases with p, and
the p — 1 exponent to In(%2) controls the curvature. For
large values of o approaching o,¢, the logarithm is approxi-
mately linear, such that our equation shows § oc 0 ~®?~1.
From this, we would relate the DOS shape parameter to the
Kang-Snyder exponent via s & 1/(p — 1). We examine the
relationship between the slope of S vs ¢ and the DOS shape
parameter p value more closely in Fig. 4(b), with the inset
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showing that p can be related to the Kang-Snyder exponent
more accurately through s = 4/(p — 0.8). A purely Gaussian
DOS (p=2) would correspond to s & 3.33 while s=4 and 8
map closely to p=1.75 and 1.25, respectively. Therefore, a
higher exponent corresponds to a more heavy-tailed DOS.

These effects can be seen quite clearly by looking at
the S vs o curves across all I'r and p values as shown in
Fig. 4(b). Here, we see again that the maximum conductivity
osat 18 controlled almost entirely by the energetic disorder
and independent of the p value, as predicted previously, so
that lower I'g consistently gives a higher conductivity and a
higher power factor. The slope of S vs o becomes flatter and
more p dependent as I'g increases, with a larger p giving a
steeper slope. Above ~ 5kgT of energetic disorder, there is a
crossover point where S vs o at p = 1is greater than at p =2
at the highest conductivities, such that the power factor is
higher for p = 1. This means that at low energetic disorder,
a high p value is desirable, but at high energetic disorder,
it is favorable to have a lower p value. The power factor is
plotted for these same values in Fig. S5 of the Supplemental
Information.

Lastly, we turn our attention to the amount of DID as a
function of doping. Figure 4(c) shows the energetic disorder
as function of doping, extracted from the standard devia-
tion of the DOS computed from the Arkhipov model, as
described in Methods. The total energetic disorder increases
to a maximum that is largely independent of the intrinsic
disorder, then decreases due to disorder compensation.!!”]
Carrier screening can also impact the energetic disorder
at high doping.[** We also note that the amount of DID is
greater when the intrinsic energetic disorder is small. How-
ever, the total energetic disorder for all cases is above SkgT
at high doping, implying that most doped polymers are in
a range where the slope of the S — o curve is controlled by
the p value.

Figure 4(d) shows the p value as a function of doping.
We observe that DID reduces the p value from the initial
value of p = 2, which indicates a gaussian intrinsic DOS,
to values around 1, indicative of a heavy exponential tail.
The amount of reduction in p value is greater if the intrinsic
energetic disorder is small—if we start out with a narrow
DOS, then DID will affect it more by creating a pronounced
tail. On the other hand, when the intrinsic DOS is a wide
gaussian, the tail is less pronounced, and the DOS retains its
gaussian shape. Consequently, polymers with lower intrinsic
disorder will have a lower p value, resulting in a flatter slope
of the S vs o curve, as was shown in our earlier work!® and
confirmed in Supplemental Fig. S6. Ultimately, at high dop-
ing, the p value recovers back up to and above the initial
value of p = 2, reaching higher p values for higher intrinsic
disorders, but this occurs at very high doping concentrations
where the Seebeck coefficient begins to abruptly decrease as
the Fermi level reaches the flat top of the DOS.

Conclusion

We have carefully analyzed the impacts of carrier concentra-
tion, the width, and the shape of the electronic DOS on trans-
port and the S vs o curve. We find distinct S vs o behavior at
low vs high carrier concentrations n. At low n, the transport
energy is independent of n and far from the Fermi level. We
show the Er(n) and o (n) curves have a I'g and p dependence,
with their slope depending on the parameter y (I'g, p), such
that the dependence cancels and the slope of Er vs o is con-
stant, producing a universal S vs o slope of —kp/q. At high
n, where the Fermi level and transport energy are close and
nearly parallel, the mobility u saturates to a nearly constant
value psat such that o o« yEr and the S vs o slopes are no
longer constant but instead have aI'r and p dependence. We
show that the Mott Formula works qualitatively well here,
allowing us to derive an expression capturing the I'z and
p dependence of the slope. We also show that a polymer’s
maximum attainable conductivity is inversely proportional to
the energetic disorder but largely independent of DOS shape
parameter.

It is important to note that the equations we derive in this
paper describe S vs o for a fixed DOS at a specific carrier
concentration. When doping a polymer, the shape of the
DOS evolves with doping. Deriving analytical expressions
for ' (n) and p(n) could allow us to describe the evolution of
the S vs o curve in a system with DID, but it is left for future
work. Instead, we correlate both energetic disorder and the
DOS shape to doping via the Arkhipov model and find that,
at high carrier concentrations, the S vs o curve is highly p
dependent, such that low p produces a higher power factor.
Thus, finding ways to maintain a low p value could increase
the maximum efficiency of heavily doped thermoelectrics.
One way this may be achieved is by starting from a polymer
with very low intrinsic energetic disorder, which produces a
heavier tail and flatter S vs o curve but may result in higher
power factors. We believe that by providing an understanding
for the underlying effects of carrier injection and the DOS
shape on the S vs o curve, we may better mitigate the S vs o
tradeoff and find better thermoelectric materials.
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